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—— Abstract

A replacement action is a function £ that maps each graph H to a collection of graphs of size at most

|V (H)|. Given a graph class H, we consider a general family of graph modification problems, called
L-REPLACEMENT TO H, where the input is a graph G and the question is whether it is possible
to replace some induced subgraph Hi of G on at most k vertices by a graph Hs in £(H1) so that
the resulting graph belongs to H. £L-REPLACEMENT TO H can simulate many graph modification
problems including vertex deletion, edge deletion/addition/edition/contraction, vertex identification,
subgraph complementation, independent set deletion, (induced) matching deletion/contraction, etc.
We present two algorithms. The first one solves £-REPLACEMENT TO H in time 2°°Y®) . [V(G)|? for
every minor-closed graph class H, where poly is a polynomial whose degree depends on H, under a
mild technical condition on £. This generalizes the results of Morelle, Sau, Stamoulis, and Thilikos
[ICALP 2020, ICALP 2023] for the particular case of VERTEX DELETION TO A within the same
running time. Our second algorithm is an improvement of the first one when # is the class of graphs
embeddable in a surface of Euler genus at most g and runs in time 20(K%) [V(G)|?, where the O(-)
notation depends on g. To the best of our knowledge, these are the first parameterized algorithms
with a reasonable parametric dependence for such a general family of graph modification problems
to minor-closed classes.
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1 Introduction

A graph modification problem is typically determined by a target graph class H and a
prescribed set of allowed local modifications M, such as vertex/edge removal or edge
addition/contraction or combinations of them, and the question is, given a graph G and
an integer k, whether it is possible to transform G to a graph in H by applying at most
k modification operations from M. Graph modification problems are fundamental in
algorithmic graph theory, as can be seen from the span of applications in domains as diverse
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Graph Modification of Bounded Size to Minor-Closed Classes

as computational biology, computer vision, machine learning, networking, or sociology; see [19]
and the references therein. Unfortunately, most of these problems are NP-complete [32,49],
and this justifies, among other approaches, to study them from the parameterized complexity
viewpoint (see the monographs [10,12,15,40] for an introduction to the field), where the
number k of allowed modifications is taken as the parameter.

In the recent years, there has been a very active line of research about algorithmic
meta-theorems for graph modification problems where the target class H is minor-closed,
that is, closed under vertex deletion, edge deletion, and edge contraction. By Robertson and
Seymour’s seminal result [43], a minor-closed graph class H has a finite number of minor-
obstructions, that is, graphs that are not in H but whose all proper minors are. Combined
with a minor containment algorithm [30] (see also [26,42]) running in almost-linear time, this
implies that checking membership in a minor-closed graph class can be done in almost-linear
time. For some modification problems where the target class H is minor-closed, such as
vertex deletion, edge deletion, or vertex identification, the graphs G such that (G,k) is a
yes-instance of the problem for a fixed k form a minor-closed graph class, which immediately
implies an FPT-algorithm in almost-linear time for these problems. However, not all graph
modification problems define a minor-closed graph class. For instance, edge contraction
to planar graphs does not. Indeed, consider the graph K; , obtained from K34 by adding
one edge e on the side with three vertices. Contracting e gives the planar graph Ko 4,
but K34 cannot be made planar by contracting one edge. Hence, some other algorithmic
meta-theorems for graph modification problems to minor-closed graph classes were later
introduced. Some of them are ad-hoc meta-theorems such as the one of Fomin, Golovach, and
Thilikos [17] that gives quadratic FPT-algorithms for graph modification problems where H is
the class of planar graphs and the modification is any combination of edge addition and edge
deletion. Much more generally, there has been a recent line of research on model-checking
on minor-closed graph classes [16,47], which in particular implies quadratic FPT-algorithms
for an extremely wide family of graph modification problems where the target class H is
minor-closed. Unfortunately, all these algorithmic meta-theorems have a major drawback:
the parametric dependence on the “amount of modification” is humongous; in fact, even a
rough upper bound is not known.

On the other hand, another line of research has focused on optimizing the parametric
dependence for some particular graph modification problems when the parameter is the
solution size. When the target class H is minor-closed, such study usually does not go much
beyond H being the class of forests and the class of union of paths [7,9,22,23,33,39,48]. To
the best of our knowledge, only the case of vertex deletion has been studied in a a series
of papers [18,24,25,28,29,37,38,44,45], focusing on optimizing the running time (both the
dependence on k and n). In particular, when the minor-obstructions of H are connected and
that one of them is planar, the currently fastest algorithm runs in time 2°%) . nlog?n [18],
when # excludes a planar graph, in time 20(*) . n2 [28], when H is the class of planar graphs,
in time 29(k1og%) . [24] when H is the class of graphs embeddable in a surface of bounded
genus, in time 20(k*logk) . yO(1) [29], and when H is any minor-closed graph class, in time
2poly(k) . 2 [38].

This article places itself in-between these two lines of research: we consider generic
“meta-modification” operations (of course, much less generic than those of the currently
most general algorithmic meta-theorem in [47], but still quite versatile), and we manage
to achieve the same (very reasonable) parametric dependence as the currently best one
for vertex deletion [38] when the target H is any minor-closed graph class. We hope that
our work will trigger further research about efficient algorithmic meta-theorems for graph
modification problems to minor-closed graph classes.
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Our results. We define a graph modification problem, called £-REPLACEMENT TO H (L-R-
‘H for short), which, depending on the choice of the function £, called a replacement action,
can simulate vertex deletion, edge deletion, edge completion, edge edition, edge contraction,
vertex identification, independent set deletion, matching deletion, matching contraction, star
deletion, and subgraph complementation, to name a few (see section 3 for an exposition
of some problems encompassed by our result). When # is minor-closed, we solve £-R-H
in time 2P°Y(k) . n2 (Theorem 2), where the degree of the polynomial poly depends on the
maximum size sy of the minor-obstructions of . This is the same running time as the one
achieved by the currently best algorithm for vertex deletion [38] (the degree of k in poly is the
same as in [38] up to an extra additive constant of one that is absolutely negligible compared
to the total degree that depends (wildly) on s3;). For the other graph modification problems
encompassed within £-R-H, to the authors’ knowledge, the only minor-closed classes for
which a good parametric dependence was previously known, if any, were the class of forests
and the class of union of paths [9,22, 33,39, 48].

As it is usually the case concerning meta-theorems, the degree d of the polynomial poly
in Theorem 2 is unfortunately huge. While we did not compute its exact value, we know

that d > 225%4. Nevertheless, d can improved for some specific target classes H. The FEuler
genus of a surface ¥ that is obtained from the sphere by adding A handles and ¢ crosscaps is
defined to be ¢+ 2h. In particular, when H is the class of graphs embeddable in a surface
of Euler genus at most g, we provide another algorithm solving £-R-H in time 20(K”) . 2
(Theorem 3), where the O(+) notation depends on g. Note that, as opposed to Theorem 2, in
Theorem 3 the contribution of the genus (that is, of the target graph class H) does not affect

the degree of the parameter k in the exponent.

Organization. In section 2 we give basic definitions and conventions, and we formally define
the problem and state our results. In section 3 we provide a non-exhaustive list of problems
generated by different instantiations of the replacement action £, and hence encompassed by
our results. In section 4 we present an overview of our techniques. Due to space limitations,
all proofs have been deferred to the full version of this article. In section 5 we present some
directions for further research.

2 Definition of the problem and formal statement of the results

In this section we formally define the £-R-H problem and state our results, already informally
discussed in the introduction. We use standard graph-theoretic notation, and complete
preliminaries about graphs (including tree decompositions and minors) can be found in the
full version. We define here the non-standard notions that are needed in order to state our
results.

Minor-closed graph classes. A graph class H is minor-closed if, for each graph G and each
minor H of G, the fact that G € H implies that H € H. Given a collection of graphs F, we
denote by exc(F) the class of graphs that do not contain a graph in F as a minor. Obviously,
exc(F) is minor-closed. A (minor-)obstruction of a graph class H is a graph F' that is not in
‘H, but whose minors are all in 7. The set of all the obstructions of H is denoted by obs(#).
By the seminal work of Robertson and Seymour [43], if H is a minor-closed graph class, then
obs(H) is finite. Note that, if F = obs(#), then exc(F) = H. The detail of a graph G is
max{|V(G)|,|E(G)|}.
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Ordered graphs. For the definitions of the next two paragraphs to be correct, we actually
need to consider ordered graphs instead of graphs (see the “Graph modifications” paragraph).
An ordered graph is a graph G equipped with a strict total order on V(G), denoted by
<. In other words, there exists an indexation vy, ..., v, of the vertices of V(G) such that
v <g U2 <@g '+ <@g Un. A subgraph H of an ordered graph G naturally comes equipped
with the strict order <py such that, for each distinct u,v € V(H), u <y v if and only if
u<gv.

Replacement actions. The any-replacement action is the function M that maps each
ordered graph H; to the collection M(Hy) of all the pairs (Ha, ¢), where Hj is an ordered
graph and ¢ : V(H;) — V(H3) U {0} is a function such that:

V(H)| < |V (Hy)],

for each v € V(Hz), ¢~ (v) # 0, and

<1, 1s the strict total order such that, for each distinct vy, ve € V(Hs), we have v <g, v2

if and only if u; <jp, us where, for ¢ € [2], u; is the smallest vertex (according to <¢) in

¢ (vs).
A replacement action (abbreviated as R-action) is any function £ that maps an ordered
graph (called a pattern) Hy to a non-empty collection £L(Hy) C M(H;) of its possible pattern
transformations. See Figure 1 for an illustration. The vertices of H; mapped by ¢ to the
empty set are said to be deleted, and two vertices of H; mapped by ¢ to the same vertex of
H, are said to be identified. Given S C V(Hy), we set ¢1(S) = ¢(S) \ {0}. Note that, if

¢(S) = {0}, then ¢7(S) = {0} \ {0} = 0.

Graph modifications. Let £ be an R-action, let G be an ordered graph, and S C V(G).
Let (Ho, ¢) € L(G[S]). We denote by G(H ) the graph obtained from the disjoint union of
G — S and Hy by adding an edge u¢(v) for each u € V(G)\ S and each v € ¢~1(V(Hz)) such
that uv € E(G). We equip G’ := G Ha6) with the strict total order < such that v1 <gr v
if and only if u; <g ug where, for z 6 [2], u; :=v; if v; € V(G)\ S, and u; is the smallest
vertex in ¢~ (v;) if v; € V(Hy). We also set Lg(G) = {G? (Ha,0) | (H2,0) € L(G[S])}. See
Figure 1 for an illustration.

Note that we consider ordered graphs merely so that the correspondence between the
vertices in S and the vertices in V(Hz) is well-defined. We actually omit the order from the
statements, but it will be implicitly assumed that vertices have a label that allows us to keep
track of them during the modification procedure.

Let £ be an R-action and H be a graph class. We define the following problem.

L-REPLACEMENT TO H (L-R-H)
Input: A graph G and k € N.
Question: Is there a set S C V(G) of size at most k such that Lg(G) NH # 07

Such a set S is called solution of L-R-H for the instance (G, k).

We will use the following observation, which implies that a no-instance for VERTEX
DELETION TO H is also a no-instance for £-R-H.

» Observation 1. Let H be a hereditary graph class, let £ be an R-action, let G be a graph,
and let S CV(G). If Ls(G)NH #£ 0, then G— S € H.

Proof. Indeed, suppose that there is (Ha,¢) € L(G[S]) such that G(H ¢ € H. Then,
because H is hereditary, G (H #) —¢T(S)=G - S eH. <
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Figure 1 Example of (Hz, ¢) € L(H1) and of the graph modification G(SH@) where S is the set
of black vertices of G. ¢ is represented by the colors, that is, ¢(u1) = ¢(us) = vi, ¢(u2) = ¢(v2),
d(us) = 0, and ¢(ua) = vz. The order on the vertex sets of the depicted graphs is given by the
corresponding labels.

K——/ N
—  —a —  —a

¢ ‘—e X o
H, Hi[X]

(Ha, ¢) (Ha[p(X)], ¢lx)

Figure 2 If £ is hereditary, then a restriction of an allowed modification is also allowed.

Hereditary R-actions. An R-action is said to be hereditary if, for each ordered graph Hi,
for each non-empty X C V(H;), and for each (Has, ¢) € L(H;), we have (Ha[¢pT (X)], ¢|x) €
L(H,[X]). We say that (Ha[¢"(X)], ¢|x) is the restriction of (Hs, ¢) to X. See Figure 2 for
an illustration. Informally, an R-action is hereditary if, when a modification is allowed, then
modifying “less” is allowed as well. For instance, if £ allows us to delete exactly k vertices,
then £ also allows us to delete at most k vertices.

Some conventions. By convention, when there is no confusion, we set n := |V(G)| and
m = |E(G)|. In the rest of the paper, instead of considering a minor-closed graph class
H, we consider its obstruction set F, and thus the minor-closed graph class exc(F). We
define three constants depending on F that will be used throughout the paper whenever
we consider such a collection F. We define ar as the minimum apex number of a graph in
F, we set sy := max{|V(F)| | F € F}, and we define £ to be the maximum detail of a
graph in F. Given a tuple t = (z1,...,2,) € N and two functions x,? : N — N, we write
x(n) = O((n)) in order to denote that there exists a computable function ¢ : N® — N such

that x(n) = O(¢(t) - ¥(n)). Notice that sr < lr < sr(sr —1)/2, and thus O, (-) = O, (-).

Our main result is the following.

» Theorem 2. Let F be a finite collection of graphs and let L be a hereditary R-action.
There is an algorithm that, given a graph G and k € N, runs in time 2P°Y=(*) . n2 and either
outputs a solution of L-R-exc(F) for the instance (G, k) or reports a no-instance. Moreover,
poly r is a polynomial whose degree depends on the mazximum detail of a graph in F.
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As mentioned in the introduction, the main result in [47] already implies that £-R-H is
solvable in time f(k)-n? when H is minor-closed for some huge function f that is not even
estimated. Our main contribution is an explicit and single-exponential dependence on k.

The degree of poly (k) is quite big, but we can reduce it in some specific cases.

» Theorem 3. Let L be a hereditary R-action and H be the class of graphs embeddable in a
surface X of FEuler genus at most g. There is an algorithm that, given a graph G and k € N,
runs in time 205+ . n2 and either outputs a solution of L-R-H for the instance (G, k) or
reports a no-instance.

More generally, we study the annotated version of L-R-H. Let L be a hereditary R-action
and H be a graph class. We define the following problem.

L-ANNOTATED REPLACEMENT TO H (L-AR-H)

Input: A graph G, a set of annotated vertices S’ C V(G), (Hy, ¢') € L(G[S']),
and k € N.
Question: Is there a set .S C V(G) of size at most k and (Ha, ¢) € L(G[S]) such that

(H3, ¢') is the restriction of (Hz, ) to S” and G§H2,¢> € H?

Obviously, we must have S” C S. Such a triple (S, Ha, ¢) is called a solution of L-AR-H
for the instance (G, S’, Hy,¢', k). An instance of £L-AR-H where S’ = ) is an instance of
L-R-H, so L-AR-H generalizes L-R-H. Two instances Z; and Z, are equivalent instances of
L-AR-H if 7; is a yes-instance of £L-AR-H if and only if 75 is a yes-instance of L-AR-H.

In fact, we prove stronger statements of Theorem 2 and Theorem 3 that apply to their
respective annotated versions.

3 Problems generated by different instantiations of L

Many graph modification problems correspond to £-R-H for a specific R-action £ and a
specific target graph class H. We give a few examples below. Let H be a minor-closed graph
class. For instance, H could be the class of edgeless graphs, of forests, of graphs whose
connected components have size at most k, of planar graphs, or of graphs embeddable in a
surface 3. Note that we do not mention EDGE ADDITION TO H (nor EDGE EDITION TO
H) here, because when H is a minor-closed graph class, adding edges is “unnecessary”, in
the sense that the edge deletion variant has the same expressive power, and we can solve
it. Note also that £-R-H, and thus in particular all problems of this section, was already
known to be solvable in FPT-time (when # is minor-closed) by the result of [47]. However,
as mentioned before, the parametric dependence is huge and not even explicit in [47].
Given a set A, we denote the identity function mapping each a € A to itself by id 4.

VERTEX DELETION TO H

Input: A graph G and k € N.
Question: Is there a set S C V(G) of size at most k such that G — S € H?

VERTEX DELETION TO H reduces to L,pe-R-H, where L,pe is the function that maps
any graph Hi to the singleton containing the empty graph and the constant function
¢ : V(Hy) — {0}. VERTEX DELETION TO H is already known [38] to be solvable within
the same running time as the one of Theorem 2. Hence, the result of Theorem 2 is not an
improvement for this specific problem, but it shows that our result is tight compared to the
currently best known result for VERTEX DELETION TO H.
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EDGE DELETION TO H

Input: A graph G and k € N.
Question: Is there a set F' C E(G) of size at most k such that G — F € H?

(G, k) is a yes-instance of EDGE DELETION TO H if and only if (G, 2k) is a yes-instance
of Lepel,k-R-H, where Lepe is the function that maps each graph H; to the set of pairs
(Hy — F,idy(g,)) over all ' C E(G) of size at most k. Algorithms with a nice parametric
dependence are only known for specific target classes H. Namely, when H is the class of
forests, EDGE DELETION TO H corresponds to FEEDBACK EDGE SET, which can be solved
in constant time given that the size of a minimum feedback edge set is m — n + 1 (assuming
the graph is connected). When H is the class of graphs that are a union of paths, then
there is a linear kernel for the problem [34], as well as a FPT algorithm with parametric
dependence on k at most 2¥ [48]. We refer the reader to the survey of [9], as well as [13], for
other results with explicit dependence on k£ when H is not a minor-closed graph class.

Given a graph G and a set of edges F' C E(G), we denote by G/F the graph obtained
from G after contracting the edges in F'.

EDGE CONTRACTION TO H

Input: A graph G and k € N.
Question: Is there a set F' C FE(G) of size at most k such that G/F € H?

(G, k) is a yes-instance of EDGE CONTRACTION TO H if and only if (G, 2k) is a yes-instance
of Lcon k-R-H, where Lcon i, is the function that maps each graph H; to the set of pairs
(H1/F, @) over all F C E(G) of size at most k, where ¢ maps v € V(H;) to the corresponding
vertex of Hy/F. An explicit parametric dependence was given in [22] when H is a class of
paths (running time 2¢T°(*F) 4 @) or the class of trees (running time 4.98% -n®™M). Though
these classes are not minor-closed, we can easily extend these results to the case when H is
the class of unions of paths or the class of forests (up to a 2¥ factor). FPT-algorithms with
an explicit parametric dependence were also studied when H is a collection of generalization
and restriction of trees [2,3], or when # is the class of cactus graphs [31]. We refer the reader
to [21] for more results when the target class is not minor-closed.

VERTEX IDENTIFICATION TO H

Input: A graph G and k € N.

Question: Is there a set S C V(G) of size at most k and a partition (Xi,...,X,) of
S such that the graph obtained after identifying the vertices in X; to a
single vertex x;, for 7 € [p], belongs to H?

VERTEX IDENTIFICATION TO H reduces to Lig-R-H, where L4 is the function that maps
each graph H; to the set of pairs (Ha, ¢), where Hy can be obtained from H; after identifying
each X; of a partition (X1,...,X,) of some set S C V(H) to a single vertex z;, and ¢ maps
vertices of X; to z; and is the identity on V(H;) \ S. VERTEX IDENTIFICATION TO H is
known to admit a kernel of size 2k + 1 when H is the class of forests [39]. To the authors’
knowledge, this is the only known result for this problem.

INDEPENDENT SET DELETION TO H

Input: A graph G and k € N.
Question: Is there an independent set I C V(QG) of size at most k such that G—1 € H?

77
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INDEPENDENT SET DELETION TO H reduces to Lispe-R-H, where Lispe is the function
that maps any graph H; to the set of pairs (Hy — I, ¢) over all independent sets I C V(H;),
where ¢ maps vertices of I to the empty set and is the identity on V(H;) \ I.

When H is the class of forests, the problem is known to be solvable in time 3.62%.n©(1) [33].
Concerning other target classes that are not minor-closed, mainly bipartite graphs, let us
mention [1,6,20].

To illustrate the versatility of £-R-H, let us present some other problems that can be
defined by particular hereditary R-actions, though they do not seem to have been studied
when parameterized by the solution size.

(INDUCED) MATCHING DELETION TO H

Input: A graph G and k € N.
Question: Is there an (induced) matching M C E(G) of size at most k such that
G—MeH?

(G, k) is a yes-instance of (INDUCED) MATCHING DELETION TO H if and only if (G, 2k) is
a yes-instance of Lynpel x-R-H, where Lypel, is defined similarly to Lepe,r, above, but for
(induced) matchings. There are some results on MATCHING DELETION TO H when k =n
and H is the class of forests [36,41] or bipartite graphs (see [35] for a small survey).

(INDUCED) MATCHING CONTRACTION TO H

Input: A graph G and k € N.
Question: Is there an (induced) matching M C E(G) of size at most k such that
G/M € H?

(G, k) is a yes-instance of (INDUCED) MATCHING CONTRACTION TO H if and only if (G, 2k)
is a yes-instance of Lmcon k-R-H, where Limcon i is defined similarly to Lcon, i above, but for
(induced) matchings.

INDUCED STAR DELETION TO H

Input: A graph G and k € N.
Question: Is there a set F' C E(G) inducing a star K with k' < k such that
G—-FeH?

(G, k) is a yes-instance of STAR DELETION TO H if and only if (G, k + 1) is a yes-instance of
Lstarbel, k- R-H, where Lsiarpel i is the function that maps any graph H; to the set of pairs
(Hy — F,idy(q,)) over all sets F' C E(G) inducing a subgraph of Ky .

Given a graph G, the complement of G, denoted by G, is graph with vertex set V(G) and
edge set the edges that do not belong to E(G).

SUBGRAPH COMPLEMENTATION TO H

Input: A graph G and k € N.
Question: Is there a set S C V(G) of size at most k such that the graph obtained
after replacing G[S] with its complement G[S] belongs to H?

SUBGRAPH COMPLEMENTATION TO H reduces to Lcomp-R-H, where Lcomp is the function
that maps any graph H; to the singleton containing the pair (Hy,idy (z,)). The problem
was recently studied when k = n for various target classes; we refer the reader to [4].
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4 Overview of our techniques

To handle several modification problems at once, we adapt the vocabulary of Fomin, Golovach,
and Thilikos [17], who introduced the notion of replacement action. Intuitively (see section 2
for the formal definition), a replacement action is a function £ that maps a graph H; to a
collection £(Hy) of pairs (Ha, ¢) where Hy is a graph with at most |V (H;)| vertices and ¢
maps each vertex of H; to either a vertex of Hs or the empty set. Mapping a vertex of H; to
the empty set corresponds to a deletion, while mapping several vertices to the same vertex
of Hy corresponds to an identification. Replacement actions were originally defined in [17] to
solve a collection of graph modification problems where only edges are modified and where
the target class is the class of planar graphs. Compared to [17], however, the size of Hs may
here be smaller than the size of Hy, which happens when deleting or identifying vertices,
while in [17] it is required that |V (H1)| = |V (Hz2)|. Let us fix a replacement action £ and a
target graph class H. Recall that the £L-REPLACEMENT TO H (L£-R-H) problem asks, given
a graph G and k € N, whether there is an induced subgraph H; of size at most k in G and
a pair (Ha,¢) € L(H;) such that H; can be replaced by Hs such that the resulting graph
G’ belongs to H (for u € V(G) \ V(H1) and v € V(Hz), wv € E(G') if and only if there is
v' € ¢~ (v) such that uv’ € E(G)). For our techniques to work (see the “irrelevant vertex
technique” paragraph below for more precision), we require our function £ to be hereditary,
which essentially means if Hy is in £(H;), then for any induced subgraph Hj of Hy, the
corresponding induced subgraph of Hs is in £(H7) (cf. section 2 for the formal definition
and Figure 2 for an illustration). For instance, this implies that we can ask whether it is
possible to do at most k edge editions to get a graph in H, but we cannot ask whether it is
possible to do exactly k edge editions to get a graph in .

High-level description of our algorithms. The techniques that we employ for our first
algorithm (that is, when H is any minor-closed graph class) are strongly inspired by those
used by Morelle, Sau, Stamoulis, Thilikos [38] for the particular case of vertex deletion (see
also [44]), namely VERTEX DELETION TO H, achieving the same running time. Nevertheless,
in order to deal with our “meta-modification” operations, we need several new technical
insights compared to the approach of [44], which we proceed to sketch. In a nutshell, the
algorithm of [38] employs a win/win strategy that proceeds as follows:

If the treewidth of the input graph is small (as a function of the parameter k), then solve
the problem via a dynamic programming approach.

If the treewidth of the input graph is big, then either

(irrelevant vertex) find a vertex v such that (G,k) and (G — v, k) are equivalent
instances, or

(branching case) find a set A C V(G) of small size such that there exists v € A such
that (G, k) and (G — v,k — 1) are equivalent instances,

and recurse.

Hence, we require three ingredients: one to solve the problem parameterized by treewidth,
one to find an irrelevant vertex, and one to find an “obligatory set” A, all with a “reasonable”
parametric dependence on k. Then, we need to construct an algorithm so that one of these
three cases always applies and such that the overall running time is still within the desired
bound, which is one of the most convoluted parts of the proof. In what follows we provide

further insights about these steps, by first saying a few words about flat walls.
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The need for annotation. Let S’ be the set of vertices recursively guessed to be modified
in the branching step. An advantage when the modification consists in vertex deletion is
that we can simply recurse on (G — S,k — |S’|). For the more general case of L-R-H, we
cannot simply delete S/, as the considered modification may be different from vertex deletion.
We need 1) to guess how G[S’] is modified, that is, to guess (Hj,¢') € L(G[S']) and 2) to
remember S’ and (Hj, ¢') in order to check that we eventually find a set S 2 S’ and an
allowed modification (Ha,¢) € L(G][S]) whose restriction to S’ is (Hj,¢’) such that the
modified graph is in H. This is why we need to solve the annotated version of the problem,
denoted by £-AR-H, where we add to the input a subset S’ of vertices of G that are required
to be part of Hy, as well as the modification (Hj, ¢') made on S’.

Dynamic programming algorithm in the case of bounded treewidth. Note that we cannot
just use Courcelle’s theorem [8], since we require a nice parametric dependence on k. Hence,
we need to design our own dynamic programming algorithm to solve £-AR-H parameterized
by the treewidth and k. Essentially, the idea is to guess, in each bag (t) of the decomposition,
the set S; of vertices that are modified as well as how they are modified, and to reduce the
size of the graph G; induced by the bag ¢ and its children using the representative-based
technique of [5]. This technique is essentially based on the property that, given a graph G in
a minor-closed graph class H with a boundary B, there is a graph R of bounded size with
same boundary B, called the representative of G, such that, for any graph H glued on B to
get GO H and R H,G®H € H if and only if R® H € H. G, does not belong to H, so we
cannot find a representative of Gy, but we find instead a representative of the graph G} € H
modified from G; according to the guessed modification on S; and the previously guessed
modification on the children of . Given that we may need to identify together vertices that
are far apart in the tree decomposition, we need to remember throughout the algorithm
the vertices that are guessed to be part of the solution. The fact that we keep information
about these at most k vertices explains the dependence on k of the dynamic programming
algorithm. More precisely, we prove the following result.

» Theorem 4. Let F be a finite collection of graphs and L be an R-action. There is an
algorithm that, given k € N, a graph G of treewidth at most w, a set 8" C V(G) of size at
most k, and (H}, ') € L(G[S]), in time 20t= K +(tw)logktw)) . either outputs a solution
of L-AR-exc(F) for the instance (G, S, Hy, ¢', k), or reports a no-instance.

The above result parameterized by treewidth and k may be of independent interest, given
that it implies an algorithm with a good parametric dependence on the treewidth and &
for a number of graph modification problems. Note that the question of whether £L-R-H
is FPT parameterized by only treewidth is open. Even Courcelle’s theorem only implies a
running time of f(tw, k)-n, given that the size of the CMSO formula expressing yes-instances
of £L-R-H depends on k. Note that, in [38], the bounded treewidth part consists just in a
black-box application of the algorithm of Baste, Sau, and Thilikos [5].

Flat walls. An essential tool of our approach is the notion of flat wall, originating in the
work of Robertson and Seymour [42]. Informally speaking, a flat wall is a structure made up
of (non-necessarily planar) pieces, called flaps, that are glued together in a bidimensional
grid-like way defining the so-called bricks of the wall. While such a structure may not be
planar, it enjoys topological properties similar to those of planar graphs, in the sense that
two paths that are not routed entirely inside a flap cannot “cross”, except at a constant-sized
vertex set A whose vertices are called apices. Hence, flat walls are only “locally non-planar”,
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and after removing apices we can apply useful locality arguments, in the sense that two
vertices that are in “distant” flaps should also be “distant” in the whole graph without the
apices. In this article we apply some variants of one of the most celebrated results in the
theory of Graph Minors by Robertson and Seymour [42,43], known as the Flat Wall theorem
(see also [27,46] for recently proved variants), which informally states that graphs of large
treewidth contain either a large clique minor or a large flat wall.

In order for our formal statements to be mathematically correct, we would need to
introduce a number of notions originating in [46]. Unfortunately, in the attached full version
several pages are required to provide all these technical notions. Due to space limitations, in
this extended abstract we only provide intuitive descriptions of the main notions required to
read the statement of the results, but we skip a number of technical terms (such as renditions,
tilts, influence, regular flatness pairs, etc.) that are not the main focus of this sketch. All
details can be found in the attached full version, and we refer the reader to [46] for a more
detailed exposition of these definitions and the reasons for which they were introduced.

An r-wall is any graph W obtained from a so-called elementary r-wall W after subdividing
edges: see Figure 3 for self-explanatory illustration of a 5-wall.

Figure 3 A 5-wall.

A flat wall is illustrated in Figure 4, where the flaps mentioned above correspond to the
orange cells. The perimeter of a flat wall in a graph G separates V(G) into two sets X and
Y with Y containing the wall. The compass of a flat wall is G[Y]. For example, in Figure 4,

X is the set of vertices in the green part, and Y the set of vertices in the orange part.

AN
! e v s
, \

Figure 4 Illustration of flat wall, adapted from [5, Figure 4]). The edges of the subjacent wall
are depicted in orange, defining the corresponding bricks.

In order to find an irrelevant vertex, we need to deal with homogeneous flat walls.
Intuitively, homogeneous flat walls are flat walls that allow the routing of the same set
of (topological) minors in the augmented flaps (i.e., the flaps together with the apex set)
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“cropped” by each one of their bricks. Such a homogeneous wall can be detected in a big
enough flat wall and this “homogeneity” property implies that some central part of a big
enough homogeneous wall can be declared irrelevant.

Another very useful notion is that of a canonical partition of a graph G with respect to
some wall W of G. Informally, this refers to a partition of the vertex set of G into bags that
follow the grid-like structure of W; see Figure 5. Essentially, the goal is to be able to contract
each of these bags to obtain a grid that is a minor of W, and thus of G. In particular, we
prove (see Theorem 5 below) that if G contains as a minor a grid I" along with a set A whose
vertices have sufficiently many neighbors in the grid, then some vertex in A is obligatory.
We use canonical partitions here to easily find such a structure given a wall of G.

Figure 5 A 5-wall and its canonical partition Q. The green bag is the external bag Qext and the
orange bags are the internal bags of Q. Contracting each internal bag of Q we obtain a (3 x 3)-grid.

Branching step. The branching case is not much different from what is done in [3§]
(originally from [45]): essentially, if there is a big enough wall W (cf. Figure 3) and a set A
of vertices having many disjoint paths to W (cf. Figure 6), then some modification (H, ¢4)
must happen in A and we can branch. Here, we however need to additionally prove that we
must have |¢4(A)\ {0} < |A|. We stress that it is important here to guess some modification
in A that strictly decreases the size of A, so that, after applying this partial modification to
G at the next step in the recursion, we will not find the exact same obligatory set A. Hence,
in the algorithm with input (G, S’, Hj, ¢, k), at each step, either we find an irrelevant vertex
and strictly decrease the size of G, or we branch and strictly increase the size of S’.

More precisely, the next result is the main technical ingredient in this part of the proof,
essentially stating that a part of the solution S can be found in a set A of size ax in which
every vertex is adjacent to many vertices of a big enough wall. This is our “obligatory vertex”
method. See Figure 6 for an illustration and Section 6 of the full version for the details.

Figure 6 Illustration of Theorem 5.
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» Lemma 5. Let F be a finite collection of graphs and L be a hereditary R-action. There
exist three functions f1, fo, fs : N = N such that the following holds. Let k € N. Let G
be a graph, 8" C V(G) be a set of size at most k, and (Hb, ¢') € L(G[S’]). Suppose that
G = G?;g@,) contains a set A C V(G') of size at least ax and that there is a wall W in
G’ — A of height f1(k). Suppose also that there is a W -canonical partition Q of G' — A such
that each vertex of A is adjacent to at least fo(k) many fs3(k)-internal bags of Q. Then,
for every solution (S, Ha, ®) of L-AR-exc(F) for (G,S’, H, ¢"), it holds that A’ # 0, where
A= (S\ SN A, and that |pT(A")| < |A’|. Moreover fi(k) = Os,(k?), fa(k) = Oy, (k?),
and f3(k) = Osr(kQ)'

Finding an irrelevant vertex. As expected, we use the irrelevant vertex technique of
Robertson and Seymour [42]. More specifically, we generalize the irrelevant vertex technique
used in [38] (actually proved in [45]). This technique is based on the (intuitive but surprisingly
hard to prove) fact that the central vertex of a homogeneous flat wall is always irrelevant.
While our irrelevant vertex technique for £-AR-H takes inspiration from [45], it is far more
involved due to the annotation and the fact that we allow a wide variety of modifications. In
particular, we need to redefine what it means to be homogeneous for a flat wall, to adapt it
to our new setting. The previous definition was made to handle the case when we had to
remove a small vertex set, called apex set, to find a flat wall, and more specifically to handle
the fact that some vertices are possibly deleted from the apex set. Now, we also need to
handle any other way the apex set may be modified, hence the new definition. The fact that

we ask the replacement action £ to be hereditary comes from the irrelevant vertex technique.

Indeed, in order to prove that the central vertex v of a homogeneous flat wall W is irrelevant,
we essentially prove that, for any solution (S, Ha, ¢), we can delete a small part X of W
containing v, and that the restriction of (S, Ha, ¢) to G — X is still a solution.

The following is the main technical result that we prove in this part, stating that an

irrelevant vertex can be found in a big enough flat wall whose compass has bounded treewidth.

» Theorem 6. Let F be a finite collection of graphs and L be a hereditary R-action. There
exist a function fi : N> = N, whose images are odd integers, and an algorithm with the
following specifications:

Irrelevant-Vertex(G, S’ Hy, ¢ k, A, a, W, R, 1)

Input: Integers k,a,t € N, a graph G, a set S’ C V(G) of size at most k,
(H,, @) € L(G[S]), a set A C V(G') of size at most a, where G' :=
G(SI;2 4> ond a regular flatness pair (W,R) of G' — A of height at least
fa22(k,a) whose R-compass has treewidth at most t and does not intersect
¢'(5).

Output: A vertezv € V(G)\ S such that (G,S’, H}, ¢', k) and (G—v, S, Hy, ¢', k)
are equivalent instances of L-AR-exc(F). Moreover, foe(k,a) =
Ouir(k%), where ¢ = Ou¢-(1), and the algorithm runs in time
2angf(klogk+tlogt) . (n + m)

We also prove the following result for the bounded genus case with a better dependence
on k and a better running time. In this case, we do not ask for our flat wall to have bounded
treewidth, but to have a planar embedding instead. Note that here, instead of a single vertex
v, we might sometimes find an entire planar block of vertices V' that is irrelevant.
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» Theorem 7. Let L be a hereditary R-action and F be the collection of obstructions of the
graphs embeddable in a surface of genus at most g. There exist a function f5: N — N, whose
images are odd integers, and an algorithm with the following specifications:

Planar-Irrelevant-Vertex(G,S’, HS, ¢', k, W, R)

Input: An integer k € N, a graph G, a set S C V(G) of size at most k,
(HS, ¢') € L(G[S']), and a flatness pair (W, R = (X,Y,P,C,T",0,7)) of
G(SII{;’QS,) of height at least fo2(k) whose R-compass does not intersect
@' (S") and is embeddable in a disk with X N'Y on the boundary.

Output: A non-empty set Y C V(G) \ S’ such that (G,S',H}, &' k) and (G —
Y, S, H, @' k) are equivalent instances of L- AR-exc(F).

Moreover, f5(k) = O(k) and the above algorithm runs in time O(n + m).

Piecing everything together. Finally, we combine the three ingredients discussed above to
find an algorithm for £-AR-H. We essentially proceed as follows. Let (G,S’, HS, ¢, k) be
the instance we want to solve, and G’ be obtained by doing the modification (Hj, ¢') of S’
In the first steps, we either find that G has small treewidth, where we can use our dynamic
programming algorithm to conclude, or that G’ contains a wall W. Given W, we first try to
find a flat wall W’ inside, with all the necessary conditions to find an irrelevant vertex. If we
manage to do so, we remove the irrelevant vertex and recurse. Otherwise, through a greedy
procedure, we try to find an obligatory vertex set A with many disjoint paths to W in G’. If
we find such a set, we branch and recurse. If not, we manage to argue that we must have a
no-instance, and conclude.

The special case of bounded genus. Our second algorithm (Theorem 3), when H is a
class of graphs embeddable in a surface of bounded Euler genus, uses two additional ideas to
get an improved running time. The first one is that here, the obligatory set A is a singleton.
Indeed, the size of A is the size of the minimum number of vertices one can remove from
an obstruction of H to make it planar. It is well known that, when H is such a class, there
is some integer t depending on the Euler genus such that K3, ¢ H, and thus, |[A| = 1. In
particular, this implies that we do not need to branch on A, but that we instead immediately
find an obligatory vertex. The second idea is about homogeneous flat walls. In the running
time 2P°Y(F) . 2 of the first algorithm, the degree of poly essentially corresponds to the
size of the required flat wall to find a big enough homogeneous flat wall, and hence an
irrelevant vertex, inside of it. In the case where H is the class of graphs embeddable in a
surface of Euler genus at most g, we prove that we can find a homogeneous flat wall inside a
flat wall of smaller size, hence the improved running time. To do so, we prove that, after
some preliminary processing, a flat wall that is furthermore embeddable in a disk with the
perimeter on its boundary is already homogeneous. Hence, our second algorithm proceeds
similarly to the first one, but if we find a flat wall W’ in G’, we divide W’ into k + 1 disjoint
smaller flat walls and check whether they belong to H. By the pigeonhole principle, one of
them, W;, does not contain a modified vertex and must thus be in H, otherwise we return
a no-instance. Then, we argue, using a result from [11] to guarantee additional properties
of the planar embedding that are needed for technical reasons, that we can find a smaller
flat wall W/ in W; with a planar embedding (even if the genus of the target graph class is
strictly positive). Hence, we find an irrelevant vertex in W/ and conclude.
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5 Conclusion

For a large family of graph modification problems involving a bounded number of vertices, if
the target class H is minor-closed, we provided an algorithm solving the problem in time
2poly(k) . 2 This is actually the same running time as the best known running time for
VERTEX DELETION TO H [38]. For the other graph modification problems encompassed
by our result, such as EDGE DELETION TO H, EDGE CONTRACTION TO H, VERTEX
IDENTIFICATION TO H, or INDEPENDENT SET DELETION TO H, the only minor-closed H for
which an algorithm with an explicit parametric dependence in the solution size was known,
to the authors’ knowledge, were the class of forests and the class of union of paths. Other
problems, such as MATCHING DELETION TO H, MATCHING CONTRACTION TO H, INDUCED
STAR DELETION TO H, or SUBGRAPH COMPLEMENTATION TO H, were not even considered
yet from the parameterized complexity viewpoint, other than in the meta-theorem of [47].

The degree of poly(k) in the running time comes from the irrelevant vertex technique and
is quite huge. In the bounded genus case, we reduce the running time to 20(k%) . 12 thanks to
some improvement on the irrelevant vertex technique. This does not match the parametric
dependence in the running time of 20k logk) . nO() for VERTEX DELETION TO H [29] for
‘H of bounded genus, though we possibly have a better dependence on n. To the authors’
knowledge, this is the first bounded genus result with an explicit parametric dependence in
the solution size for the other graph modification problems encompassed by our result.

Improving more the parametric dependence in the general case would certainly require
coming up with new techniques. On the other hand, given the recent results of [30] for minor
containment, it is worth studying whether the quadratic dependence on n could be improved
to an almost-linear dependence while maintaining a good dependence on k. Note that the
approach of [30] heavily uses Courcelle’s theorem [8], which would require to be translated
to a plausibly very involved dynamic programming algorithm to keep a good parametric
dependence on k.

Given that we require the replacement action £ to be hereditary for our irrelevant vertex
technique to work, we unfortunately restrict the graph modification problems that we solve.
For instance, PLANAR SUBGRAPH ISOMORPHISM can be expressed as an L-R-PLANAR
problem for a specific £, which is not hereditary. Hence, we do not encompass this problem
in our general algorithm, while such an algorithm is provided in [17], where the constraint
about £ being hereditary is not required. While most of the “reasonable” modification
problems correspond to a hereditary replacement action, it is worth investigating whether
our result can be extended to non-hereditary replacement actions.

Here, we only consider modifications that affect a bounded number of vertices of the
input graph. This is necessary as we want k to decrease by one each time we find an
obligatory vertex (or, more precisely, as we want the size of the increasingly guessed partial
solution to be bounded by k), so that the depth of the branching tree is bounded. Some
relevant graph modification problems, however, such as ELIMINATION DISTANCE TO H [38]
or H-TREEWIDTH [14] (where we want to delete a vertex set X whose “torso” has bounded
treedepth or treewidth, respectively, such that G — X € H), consider a modification that
affects a set of vertices that may have unbounded size. In this case, the branching method
does not seem applicable. However, the irrelevant vertex technique still works, and provided
that we have a dynamic programming for graphs of bounded treewidth, an algorithm can
still be designed in some cases, but with a worse parametric dependence on k. This is what
is done, for instance, in [38] for ELIMINATION DISTANCE TO #H. Therefore, we could consider
extending the results of this paper to (some kinds of) modifications involving sets of vertices
or edges of unbounded size.
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