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Abstract
We construct classical algorithms computing an approximation of the ground state energy of an
arbitrary k-local Hamiltonian acting on n qubits.

We first consider the setting where a good “guiding state” is available, which is the main setting
where quantum algorithms are expected to achieve an exponential speedup over classical methods.
We show that a constant approximation (i.e., an approximation with constant relative accuracy)
of the ground state energy can be computed classically in poly (1/χ, n) time and poly(n) space,
where χ denotes the overlap between the guiding state and the ground state (as in prior works in
dequantization, we assume sample-and-query access to the guiding state). This gives a significant
improvement over the recent classical algorithm by Gharibian and Le Gall (SICOMP 2023), and
matches (up to a polynomial overhead) both the time and space complexities of quantum algorithms
for constant approximation of the ground state energy. We also obtain classical algorithms for
higher-precision approximation.

For the setting where no guided state is given (i.e., the standard version of the local Hamiltonian
problem), we obtain a classical algorithm computing a constant approximation of the ground state
energy in 2O(n) time and poly(n) space. To our knowledge, before this work it was unknown how to
classically achieve these bounds simultaneously, even for constant approximation. We also discuss
complexity-theoretic aspects of our results.
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1 Introduction

1.1 Statement of our main results
Estimating the ground state energy of Hamiltonians is a central problem in both many-body
physics and quantum complexity theory. Consider a k-local Hamiltonian

H =
m∑

i=1
Hi (1)

acting on n qubits, with k = O(1). Here each term Hi acts non-trivially on only k qubits
(but does not need to obey any geometric locality). Let E(H) denote the ground state
energy of H, i.e., its smallest eigenvalue. For any ε > 0, we say that an estimate Ê is an
ε-approximation of E(H) if

∣∣∣Ê − E(H)
∣∣∣ ≤ ε m∑

i=1
∥Hi∥.
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It is well known that computing a 1/poly(n)-approximation of E(H) is QMA-hard, even
for k = 2 and for geometrically local Hamiltonians [24, 37, 41, 56, 58]. The Quantum
PCP conjecture [4, 5] posits that there exists a constant ε > 0 such that computing an
ε-approximation of E(H) is QMA-hard as well.

Despite these hardness results, efficient quantum algorithms for ground state energy
estimation can be constructed when a good “guiding state” is available, i.e., when a quantum
state |ψ⟩ that has a good overlap |⟨ψ|ψ0⟩| with a ground state |ψ0⟩ of H is given as an
additional input or can be constructed easily (this problem has been called the “guided local
Hamiltonian problem” in the recent literature [21, 28, 68]). More precisely, quantum phase
estimation [40, 55] and more advanced techniques [67, 26, 30, 38, 51, 53, 54, 59] lead to the
following result:

▶ Fact 1. Given a quantum state with overlap χ with a ground state of H, there exists
a quantum algorithm that computes with high probability an ε-approximation of E(H) in
poly

( 1
χ ,

1
ε , n
)

time and O
(
n+ log( 1

ε )
)

space.

When χ = 1/poly(n) and ε = 1/poly(n), both the running time and the space complexity
(i.e., the number of bits and qubits needed for the computation) are polynomial in n. Even
for larger values of χ, the performance of this quantum algorithm can be significantly better
than the performance of classical algorithms (which typically have running time exponential
in n – see later for a detailed discussion). Combined with the fact that for several important
applications (e.g., quantum chemistry) good candidates for guiding states can be efficiently
constructed, ground state energy estimation is one of the most promising and most anticipated
applications of quantum computers (we refer to, e.g., [1, 3, 7, 10, 49, 50, 60] for discussions
of these applications).

In this work we investigate the classical complexity of this guided local Hamiltonian
problem. A first issue is how to present the guiding state (which is a quantum state, i.e., an
exponential-dimension vector) to a classical computer. As in prior works in dequantization
[8, 22, 23, 25, 28, 29, 35, 46, 64, 65], we consider sample-and-query access:

(i) for any j ∈ [2n] we can efficiently compute ⟨j|ψ⟩ ;
(ii) we can efficiently sample from the probability distribution p : [2n]→ [0, 1] that outputs

j with probability |⟨j|ψ⟩|2.
The motivation for (ii), which is the central assumption in dequantized algorithms, is as
follows: since measuring the quantum state |ψ⟩ in the computational basis gives a sample
from the probability p, it is natural (or “fair”) to assume that in the classical setting this
distribution is efficiently samplable as well.

Recently, Gharibian and Le Gall [28] constructed a classical algorithm computing an
ε-approximation of E(H) in nO(log(1/χ)/ε) time by dequantizing quantum algorithms based
on the Quantum Singular Value Transformation. Here is our main result:

▶ Theorem 1 (Simplified version). Given sample-and-query access to a quantum state with
overlap χ with a ground state of H, there exists a classical algorithm that computes with high
probability an ε-approximation of E(H) in poly

( 1
χ1/ε , n

)
time and poly

(
n, 1

ε

)
space.

Our result significantly improves the running time of the algorithm from [28]. For
instance, if χ = Ω(1), i.e., if we have a good guiding state, our algorithm has time complexity
poly(21/ε, n) instead of nO(1/ε) in [28]. If ε = Ω(1), i.e., if we want only constant precision,
our algorithm has time complexity poly(1/χ, n) instead of nO(log(1/χ)) in [28]. Additionally,
our approach only uses polynomial space. Comparing Theorem 1 with the bounds of Fact
1 shows that for constant precision, there exist a classical algorithm matching (up to a
polynomial overhead) the performance of quantum algorithms.
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Using the same technique, we also obtain the following result for the case where no guided
state is given (i.e., the standard version of the local Hamiltonian problem):

▶ Theorem 2 (Simplified version). For any constant ε > 0, there exists a classical algorithm
that computes with high probability an ε-approximation of E(H) in 2O(n) time and poly(n)
space.

To our knowledge, before this work it was unknown how to achieve simultaneously running
time 2O(n) and space complexity poly(n) for ground state energy estimation of arbitrary
local Hamiltonians (even for constant ε). We will further discuss the implications of our
results in Section 1.3 after reviewing known classical approaches for ground state energy
estimation in the next subsection.

1.2 Background on classical approaches for ground state energy
estimation

There are two main classical approaches for estimating the ground state energy of a local
Hamiltonian:

The power method or its variant the Lanczos method [42, 43], which estimates the ground
state using matrix-vector multiplications. Since the Hamiltonian is a (sparse) matrix
of dimension 2n, the time complexity is O∗(2n).1 There are two main issues with this
approach. First, it requires storing explicit vectors in memory, which leads to space
complexity Ω(2n) and significantly reduces its applicability. Second, it is unclear how a
guiding state would help significantly reduce the time complexity (having a good guiding
state does reduce the number of iterations, but each iteration still requires matrix-vector
multiplications of matrices and vectors of dimension 2n).
Quantum Monte Carlo methods, which use sampling arguments to estimate the ground
state without having to store explicitly the quantum state. This approach is especially
useful for “stoquastic” Hamiltonians, i.e., Hamiltonians for which all the off-diagonal
elements are real and non-positive, and has lead to the design of classical algorithms as
well as as complexity-theoretic investigations of the complexity of the local Hamiltonian
problem for stochastic Hamiltonians [17, 19, 15, 52]. While some of these techniques
have been extended to a few classes of non-stoquastic local Hamiltonians, such as gapped
local Hamiltonians [16] or arbitrary Hamiltonians with succinct ground state [36], for
ground state energy estimation the “sign-problem” significantly limits its applications to
arbitrary local Hamiltonians [32, 66]. It is also unclear how the guiding state would help
reduce the time complexity.

A third approach is direct classical simulation of the quantum circuit used in Fact 1.
There are several techniques for simulating quantum circuits on a classical computer. If the
circuit acts on n qubits and has m gates, the Schrödinger method stores the entire state vector
in memory and performs successive matrix-vector multiplications, using roughly m2n time
and 2n space. While the space complexity can in several cases be significantly reduced using
matrix product states or more general tensor networks [13], those representations also require
exponential space in the worst case. On the other hand, the Feynman method calculates
an amplitude as a sum of terms, using roughly 4m time and m + n space (this approach
was used by Bernstein and Vazirani [12] to prove the inclusion BQP ⊆ P#P). Aaronson and
Chen [2] have introduced a recursive version of the Feynman method, inspired by the proof
of Savitch theorem [61], that works in 2O(n log m) time and poly(n,m) space.

1 In this paper the notation O∗(·) suppresses the poly(n) factors.
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Other prior works. Several ground state energy estimation classical algorithms have also
been developed for special classes of Hamiltonians, such as one-dimensional gapped local
Hamiltonians [44], quantum analogues of Max Cut [6, 31, 39, 48, 57], or Hamiltonians defined
on structured graphs [9, 11, 14]. Additionally, there are a few works [18, 27, 33] achieving
weaker (but still nontrivial) approximation ratios of the ground state energy, and a recent
work [20] achieving a constant approximation ratio for any local Hamiltonian in time slightly
better than 2n (but not space-efficiently).

1.3 Implication of our results

We now discuss several implications of our results.

Better understanding of the quantum advantage. As already mentioned, Theorem 1
implies that for any constant precision parameter ε, we can construct classical ground state
energy estimation algorithms with performance matching (up to a polynomial overhead)
the performance of the best known quantum algorithms. While Ref. [28] already showed
this for χ = O(1), Theorem 1 proves this result for any value χ ∈ (0, 1]. This implies
that (under the assumption that current quantum algorithms are optimal) there is no
superpolynomial quantum advantage for the constant-precision guided local Hamiltonian
problem and gives another strong evidence that exponential quantum advantage for ground
state energy estimation (and applications to, e.g., quantum chemistry) comes from the
improved precision achievable in the quantum setting.

Space-efficient classical ground state energy estimation algorithms. The second main
contribution of this work is the design of space-efficient algorithms for ground state energy
estimation. In particular, for the case where no guiding state is available, Theorem 2 gives a
2O(n)-time poly(n)-space classical algorithm. As already mentioned, to our knowledge before
this work it was unknown how to achieve simultaneously running time 2O(n) time and space
complexity poly(n) for arbitrary local Hamiltonians: even for constant ε, the best running
time was 2O(n log n) by the approach by Aaronson and Chen [2].

Potentially practical classical ground state energy estimation algorithms. From a practical
perspective, the potential of Theorem 1 is even more striking. In particular, for χ = Ω(1),
i.e., when we have access to a fairly good guided state (which is the case in some applications
to quantum chemistry), we obtain a poly(21/ε, n)-time poly(n)-space classical algorithm.
Note that the running time is polynomial even for ε = 1/ logn. Additionally, the running
time is better than 2n, which is the typically running time of other classical methods, even
for precision as low as ε = c/n, for a small enough constant c > 0. While evaluating the
practicality of our algorithm is beyond the scope of this paper, we hope our algorithms find
applications in many-body physics.

Complexity-theoretic implications. In order to formally discuss complexity theoretic aspects
of our results and their relations with standard complexity classes as BPP, BQP and QMA,
we first need to introduce decision versions of our problems. As standard in Hamiltonian
complexity theory, we add the promise that either (i) E(H) ≤ a or (ii) E(H) > b holds, for
some values a, b ∈ [0, 1] such that b− a > ε, and ask to decide which of (i) or (ii) holds. This
leads to the following (standard) decision version of the local Hamiltonian problem:
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LH(ε) (Local Hamiltonian problem – decision version)

Input: ∗ a O(1)-local Hamiltonian H as in Equation (1) acting on n qubits
∗ two numbers a, b ∈ [0, 1] such that b− a > ε

Promise: either (i) E(H) ≤ a or (ii) E(H) > b holds

Goal: decide which of (i) or (ii) holds

As already mentioned, the problem LH(ε) is QMA-complete for ε = 1/poly(n). On the
other hand, for any ε = O(1) Theorem 2 leads to the inclusion

LH(ε) ∈ BPTimeSpace
(

2O(n), poly(n)
)
,

where BPTimeSpace(t(n), s(n)) denotes the class of (promise) decision problems that can be
solved with probability at least 2/3 by a probabilistic Turing machine running in t(n) time
and using s(n) space.

For the guided local Hamiltonian problem, another subtle issue is how to access the
guiding state |ψ⟩. So far we have assumed sample-and-query access to |ψ⟩ when considering
classical algorithms. While satisfactory when discussing algorithmic aspects of the problem
(as we did so far), such “oracle” access to the input is problematic if we want to discuss
relations with standard complexity classes such as BPP, BQP and QMA. Instead, we make the
following assumptions: in the quantum setting, the description of a quantum polynomial-size
circuit creating |ψ⟩ is given as input; in the classical setting, the description of a classical
polynomial-size circuit implementing sample-and-query access to |ψ⟩ is given as input. This
leads to the following decision version of the guided local Hamiltonian problem:'

&

$

%

GLH(ε, χ) (Guided Local Hamiltonian problem – decision version)

Input: ∗ a O(1)-local Hamiltonian H as in Equation (1) acting on n qubits
∗ the description of a poly(n)-size circuit implementing access to a quantum

state |ψ⟩ with overlap at least χ with the ground state of H
∗ two numbers a, b ∈ [0, 1] such that b− a > ε

Promise: either (i) E(H) ≤ a or (ii) E(H) > b holds

Goal: decide which of (i) or (ii) holds

Prior results on the hardness of the guided local Hamiltonian problem [21, 28] combined
with Fact 1 imply that GLH(ε, χ) is BQP-complete for ε = 1/poly(n) and constant χ.
Ref. [28] also showed that this problem is in the class BPP for constant ε and constant χ.
Theorem 1 enables us to strengthen this result and show that for constant ε, the inclusion
GLH(ε, χ) ∈ BPP holds for χ = 1/poly(n) as well.

These complexity-theoretic implications are summarized in Table 1.

1.4 Overview of the techniques
The full version of the paper [45] includes a 3-page overview of the techniques, which is
omitted here due to space constraints.

2 Preliminaries

In this section we introduce notations and definitions, and present some useful lemmas.

ESA 2025
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Table 1 The complexity of the problems LH(ε) and GLH(ε, χ).

LH(ε) GLH(ε, Θ(1)) GLH
(
ε, 1

poly(n)

)
ε = Θ(1) in BPTimeSpace(2O(n), poly(n)) (Th. 2) in BPP (Ref. [28]) in BPP (Th. 1)

ε = 1
poly(n) QMA-complete (Refs. [37, 41]) BQP-complete (Refs. [21, 28])

2.1 Notations
General notations. For any integer N we write [N ] = {1, . . . , N}. Define R[poly(n)] as the
set of all real numbers with binary expansion of polynomial length. More precisely, for any
function f : N→ N, we define the set

R[f(n)] =

±
a0 +

f(n)∑
i=1

ai2i +
f(n)∑
i=1

bi2−i

 ∣∣∣ a0, . . . , af(n), b1, . . . , bf(n) ∈ {0, 1}

 ⊆ R

of all real numbers with binary expansion of polynomial length 2f(n) + 2 (including one
bit for encoding the sign). Then R[poly(n)] is the union of the R[f(n)] for all polynomial
functions f(n). We define C[f(n)] and C[poly(n)] similarly, by requiring that both the real
part and the imaginary part are in R[f(n)] and R[poly(n)], respectively.

Vectors and matrices. In this paper we consider vectors in CN and matrices in CN×N ,
for some integer N , and write n = ⌈log2(N)⌉. Note that this notation is consistent with
the notation of Section 1, where we considered the special case N = 2n. We usually write
quantum states (i.e., unit-norm vectors) using Greek letters and Dirac notation, e.g., we use
|ψ⟩ or |φ⟩. We write arbitrary vectors (i.e., vectors of arbitrary norm) using Roman letters,
e.g., we use v or w.

For a matrix A ∈ CN×N and any ℓ ∈ [N ], we denote the ℓ-th row of A by A[ℓ, ·]. The
matrix A is normal if it can be written A = UDU−1 where D is a diagonal matrix with real
entries and U is a unitary matrix. We use ∥A∥ to denote the spectral norm of A, which is
defined for a normal matrix as the maximum magnitude of the eigenvalues of A (and defined
as square root of the maximum eigenvalue of A∗A, where A∗ denotes the conjugate transpose
of A, in general). This norm is submultiplicative, i.e., the inequality ∥AB∥ ≤ ∥A∥∥B∥ holds
for any matrices A,B ∈ CN×N . We also have |u∗Av| ≤ ∥A∥∥u∥∥v∥ for any u, v ∈ CN , where
∥u∥ and ∥v∥ denote the Euclidean norms of u and v, respectively.

Eigenvalues and overlap. Consider a normal matrix A ∈ CN×N . Let A =
∑2n

i=1 λi|ui⟩⟨ui|
be its eigenvalue decomposition, with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λ2n and corresponding
orthonormal eigenvectors |u1⟩, . . . , |u2n⟩. We denote by E(A) = λ1 the smallest eigenvalue
of A. For any σ ≥ 0, let us write S(A, σ) = {i ∈ [N ] | λi(A) ≤ E(A) + σ}. For any vector
w ∈ CN , let

Γσ(A,w) =
√ ∑

i∈S(A, σ)

|⟨ui|w⟩|2

denote the overlap of w with the eigenspace corresponding to eigenvalues in [E(A) , E(A) +σ].
Note that the standard definition of the overlap (used in Section 1) corresponds to the case
σ = 0.
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2.2 Access to vectors and matrices
We now define the notions of access to vectors and matrices needed for this work. These
notions are similar to prior works on dequantization [23, 46, 64], but we need to precisely
discuss the encoding length and the space complexity.

We start with query access to a vector.

▶ Definition 3. We have query access to a vector w ∈ CN with encoding length len(w) and
costs qt(w) and qs(w) if
1. for each i ∈ [N ], we have wi ∈ C[len(w)];
2. for any i ∈ [N ], the coordinate wi can be obtained in qt(w) time and qs(w) space.
If len(w), qt(w), qs(w) ≤ poly(n), we simply say that we have query access to w.

Next, we introduce the stronger notion of sample-and-query access to a vector.

▶ Definition 4. We have sample-and-query access to a vector w ∈ CN if
1. we have query access to w;
2. we can compute in poly(n) time2 a sample from the distribution p : [N ]→ [0, 1] such that

p(i) = |wi|2

∥w∥2 for each i ∈ [N ].
When ∥w∥ = 1, Item 2 in Definition 4 states that we can efficiently sample from the same
distribution as the distribution obtained when measuring the quantum state

∑N
i=1 wi|i⟩ in

the computational basis.
We extend the notion of query access to matrices as follows:

▶ Definition 5. We have query access to a matrix B ∈ CN×N if
1. for each (i, j) ∈ [N ]× [N ], we have B[i, j] ∈ C[poly(n)];
2. for any (i, j) ∈ [N ]× [N ], the entry B[i, j] can be obtained in poly(n) time;
3. for any i ∈ [N ], the number si of nonzero entries in B[i, ·] can be obtained in poly(n)

time;
4. for any i ∈ [N ] and any ℓ ∈ [si], the ℓ-th nonzero entry of B[i, ·] can be obtained in

poly(n) time.
Items 3 and 4 in Definition 5 are needed to deal with sparse matrices.

2.3 Local Hamiltonians and matrix decompositions
We give below technical details about the description of local Hamiltonians and the matrix
decompositions introduced in this work.

Description of local Hamiltonians. A k-local Hamiltonian acting on n qubits is a Hermitian
matrix H ∈ CN×N with N = 2n that can be written as H =

∑m
i=1 Hi with m = poly(n),

where each term Hi is an Hermitian matrix acting non-trivially on at most k qubits. Each
Hi can be described by a 2k × 2k matrix representing its action on the k qubits on which
it acts non-trivially. We assume that each entry of this description is in C[poly(n)]. This
description is given as input. For convenience we also assume that we know ∥Hi∥ for each
i ∈ [N ].3

2 Since a polynomial upper bound on the time complexity implies a polynomial upper bound on the space
complexity, hereafter we omit to explicitly mention that the space complexity is poly(n) as well.

3 Note that each ∥Hi∥ can be computed from its description as a 2k × 2k matrix. The computation
is efficient when k is small, e.g., for k = O(log n), which is the most interesting regime for the local
Hamiltonian problem.

ESA 2025
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Matrix decomposition. Here is the complete definition of the matrix decomposition we
consider.

▶ Definition 6. For a matrix A, an integer s ≥ 0 and a real number κ ∈ R[poly(n)], an
(s, κ)-decomposition of A is a decomposition

A =
m∑

i=1
Ai with

m∑
i=1
∥Ai∥ ≤ κ

in which Ai is an s-sparse matrix for each i ∈ [m]. We always (implicitly) assume the
following:

for each i ∈ [m], we have query access to the matrix Ai;
we know bounds κ1, . . . , κm ∈ R[poly(n)] such that ∥Ai∥ ≤ κi for i ∈ [m] and

∑m
i=1 κi = κ.

If κ = 1, we simply call the decomposition an s-decomposition.

2.4 Lemmas
We present four lemmas that are needed to prove our results.

The first lemma is the “powering lemma” from [34] to amplify the success probability of
probabilistic estimators (the formulation below for complex numbers is from [46, Lemma 3]):

▶ Lemma 7 (Powering lemma). Consider a randomized algorithm that produces an estimate
µ̃ of a complex-valued quantity µ such that |µ̃− µ| ≤ ε holds with probability at least 3/4.
Then, for any δ > 0, it suffices to repeat O(log(1/δ)) times the algorithm and take both the
median of the real parts and the median of the imaginary parts to obtain an estimate µ̂ such
that |µ̂− µ| ≤

√
2ε holds with probability at least 1− δ.

To perform eigenvalue estimation we will need a low-degree polynomial that approximates
well the “rectangle” function. We will use the following result from [30].4

▶ Lemma 8 (Lemma 29 in [30]). For any ξ ∈ (0, 1], any τ ∈ [0, 1) and any θ ∈ (0, 1 − τ ],
there exists an efficiently computable polynomial P ∈ R[x] of degree O

( 1
θ log(1/ξ)

)
such that

|P (x)| ∈ [0, 1] for all x ∈ [−1, 1] and{
P (x) ∈ [1− ξ, 1] if x ∈ [0, τ ],
P (x) ∈ [0, ξ] if x ∈ [τ + θ, 1].

(2)

We will use the following result from [63] that gives an upper bound on the coefficients of
polynomials bounded in the interval [−1, 1] (such as the polynomial from Lemma 8).

▶ Lemma 9 (Lemma 4.1 in [63]). Let P (x) =
∑d

i=0 aix
i be a univariate polynomial of degree

d such that |P (x)| ≤ 1 for all x ∈ [−1, 1]. Then
∑d

i=0 |ai| ≤ 4d.

Finally, we discuss how to classically estimate the inner product ⟨ψ|w⟩ given sample-and-
query access to a quantum state |ψ⟩ and query access to a vector w. More precisely, we are
considering the following problem:

4 Lemma 8 follows by taking t = τ + θ/2 and δ′ = θ/2 in Lemma 29 of [30]. The computability of the
polynomial is discussed explicitly in [47, Appendix A.3].



F. Le Gall 73:9

'

&

$

%

IP(ε, δ) (Estimation of Inner Product)

Input: ∗ sample-and-query access to a quantum state |ψ⟩ ∈ CN

∗ query access to a vector w ∈ CN with encoding length len(w) and
costs qt(w) and qs(w)

Output: an estimate a ∈ C such that

|a− ⟨ψ|w⟩| ≤ ε ∥w∥

holds with probability at least 1− δ

Prior works on dequantization [23, 46, 64] have shown how to solve this problem efficiently.
It can be easily checked that these approaches are space-efficient as well, leading to the
following statement. For completeness we give a proof in the full version of the paper [45].

▶ Lemma 10. For any ε ∈ (0, 1] and any δ ∈ (0, 1], the problem IP(ε, δ) can be solved clas-
sically in time O∗(qt(w) ε−2 log(1/δ)

)
and space qs(w) +O∗

((
len(w) + log(1/ε)

)
log(1/δ)

)
.

3 Iterated Matrix Multiplication

In this section we show how to classically estimate the inner product ⟨ψ|Br · · ·B1|φ⟩ for
sparse matrices B1, . . . , Br and two quantum states |ψ⟩ and |φ⟩ to which we have classical
access. More precisely, we consider the following problem.'

&

$

%

IMM(s, r, ε, δ) (Estimation of Iterated Matrix Multiplication)

Input: ∗ query access to s-sparse matrices B1, . . . , Br ∈ CN×N

∗ query access to a quantum state |φ⟩ ∈ CN

∗ sample-and-query access to a quantum state |ψ⟩ ∈ CN

Output: an estimate Ê ∈ C such that∣∣∣Ê − ⟨ψ|Br · · ·B1|φ⟩
∣∣∣ ≤ ε ∥B1∥ · · · ∥Br∥

holds with probability at least 1− δ

Here is the main result of this section.

▶ Proposition 11. For any s ≥ 1, any r ≥ 1, any ε ∈ (0, 1] and any δ ∈ (0, 1], the problem
IMM(s, r, ε, δ) can be solved classically in time

O∗(srε−2 log(1/δ)
)

and space

O∗(r2 +
(
r + log(1/ε)

)
log(1/δ)

)
.

The proof of Proposition 11 is based on the following lemma, which can be seen as a
space-efficient version of the approach for iterated matrix multiplication used in [28, 62].

▶ Lemma 12. There is a classical algorithm that implements query access to Br · · ·B1|φ⟩
with encoding length len(Br · · ·B1|φ⟩) = O∗(r) and costs qt(Br · · ·B1|φ⟩) = O∗(sr) and
qs(Br · · ·B1|φ⟩)= O∗(r2).
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Proof. Here is the main idea: to obtain the ℓ-th entry of Br · · ·B1|φ⟩, we only need to know
the s nonzero entries of the ℓ-th row of Br, which can be queried directly, together with the
corresponding entries in the vector Br−1 · · ·B1|φ⟩, which can be computed recursively. The
algorithm is described in pseudocode below.

Algorithm A(ℓ, r) // computes ⟨ℓ|Br · · ·B1|φ⟩
1 if r = 0 then
2 return ⟨ℓ|φ⟩ ;
3 else
4 z ← 0 ;
5 get the number of nonzero entries of the row Br[ℓ, ·] and write it s′ ;
6 for t from 1 to s′ do
7 get the index of the t-th nonzero entry of Br[ℓ, ·] and write it j ;
8 x← Br[ℓ, j] ; // queries ⟨ℓ|Br|j⟩
9 y ← A (j, r − 1) ; // computes recursively ⟨j|Br−1 · · ·B1|φ⟩

10 z ← z + x · y ;
11 return z ;

We first analyze the correctness of the algorithm. Let j1, . . . , js′ represent the indices of
the nonzero entries of the row Br[ℓ, ·]. Since

⟨ℓ|Br · · ·B1|φ⟩ =
s′∑

t=1
⟨ℓ|Br|jt⟩⟨jt|Br−1 · · ·B1|φ⟩,

Algorithm A(ℓ, r) outputs ⟨ℓ|Br · · ·B1|φ⟩.
Let T (r) denote the running time of this procedure. We have T (r) ≤ sT (r− 1) +O∗(s) ,

and thus T (r) = O∗(sr). For each j ∈ [N ], the entry ⟨j|ψ⟩ has a poly(n)-bit binary expansion.
Each entry of the matrices B1, . . . , Br also has a poly(n)-bit binary expansion. This implies
that len(Br · · ·B1|φ⟩) = O∗(r). We finally consider the space complexity. The recursion tree
has depth r. At each level of the recursion, the values x, y and z at Steps 8, 9 and 10 can be
stored in O∗(r) bits, and we need one O(log s)-bit counter for storing the current value of t.
The overall space complexity of the algorithm is thus O∗(r(r + log s)) = O∗(r2). ◀

Proposition 11 is obtained by applying Lemma 10 to the vector w = Br · · ·B1|φ⟩, for
which we can implement query access from Lemma 12:

Proof of Proposition 11. From Lemma 12 we have query access to w = Br · · ·B1|φ⟩ with
encoding length len(w) = O∗(r) and costs qt(w) = O∗(sr) and qs(w) = O∗(r2). Using
Lemma 10, we can then compute an estimate a ∈ C such that

|a− ⟨ψ|Br · · ·B1|φ⟩| ≤ ε ∥Br · · ·B1|φ⟩∥ ≤ ε ∥B1∥ · · · ∥Br∥

holds with probability at least 1− δ. The time and space complexity are

O∗(srε−2 log(1/δ)
)

and

O∗(r2 +
(
r + log(1/ε)

)
log(1/δ)

)
,

respectively. ◀
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4 Polynomial Transformations of Decomposable Matrices

In this section we show how to classically estimate the inner product ⟨ψ|P (A)|φ⟩ for a matrix
A with an s-decomposition, a polynomial P , and two quantum states |ψ⟩ and |φ⟩ to which
we have classical access. More precisely, we consider the following problem.'

&

$

%

PT(s, d, η) (Estimation of Polynomial Transformation)

Input: ∗ a matrix A ∈ CN×N with an s-decomposition
∗ a polynomial P ∈ R[x] of degree d with |P (x)| ≤ 1 ∀x ∈ [−1, 1]
∗ query access to quantum state |φ⟩ ∈ CN

∗ sample-and-query access to a quantum state |ψ⟩ ∈ CN

Output: an estimate Ê ∈ C such that∣∣∣Ê − ⟨ψ|P (A)|φ⟩
∣∣∣ ≤ η (3)

holds with probability at least 1− 1/ exp(n)

Here is the main result of this section.

▶ Proposition 13. For any s ≥ 2, any d ≥ 1 and any η ∈ (0, 1] ∩ R[poly(n)], the problem
PT(s, d, η) can be solved classically in time O∗(sc·dη−4) time, for some universal constant
c > 0, and space O∗(d2) .

The proof of Proposition 13 is based on the following lemma, whose proof is given after
the proof of the proposition.

▶ Lemma 14. For any r ∈ {0, . . . , d}, any η ∈ (0, 1]∩R[poly(n)] and any δ ∈ (0, 1], there is
a classical algorithm that computes an estimate Êr ∈ C such that

∣∣∣Êr − ⟨ψ|Ar|φ⟩
∣∣∣ ≤ η

4d holds
with probability at least 1− δ in time O∗(sr28dη−4d log(1/δ)

)
and space O∗(d2 + d log(1/δ)

)
.

Proof of Proposition 13. Let us write the polynomial P as P (x) =
∑d

r=0 arx
d. For any

δ′ ∈ (0, 1], we describe how to compute an estimate Ê such that Equation (3) holds with
probability at least 1− δ′. Taking δ′ = 1/ exp(n) then proves the proposition.

For each r ∈ {0, . . . , d} such that ar ̸= 0, we apply Lemma 14 with δ = δ′

d+1 to obtain an
approximation Êr of ⟨ψ|Ar|φ⟩ such that

Pr
[∣∣∣Êr − ⟨ψ|Ar|φ⟩

∣∣∣ ≤ η

4d

]
≥ 1− δ′

d+ 1 .

For each r ∈ {0, . . . , d} such that ar = 0, we set Êr = 0. We then output Ê =
∑d

r=0 arÊr.

From the union bound and the triangle inequality, with probability at least 1− δ′ we have

∣∣∣Ê − ⟨ψ|P (A)|φ⟩
∣∣∣ ≤ d∑

r=0
|ar| |Er − ⟨ψ|Ar|φ⟩| ≤ η,

where we used Lemma 9 to derive the last inequality.
The time complexity is

O∗

((
d∑

r=0
sr

)
28dη−4d log

(
d

δ′

))
= O∗

(
sd28dη−4d log

(
d

δ′

))
= O∗(sc·dη−4) ,
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for some universal constant c > 0. The space complexity is

O∗(d2 + d log(d/δ′)
)

= O∗(d2) ,
as claimed. ◀

Proof of Lemma 14. As in Definition 6, we write the s-decomposition of A as A =
∑m

i=1 Ai ,

where each Ai is an s-sparse matrix such that ∥Ai∥ ≤ κi, with κ1 + · · ·+ κm = 1. Consider
the probability distribution p : [m]r → [0, 1] defined as p(x) = κx1 · · ·κxr

for any x ∈ [m]r
(the condition κ1 + · · ·+ κm = 1 guarantees that this is a probability distribution). Define a
random variable X as follows: sample a vector x from the distribution p, and set

X = ⟨ψ|Ax1 · · ·Axr |φ⟩
p(x) .

Repeat the above procedure t =
⌈
64 · 42d

/η2
⌉

times and output the mean. Let Y denote the
corresponding complex random variable. We have

E [Y ] = E [X] =
∑

x∈[m]r

⟨ψ|Ax1 · · ·Axr |φ⟩ = ⟨ψ|Ar|φ⟩

V [Y ] ≤ 1
t
E
[
|X|2

]
= 1
t

∑
x∈[m]r

|⟨ψ|Ax1 · · ·Axr
|φ⟩|2

κx1 · · ·κxr

≤ 1
t

∑
x∈[m]r

∥Ax1 · · ·Axr∥2

κx1 · · ·κxr

≤ 1
t

∑
x∈[m]r

κx1 · · ·κxr

= 1
t

(κ1 + · · ·+ κm)r

= 1
t
.

From Chebyshev’s inequality, we thus obtain:

Pr
[
|Y − ⟨ψ|Ar|φ⟩| ≥ η

2
√

2 · 4d

]
≤ 8 · 42d

η2t
≤ 1

8 . (4)

We cannot directly use this strategy since we do not know ⟨ψ|Ax1 · · ·Axr |φ⟩. Instead, we
estimate this quantity using Proposition 11. This leads to the following algorithm.

Algorithm B(η) // estimates ⟨ψ|Ar|φ⟩ with precision η√
2·4d

1 t←
⌈
64 · 42d/η2⌉;

2 z ← 0 ;
3 for i from 1 to t do
4 Take a vector x according to the distribution p.
5 Use Proposition 11 for the problem IMM

(
s, r, η

2
√

2·4d
, 1

8t

)
to compute an

estimate α ∈ C of ⟨ψ|Ax1 · · ·Axr
|φ⟩ ;

6 z ← z + α
t·p(x) ;

7 return z ;
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The complexity of Algorithm B(η) is dominated by the computation at Step 5, which is
done t times. From Proposition 11, we obtain the upper bounds

O∗(t · sr24dη−2 log(8t)
)

= O∗(sr28dη−4d
)

and

O∗
(
r2 +

(
r + log

(
2
√

2 · 4d

η

))
log(8t)

)
= O∗(r2 + d2) = O∗(d2)

on the time and space complexities, respectively.
We now analyze the correctness of Algorithm B(η). Let Z be the random variable

corresponding to the output of Step 7 when at Step 4 the vectors x’s are the same vectors as
in the random variable Y . For any choice of x at Step 4, the estimate α of Step 5 satisfies

|α− ⟨ψ|Ax1 · · ·Axr
|φ⟩| ≤ η κx1 · · ·κxr

2
√

2 · 4d
(5)

with probability at least 1−1/(8t). Under the condition that Inequality (5) is always satisfied
during the t repetitions, we have

|Z − Y | ≤
∑

x

1
t · p(x)

η κx1 · · ·κxr

2
√

2 · 4d
= η

2
√

2 · 4d
,

where the sum is over the t vectors x chosen at Step 4. By the union bound, we thus have

Pr
[
|Z − Y | > η

2
√

2 · 4d

]
≤ 1

8 . (6)

Combining Equation (4) and Equation (6) gives

Pr
[
|Z − ⟨ψ|Ar|φ⟩| ≤ η√

2 · 4d

]
≥ Pr

[
|Z − Y | ≤ η

2
√

2 · 4d
and |Y − ⟨ψ|Ar|φ⟩| ≤ η

2
√

2 · 4d

]
≥ 1− Pr

[
|Z − Y | > η

2
√

2 · 4d

]
− Pr

[
|Y − ⟨ψ|Ar|φ⟩| > η

2
√

2 · 4d

]
≥ 3

4 .

We can then use Lemma 7 to obtain an estimate Êr ∈ C such that
∣∣∣Êr − ⟨ψ|Ar|φ⟩

∣∣∣ ≤ η
4d holds

with probability at least 1− δ. Lemma 7 introduces a log(1/δ) factor in the time complexity
and an additive O∗(d log(1/δ)) term in the space complexity since for the computation of
the medians we need to store O(log(1/δ)) values, each requiring O∗(d) bits.5 ◀

5 Eigenvalue Estimation

In this section we use the results proved in Section 4 to estimate the smallest eigenvalue of a
normal matrix. We describe the most general problem we are solving in Section 5.1 and then
prove Theorems 1 and 2 in Section 5.2.

5 Here we are using the assumption κi ∈ C[poly(n)] for all i ∈ [m], see Definition 6. This implies that
p(x) can be encoded in O∗(r) bits and the output of Procedure B(η) in O∗(d) bits.
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5.1 General result
We consider the problem of estimating the smallest eigenvalue of a normal matrix with an
(s, κ)-decomposition, given classical access to a guiding state. Here is the formal description
of the problem:'

&

$

%

SE(s, χ, ε) (Estimation of the Smallest Eigenvalue)

Input: ∗ a normal matrix A ∈ CN×N with an (s, κ)-decomposition (for any κ)

∗ sample-and-query access to a quantum state |ψ⟩ ∈ CN

with Γε
2 κ(A, |ψ⟩) ≥ χ

Output: an estimate E∗ ∈ R such that

|E∗ − E(A)| ≤ ε κ (7)

holds with probability at least 1− 1/ exp(n)

We prove the following theorem:

▶ Theorem 15. For any s ≥ 2 and any ε, χ ∈ (0, 1]∩R[poly(n)], the problem SE(s, χ, ε) can
be solved classically in time O∗

(
s

c′ log(1/χ)
ε

)
time, for some universal constant c′ > 0, and

space O∗(1/ε2).
Proof of Theorem 15. Let us define A′ = 1

2 (I + A
κ ) and write T = ⌈4/ε⌉. The (s, κ)-

decomposition of A gives an (s+ 1)-decomposition of A′. Observe that A′ has eigenvalues in
the interval [0, 1]. The main idea is to divide this interval into T subintervals of length at
most ε/4 and find in which subinterval E(A′) lies in. Since E(A) = 2κE(A′) − κ, this will
give an estimate of E(A).

Concretely, for any t ∈ {0, . . . , T − 1}, we consider the following test that checks if E(A′)
is “approximately” smaller than t ε

4 . The approximation comes from the use of an estimator
at Step 2 – details of the implementation of this step are discussed later.

Test(t) // checks if E(A′) is (approximately) smaller than t ε
4

1 Let P be the polynomial of Lemma 8 with τ = t ε
4 , θ = ε

4 and ξ = χ2

12 ;
2 Compute an estimate Ê ∈ C such that

∣∣∣Ê − ⟨ψ|P (A′)|ψ⟩
∣∣∣ ≤ χ2

4 ;

3 if
∣∣∣Ê∣∣∣ ≥ χ2

2 then output “yes” ;
4 else output “no” ;

Let t∗ be the smallest value of t ∈ {0, . . . , T − 1} such that Test(t) outputs “yes”. Define
E∗ = t∗ ε

2κ − κ. The following claim, whose proof is given in the full version of the paper
[45], guarantees that E∗ is a correct estimate of E(A).

▷ Claim 16. |E∗ − E(A)| ≤ ε κ .

We now discuss the implementation of Step 2. For any δ ∈ (0, 1], we describe how to
compute an estimate E∗ such that Equation (7) holds with probability at least 1− δ. Taking
δ = 1/ exp(n) then proves the theorem.
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We use the algorithm of Proposition 13 for the problem PT(s,deg(P ), χ2/4) in order to
obtain an estimator Ê such that

∣∣∣Ê − ⟨ψ|P (A′)|ψ⟩
∣∣∣ ≤ χ2/4 holds with probability at least

1 − δ/T . Since Test(t) is called at most T times, the union bound guarantees that with
probability at least 1− δ no error occur during these tests. This implies that the output E∗

satisfies the bound of Claim 16 with probability at least 1− δ.
The overall time complexity is O∗(T · (s+ 1)c·deg(P )χ−8) = O∗

(
s

c′ log(1/χ)
ε

)
, for some

universal constant c′ > 0. Since deg(P ) = O∗(1/ε), the space complexity is O∗(1/ε2). ◀

5.2 Consequences: Theorems 1 and 2
We are now ready to give the full statements of Theorems 1 and 2 and prove them.

▶ Theorem 14 (Full version). Consider any ε, χ ∈ (0, 1] ∩ R[poly(n)]. For any k-local
Hamiltonian H on n qubits, given sample-and-query access to a quantum state |ψ⟩ with

Γε
2 κ(H, |ψ⟩) ≥ χ,

where κ =
∑m

i=1∥Hi∥, there is a classical algorithm that computes in poly
( 1

χk/ε , n
)

time and
O∗( 1

ε2

)
space an estimate Ê such that

∣∣∣Ê − E(H)
∣∣∣ ≤ ε m∑

i=1
∥Hi∥

holds with probability at least 1− 1/ exp(n).

Proof of Theorem 1. We apply Theorem 15 with A = H, s = 2k and κ =
∑m

i=1∥Hi∥. ◀

▶ Theorem 15 (Full version). Consider any ε ∈ (0, 1] ∩ R[poly(n)]. For any k-local Hamilto-
nian H on n qubits, there is a classical algorithm that computes in 2O(kn/ε) time and O∗( 1

ε2

)
space an estimate Ê such that∣∣∣Ê − E(H)

∣∣∣ ≤ ε m∑
i=1
∥Hi∥

holds with probability at least 1− 1/ exp(n).

Proof of Theorem 2. Let us write H =
∑2n

i=1 λi|ui⟩⟨ui| the spectral decomposition of H,
with λ1 ≤ λ2 ≤ · · · ≤ λ2n and corresponding orthonormal eigenvectors |u1⟩, . . . , |u2n⟩, where
λ1 = E(H). We apply Theorem 1 with the Hamiltonian H ′ = H ⊗ I acting on 2n qubits
(here I is the identity matrix acting on n qubits) and guiding state |Φ⟩ = 1√

2n

∑2n

i=1 |i⟩|i⟩,
for which it is trivial to implement sample-and-query access. This is a maximally entangled
state, which can also be written as |Φ⟩ = 1√

2n

∑2n

i=1 |ui⟩|vi⟩, for another orthonormal basis
{|v1⟩, . . . , |v2n⟩}.

Let t ∈ [2n] denote the multiplicity of the ground state energy of H. The eigenspace
corresponding to the ground state energy of H ′ is thus span {|ui⟩|j⟩ | i ∈ [t], j ∈ [2n]}. We
have

Γ0(H, |Φ⟩) =

√√√√ t∑
i=1

2n∑
j=1
|(⟨ui|⟨j|)|Φ⟩|2 ≥

1√
2n

√√√√ 2n∑
j=1
|⟨j|v1⟩|2 = 1√

2n
.

The conclusion follows from Theorem 1 with χ = 2−n/2. ◀
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