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—— Abstract

Let G be a directed graph on n vertices and m edges. In this article, we study (s, t)-cuts of second
minimum capacity and present the following algorithmic and graph-theoretic results.

1. Second (s,t)-mincut: Vazirani and Yannakakis [ICALP 1992] designed the first algorithm
for computing an (s,t)-cut of second minimum capacity using O(n?) maximum (s,t)-flow
computations. We present the following algorithm that improves the running time significantly.
For directed integer-weighted graphs, there is an algorithm that can compute an (s, t)-cut of
second minimum capacity using O(y/n) maximum (s, t)-flow computations with high probability.*
To achieve this result, a close relationship of independent interest is established between (s, t)-cuts
of second minimum capacity and global mincuts in directed weighted graphs.

2. Minimum+1 (s,t)-cuts: Minimum+1 (s, t)-cuts have been studied quite well recently [Baswana,
Bhanja, and Pandey, ICALP 2022 & TALG 2023], which is a special case of second (s, ¢)-mincut.
We present the following structural result and the first nontrivial algorithm for minimum+-1
(s, t)-cuts.

a. Algorithm: For directed multi-graphs, we design an algorithm that, given any maximum
(s,t)-flow, computes a minimum+1 (s, t)-cut, if it exists, in O(m) time.

b. Structure: The existing structures for storing and characterizing all minimum+1 (s, t)-cuts
occupy O(mn) space [Baswana, Bhanja, and Pandey, TALG 2023]. For undirected multi-
graphs, we design a directed acyclic graph (DAG) occupying only O(m) space that stores and
characterizes all minimum+1 (s, t)-cuts. This matches the space bound of the widely-known
DAG structure for all (s, t)-mincuts [Picard and Queyranne, Math. Prog. Studies 1980].

3. Dual Edge Sensitivity Oracle: The study of minimum+1 (s,t)-cuts often turns out to
be useful in designing dual edge sensitivity oracles — a compact data structure for efficiently
reporting an (s,t)-mincut after insertion/failure of any given pair of query edges. It has been
shown recently [Bhanja, ICALP 2025] that any dual edge sensitivity oracle for (s,¢)-mincut in
undirected multi-graphs must occupy Q(nQ) space in the worst-case irrespective of the query
time. Interestingly, for undirected unweighted simple graphs, we break this quadratic barrier
while achieving a non-trivial query time as follows. There is an O(n+/n) space data structure
that can report an (s, t)-mincut in O(min{m, n\/n}) time after the insertion/failure of any given
pair of query edges.

To arrive at our results, as one of our key techniques, we establish interesting relationships between
(s,t)-cuts of capacity (minimum+A), A > 0, and maximum (s,t)-flow. We believe that these
techniques and the graph-theoretic result in 2.(b) are of independent interest.
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1 Introduction

The concept of cut is fundamental in graph theory and has numerous real-world applications
[1]. Let G = (V, E) be a directed weighted graph on n = |V| vertices and m = |E| edges with
a designated source vertex s and a designated sink vertex t. Every edge e of G is assigned
with a non-negative real value as the capacity of the edge, denoted by w(e). There are mainly
two types of well-studied cuts in a graph — global cuts and (s, t)-cuts. A global cut, or simply
a cut, of G is defined as a nonempty proper subset of V. A cut C is said to be an (s,t)-cut
if s€ Candt e C(=V \C). Every cut of G is associated with a capacity defined as follows.
The capacity of a cut C, denoted by ¢(C), is the sum of the capacities of every edge (z,y)
satisfying € C and y € C. A global cut (likewise (s,¢)-cut) of the least capacity is called a
global mincut (likewise (s,t)-mincut). Henceforth A denotes the capacity of (s, ¢)-mincut.

The study of cuts from both structural and algorithmic perspectives has been an important
field of research for the past six decades [21, 19, 14, 25, 36]. In this article, we provide the
following two main results for (s, ¢)-cuts. (1) We present efficient algorithms for computing
an (s,t)-cut of second minimum capacity in directed weighted graphs. After more than 30
years, our algorithms provide the first improvement by a polynomial factor over the existing
result of Vazirani and Yannakakis [37]. To arrive at this result, we establish that computing
an (s,t)-cut of second minimum capacity has the same time complexity as computing a
global mincut. (2) We present a dual edge sensitivity oracle for (s,t)-mincut — a compact
data structure that efficiently reports an (s, t)-mincut after the insertion or failure of any
pair of edges. This is the first dual edge sensitivity oracle for (s,¢)-mincut that occupies
subquadratic space while achieving nontrivial query time in undirected unweighted simple
graphs®. This breaks the existing quadratic lower bounds [3, 6] on the space for any dual
edge sensitivity oracle for (s,t)-mincut in undirected multi-graphs?. We arrive at this result
by designing a compact structure for storing and characterizing all minimum+1 (s,t)-cuts (a
special case of second minimum (s,¢)-cut). This structure improves the space occupied by
the existing best-known structure [3] by a linear factor.

We now present the problems addressed in this article, their state-of-the-art, and our
results.

LA simple graph refers to a graph having no parallel edges.
2 A multi-graph refers to an unweighted graph having parallel edges.
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1.1 Faster Algorithm for Second Minimum (s,t)-cuts

An algorithmic graph problem aims at computing a structure that optimizes a given function.
Examples of such classical problems are Minimum Spanning Tree, Shortest Path, Minimum
Cut. Having designed (near) optimal algorithm for such problems, the next immediate
objective is the following. Design an efficient algorithm that, given a structure .S achieving
optimal function value, computes a structure S’ that differs from S and achieves the optimal
or next optimal function value. There has been an extensive study on computing the second
minimum spanning tree [8, 26, 29], the second shortest path [38, 18, 34], and second (s, t)-
mincut [37]. The algorithms for these problems are so fundamental that they appear in
textbooks on algorithms [13, 1]. In addition, they act as the foundation for generalizing the
problem to compute k' optimal structure, such as computing A** minimum spanning tree,
kth shortest path, k" (s,t)-mincut.

The problem of designing efficient algorithms for computing (s, t)-mincut (or equivalently,
maximum (s, t)-flow) has been studied for more than six decades. This problem is now almost
settled with the recent breakthrough result on almost linear time algorithm for maximum
(s,t)-flow by Van et al. [36]. Interestingly, given an algorithm for maximum (s, t)-flow, we
can compute all (s, ¢)-mincuts implicitly with an additional O(m) time, as shown by Picard
and Queyranne [33]. It is, therefore, natural to redefine the second (s, ¢)-mincut problem as
follows. Design an algorithm that computes an (s, t)-cut of second minimum capacity. For
brevity, henceforth we call (s, )-cut of second minimum capacity by second (s, t)-mincut.

Vazirani and Yannakakis [37] addressed the problem of computing an (s,¢)-cut having
k*" minimum capacity in 1992. For computing any k" minimum capacity (s,t)-cut, they
gave an algorithm that uses O(n?*~1)) maximum (s, t)-flow computations. Conversely, they
also argued, using NP-hardness of computing a maximum cut, that exponential dependence
on k is unavoidable assuming P # NP. To arrive at their result, the key problem they
addressed is the design of an algorithm that computes a second (s, t)-mincut using O(n?)
maximum (s, t)-flow computations. They further improve the running time by designing a
faster algorithm that computes a second (s, t)-mincut using only O(n) maximum (s, t)-flow
computations. We show that this faster algorithm is incorrect due to a serious error in its
analysis. As a result, the existing best-known algorithm for computing a second (s, t)-mincut
uses O(n?) maximum (s, t)-flow computations [37]. We design an algorithm for the second
(s, t)-mincut with a significantly improved running time as shown in the following theorem.

» Theorem 1 (Second (s,t)-mincut algorithm). For any directed graph G on n vertices with
integer edge capacities, there is an algorithm that computes a second (s,t)-mincut in G using
O(y/n) mazimum (s,t)-flow computations with high probability.

The two well-known minimum cuts in a graph are (s, ¢)-mincut and global mincut. Recently,
there has been a growing interest in understanding the difference in the complexity of
computing an (s,t)-mincut and computing a global mincut. For undirected weighted graphs,
Li and Panigrahi [28] established that the running time of computing a global mincut differs
by only poly-logarithmic factors from the running time of computing an (s,t)-mincut. In
particular, the authors showed that there is an algorithm that can compute a global mincut
using O(1) maximum (s, t)-flow computations with additional O(m) time. However, for
directed weighted graphs, there is a large gap between the running time of computing an
(s,t)-mincut and computing a global mincut as follows. Cen et al. [9] designed an algorithm
that can compute a global mincut using O(y/n) maximum (s, t)-flow computations with
additional O(m+/n) time. Interestingly, to arrive at our result in Theorem 1, we show that
the complexity of computing a global mincut is the same as the complexity of computing
a second (s, t)-mincut modulo a single maximum (s, t)-flow computation as follows, which
might find many other important applications.
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» Theorem 2 (Equivalence between global mincut and second (s, t)-mincut). For any directed

weighted graph G on n vertices and m edges, the following two assertions hold.

1. The problem of computing a second (s,t)-mincut is reducible to the problem of computing
a global mincut in O(MF(m,n)) time, where M F(m,n) denotes the time complexity for
computing a mazimum (s,t)-flow in G.

2. The problem of computing a global mincut is reducible to the problem of computing a
second (s,t)-mincut in O(m) time.

» Remark 3. Our algorithm for computing a second (s, t)-mincut in Theorem 1 is Monte
Carlo and works for graphs with integer edge capacities. However, the equivalence between
second (s,t)-mincut and global mincut in Theorem 2 is deterministic and holds even for
graphs with real edge capacities.

1.2  Minimum+1 (s,t)-cuts: Efficient Algorithm & Compact Structure

The cuts of capacity minimum+1, known as minimum+1 cuts, have been studied quite
extensively in the past [3, 15, 6]. For (un)directed multi-graphs, a minimum-+1 (s, ¢)-cut is a
special case of second (s, t)-mincut. We present the following structural result and the first
nontrivial algorithm for minimum+1 (s, ¢)-cuts.

Algorithm. For both minimum+1 global cuts [15] and minimum+1 (s, ¢)-cuts [3], there exist
compact data structures. These data structures have important applications in maintaining
minimum+2 edge connected components [15] and designing dual edge sensitivity oracle for
(s,t)-mincut [3]. Moreover, there exist efficient algorithms [24, 4, 30] that can compute a
global cut of capacity minimum+1. Unfortunately, the existing best-known algorithm for
computing an (s, t)-cut of capacity minimum+1 is nothing but the algorithm for computing
a second (s,t)-mincut by [37], which uses O(n?) maximum (s,t)-flow computations. We
present the following result as the first efficient algorithm for computing an (s,¢)-cut of
capacity minimum+-1.

» Theorem 4 (Minimum+1 (s,t)-cut algorithm). For any directed multi-graph G on n
vertices and m edges, there is an algorithm that, given any mazimum (s,t)-flow, computes a
minimum+1 (s,t)-cut, if exists in G, in O(m) time.

» Remark 5. The best-known algorithm for computing an (s, t)-mincut uses one maximum
(s,t)-flow computation. It follows from Theorem 4 that the running time of computing a
minimum+1 (s, t)-cut differs from the running time of computing an (s, t)-mincut only by
additional O(m) time.

Structure. There are several algorithmic applications on cuts, namely, fault-tolerance
[33, 14], dynamic algorithms [22, 23], edge-connectivity augmentation [31, 10] that require
an efficient way to distinguish a set of cuts, say minimum cuts or minimum+1 cuts, from the
rest of the cuts. A trivial way to accomplish this objective is to store each cut of the required
set explicitly. However, this is totally impractical since the set of these cuts is usually quite
huge. For example, the number of (s,¢)-mincuts are exponential [33], and the number of
global mincuts are Q(n?) [14]. This has led the researchers to invent the following concept.
A structure H is said to characterize a set of cuts C using a property P if the following
condition holds. A cut C € C if and only if C satisfies property P in H. It is desirable that
H is as compact as possible. Moreover, verifying if a given cut C' satisfies P in H has to be
as time-efficient as possible.
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The design of compact structures for characterizing minimum cuts started with the
seminal work of Dinitz, Karzanov, and Lomonosov [14] in 1976. In this work, the well-
known cactus graph occupying O(n) space was invented for storing and characterizing all
global mincuts. Several compact structures have been designed subsequently for storing and
characterizing cuts of capacity both minimum and near minimum [33, 4, 15, 16, 3]. Quite
expectedly, they are playing crucial roles in establishing many important algorithmic results
[37, 4, 15, 23, 27, 3]. In particular, compact structures for storing and characterizing all
minimum+1 cuts of a graph have been well-studied. For all minimum+1 global cuts in
undirected multi-graphs, Dinitz and Nutov [15] constructed an O(n) space 2-level cactus
model that stores and characterizes them. For all minimum+1 (s,t)-cuts in directed multi-
graphs, the existing structure that provides a characterization occupies O(mn) space [3].
Unfortunately, the space occupied by this structure of [3] is significantly inferior to the
following widely-known structure designed by Picard and Queyranne [33] for (s,¢)-mincut.
There is an O(m) space directed acyclic graph (DAG) that stores and characterizes all
(s, t)-mincuts of any graph using 1-transversal cuts of this DAG. An (s, t)-cut is said to be
1-transversal if its edge-set® intersects any path at most once. Interestingly, we are able to
achieve the O(m) bound on space for storing and characterizing all minimum-+1 (s, t)-cuts.

An edge (u,v) is said to contribute to a cut C if u € C and v € C. We first establish
that for any maximum (s,t)-flow f, there exists a set containing at most n — 2 edges, called
the anchor edges, such that for any minimum+1 (s,t)-cut C, exactly one anchor edge
contributes to C. By exploiting this result, we design the following structure for storing and
characterizing all minimum+1 (s, t)-cuts.

» Theorem 6 (Structure for minimum+1 (s,t)-cuts). Let G be an undirected multi-graph on
n vertices and m edges with a maximum (s,t)-flow f. There is an O(min{m,nv/A}) space
structure, consisting of a directed acyclic graph D and the set of n — 2 anchor edges, that
stores and characterizes all (s,t)-mincuts and all minimum+1 (s,t)-cuts of G as follows.
1. An (s,t)-cut C is an (s,t)-mincut in G if and only if C is a 1-transversal cut in D and
no anchor edge corresponding to f contributes to C.
2. An (s,t)-cut C is a minimum+1 (s,t)-cut in G if and only if C' is a 1-transversal cut in
D and exactly one anchor edge corresponding to f contributes.
For undirected graphs, the best-known structure for storing and characterizing all (s, t)-
mincuts is the DAG of Picard and Queyranne [33] that occupies O(min{m,nv/A}) space,
which is tight as well (refer to [20] and Lemma 12 in [22]). Interestingly, not only our
structure in Theorem 6 matches the bound on space with the DAG for (s,t)-mincuts [33]
but also it stores and characterizes both (s, t)-mincuts and minimum+1 (s, ¢)-cuts.

1.3 Dual Edge Sensitivity Oracle: Breaking the Quadratic Barrier

The study of minimum+1 (s, ¢)-cuts often turns out to be useful in designing elegant dual
edge sensitivity oracles [3, 15, 6], which is defined as follows.

» Definition 7 (Dual edge sensitivity oracle). A dual edge sensitivity oracle for minimum cuts
is a compact data structure that can efficiently report a minimum cut in the graph after the
insertion or failure of any given pair of query edges.

Designing sensitivity oracles for various minimum cuts of a graph has been an emerging field
of research [33, 15, 16, 3, 2]. For (s,t)-mincut in multi-graphs, the DAG structure of Picard
and Queyranne [33], as shown in [3], can be used to design an O(n) space sensitivity oracle

3 The edge-set of a cut C is the set of edges with exactly one endpoint in C.
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that can report an (s,t)-mincut in O(n) time after the failure/insertion of any single edge. It
is now interesting to design a sensitivity oracle that can handle multiple failures/insertions
of edges. To solve this generic problem, as argued in [3], the natural approach is to first
design a dual edge sensitivity oracle for (s, t)-mincut. This approach has also been taken for
various other classical graph problems, including distance and connectivity [17], traversals [32],
reachability [12, 11]. Moreover, it has been observed that handling two edge failures/insertions
is significantly more nontrivial than handling a single one. It also provides important insights
that either expose the hardness or help in generalizing the problem for multiple failures. To
extend the result of [33] from single to multiple edge failures/insertions, Baswana, Bhanja,
and Pandey [3] designed the first dual edge sensitivity oracle for (s,t)-mincut occupying
O(n?) space in directed multi-graphs. It can report a resulting (s, t)-mincut in O(n) time.

Note that quadratic space data structures often pose practical challenges as n can be
quite large for the real world networks/graphs. It thus raises the need to design sensitivity
oracles for various fundamental graph problems that occupy subquadratic space [7, 35, 5.
Unfortunately, it has been shown [3, 6] that any dual edge sensitivity oracle for (s,¢)-mincut
in undirected multi-graphs must occupy ©(n?) bits of space in the worst case, irrespective of
the query time. However, for undirected unweighted simple graphs, we break this quadratic
barrier on the space of any dual edge sensitivity oracle while achieving nontrivial query time
as follows.

» Theorem 8 (Dual edge sensitivity oracle for (s,%)-mincut). Let G be an undirected un-
weighted simple graph on n vertices and m edges. There exists a data structure occupying
O(min{m,n'®}) space that can report an (s,t)-mincut C (including the contributing edges
of C) in O(min{m,n'}) time after failure/insertion of any given pair of query edges in G.

For the existing dual edge sensitivity oracles for (s, t)-mincut [3, 6], no nontrivial preprocessing
time is known till date. We establish the following almost linear preprocessing time for our
dual edge sensitivity oracle stated in Theorem 8.

» Theorem 9 (Preprocessing time). For undirected unweighted simple graphs on n vertices
and m edges, there is an algorithm that, given any mazimum (s,t)-flow, can construct the
dual edge sensitivity oracle in Theorem 8 in O(m) time.

2  Organization of this article

This article is organized as follows. Basic preliminaries and notations are stated in Section 3.
A limitation of an existing algorithm in [37] for computing second (s, ¢)-mincut is provided
in Section 4. In Section 5, we design two algorithms for computing a second (s,t)-mincut
in directed weighted graphs. For undirected multi-graphs, in Section 6, we establish close
relationships between maximum (s,t)-flow and (s, t)-cuts of capacity beyond (s,¢)-mincut,
which are used as tools to arrive at the results in the following sections. For undirected
multi-graphs, Section 7 contains the design of our linear space structure for storing and
characterizing all (A + 1) (s,t)-cuts. In Section 8, we design the subquadratic space dual
edge sensitivity oracle for (s,t)-mincut in undirected unweighted simple graphs. Finally, we
conclude in Section 9. All the omitted proofs are provided in the full version.

3 Preliminaries

By integrality of maximum (s, t)-flow [19], for integer-weighted graphs, we consider any given
maximum (s, t)-flow to be integral. The following notations to be used throughout the article.
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G U A (likewise G\ A): Graph obtained after adding (likewise removing) a set of edges A
in G.
(A A) (s,t)-cut: An (s,t)-cut of capacity A + A where A > 0.
(u,v)-path : A simple directed path from vertex u to vertex v.
f denotes a maximum (s, t)-flow in graph G.
¢(C, H): Capacity of a cut C in a graph H.
A cut C subdivides a set of vertices X if CN X # () and C N X # 0.
A cut C separates a pair of vertices u,v if u € C and v € C or vice-versa.
The edge-set of a cut C, denoted by E(C), is the set of all edges whose endpoints are
separated by C.
Let f’ be any (s,t)-flow in G.
HY" denotes the residual graph for any graph H corresponding to an (s,t)-flow f’.
f'(e) denotes the value of flow f assigned to an edge e.
't (C) and f1 (C): For any (s,t)-cut C, fi.(C) (likewise f/ (C)) is the sum of flow

out
assigned to all edges e = (u,v) € E(C) with u € C,v € C (likewise v € C,u € C).
» Lemma 10 (Conservation of flow). For any (s,t)-cut C, f! .(C) — fl (C) = value(f’)

in

» Definition 11 (Quotient Graph). A graph H is said to be a quotient graph of G if H is
obtained from G by contracting disjoint subsets of vertices into single nodes.

» Definition 12 (Quotient Path). A path P, is said to be a quotient path of a path P if Py is
obtained from P by contracting a set of edges in P.

Residual graph for undirected multi-graphs. Although the residual graph is defined for

directed graphs [19], for undirected graphs, we define the residual graph in the following way.

Let e = (x,y) be any edge in an undirected multi-graph H with an (s, t)-flow f’. There exist
two edges (y, ) (likewise (z,y)) in H!" if e carries flow in the direction z to y (likewise y to
x); otherwise, there is a pair of edges (z,y) and (y, ) in HT.

3.1 A DAG structure for storing and characterizing all (s,t)-mincuts

In a seminal work, Picard and Queyranne [33] designed a DAG, denoted by Dpg(G), that
stores all (s,t)-mincuts in G and characterizes them as 1-transversal cuts. We now briefly
describe the construction of Dpg(G).

Construction of Dpg(G). Let G’ be the graph obtained by contracting each Strongly
Connected Component (SCC) of G into a single node. Let T denote the node containing ¢
and S denote the node containing s in G’. If G is an undirected graph, Dpg(G) is the graph
G'. For directed graphs, Dpg(G) is obtained by suitably modifying G’ as follows. For each
node pu reachable from S in G/, p is contracted into node S. Likewise, each node p that has
a path to T, is contracted into the node T. Given any maximum (s, t)-flow f, Dpg(G) can
be obtained in @(m) time and has the following property. Without causing ambiguity, we
refer to (S, T)-cut in Dpg(G) by (s, t)-cut.

» Theorem 13 ([33]). Let G be any directed weighted graph on m edges with a designated
source vertex s and designated sink vertex t. There is an O(m) space DAG Dpg(G) that
stores and characterizes each (s,t)-mincut in G as follows. An (s,t)-cut C is an (s,t)-mincut
in G if and only if C is a 1-transversal cut in Dpg(G).
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4 Limitation of the Existing Algorithm for Second (s,t)-mincut

We state here a limitation of the existing algorithm given by Vazirani and Yannakakis [37] to
compute a second (s,t)-mincut. The algorithm for computing an (s, ¢)-cut of &** minimum
capacity by [37] uses O(n?*~1) maximum (s,t)-flows. So, for k& = 2, the algorithm uses
O(n?) maximum (s,t)-flow computations. In the same article [37], they stated the following
property.

» Lemma 14 (Lemma 3.2(1) in [37]). Let G be the residual graph corresponding to a
mazimum (s,t)-flow f in G. Let H be an SCC in Gf and u,v be a pair of vertices in H. If
the capacity of the least capacity cut separating {u} and {v} is k in H, then the least capacity
cut separating {s,u} and {v,t} has capacity A + k in G.

Figure 1 A counter example for Lemma 3.2(1) in [37] (¢) A graph G. V' \ {t} is the (s, t)-mincut
in G with capacity 1 and ¢(A)=22. (ii) H is an SCC in G' and ¢(B, H) = 2.

Vazirani and Yannakakis [37] used Lemma 14 to design an algorithm that computes second
(s,t)-mincut using O(n) maximum (s, t)-flow computations (the algorithm preceding Theorem
3.3 in [37]). Unfortunately, Lemma 14 (or Lemma 3.2(1) in [37]) is not correct as shown
in Figure 1(47). H is the SCC in G containing vertices u and v. The least capacity cut B
separating {u} and {v} has capacity 2 in H. By Lemma 14, the least capacity cut separating
{s,u} and {v, ¢} must have capacity 2+ 1 = 3 in G. However, as it can be verified easily
using Figure 1(i), A is a least capacity cut separating {s,u} and {v,t} in G and its capacity
is 22. Therefore, the algorithm stated above Theorem 3.3 in [37], fails to correctly output a
second (s, t)-mincut.

5 Faster Algorithm for Second (s,t)-mincut

We design two efficient algorithms for computing a second (s, t)-mincut. Our first algorithm
computes a second (s, t)-mincut for directed weighted graphs using O(n) maximum (s, ¢)-flow
computations, which achieves the aim of Vazirani and Yannakakis [37]. This algorithm
can be seen as an immediate application of the recently invented covering technique of [3].
We refer to the full version for the details of this algorithm. Our second algorithm takes
a totally different approach. This approach is based on a relationship between the second
(s,t)-mincuts and the global mincuts in directed weighted graphs. So, as our main result,
we design an algorithm for computing a second (s, t)-mincut that uses O(,/n) maximum
(s,t)-flow computations and works for directed graphs with integer edge capacities. We now
provide an overview of this result.

Observe that a global mincut is not necessarily an (s,¢)-cut in G. On the other hand,
any second (s,t)-mincut can never be a global mincut in G. So apparently there does not
seem to be any relationship between the global mincuts and the second (s, t)-mincuts of G.
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Let us first work with a special case when graph G has exactly two (s,t)-mincuts — {s}
and V' \ {t}. Suppose there exists a second (s, t)-mincut C in graph G such that C separates
all the neighbors of s from all the neighbors of ¢. It is easy to compute a second (s, t)-mincut
in this graph as follows. Compute a maximum (s, t)-flow after contracting all neighbors of s
with s and all neighbors of ¢ with ¢. The challenge arises when every second (s, t)-mincut has
at least one contributing edge that is incident on s and/or t. We now show that the residual
graph G7 plays a crucial role in overcoming this hurdle. Moreover, G turns out to establish
the bridge between second (s, t)-mincuts and global mincuts.

In a seminal work in 1956, Ford and Fulkerson [19] established a strong duality between

(s, t)-mincut and maximum (s, t)-flow, which is widely known as the Mazflow-Mincut Theorem.

We begin by stating the following property, which is immediate from Maxflow-Mincut
Theorem.

» Fact 15. For any graph G with mazimum (s,t)-flow f', every (s,t)-mincut in G is an
(s,t)-cut of capacity zero in GI'.

It follows from Fact 15 that there is a bijective mapping between the set of all (s, t)-mincuts
in G and the set of global mincuts containing s and not ¢ in Gf. However, Fact 15 does not
reveal any information on how a second (s,t)-mincut in G appears in residual graph G¥. To
explore the structure of second (s, t)-mincuts in G/, using only the conservation of flow and
the construction of the residual graph, we provide a generalization of Fact 15 as follows.

» Theorem 16 (Maxflow (Min+A)-cut Theorem). Let G = (V,E) be a directed weighted
graph with a designated source verter s and a designated sink vertext. Let f be any mazimum
(s,t)-flow in G and G¥ be the corresponding residual graph. Let C be an (s,t)-cut in G. The
capacity of C in G is (A + A) if and only if the capacity of C in G¥ is A, where A > 0.

Proof. Let F,,+(A, H) (likewise F;, (A, H)) denote the set of outgoing edges (likewise the
set of incoming edges) of a cut A in a graph H. For any edge e in G, let r(e) be the residual
capacity, that is, r(e) = w(e) — f(e). For any edge e in graph G, let w’(e) denote the capacity
of edge e. By construction of G7, for each edge e = (u,v) € E,u(C, G) with 7(e) # 0, there
exists a forward edge (u,v) € E,u:(C,GY) with w'(u,v) = r(e). Similarly, for each edge
e = (u,v) € B, (C,G) with f(e) # 0, there exists a backward edge (v,u) € Eyyut(C, GT) with
w'(v,u) = f(e). This provides us with the following equality.

Z w'(e) = Z r(e) + Z f(e)

e’ €Eout(C,GT) e€Equ:(C,G) e€E;n (C,G)
= > we-fleN+ Y. fl)
e€Esut(C,G) ecE;,(C,G)
= 2 wl@- > f@+ Y fle
e€Eout(C,G) e€Eout(C,G) e€E;n (C,G)

— o(C) = (four(C) = fin(C)) = (C) = A Using Lemma 10 (1)
Equation 1 completes the proof. <

It follows from Theorem 16 that every second (s,¢)-mincut in G is a second (s, t)-mincut
in G/. Let the capacity of second (s,¢)-mincut in G be A + Ay, where Ay > 0. Recall
that our aim is to establish a relationship between second (s, t)-mincuts and global mincuts

using G7. So, by Theorem 16, we need to focus on global cuts of capacity exactly Ay in GY.

However, observe that a global cut of capacity Ay can never be a global mincut in G7 since
As > 0. Moreover, there may exist many global cuts of capacity As that cannot be a second
(s,t)-mincut in G.
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It is observed that a directed graph has global mincut capacity strictly greater than zero
if it is an SCC. It turns out that there is exactly one nontrivial SCC, say H, in the residual
graph G7 since G has exactly two trivial (s,t)-mincuts. Let us consider any global mincut
Ain H. Observe that A is not a second (s,t)-mincut in G7 since s,t € A. In fact, the
capacity of any global cut A in H might be strictly less than the capacity of A in G. This
is because of the existence of edges that are incident on s and/or ¢, which may contribute to
A in G7. Interestingly, exploiting the structure of G7, the properties of SCC H, and Fact 15,
we establish the following bijective mapping between the set of all second (s,t)-mincuts in
G7 and the set of all global mincuts in H.

» Lemma 17. Let C be a global mincut in H and Cy be a second (s,t)-mincut in G/. Then,
1. ¢(Cy, GT) = ¢(Cy, H),
2. C1U{s} is a second (s,t)-mincut in Gf and Cy \ {s} is a global mincut in H.

Proof. Let us consider global mincut Cy in graph H, and let ¢(Cy, H) = A\y. Since H is an
SCC, it is easy to show that A; > 0. It follows from the construction of G¥ that C; U {s}
is an (s,t)-cut in G¥. Observe that the edge-set of C; U {s} in G and the edge-set of C}
in H differ only on the set of edges, say E’, that are incident on s and ¢ in G7. Since f is
maximum (s, t)-flow, by Fact 15, s has outdegree zero; likewise, ¢ has indegree zero in G¥.
So, every edge in E’ is an incoming edge to (s,t)-cut C; U {s} in Gf. This implies that the
contributing edges of (s,t)-cut C; U {s} in G/ are the same as the contributing edges of cut
C1 in H. Hence, we arrive at the following equation.

c(CLU{s},GT) = ¢c(Cy, H) = Ny (2)

It is given that Cy is a second (s,t)-mincut in G/. Let ¢(Cy, G¥) = \g, where Ay > 0.
It follows from Fact 15 that {s} and V \ {t} are the only (s,t)-mincuts in G¥. So, any
(s,t)-cut in G¥ except {s} and V '\ {t} has capacity at least \p. Since C; is a cut in H,
C; U {s} is neither {s} nor V'\ {t}. Moreover, since C; U {s} is an (s,t)-cut in G, we get
c(Cy,GT) < ¢(Cy U {s},GY). So, it follows from Equation 2 that ¢(Cy, G¥) < ;. Therefore,
we arrive at the following inequality.

Ao < A (3)

Observe that second (s,t)-mincut Cy must separate a pair of vertices in H since {s} and
V \ {t} are (s,t)-mincuts in G’. Thus, the cut Cy \ {s} appears as a global cut in graph
H. Thus, we can arrive at the following equation using similar arguments as in the case of
Equation 2.

c(Co\ {s}, H) = ¢(C,GT) = A (4)

Since C is a global mincut in H and Cs \ {s} is a global cut in H, ¢(Cy, H) < ¢(C2\ {s}, H).
Therefore, by Equation 4, we get the following inequality.

A< Ao (5)

It follows from Equations 3 and 5 that Ay = ;. Evidently, ¢(Cy, G¥) = ¢(Cy, H) and
it completes the proof of (1). Now, by Equation 2, ¢(C; U {s},GY) = Ay and by Equation
4, ¢(Cy \ {s}, H) = A\1. Therefore, (s,t)-cut C; U {s} is a second (s,t)-mincut in G/ and
C5 \ {s} is a global mincut in H. This completes the proof of (2). <

The following lemma is immediate from Lemma 17 and Theorem 16.
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» Lemma 18. Suppose G has ezactly two (s,t)-mincuts — {s} and V' \ {t}. There is an
algorithm that, given any mazimum (s,t)-flow in G, can compute a second (s,t)-mincut in
G using one global mincut computation.

It turns out that Lemma 18 does not immediately hold for graphs with one or more than two
(s,t)-mincuts. For graphs with exactly one (s,¢)-mincut, we suitably modify the SCC H in
GY. Finally, to extend our result for graphs having more than two (s, t)-mincuts, we partition
the graph into a set of roughly disjoint subgraphs, each having at most two (s, ¢)-mincuts.
This is obtained by applying a graph decomposition technique using DAG Dpg(G) (Theorem
13), which was originally introduced in [3] for (s,t)-cuts of capacity (A + 1) (Section 5.4
in [3]). This leads to Theorem 2(1). The proof of Theorem 2(2) is straightforward using
standard techniques.

Cen et al. [9] recently designed an efficient algorithm for computing a global mincut
in directed graphs with integer edge capacities. Their algorithm uses O(y/n) maximum
(s,t)-flow computations to compute a global mincut. This result of Cen et al. [9], along with
Theorem 2(1), immediately leads to Theorem 1.

6 Characterization of Minimum+1 (s,t)-cuts using Maximum flow

The widely known Maxflow-Mincut Theorem [19] provides a characterization of all (s,t)-
mincuts using a maximum (s,t)-flow. However, it seems that any extension of this result
might not exist for characterizing (s, t)-cuts of capacity A + 1. This is because no equivalent
(s,t)-flow is known corresponding to a (A + 1) (s,t)-cut, as stated in [3]. Interestingly, we
show that, in fact, there exist close relationships between maximum (s,¢)-flow and (A + 1)
(s,t)-cuts as follows.

For undirected multi-graphs, we first establish the following property for (A+k) (s, t)-cuts,
where k > 0 is an integer, based on a maximum (s, t)-flow.

» Lemma 19. Let C be a (A\+ k) (s,t)-cut in G, where k > 0 is an integer. Let f be any
mazimum (s,t)-flow in G and let € C E(C) be the set of edges such that f(e) =0 for every
edge e € E. Then, (1) |&] <k and (2) |&| is odd if and only if k is odd.

Proof. Suppose C'is a (A + k) (s,t)-cut in G. It follows from conservation of flow (Lemma
10), fout(C) > A, since f is a maximum (s,¢)-flow and f;,(C) > 0. Let fou:(C) = A+ j, for
any integer j > 0. Again by Lemma 10, f;,(C) = j. Therefore, fou:(C) + fin(C) = X+ 2j.
It follows that there are exactly A + 2j edges belonging to E(C) that are carrying flow.
Let £ C E(C) be the set of remaining edges such that, for every edge e € £, f(e) = 0. In
undirected graphs, every edge belonging to the edge-set of a cut is a contributing edge of the
cut. Therefore, using fou:(C) + fin(C) = XA + 25, we arrive at the following equality.

€] = c(C) = (fout (C) + fin(C)) = A+ k = (A+2j) =k —2j (6)

It follows from Equation 6 that || < k. In addition, since 2j is always an even number,
this implies that |£] is odd if k is odd; otherwise |€| is even. <

By crucially exploiting Lemma 19, we now establish an interesting flow-based characterization
of all the (A + 1) (s,t)-cuts, which is of independent interest.
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Figure 2 A colored edge represents that the edge carries flow and A = 2. (i) Example showing
that Theorem 20 cannot be generalized for k > 2 (i7) Cut C'is a (A + 1) (s, t)-cut with £k = 1 where
each edge belonging to E(C') carries flow. So, |€| is even although k is odd.

» Theorem 20 (Maxflow (Min+1)-cut Theorem). Let G be an undirected multi-graph with a

designated source s and a designated sink t. Let f be any mazimum (s,t)-flow in G. Then,
n (s, t)-cut C in G is a (A+1) (s,t)-cut if and only if there exists exactly one edge e € E(C)

such that

1. f(e) =0 and

2. for every edge € € E(C)\ {e}, f(¢/) =1 and €' carries flow in the direction C to C.

Proof. Suppose C'isa (A+1) (s,t)-cut. Let £ C E(C) be the set of edges such that f(e) =0
for each edge e € £. By assigning the value of £ = 1 in Lemma 19, we have |£] < 1 and |€] is
odd. Since |€] is odd, therefore, |£] = 1. Since f is a maximum (s, t)-flow, by Lemma 10,
fout(C') > A. Moreover, we have |E(C)| = XA+ 1. Therefore, for every edge ¢’ € E(C) \ {e},
f(e/) =1 and € carries flow in the direction C to C.

We now prove the converse part. Suppose C' is an (s, t)-cut satisfying properties (1) and
(2). It follows that there is no edge ¢’ € E(C) such that f(e¢’) = 1 and carries flow in the
direction C to C. So, fi,(C) = 0. By using Lemma 10, we have f,;(C) = A. So, in E(C),
there are exactly A edges that are carrying flow and exactly one edge that is carrying no
flow. Therefore, |E(C)| = A+ 1. <

We are thankful to an anonymous reviewer for pointing out that the forward direction of
Theorem 20 can also be established using the concept of edge-disjoint paths instead of using
conservation of flow.

» Remark 21. An immediate generalization of Theorem 20 would be the following. An
(s,t)-cut Cis a (A+ k) (s,t)-cut if and only if there are exactly k edges in E(C') that carry
zero flow and every other edge carries flow in the direction C to C. However, Figure 2(i)
shows that for A = 2, (s,t)-cut C has capacity k 4+ 2 but there are k — 2 edges in E(C)
carrying zero flow. Hence, this generalization of Theorem 20 is not possible for any k > 2.

7  Compact Structure for All Minimum+1 (s,t)-cuts
We address the following problem for undirected multi-graphs in this section.
» Problem 22. Design a compact structure for storing and characterizing all (A+1) (s, t)-cuts.

The problem of designing a compact structure for storing and characterizing all (s, ¢)-mincuts
immediately reduces to Problem 22 by modifying the given graph as follows. Add a dummy
source s’ (likewise a dummy sink ¢') with A—1 edges from s’ to s (likewise ¢ to ¢'). Interestingly,
for directed multi-graphs, Baswana, Bhanja, and Pandey [3] provide a solution to Problem
22 by essentially reducing it to the problem of designing a compact structure for storing
and characterizing all (s,t)-mincuts. However, their structure occupies O(mn) space. For
undirected multi-graphs, we present a structure for storing and characterizing all (A + 1)
(s,t)-cuts that occupies O(min{m,n\v/A}) space as follows.
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We construct a graph G’ such that every (A+1) (s,t)-cut of G appears as an (s, t)-mincut
in G'. This will help us store and characterize all (A 4+ 1) (s,t)-cuts of G using a structure
that stores and characterizes all (s,t)-mincuts in G’. To achieve this objective, we pursue the
following simple idea — remove one edge from every (A+1) (s,t)-cut. A naive implementation
of this idea might not work as follows. There may be a pair of edges e, ¢’ contributing to the
cut C1 N Cy defined by the intersection of two (A + 1) (s,t)-cuts Cy,C5. Even if none of the
edges e, e’ contribute to both Cy and Cj, their removal will reduce the (s,t)-mincut capacity
if ¢(CyNCy)is Aor A+ 1 (refer to Figure 3(¢)). In order to materialize the idea, we exploit
Theorem 20, which motivates us to define a set of edges with respect to (A + 1) (s, t)-cuts in
the following way.

» Definition 23 (Anchor edge). For any given mazimum (s,t)-flow f, an edge e is said to be
an anchor edge if e contributes to a (A + 1) (s,t)-cut and f(e) = 0.

By Maxflow-Mincut Theorem, the removal of a set of edges carrying no flow in f does not
reduce the capacity of (s, t)-mincut. Moreover, by Theorem 20, for every (A + 1) (s,t)-cut C
in G, exactly one anchor edge contributes to C. Hence, every (A + 1) (s,t)-cut, as well as
(s,t)-mincut in G, appears as an (s, t)-mincut of capacity A in G\ A. It is also easy to observe
that there may exist (s,¢)-cuts with capacity more than A + 1 appearing as (s, t)-mincuts in
G\ A. However, using anchor edges A, we can distinguish the (A + 1) (s,t)-cuts as follows.

» Lemma 24. An (s,t)-cut C is a (A+1) (s,t)-cut in G if and only if C is an (s,t)-mincut
in G\ A and ezxactly one edge from A contributes to C.

By Lemma 24, our compact structure consists of set of edges A and a structure that stores
and characterizes all (s,t)-mincuts in G\ A. It follows that the space occupied by our
structure exceeds that of any structure for storing and characterizing all (s, t)-mincuts only
by the size of A. Therefore, we need to show that the set A is small.

@
(iii)

@ ©-

Figure 3 A blue edge carries flow and a green edge is an anchor edge. (i) C1 N Cs has capacity
less than that of (s, t)-mincut in G'\ {e,e’'}. (i) A graph with a given maximum (s, t)-flow satisfying
INoFLow| = Q(n?) but exactly one anchor edge e. (i44) Graph with exactly (n — 2) anchor edges.

7.1 Bounding the Cardinality of The Set of Anchor Edges

We now provide a tight bound on the cardinality of the set of all anchor edges A. We present
an efficient algorithm that, exploiting the properties of anchor edges, computes a set of edges
F such that the following two properties hold.

1. The set of all anchor edges is a subset of F.

2. The number of edges belonging to F is at most n — 2.

By Definition 23, every anchor edge belongs to the set, say NOFLOW, of all edges carrying
zero flow in f. However, there exist graphs H such that, for any maximum (s, t)-flow in H,
the cardinality of set NOFLOW can be 2(n?), yet the number of anchor edges is only O(1)
(refer to Figure 3(i7)). So, NOFLOW provides a loose upper bound on the number of anchor
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edges. Naturally, the question arises whether it is possible to eliminate a large number of
edges from NOFLOW while still keeping the set of all anchor edges intact. We answer this
question in the affirmative by exploiting the following lemma.

» Lemma 25. Let H be a cycle formed using a subset of edges in NOFLOW. Then, no edge
in H can be an anchor edge.

Proof. Consider any edge e € H and C be any (s,t)-cut in G such that e € E(C). Since C
is a cut, C must intersect cycle H at least twice. Hence, C' contains at least two edges that
carry no flow. Therefore, it follows from Theorem 20 that C' cannot be a (A + 1) (s, ¢)-cut.
Hence, by Definition 23, e cannot be an anchor edge. <

We now use Lemma 25 to construct a spanning forest Gz to provide an upper bound on the
cardinality of set A.

Construction of Spanning Forest Gz = (V,F). The vertex set of Gx is the same as G.
Initially, there is no edge in G». We construct graph G incrementally by executing the
following step for each edge e in NOFLow. If a cycle is formed in G U {e}, then by Lemma
25, e cannot be an anchor edge. Hence, we ignore edge e. Otherwise, if there is no cycle in
Gr U {e}, then insert edge e to Gr.

It follows from the construction of Gx that A C F. Moreover, |F| is at most n — 1 since
Gr is a spanning forest. We now show a tight bound on |A|, as well as |F|, in the following
lemma.

» Lemma 26. Set A, as well as set F, contains at most (n — 2) edges.

Proof. Let us assume to the contrary that F contains exactly n — 1 edges. It follows that G r
is a spanning tree. Hence, F contains at least one edge from the edge-set of every (s, t)-cut in
G. It implies that there exists an (s,¢)-mincut C in G such that F contains at least one edge
from the edge-set of C. By Maxflow-Mincut Theorem, for every edge e € E(C), f(e) = 1.
Thus, F contains an edge e such that f(e) = 1, which is a contradiction since ¥ C NOFLow.
Since A C F, it follows that the cardinality of A is at most n — 2. <

We show that there also exist graphs where A contains exactly n — 2 edges (refer to Figure
3(#i1)). Therefore, the bound on the set A given in Lemma 26 is tight.

We also show that set A can be obtained in O(m) time. Finally, using the best-known
structure Dpg for storing and characterizing all (s, t)-mincuts [33], we show that Dpg (G \ A)
occupies O(min{m, nv/A}) space, which leads to Theorem 6.

8 Dual Edge Sensitivity Oracle: Breaking the Quadratic Barrier

In this section, for undirected unweighted simple graphs, we design a subquadratic space
data structure that can efficiently answer the query: report an (s,t)-mincut after the
failure/insertion of any pair of edges. We assume G to be an undirected unweighted simple
graph in this section. We provide an overview for handling the failure of edges in G. Note
that handling the insertion of a pair of edges is along a similar line and is provided in the
full version. Henceforth, let e; = (x1,y1) and es = (x2,y2) be the two failed edges in G.
There is a folklore result that the residual graph G/ acts as an O(m) space dual edge
sensitivity oracle for (s,t)-mincut that achieves O(m) query time. The query algorithm is
derived from the augmenting path based algorithm for computing maximum (s, ¢)-flow by
Ford and Fulkerson [19] (briefly explained as a warm-up below). However, it is known that
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the residual graph occupies quadratic space if m = Q(n?). To design a subquadratic space
dual edge sensitivity oracle for undirected unweighted simple graphs, instead of the residual
graph G7, we work with our compact structure, consisting of D and the set A of anchor
edges, from Theorem 6. Recall that D is the graph Dpg(G \ A), which is just a quotient
graph of Gf. Hence, D U A may fail to preserve the complete information of every path in
G'. However, we show that D U A is still sufficient to answer dual edge failure queries using
the same algorithm used for the folklore result using residual graph G7.

Warm-up with residual graph. Observe that if none of the failed edges e;, ex carry flow in

maximum (s,¢)-flow f, then the capacity of (s,t)-mincut remains unchanged in G\ {e1, e2}.

Henceforth, we assume that edge e; always carries flow in the direction from z; to y;. It
follows from the construction of residual graph that there must exist a (¢, s)-path P in Gf
containing edge (y1,21). We first reduce the flow in G using P in G, and then remove
the edges (71,y1) and (y1, 1) from GY. Finally, using the concept of augmenting paths [19]
in residual graph, we can verify in O(m) time whether the value of maximum (s,¢)-flow
becomes A — 1 or remains A in G \ {e1}. In the residual graph corresponding to the obtained
maximum (s,t)-flow in G \ {e1}, repeat the same procedure for edge ez to verify whether
failure of edge ey reduces the capacity of (s,t)-mincut in G \ {e1}. This helps in reporting
an (s,t)-mincut in the graph G \ {e1,e2} in O(m) time.

Our solution using D U A. We now use the structure D U A from Theorem 6 as a
subquadratic space dual edge sensitivity oracle. Dpg(G) (Theorem 13) can be used to design
a single edge sensitivity oracle that occupies O(n) space [33, 3]. As observed by Baswana,
Bhanja, and Pandey [3], Dpg(G) can also handle dual edge failures for the special case

when both failed edges contribute to only (s, t)-mincuts, using its reachability information.

However, for handling any dual edge failures, the main difficulty arises when endpoints of
both edges are mapped to the same node in Dpg(G) [3]. Our structure DU A addresses this
difficulty seamlessly by first ensuring the following condition. The capacity of (s,¢)-mincut
changes only if the endpoints of at least one failed edge appear in different nodes of D. This
is achieved using the following property of D.

» Lemma 27. Any (s,t)-cut separating a pair of vertices mapped to the same node in D
must have capacity at least \ + 2.

Henceforth, we assume without loss of generality that endpoints of edge e; appear in different
nodes in D. Let us first handle the failure of edge e;. It turns out that D U A can easily
report an (s,t)-mincut in G \ {e;}. This exploits the following mapping of paths between
G’/ and DU A.

» Lemma 28. Let u,v be any pair of vertices mapped to different nodes p and v in D. There
exists an (u,v)-path P in G if and only if there exists a (u,v)-path P, in DU .A. Moreover,
path Py is a quotient path of P.

We establish Lemma 28 by using the fact that graph DU A is a quotient graph of G¥ by
construction. Let Dy be the graph obtained from D U A after applying the query algorithm
(described above) on D U A for the failure of edge e;. By following the mapping of paths in
Lemma 28, let f; be the corresponding maximum (s, t)-flow in G'\ {e;} and G¥ denote the
corresponding residual graph. On a high level, our technical contribution lies in showing that
even after handling failure of ey, D; still preserves enough information about augmenting
paths in G/t that facilitates the handling of the failure of edge ez in G'\ {e1}. We now
provide the overview.
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To handle the failure of edge es, the obtained graph D1 must satisfy the following property,
which actually holds between graphs D U A and G7 (refer to Lemma 27).

» Lemma 29. D is a quotient graph of Gt and for every path P in Dy, there is a path Py
in GTt such that P is a quotient path of Py.

In order to establish Lemma 29, the challenging case appears when the (s, t)-mincut remains
unchanged after the failure of e;. In this case, let us first observe the change in the residual
graph after reducing the flow that was passing through edge e;. In the resulting residual
graph, the query algorithm finds a path P from s to ¢, and flips the direction of every edge
belonging to it. A similar update is executed by the query algorithm using a path P; in
graph D U A, where P; is a quotient path of P. This could lead to the following scenario for
the resulting graph D;. There is a path P,, in D;, but there is no path P7, in G/t such
that P,, is a quotient path of P/ . In other words, Lemma 29 may fail to hold. So, we might
report an incorrect (s,t)-mincut in G \ {e1, ea}. Interestingly, exploiting the SCC structure
of G¥1, the structure of D, and Lemma 27, we ensure that such a scenario never occurs. This
allows us to handle the failure of ey using D; exactly in the same way as handling the failure
of e; using DU A. This leads to Theorem 8.

9 Conclusion

In this article, we have mainly solved the following two problems, achieving significant
improvements over the existing bounds.

Firstly, we have addressed the problem of designing an efficient algorithm for computing
a second (s, t)-mincut in directed integer-weighted graphs. Our algorithm achieves a run-
ning time that is Q(n/n) times faster than the existing best-known algorithm [37]. Most
importantly, to arrive at the solution, a close relationship between global mincut and second
(s, t)-mincut is exposed for the first time here. We believe that this connection between global
cuts and (s, t)-cuts (via residual graph) should be quite useful for addressing future research
problems, including the problem of designing an algorithm for computing an (s, t)-cut of k"
minimum capacity, for any k > 2, that breaks the existing bound [37].

Finally, we have addressed the problem of designing a dual edge sensitivity oracle for
(s,t)-mincut in undirected unweighted simple graphs. This problem is shown to be closely
related to the study of (s, t)-cuts of capacity minimum+1, which is a special case of the second
(s,t)-mincut in unweighted graphs. Our dual edge sensitivity oracle breaks the recently
established quadratic lower bound on space in multi-graphs [6] by a factor of Q(y/n). The
foundation of this result lies in our newly designed structure for storing and characterizing
all minimum+1 (s, t)-cuts, which also improves the existing best-known structure [3] by Q(n)
factor. Now, it is interesting to see whether the query time of our dual edge sensitivity oracle
can be improved and whether our approach can help us in designing a sensitivity oracle for
handling more than two edge insertions/failures.
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