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Abstract
A central approach to algorithmic derandomization is the construction of small-support probability
distributions that “fool” randomized algorithms, often enabling efficient parallel (NC) implementa-
tions. An abstraction of this idea is fooling polynomial-space statistical tests computed via finite
automata [Sivakumar STOC’02]; this encompasses a wide range of properties including k-wise
independence and sums of random variables.

We present new parallel algorithms to fool finite-state automata, with significantly reduced
processor complexity. Briefly, our approach is to iteratively sparsify distributions using a work-
efficient lattice rounding routine and maintain accuracy by tracking an aggregate weighted error
that is determined by the Lipschitz value of the statistical tests being fooled.

We illustrate with improved applications to the Gale-Berlekamp Switching Game and to ap-
proximate MAX-CUT via SDP rounding. These involve further several optimizations, such as the
truncation of the state space of the automata and FFT-based convolutions to compute transition
probabilities efficiently.
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1 Introduction

A fundamental problem in the theory of computation is to derandomize existing randomized
algorithms. Such randomized algorithms typically use a large number of independent random
bits. One main genre of derandomization is the construction of a probability distribution
which is much smaller (of polynomial instead of exponential size), to “fool” the randomized
algorithm. That is, the behavior of relevant statistics should be similar when presented with
fully-independent random bits vs. bits drawn from a small, carefully-constructed correlated
distribution. This probability space can be searched exhaustively, and in parallel, to find a
specific input with desired properties.
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A simple and popular example of this technique comes from a probability space with k-wise
independence, for constant k [2, 30, 32, 35]. This preserves basic statistical properties such as
means and variances [7, 42]. There are many other constructions for more-advanced properties,
e.g., near-k-wise independence [3, 5, 14, 17, 38], probability spaces fooling halfspaces or
polytopes [33, 41, 23, 22], ordered branching programs [12, 15, 37, 27, 40] etc.

A significant abstraction of these methods is the construction of probability spaces that
fool statistical properties (also called “tests”) computed by finite automata [10, 24, 31, 36,
39, 40, 43]. Such tests are ubiquitous in randomized algorithm analysis, encompassing k-wise
independence, sums of random variables, and many other properties. For example, they are
used in deterministic parallel algorithms for finding balanced independent sets in graphs [26],
for applications of the Lovász Local Lemma in combinatorics [25], for covering and packing
integer programs [6, 44], for undirected connectivity problems [40], and more.

1.1 Our contribution
We describe new parallel algorithms to fool automata, with significantly reduced processor
complexity. The analysis is also simplified because we can cleanly separate out problem-
specific optimizations from the general lattice discrepancy problems that are at the core of
the algorithm. A summary of our algorithm performance is as follows:

▶ Theorem 1 (Simplified). Consider a probability space Ω on n binary random variables and
a collection of ℓ statistical tests over Ω, each with η possible states and Lipschitz value λ.

There is a deterministic algorithm to generate a distribution D of size
ε−2 polylog(n, η, ℓ, 1/ε) to simultaneously “fool” all statistical tests to absolute weighted
error λε. It uses Õ(nℓηε−2 + nℓηω) processors and polylogarithmic time, where ω is the
exponent of matrix multiplication.

By way of comparison, the algorithm of [24] would require roughly O(n3ℓ2η4ε−2) pro-
cessors to construct a distribution of size O(ℓη2ϵ−2). Our full results are more general, easily
allowing for non-binary alphabets, or more complex automata types; see Theorem 5 for
details. We emphasize that the algorithm is still typically more efficient even for applications
with no particular Lipschitz bounds.

We illustrate this framework through two prototypical applications: the Gale-Berlekamp
Switching Game and SDP rounding for approximate MAX-CUT.

▶ Theorem 2 (Gale-Berlekamp Switching Game). Given an n × n matrix A, there is a
deterministic parallel algorithm using Õ(n3.5) processors and polylogarithmic time to find
x, y ∈ {−1, +1}n satisfying

∑
i,j Ai,jxiyj ≥ (

√
2/π − o(1))n3/2.

It is interesting that the Gale-Berlekamp analysis revolves around anti-concentration
bounds, which are precisely the opposite of discrepancy-minimization. Our algorithm for
this problem beats the n5+o(1) complexity of the optimized algorithm of [24].

▶ Theorem 3 (MAX-CUT Approximation). Let ε > 0 be an arbitrary constant. Given an
n-vertex m-edge graph G(V, E), there is a deterministic parallel algorithm using Õ(mn3)
processors and polylogarithmic time to find an α(1− ε) approximate MAX-CUT of G, where
α ≈ 0.878 is the Goemans-Williamson approximation constant [21].

The SDP relaxation of MAX-CUT can be approximated in polylogarithmic time and
near-linear work by [1], so we will be concerned with rounding the SDP solution. A rounding
procedure was presented in [43], which however required a very large number of processors.
We drastically improve it, getting closer to the sequential Õ(n3) runtime of [9].
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The complexity bounds in Theorems 2 and 3 do not depend on fast matrix multiplication;
the runtimes are valid even using naive multiplication (ω = 3). Although thy are still not
fully work-efficient, this makes progress toward practical deterministic parallel algorithms.

In a broader perspective, our construction differ in various aspects from classical deran-
domization via (sequential) PRGs. While our automata framework does not provide a PRG,
it seems better suited to efficient parallel derandomization. It is known that, by connections
to Boolean circuits [11], a PRG for log space-bounded computation can be simulated in
PRAM in polylog time with a polynomial number of processors. However, relying on the
equivalence between PRAM and Boolean circuits leads to very high processors complexities
(e.g., Nisan’s log space-bounded PRG uses at least Ω(n45) processors [39]). Therefore, using
known PRGs constructions would either require high polynomials (if logspace bounded) or
not parallelize well. In addition to providing fast parallelization, our construction returns a
distribution with seed length O(log 1/ε + log log(n, η, ℓ), which is line with known PRGs.

1.2 Technical approach
Our work follows the same general outline as previous algorithms for fooling automata, built
from two main subroutines Reduce and Fool. The Fool algorithm (Section 5) recursively
invokes Reduce (Section 4) to construct a fooling distribution, beginning with single-step
automaton transitions and progressively scaling up to multi-step distributions. After log2 n

levels, the final distribution effectively fools n-step walks in the automata.
We introduce several novelties such as a work efficient Reduce subroutine and an analysis

of Fool based on a different measure of error. Here, we attempt here to provide some
high-level intuition on the technical content of this paper.

Distribution error tracking. Prior work on automata fooling [24, 36] considered a notion
of unweighted absolute error, where the goal was to fool all pairs of (start, end) states. We
replace this with an aggregated notion: the weight of a final state corresponds to the value of
the associated final outcome (e.g., the final count for a counter automaton). The value of
an intermediate state is then the expected weight of the final state under a random suffix.
This is similar to a scheme used in the context of pseudorandom generators and branching
programs [12, 15], where it is taken advantage of sub-maximal influence on the final expected
value. The processor complexity is determined by the Lipschitz value of each state: how
much the expected final weight changes with a single step of the automaton.

REDUCE subroutine. This subroutine takes as input a distribution E = D1 ×D2 over
automata walks (drivestreams) with a weight function w; it outputs a refined distribution D

with significantly smaller support while maintaining a weighted measure of closeness to E.
This leverages the connection between automata fooling and lattice approximation noted by
[36] and applies the work-efficient lattice approximation of [19]. Our key approach to reduce
the processor complexity is to sparsify E – without materializing it – in log2 |E| steps.

In each step, we model the problem of rounding the ith bit of the elements in D as a
lattice-discrepancy problem, which is then solved by invoking [19]. This step resembles the
PRG of INW [28]; there, one replaces the concatenation of two independent random walks
with correlated random walks, using the derandomized square instead of the algorithm of [19].

Further optimizations. In both of these applications, and many others, the relevant auto-
mata are counters which track the running sum of certain statistics. Instead of keeping track
of these exactly, we truncate the counters to within a few standard deviations of their means.

ESA 2025
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This reduces the state space of the automata by roughly a square-root factor. Doing this
while also preserving relevant Lipschitz properties of the automata is technically challenging
and requires significant analysis. This optimization will be discussed in Section 6.

The approximate MAX-CUT application (Section 7.2) requires a few additional problem-
specific optimizations and arguments. In particular, to simulate the SDP rounding procedure
efficiently, we (i) work with discretized truncated Gaussians and quantized counters, (ii) use
a pessimistic estimator with a better Lipschitz constant, and (iii) we compute the transition
matrices via FFT’s to exploit their convolution structure. We believe that these optimizations
may generalize to other (SDP) rounding procedures and other settings as well.

2 Preliminaries

For an input of size N , our goal is to develop deterministic PRAM algorithms with poly(N)
processor complexity and polylog(N) runtime. Unless stated otherwise, we assume that all
relevant algorithms run in deterministic polylogarithmic time as a function of their processor
and input complexities. For processor complexity and other parameters, we use Õ notation:
we say that f(x) ≤ Õ(g(x)) if f(x) ≤ g(x) · polylog(N, g(x)) processors, where N is the size
of all algorithm inputs. Throughout, we use log for logarithm in base e and lg for base 2.
We write ⌈x⌋ for rounding to the nearest integer.

Throughout, proofs that are omitted (or sketched) appear in the full version.

2.1 Basic definitions for automata
The underlying probability space Ω is defined by drawing a sequence r⃗ = (r0, . . . , rn−1),
where each rt is independently drawn from a distribution Ωt over an arbitrary alphabet. We
consider an automaton F with a state space S. At each timestep t = 0, 1, . . . , n − 1, the
automaton in state s ∈ S receives an input rt and transitions to state F (rt, s).

For times t, t′, we define Ωt,t′ = Ωt×Ωt+1×· · ·×Ωt′−1. In this context, we call h = t′−t the
horizon and the pair (t, h) as the window. We refer to a vector r⃗ = (rt, rt+1, . . . , rt′−1) ∈ Ωt,t′

as a drivestream. We define F (r⃗, s) to be the result of transiting from time t to t′ under r⃗.
We write r⃗ ∈ Ωt,t′ to indicate that each rj : j = t, . . . , t′ − 1 has non-zero probability in Ωj .

For a distribution D on drivestreams, we denote the transition matrix as TD, i.e. T (s, s′)
is the probability of transiting from state s to s′ for a drivestream r⃗ ∼ D. For brevity, we
also write Tt,t′ := TΩt,t′ and, for any weight function w : S → R, we also define

TD(s, w) =
∑
s′∈S

TD(s, s′)w(s′).

Throughout, we define η = |S| and σ =
∑n−1

t=0 |Ωt| where |Ωt| is the size of Ωt.

Our goal is to find a polynomial-size distribution D on drivestreams that “fools” the
automaton. That is, the behavior of the automaton given a drivestream r ∼ D should be
similar to its behavior when given a drivestream r ∼ Ω. We will follow a strategy of [12]
and measure error via a weight function W : S → R over final states. It will be necessary
to measure the “smoothness” of W as a function of the drivestream values. Formally, we
consider two, closely related, notions:

▶ Definition 4 (Lipschitz value/confusion of a weight functions). Let W : S → R be a weight
function for automaton F .

The Lipschitz value at state s and time t is defined by

L(s, t) = max
r⃗1,r⃗2

∣∣W (F (r⃗1, s))−W (F (r⃗2, s))
∣∣

where the maximum is over r⃗1, r⃗2 ∈ Ωt,n which differ in only the tth coordinate.
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The confusion at state s and time t is defined by

C(s, t) = max
r1,r2∈Ωt

∣∣Tt,n(F (r1, s), W )− Tt,n(F (r2, s), W )
∣∣.

Colloquially, these are the maximum change to actual weight or the expected weight of
the final state due to changing drivestream entry t. Note that C(s, t) ≤ L(s, t).

We define the total variability V(s) of a starting state s ∈ S as:

V(s) :=
n−1∑
t=0

max
r⃗∈Ω0,t

C(F (r⃗, s), t)

With this rather technical definition, we can state our algorithm concretely:

▶ Theorem 5. The algorithm Fool takes as input a parameter ε > 0, and produces a
distribution D with

|TD(s, W )− TΩ(s, W )| ≤ εV(s) for all states s.

The distribution D has size ε−2 polylog(n, η, σ, 1/ε). The cost of Fool is Õ
(
nη/ε2 + ησ

)
processors, plus the cost of computing the expectations Tt,n(s, W ) for states s ∈ S and times
t = 0, . . . , n (more details on this step later.)

2.2 Lattice approximation

The problem of automata fooling is closely linked to lattice approximation, defined as follows:

▶ Definition 6 (Lattice Approximation Problem (LAP)). Given an m × n matrix A and
fractional vector u⃗ ∈ [0, 1]n, the objective is to compute an integral vector v⃗ ∈ {0, 1}n to
minimize the discrepancies Dk = |

∑n
j=1 Akj(uj − vj)|.

Intuitively, this models the process of “rounding” each random bit (represented by uj) to
a static zero or one (represented by vj). The work [19] provides a parallel algorithm with
near-optimal discrepancy as well as complexity; we summarize it as follows:

▶ Theorem 7 (Theorem 1.3 of [19]). Suppose that Akj ∈ [0, 1] for all k, j. There is a
deterministic parallel algorithm for the LAP with Dk ≤ O(

√
µk log m + log m) for all k,

where µk =
∑n

j=1 Akjuj. The algorithm uses Õ(n + m + nnz(A)) processors, where nnz(A)
denotes the number of non-zero entries in the matrix A.

It will be convenient to allow for the discrepancy matrix A to take arbitrary real values.

▶ Proposition 8. Let ∆k = maxj |Akj | for each row k. There is a deterministic parallel
algorithm for the LAP where Dk ≤ O(

√
∆kµ̃k log m + ∆k log m) ≤ O(∆k(

√
n log m + log m))

for all k, where µ̃k =
∑n

j=1 |Akj |uj. The algorithm uses Õ(n + m + nnz(A)) processors.

Proof. Construct a 2m× n matrix Ã, where for each row k = 0, . . . , m− 1 of A, the matrix
Ã has Ã2k,j = max{0,

Akj

∆k
} and Ã2k+1,j = max{0,

−Akj

∆k
}. Then apply Theorem 7 to Ã. ◀

ESA 2025
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3 Overview of algorithms and data structures

The subroutine Reduce (Section 4) is the technical core of the automata-fooling construction:
given an input distribution E over drivestreams and a weight function w, it returns a
distribution D which is close to E (measured in terms of w), but which has much smaller
support. Importantly, through the use of appropriate data structures, the cost of Reduce
may be significantly less than the total size of E itself. Later, the final algorithm Fool
(Section 5) will be defined by repeated calls to Reduce over successively larger time-horizons.

Concretely, we store each distribution D over window (t, h) as an array of drivestreams
D[0], . . . , D[ℓ− 1] ∈ Ωt,t+h with associated probabilities pD(0), . . . , pD(ℓ− 1). Here ℓ = |D|
is the size of D. By adding dummy zero entries, we can assume that |D| is a power of two.

For a bitstring b of length at most lg |D|, we denote by D[b∗] the induced distribution
consisting of all the drivestreams in D whose indices start with b. So D[b∗] = D[b0∗]∪D[b1∗],
where b0 and b1 refer to concatenating a 1 or 0 bit to b. Similarly, pD(b∗) =

∑
a∈D[b∗] pD(a).

We define the Prediction Problem for a distribution D and a weight function w : S → R
as follows: we need to produce a data structure Q(D, w), which can answer the following
two types of queries: (i) given any bitstring b, return the value pD(b∗); (ii) given (b, s)
where b is a bitstring and s is a state, return the value TD[b∗](s, w). Each query should take
polylogarithmic time and processors. In either case, b can take on any length ℓ ≤ lg |D|.

▶ Observation 9. Let D be a distribution on window (t, h). The Prediction Problem for D

and a weight function w can be solved with Õ(|D|hη) processors.

The most important case is for a Cartesian product, which will be used in Section 5.
Critically, we can use the structure within a distribution to avoid materializing it explicitly.

▶ Proposition 10. Given distributions D1, D2 on windows (t1, h) and (t1 + h, h) respectively,
the Prediction Problem for distribution E = D1 × D2 and any weight function w can be
solved with Õ(ηh(|D1|+ |D2|)) processors.

4 The REDUCE Algorithm

To reiterate, the goal of Reduce (Algorithm 1) is to take an input distribution E and weight
function w, and produce a smaller distribution D which is close to it. Note that here w will
not be the given weight function over final states W .

For intuition, consider the following process. Draw m elements D[0], . . . , D[m − 1]
randomly and independently with replacement from the support of the distribution E,
wherein D[i] = v is selected with probability proportional to pE(v). Then set pD[i] = 1/m,
so the process is unbiased. Via standard concentration bounds, appropriate choices of m

ensure that TD(s, w) ≈ TE(s, w). The algorithm Reduce is based on derandomizing this
process via a slowed-down simulation: to compute D, we iteratively compute distributions
D0, D1, . . . , Dℓ = D by fixing the ith bit level of each entry in Di−1.
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Algorithm 1 Reduce(E, ε, w).

1: Set ℓ = lg |E| and m = Cℓ2 log η
ε2 for a constant C.

2: Solve Prediction Problem for distribution E

3: Initialize the multiset H0 := {m empty bitstrings}
4: for i = 0, . . . , ℓ− 1 do ▷ Fix ith bit
5: Formulate LAP L for Hi.
6: v⃗ ← solve L via Proposition 8 with sampling rate ub = pE(b1∗)

pE(b∗) for each b ∈ Hi

7: Hi+1 ← {bvb : b ∈ Hi} ▷ Concatenate vector v⃗ as ith bit level

8: parfor j ∈ {0, . . . , m− 1} do ▷ Convert bitstring (index) to drivestream (value)
9: Set D[j] = E[Hℓ[j]] and set probability pD[j] = 1/m.

return D
{

D1}
In order to measure distribution error, we introduce the following key definition:

▶ Definition 11 (Sensitivity). For a function w : S → R and state s, the sensitivity α(s, w, E)
is:

α(s, w, E) := max
r⃗∈E

w(F (r⃗, s))−min
r⃗∈E

w(F (r⃗, s))

The following is our main result analyzing the algorithm:

▶ Theorem 12. The algorithm Reduce runs in Õ((h + η)/ε2) processors, plus the cost
of solving the Prediction Problem for E. The final distribution D is uniform with size
O( log η log2 |E|

ε2 ). For large enough constant C, the distribution D satisfies

|TD(s, w)− TE(s, w)| ≤ εα(s, w, E) for each state s

Proof. Let us fix E, w; for brevity, we write αs := α(s, w, E) for each state s.
Each multiset Hi contains m bitstrings Hi[0], . . . , Hi[m − 1] of length i. Consider the

distributions Di obtained by drawing a bitstring b ∈ Hi uniformly at random and then
drawing drivestream from E[b∗]. In particular, D0 = E and the distribution returned by
Reduce is precisely Dℓ = D. We have the following equation for every state s:

TDi
(s, w) = 1

m

∑
b∈Hi

TE[b∗](s, w).

Now, to analyze a given step i, observe that Hi+1 is obtained by appending a bit vb to
each bitstring b ∈ Hi. We expose the choice of the next bit in Di and Di+1 as follows

TDi(s, w) = 1
m

∑
b∈Hi

[
pE(b1∗)
pE(b∗) · TE[b1∗](s, w) + pE(b0∗)

pE(b∗) · TE[b0∗](s, w)
]

TDi+1(s, w) = 1
m

∑
b∈Hi

[
vb · TE[b1∗](s, w) + (1− vb) · TE[b0∗](s, w)

]
.

Thus we can calculate the difference between probabilities for Di and Di+1 as:

TDi+1(s, w)− TDi(s, w) = 1
m

∑
b∈Hi

( pE(b1∗)
pE(b∗) − vb

)(
TE[b1∗](s, w)− TE[b0∗](s, w)

)
. (1)

ESA 2025



70:8 Improved Parallel Derandomization via Finite Automata with Applications

In light of Eq. (1), we apply Proposition 8 where each state s corresponds to a constraint
row k with entries Akb = TE[b1∗](s, w) − TE[b0∗](s, w), and with ub = pE(b1∗)

pE(b∗) for all b. It
is evident that, after solving the Prediction Problem for E, the values TE[bx∗], pE(bx∗) for
the Lattice Approximation Problem at Line 6 can be generated using O(ηm) processors.
Furthermore, the maximum spread of the values w(F (r⃗, s)) over r⃗ is at most αs, so ∆k =
maxk |Akb| ≤ αs. Since the matrix has η rows and m columns, Proposition 8 gives:∣∣TDi+1(s, w)− TDi

(s, w)
∣∣ ≤ O(αs

√
m log η + αs log η

m
)

By our choice of m, this is at most εαs/ℓ. Over all iterations, this gives the desired bound

∣∣TD(s, w)− TE(s, w)
∣∣ =

ℓ−1∑
i=0

∣∣TDi+1(s, w)− TDi
(s, w)

∣∣ ≤ εαs. ◀

5 The FOOL Algorithm

We build the automata-fooling distribution via the algorithm Fool (Algorithm 2).

Algorithm 2 Fool(ε) (Assume n is a power of two).

1: Set D0,t = Ωt for each t = 0, . . . , n− 1
2: Determine approximate transition vectors V̂t(s) ≈ Tt,n(s, W ) : s ∈ S for all t = 0, . . . , n.

3: for i = 0, . . . , lg n− 1 do
4: parfor t ∈ {0, 2h, 4h, 8h, n− 2h} where h = 2i do
5: Di+1,t ← Reduce(Di,t ×Di,t+h, δ, V̂t+2h) for δ = ε

20(1+lg n)
return final distribution D = Dlg n,0

The algorithm first finds the “expected value” vectors Vt for each distribution Ωt,n. This
may take advantage of problem-specific automaton properties, and it may have some small
error. We will also describe a few “generic” methods to calculate these probabilities exactly.

The main loop fools distributions on time horizons h = 1, 2, 4, 8, . . . in a bottom-up
fashion, and merges them together using the Reduce procedure from the previous section.
Specifically, at each level i, it executes Reduce in parallel to combine Di,t and Di,t+h to
obtain Di+1,t. Note that we never materialize the Cartesian product of Di,t and Di,t+h.

▶ Theorem 13. The cost of Fool is Õ
(
nη/ε2 + ησ

)
processors, plus the cost of computing

the vectors V̂t : t = 0, . . . , n. The final distribution Dlg n,0 has size O( log5(nησ/ε)
ε2 ).

Let us now proceed to analyze the error of the final distribution D. For purposes of
analysis, we define the exact transition vector Vt = Tt,n(s, W ) and its approximation error
by β = maxs,t |Vt(s)− V̂t(s)|.

▶ Theorem 14. For any state s ∈ S, the final distribution D returned by Fool(ε, W ) satisfies

|TD(s, W )− TΩ(s, W )| ≤ εV(s) + 3βn

Proof Sketch. For any state s and times k ≥ t, let as,t,k be the maximum value of
α(s′, Vk+1, Ωk) over s′ = F (r⃗, s) : r⃗ ∈ Ωt,k. We show by induction on i that each Di,t

for any s satisfies

|TDi,t(s, Vt+2i)− Tt,t+2i(s, W )| ≤ 3(2i − 1)β + 2iδ

t+2i−1∑
k=t

as,t,k (2)

The base case i = 0 is vacuous since D0,t = Ωt. The final case i = lg n, t = 0 establishes
the claimed result, since δ = ε

20(1+lg n) and V(s) =
∑n−1

t=0 as,0,t. ◀
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As we have mentioned, there can be problem-specific shortcuts to compute (or approxim-
ate) the transition matrices T and resulting expected-value vectors Vt. There is the following
generic method to compute them via matrix multiplication.

▶ Proposition 15. All vectors Vt = Tt,n(s, W ), can be computed with Õ(nηω) processors,
where ω is the exponent of any efficiently-parallelizable matrix-multiplication algorithm.

In particular, for the Coppersmith-Winograd algorithm [16], we have ω ≤ 2.38. (See [29]
for further details on parallel implementation.)

Moreover, if we can compute all transition matrices Tt,t+h : h = 2i, t = j2i, then we can
compute all vectors Vt = Tt,n(·, W ) exactly (for any W ) with Õ(nη2) processors.

Therefore, when dealing with multiple statistical tests, we have the following result.

▶ Corollary 16. Consider statistical tests i = 1, . . . , ℓ, each computed by its own automaton
Fi on a state space Si of size |Si| = ηi, with its own weight function Wi. When combined
into a single automaton, the resulting automaton F has the following properties:
1. The total statespace is η =

∑
i ηi.

2. Each starting state s for automaton i has V(s) = Vi(s), where Vi denotes the value of V
for weight function Wi and automaton Fi.

3. The exact vectors Vt can be calculated in Õ(n
∑

i ηω
i ) processors.

In particular, the Fool algorithm has processor complexity Õ
(
nη/ε2 + ση + n

∑
i ηω

i

)
,

and the resulting distribution D has |TD(s, W ) − TΩ(s, W )| ≤ εVi(s) for each state s of
automaton i.

6 Reducing the state space for counter automata

Given a weight function W , let us consider a statistic of the form

W
(∑

t

ft(rt)
)

for functions ft : Ωt → Z

We refer to such statistics as counters. They are ubiquitous in randomized algorithm;
they are often used directly, and can also be combined together into higher-order statistics.

In the automata-fooling setting, it is easy to compute
∑

t ft(rt) by tracking all possible
values for the running sum. However, this is often overkill: typically, the running sum
is confined to a much smaller window, roughly the standard deviation around the mean.
We can take advantage of this by constructing an automaton which only maintains the
running sum within “typical” values close to the mean, along with a “reject” state for some
exponentially-rare deviations. Let us define some relevant parameters for the counter.

µt = Er∼Ωt
[ft(r)], Mt = max

r∈Ωt

|ft(r)− µt|, κ =
n−1∑
t=0

Varr∼Ωt
[ft(r)], M = max

t∈[n]
Mt

Given some error parameter δ > 0, we choose a value B with B ≥ ⌈100(1 + M +√
κ) log(n/δ)⌉. In this context, we refer to B as the span of the automaton.

▶ Observation 17. For a drivestream r⃗ drawn randomly from Ω, it holds with probability at
least 1− δ that

∣∣∑t′

i=t(f(ri)− µi)
∣∣ < 0.15B for all times t, t′.

Proof. Apply Bernstein’s inequality and take a union bound over t, t′. ◀
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In light of Observation 17, our strategy will be to construct a truncated automaton
F̃ , which only stores the running sum within a window of ±B from the running mean.
Define at =

⌈ ∑t
i=0 µi

⌋
for each value t. The truncated automaton has state space S̃ =

{−B,−B + 1, . . . , B − 1, B} ∪ {⊥}; given input rt, it updates its state c to a new state c′ as:

c′ =
{

c + f(rt)− at + at−1 if c ̸= ⊥ and |c + f(rt)− at + at−1| ≤ B

⊥ if c = ⊥ or |c + f(rt)− at + at−1| > B

Each integer state c at time t corresponds to a running sum c+at. The state ⊥ represents
a “reject” or “rare” state where the running sum has deviated too far from its mean. We
define a related potential function ϕ : S̃ → [0, 1] as

ϕ(c) =


1 if |c| ≤ B/3
(2B/3− |c|)/(B/3) if B/3 < |c| < 2B/3
0 if |c| > 2B/3 or c = ⊥

Intuitively, ϕ measures how close the current state c is to a reject state. It can be used to
“damp” the weight function W and make a gradual transition to the reject state.

For purposes of analysis, it is useful to compare F̃ with the “truthful” automaton F .
The potential function ϕ can also be applied on the original state space S, where we use the
convention that any states |s| > B corresponds to the reject state ⊥ of S̃.

Relevant properties of F̃ such as computing its transition matrix or its weight variability
can be derived from F up to a small error. Indeed, our application to Gale-Berlekamp
Switching Game will use precisely this approach. For the MAX-CUT application, we will
need to combine multiple truncated automata; this will require a slightly different damping
function and analysis.

▶ Proposition 18. Let W be a weight function for automaton F and define

W̃ (c) =
{

0 if c = ⊥
ϕ(c)W (c) if c ̸= ⊥,

∆ = max
c∈S
|W (c)|, ∆̃ = max

c∈S:
|c−µt|≤2B

|W (c)|.

Let T, T̃ denote the transition matrices for automata F, F̃ respectively.
1. For any time t and state c ∈ S, there holds |T̃t,n(c, W̃ )− Tt,n(c, W̃ )| ≤ δ∆.
2. For the starting state c = 0 and time t = 0, there holds |T̃t,n(c, W̃ )− Tt,n(c, W )| ≤ δ∆.

3. For any time t and state c, there holds

C̃(c, t) ≤ L(c, t) + 2∆δ + 6∆̃Mt/B,

where C̃ denotes the confusion with respect to automata F̃ and weight function W̃ , while
L denotes the Lipschitz value with respect to automaton F and weight function W .

Note that, in both these cases, we use the convention that if |c| > B, then c corresponds
to the reject state of automaton F̃ .

7 Applications

We present the derandomization of two basic problems: the Gale-Berlekamp Switching Game
(Section 7.1) and approximate MAX-CUT via SDP rounding (Section 7.2). Through our
new construction, we improve the deterministic processor complexity for both problems.
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7.1 Gale-Berlekamp Switching Game
The Gale-Berlekamp Switching Game is a classic combinatorial problem: given an n × n

matrix A with entries Aij = ±1, we want to find vectors x, y ∈ {−1, +1}n to maximize the
imbalance I =

∑
i,j Ai,jxiyj . An elegant randomized algorithm of [4], based on the Central

Limit Theorem, gives imbalance of I ≥ (
√

2/π − o(1))n3/2. This was derandomized in [24],
using automata-fooling with a processor complexity of n5+o(1).

▶ Theorem 19. There is a parallel deterministic algorithm to find x⃗, y⃗ ∈ {−1, +1}n with
imbalance I ≥ (

√
2/π − o(1))n3/2 using Õ(n3.5) processors.

In order to show Theorem 19, following [8] and [4], we set xi = 1 if
∑

j Aijyj > 0, and
xi = −1 otherwise. This gives∑

i,j

Ai,jxiyj =
∑

i

xi

∑
j

Ai,jyj =
∑

i

∣∣∣∑
j

Ai,jyj

∣∣∣.
As shown in [13], for y⃗ uniformly drawn from Ω = {−1, +1}n, we have E[|

∑
j Ai,jyj |] ≥√

2n/π − o(
√

n) for each i. This is the statistical test we want to fool.
We will choose our drivestream values to be rt = yt, with Ωt the uniform distrubition

on {−1, 1} For each value i, we have a truncated counter automaton F̃i to track
∑

j Aijrj .
This uses the construction of Section 6 with δ = n−10, where M = 1 and κ =

∑
j A2

ij = n

and B = Õ(
√

n). This automaton uses the weight function

W̃ (c) =
{

0 if c = ⊥
ϕ(c)|c| if c ̸= ⊥

▶ Proposition 20. Fix a row i and automaton F̃ = F̃i, and correspondingly let F be the full
“truthful” automaton. Let T, T̃ be the transition matrices for F, F̃ respectively.
1. For any time t and state s of F , we have |Tt,n(s, W̃ )− T̃t,n(s, W̃ )| ≤ 2δn.
2. The final state z̃ = F̃ (y⃗, 0) for r⃗ ∼ Ω satisfies E[W̃ (z̃)] ≥

√
2n/π − o(

√
n).

3. The weight function W̃ for automaton F̃ has total variability O(n).

Proof. We apply here Proposition 18 with W = |c|. Clearly here L(c, t) = 2 and Mt ≤ 1
for all c, t. Also, we calculate ∆ = n, ∆̃ ≤ Õ(

√
n). With Proposition 18(a), this proves (a).

Similarly, by Proposition 18(b), we have

E[W̃ (z̃)] ≤ δn + EΩ[W (z)] ≤ o(
√

n) + (
√

2/π − o(1)) ·
√

n

where z is the final state for the automaton F .
Finally, for (c), we use the definition of total variability and Proposition 18(c) to get:

V(c) =
n−1∑
t=0

max
r⃗∈Ω0,t

C̃(F̃ (r⃗, c), t) ≤
n−1∑
t=0

(L(c, t) + 2∆δ + 6∆̃Mt/B) = Õ(n). ◀

The complexity now follows from Corollary 16 with ε = 1/
√

n log n, where we have n

automata each of state space η̂i = Õ(
√

n). By applying Proposition 20, we get that for any
sequence y⃗ drawn from the resulting distribution D and automaton F̃i,

|T̃D(0, W̃ )− TΩ(0, W )| ≤ |T̃D(0, W̃ )− T̃Ω(0, W̃ )|+ |T̃Ω(0, W̃ )− TΩ(0, W )|
≤ εV(0) + o(

√
n) = o(

√
n)
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Therefore, for any row i, the final state z̃ satisfies

ED

[∣∣∑
j

Aijyj

∣∣] ≥ EΩ[Wi(z̃)]− o(
√

n) ≥ (
√

2/π −O(ϵ))
√

n

By searching the space exhaustively, we can find a specific sequence y⃗ satisfying the desired
imbalance bounds. This concludes the proof of Theorem 19.

7.2 Approximate MAX-CUT
The MAX-CUT problem for a graph G = (V, E) is to find a vertex set S ⊆ V to maximize
the total weight of edges with exactly one endpoint in S. The seminal work of Goemans
& Williamson [21] showed that MAX-CUT can be approximated to a factor of α ≈ 0.878
by rounding its semi-definite programming (SDP) formulation. Moreover, the integrality
gap of the SDP is precisely α [18], and assuming the Unique Games Conjecture no better
approximation ratio is possible for polynomial-time algorithms [34].

A sequential deterministic α-approximation with Õ(n3) runtime was shown in [9]. This
relies on the method of conditional expectation, which is hard to parallelize. The work of
[43] used the automata derandomization framework to get a parallel deterministic α(1− ε)-
approximation algorithm. The main downside of this approach is the huge polynomial
processor complexity (on the order of n100). We give an improved analysis with our new
automata-fooling construction and some other optimizations.

To review, note that MAX-CUT can be formulated as the following integer program:

max 1
2

∑
(i,j)=e∈E

we(1− vi · vj) s.t. vi ∈ {−1, 1}, i ∈ [n].

This can be relaxed to the following SDP:

max 1
2

∑
(i,j)=e∈E

we(1− vi • vj) s.t. vi ∈ [−1, 1]n, ||vi||2 = 1, i ∈ [n],

where • denotes the inner product in Rn.
We can round a given SDP solution v by drawing independent standard Gaussian random

variables X0, . . . , Xn−1 and constructing the cut S = {i | vi •X ≥ 0}, which gives cutsize W

E[W ] =
∑

(i,j)=e∈E

we Pr[(i, j) is cut] =
∑

(i,j)=e∈E

we Pr[sgn(vi •X) ̸= sgn(vj •X)]

=
∑

(i,j)=e∈E

we
arccos(vi • vj)

π
≥ α ·OPT,

where OPT denotes the size of the maximum cut. Following [43], we will derandomize this
by fooling each statistical test Pr[sgn(vi •X) ̸= sgn(vj •X)].

▶ Theorem 21. There is a deterministic parallel algorithm to find an α(1− ε)-approximate
rounding of a MAX-CUT SDP solution with Õ( mn3

ε4 ) processors.

Via the algorithm of [1] to solve the SDP, this gives the following main result:

▶ Corollary 22. For arbitrary constant ε > 0, we can find an α(1−ε)-approximate MAX-CUT
solution using Õ(mn3) processors and polylogarithmic time.
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The remainder of the section is devoted to showing Theorem 21. To avoid cumbersome
calculations, we will show an algorithm for a (1−O(ε))-approximation, assuming ε is smaller
than any needed constants. For readability, Õ() suppresses any polylog(n/ε) terms.

As a starting point, consider the following process. We draw n independent standard
Gaussian variables X0, . . . , Xn−1. For each edge (i, j), we have a statistical test to read these
values in order and compute ci = vi •X and cj = vj •X. We then apply the weight function
Wij(ci, cj) as the indicator variable that sgn(ci) = sgn(cj).

In order to apply our derandomization framework efficiently, we make a number of
changes to this basic strategy: (i) we define the drivestream value rt to be a discretized
truncated Gaussian; (ii) we further quantize each term vikrk in the computation of the sum
ci =

∑
k vikrk; (iii) we apply the optimization of Section 6 to reduce the state space for each

counter automaton; and (iv) we modify the weight function to a pessimistic estimator with
better Lipschitz properties.Let us fix two quantization parameters for some constant C > 0

γ = ε

C
√

n log(n/ε)
, R = C log(n/ε)

Concretely, each drivestream value rk is derived by truncating a standard Gaussian to
within ±R, and rounding to the nearest multiple of γ. Then, each term in the product vikrk

is rounded to the nearest multiple of γ. Since this comes up frequently in the analysis, let us
denote this “rounded” inner product by: v ⋆ r = γ

∑
k

⌈ 1
γ vkrk

⌋
. Given this definition, we will

form our cut set by setting S = {i : vi ⋆ r ≥ 0}.

▶ Lemma 23. For appropriately chosen C, there is a coupling between random variables X

and Y such that, for any unit vector u ∈ Rn, there holds Pr
(
|u •X − u ⋆ r| > ε

)
≤ (ε/n)10.

Observe that the scaled sum 1
γ (vi ⋆ r) is an integer-valued counter. We can apply the

method of Section 6 to construct a “vertex” automaton F̃i that tracks the running sum
within a window. We record a few parameters and observations about this automaton.

▶ Proposition 24. The automaton F̃i can be implemented with the following parameters:

Mt ≤ Õ(|vit|/γ), M ≤ Õ(1/γ), κ ≤ Õ(1/γ2), δ = (ε/n)10, B = Θ̃(1/γ).

From these vertex-automata, we construct an edge-automaton F̃ij for each edge (i, j) ∈ E.
Automaton F̃ij keeps track of the joint states of F̃i, F̃j , i.e. the truncated running sums vi ⋆ r

and vj ⋆ r. It uses the following weight function for the state s = (ci, cj):

W̃ij(s) =


0 if ci = ⊥ or cj = ⊥
0 if sgn(ci) = sgn(cj)
min{1,

|ci−cj |
ε }ϕi(ci)ϕj(cj) otherwise

Note that whenever W̃ij(s) > 0, we have sgn(vi ⋆ r) ̸= sgn(vj ⋆ r), i.e. edge ij is cut.

▶ Proposition 25. For an edge ij, let F̃ = F̃ij, and consider the “truthful” automaton
F = Fij (which uses the full untruncated automata for vertices i and j). Let T, T̃ denote the
transition matrices for F, F̃ respectively.
1. For any time t and state s of F , there holds |Tt,n(s, W̃ )− T̃t,n(s, W̃ )| ≤ 2δ.
2. The final automaton state z̃ = F̃ (r⃗, 0) for r⃗ ∼ Ω satisfies E[W̃ (z̃)] ≥ arccos(vi•vj)

π −O(ε).
3. For drivestreams r⃗1, r⃗2 differing in coordinate t, the final states z1 = F (r⃗1, 0), z2 = F (r⃗2, 0)

of automaton F have |W̃ (z1)− W̃ (z2)| ≤ Õ(ε−1(|vit|+ |vjt|)).
4. The weight function W̃ has total variability Õ(

√
n/ε) for automaton F̃ .
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Proof. The proof is very similar to Proposition 18; see full version. ◀

Next, we discuss how to approximate the transition matrices for the automata. In light
of Proposition 25(a), we will compute vectors V̂t(s) = Tt,n(s, W ) for the full automaton Fij .
This is much easier than computing the transition matrices for F̃ij , since we do not need to
track reject states. In particular, this achieves error β = 2δ compared to Vt = T̃t,n(s, W ).

▶ Proposition 26. For each automaton Fij, the vectors Tt,n(s, W ) : t = 0, . . . , n, can be
computed with Õ(n3ε−4) processors.

Proof Sketch. We will recursively compute transition matrices Tt,h for h = 1, 2, 4 . . . , and t

divisible by h. The critical observation here is that since Fij is a pair of counters, we only
need to keep track of the probability distribution on the difference pairs

(t+h−1∑
k=t

⌈vikrk/γ⌋,
t+h−1∑

k=t

⌈vjkrk/γ⌋
)

.

This is effectively a convolution, computable via an FFT. ◀

We are now ready to compute the total complexity. Each probability distribution Ωt

has size Õ(γ−1) = Õ(
√

n/ε), thus σ = Õ(n1.5/ε). The reduced total number of states
of an edge-automaton Fij is Õ(1/γ2) = Õ(n/ε2) and the weight function Wij has total
variability Õ(

√
n/ε). So we run Fool with parameter ε′ = ε/

√
n, and the fooling process

has cost Õ(m n3

ε4 + m n2.5

ε3 ). Consider the resulting distribution D. The edge i, j is only cut if
W̃ij(s) > 0. For each Fij , by Theorem 14, the resulting final state z satisfies

Pr
r⃗∼D

(edge ij cut) ≥ Er⃗∼D[Wij ] ≥ Er⃗∼Ω[Wij ]−O(ε)−O(βn)

Here Proposition 25(a) gives β ≤ 2δ ≪ ε/n, and Proposition 25(b) gives Er⃗∼Ω ≥
arccos(vi•vj)

π −O(ε). Thus, overall, the edge i, j is cut with prob. at least arccos(vi•vj)
π −O(ε).

Summing over all edges, the total expected weight of the cut edges is∑
ij∈E

we
arccos(vi • vj)

π
−

∑
ij∈E

weO(ε)

The first term is at least α · OPT. The second term is at most O(ε · OPT) since
OPT ≥

∑
e we/2. By searching D exhaustively, we can find a cut satisfying these bounds.
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