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Abstract
We consider the List Update problem where the cost of each swap is assumed to be 1. This is in
contrast to the “standard” model, in which an algorithm is allowed to swap the requested item with
previous items for free. We construct an online algorithm Full-Or-Partial-Move (Fpm), whose
competitive ratio is at most 3.3904, improving over the previous best known bound of 4.
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1 Introduction

The List Update problem. In the online List Update problem [3, 20, 21], the objective is to
maintain a set of items stored in a linear list in response to a sequence of access requests. The
cost of accessing a requested item is equal to its distance from the front of the list. After each
request, an algorithm is allowed to rearrange the list by performing an arbitrary number of
swaps of adjacent items. In the model introduced by Sleator and Tarjan in their seminal 1985
paper on competitive analysis [25], an algorithm can repeatedly swap the requested item with
its preceding item at no cost. These swaps are called free. All other swaps are called paid and
have cost 1 each. As in other problems involving self-organizing data structures [7], the goal
is to construct an online algorithm, i.e., operating without the knowledge of future requests.
The cost of such an algorithm is compared to the cost of the optimal offline algorithm; the
ratio of the two costs is called the competitive ratio and is subject to minimization.

Sleator and Tarjan proved that the algorithm Move-To-Front (Mtf), which after each
request moves the requested item to the front of the list, is 2-competitive [25]. This ratio is
known to be optimal if the number of items is unbounded. Their work was the culmination
of previous extensive studies of list updating, including experimental results, probabilistic
approaches, and earlier attempts at amortized analysis (see [15] and the references therein).
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As shown in subsequent work, Mtf is not unique – there are other strategies that achieve
ratio 2, such as TimeStamp [2] or algorithms based on work functions [9]. In fact, there are
infinitely many algorithms that achieve ratio 2 [13, 21].

The uniform cost model. Following [24], we will refer to the cost model of [25] as standard,
and we will denote it here by LUPS. This model has been questioned in the literature for not
accurately reflecting true costs in some implementations [24, 23, 22, 18], with the concept of
free swaps being one of the main concerns.

A natural approach to address this concern, considered in some later studies (see, e.g., [24,
7, 21, 4, 12]), is simply to charge cost 1 for any swap. We will call it here the uniform
cost model and denote it LUP1. A general lower bound of 3 on the competitive ratio of
deterministic algorithms for LUP1 was given by Reingold et al. [24]. Changing the cost of
free swaps from 0 to 1 at most doubles the cost of any algorithm, so Mtf is no worse than
4-competitive for LUP1. Surprisingly, no algorithm is known to beat Mtf, i.e., achieve ratio
lower than 4.1.

Our main result. To address this open problem, we develop an online algorithm Full-Or-
Partial-Move (Fpm) for LUP1 with competitive ratio 1

8 ·(23 +
√

17) ≈ 3.3904, significantly
improving the previous upper bound of 4.

Our algorithm Fpm remains 3.3904-competitive even for the partial cost function, where
the cost of accessing location ℓ is ℓ − 1, instead of the full cost of ℓ used in the original
definition of List Update [25]. Both functions have been used in the literature, depending on
context and convenience. For any online algorithm, its partial-cost competitive ratio is at
least as large as its full-cost ratio, although the difference typically vanishes when the list
size is unbounded. We present our analysis in terms of partial costs.

Fpm remains 3.3904-competitive also in the dynamic scenario of List Update that allows
operations of insertions and deletions, as in the original definition in [25] (see the full version
of the paper [14]).

Technical challenges and new ideas. The question whether ratio 3 can be achieved remains
open. We also do not know if there is a simple algorithm with ratio below 4. We have
considered some natural adaptions of Mtf and other algorithms that are 2-competitive for
LUPS, but for all we were able to show lower bounds higher than 3 for LUP1.

As earlier mentioned, Mtf is 4-competitive for LUP1. It is also easy to show that its
ratio is not better than 4: repeatedly request the last item in the list. Ignoring additive
constants, the algorithm pays twice the length of the list at each step, while any algorithm
that just keeps the list in a fixed order, pays only half the length on the average.

The intuition why Mtf performs poorly is that it moves the requested items to front “too
quickly”. For the aforementioned adversarial strategy against Mtf, ratio 3 can be obtained
by moving the items to front only every other time they are requested. This algorithm, called
Dbit, is a deterministic variant of algorithm Bit from [24] and a special case of algorithm
Counter in [24], and it has been also considered in [21]. In the full version of the paper [14],
we show that Dbit is not better than 4-competitive in the partial cost model, and not better
than 3.302-competitive in the full cost model.

1 The authors of [21] claimed an upper bound of 3 for LUP1, but later discovered that their proof was not
correct (personal communication with S. Kamali).
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One can generalize these approaches by considering a more general class of algorithms
that either leave the requested item at its current location or move it to the front. We show
that such a strategy cannot achieve ratio better than 3.25, even for just three items. A naive
fix would be, for example, to always move the requested item half-way towards front. This
algorithm is even worse: its competitive ratio is at least 6 (both those proofs are in the full
version of the paper [14]).

We also show (see Section 5) via a computer-aided argument that, for LUP1, the work
function algorithm’s competitive ratio is larger than 3, even for lists of length 5. This is in
contrast to the its performance for the standard model, where it achieves optimal ratio 2 [9].

Our algorithm Fpm overcomes the difficulties mentioned above by combining a few new
ideas. The first idea is a more sophisticated choice of the target location for the requested
item. That is, aside from full moves that move the requested items to the list front, Fpm
sometimes performs a partial move to a suitably chosen target location in the list. This
location roughly corresponds to the front of the list when this item was requested earlier.

The second idea is to keep track, for each pair of items, of the work function for the
two-item subsequence consisting of these items. These work functions are used in two ways.
First, they roughly indicate which relative order between the items in each pair is “more
likely” in an optimal solution. The algorithm uses this information to decide whether to
perform a full move or a partial move. Second, the simple sum of all these pair-based work
functions is a lower bound on the optimal cost, which is useful in analyzing the competitive
ratio of Fpm.

Related work. Better bounds are known for randomized algorithms both in the standard
model (LUPS) and the uniform cost model (LUP1). For LUPS, a long line of research
culminated in a 1.6-competitive algorithm [19, 24, 2, 6], and a 1.5-lower bound [26]. The
upper bound of 1.6 is tight in the class of so-called projective algorithms, whose computation
is uniquely determined by their behavior on two-item instances [8]. For LUP1, the ratio is
known to be between 1.5 [4] and 2.64 [24].

It is possible to generalize the uniform cost function by distinguishing between the cost
of 1 for following a link during search and the cost of d ≥ 1 for a swap [24, 4] This model
is sometimes called the P d model; in this terminology, our LUP1 corresponds to P 1. While
Mtf is 4-competitive for P 1, it does not generalize in an obvious way to d > 1. Other known
algorithms for the P d model (randomized and deterministic Counter, RandomReset
and TimeStamp) have bounds on competitive ratios that monotonically decrease with
growing d [24, 4]. In particular, deterministic Counter achieves ratio 4.56 when d tends to
infinity [7] and for the same setting (d → ∞) a recent result by Albers and Janke [4] shows a
randomized algorithm TimeStamp that is 2.24-competitive.

A variety of List Update variants have been investigated in the literature over the last
forty years, including models with lookahead [1], locality of reference [10, 5], parameterized
approach [17], algorithms with advice [16], prediction [11], or alternative cost models [18,
22, 23]. A particularly interesting model was proposed recently by Azar et al. [12], where
an online algorithm is allowed to postpone serving some requests, but is either required to
serve them by a specified deadline or pay a delay penalty.

In summary, List Update is one of canonical problems in the area of competitive analysis,
used to experiment with refined models of competitive analysis or to study the effects of
additional features. This underscores the need to fully resolve the remaining open questions
regarding its basic variants, including the question whether ratio 3 is attainable for LUP1.

ESA 2025
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2 Preliminaries

Model. An algorithm has to maintain a list of items, while a sequence σ of access requests
is presented in an online manner. In each step t ≥ 1, the algorithm is presented an access
request σt to an item in the list. If this item is in a location ℓ, the algorithm incurs cost ℓ − 1
to access it. (The locations in the list are indexed 1, 2, ....) Afterwards, the algorithm may
change the list configuration by performing an arbitrary number of swaps of neighboring
items, each of cost 1.

For any algorithm A, we denote its cost for processing a sequence σ by A(σ). The optimal
algorithm is denoted by Opt.

Notation. Let P be the set of all unordered pairs of items. For a pair {x, y} ∈ P, we
use the notation x ≺ y (x ≻ y) to denote that x is before (after) y in the list of an online
algorithm. (The relative order of x, y may change over time, but it will be always clear from
context what step of the computation we are referring to.) We use x ⪯ y (x ⪰ y) to denote
that x ≺ y (x ≻ y) or x = y.

For an input σ and a pair {x, y} ∈ P, σxy is the subsequence of σ restricted to requests
to items x and y only. Whenever we say that an algorithm serves input σxy, we mean that it
has to maintain a list of two items, x and y.

2.1 Work Functions
Work functions on item pairs. For each prefix σ of the input sequence, an online algorithm
may compute a so-called work function W xy, where W xy(xy) (or W xy(yx)) is the optimal cost
of the solution that serves σxy and ends with the list in configuration xy (or yx). (Function
W xy also has prefix σ as an argument. Its value will be always uniquely determined from
context.) The values of W for each step can be computed iteratively using straightforward
dynamic programming. Note that the values of W are non-negative integers and |W xy(xy) −
W xy(yx)| ≤ 1.

Modes. For a pair {x, y} ∈ P, we define its mode depending on the value of the work
function W xy in the current step and the mutual relation of x and y in the list of an online
algorithm. In the following definition we assume that y ≺ x.

Pair {x, y} is in mode α if W xy(yx) + 1 = W xy(xy).
Pair {x, y} is in mode β if W xy(yx) = W xy(xy).
Pair {x, y} is in mode γ if W xy(yx) − 1 = W xy(xy).

For an illustration of work function evolution and associated modes, see Figure 1.
If a pair {x, y} is in mode α, then the minimum of the work function W xy is at configu-

ration yx, i.e., the one that has y before x. That is, an online algorithm keeps these items
in a way that “agrees” with the work function. Note that α is the initial mode of all pairs.
Conversely, if a pair {x, y} is in state γ, then the minimum of the work function W xy is at
configuration xy. In this case, an online algorithm keeps these items in a way that “disagrees”
with the work function.

2.2 Lower Bound on OPT
Now we show how to use the changes in the work functions of item pairs to provide a useful
lower bound on the cost of an optimal algorithm. The following lemma is a standard and
straightforward result of the list partitioning technique [9].2

2 There are known input sequences on which the relation of Lemma 1 is not tight [9].
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Figure 1 The evolution of the work function W xy. Initially, W xy has its minimum in the state
yx and y ≺ x (in the list of an online algorithm). Thus, the mode of the pair {x, y} is α. Next,
because of the two requests to x, the value of W xy(yx) is incremented, while the value at xy remains
intact. The mode is thus changed from α to β and then to γ. Finally, when an algorithm moves
item x before y, the mode of the pair {x, y} changes to α. The value of wxy (the average of W xy(xy)
and W xy(yx)) increases by 1

2 whenever the mode changes due to a request.

▶ Lemma 1. For every input sequence σ, it holds that
∑

{x,y}∈P Opt(σxy) ≤ Opt(σ).

Averaging work functions. We define the function wxy as the average value of the work
function W xy, i.e.,

wxy ≜ 1
2 · ( W xy(xy) + W xy(yx) ).

We use wxy
t to denote the value of wxy after serving the first t requests of σ, and define

∆tw
xy ≜ wxy

t − wxy
t−1. The growth of wxy can be related to Opt(σ) in the following way.

▶ Lemma 2. For a sequence σ consisting of T requests, it holds that
∑T

t=1
∑

{x,y}∈P ∆tw
xy ≤

Opt(σ).

Proof. We first fix a pair {x, y} ∈ P. We have wxy
0 = 1

2 and wxy
T ≤ Opt(σxy) + 1

2 .
Hence,

∑T
t=1 ∆tw

xy = wxy
T − wxy

0 ≤ Opt(σxy). The proof follows by summing over all pairs
{x, y} ∈ P and invoking Lemma 1. ◀

Pair-based OPT. Lemma 2 gives us a convenient tool to lower bound Opt(σ). We define
the cost of pair-based Opt in step t as

∑
{x,y}∈P ∆tw

xy. For a given request sequence σ, the
sum of these costs over all steps is a lower bound on the actual value of Opt(σ).

On the other hand, we can express ∆tw
xy (and thus also the pair-based Opt) in terms

of the changes of the modes of item pairs. See Figure 1 for an illustration.

▶ Observation 3. If a pair {x, y} changes its mode due to the request in step t then
∆tw

xy = 1
2 , otherwise ∆tw

xy = 0.

3 Algorithm Full-Or-Partial-Move

For each item x, Fpm keeps track of an item denoted θx and called the target of x. At the
beginning, Fpm sets θx = x for all x. Furthermore, at each time, Fpm ensures that θx ⪯ x.

The rest of this section describes the overall strategy of algorithm Fpm. Our description
is top-down, and proceeds in three steps:

First we describe, in broad terms, what actions are involved in serving a request, including
the choice of a move and the principle behind updating target items.

ESA 2025
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y !x x!y

y!x x!y

y x!xy

y x!y!x

flavor d (disjoint)

flavor o (overlapping)

flavor e (equal)

flavor n (nested)

Figure 2 The flavor of a pair {x, y} (where y ≺ x) depends on the position of target θx with
respect to items θy ⪯ y ≺ x. In the figure for flavor e, we write θxy for the item θx = θy.

Next, we define the concept of states associated with item pairs and their potentials.
Finally, we explain how algorithm Fpm uses these potential values to decide how to
adjust the list after serving the request.

This description will fully specify how Fpm works, providing that the potential function
on the states is given. Thus, for any choice of the potential function the competitive ratio
of Fpm is well-defined. What remains is to choose these potential values to optimize the
competitive ratio. This is accomplished by the analysis in Section 4 that follows.

Serving a request. Whenever an item z∗ is requested, Fpm performs the following three
operations, in this order:
1. Target cleanup. If z∗ was a target of another item y (i.e., θy = z∗ for y ≠ z∗), then θy is

updated to the successor of z∗. This happens for all items y with this property.
2. Movement of z∗. Fpm executes one of the two actions: a partial move or a full move.

We will explain how to choose between them later.
In the partial move, item z∗ is inserted right before θz∗ . (If θz∗ = z∗, this means that
z∗ does not change its position.)
In the full move, item z∗ is moved to the front of the list.

3. Target reset. θz∗ is set to the front item of the list.

It is illustrative to note a few properties and corner cases of the algorithm.
Target cleanup is executed only for items following z∗, and thus the successor of z∗ exists
then (i.e., Fpm is well defined).
If θz∗ = z∗ and a partial move is executed, then z∗ is not moved, but the items that
targeted z∗ now target the successor of z∗.
For an item x, the items that precede θx in the list were requested (each at least once)
after the last time x had been requested.

Modes, flavors and states. Fix a pair {x, y} such that y ≺ x, and thus also θy ⪯ y ≺ x.
This pair is assigned one of four possible flavors, depending on the position of θx (cf. Figure 2):

flavor d (disjoint): if θy ⪯ y ≺ θx ⪯ x,
flavor o (overlapping): if θy ≺ θx ⪯ y ≺ x,
flavor e (equal): if θy = θx ⪯ y ≺ x,
flavor n (nested): if θx ≺ θy ⪯ y ≺ x
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For a pair {x, y} that is in a mode ξ ∈ {α, β, γ} and has a flavor ω ∈ {d, o, e, n}, we say
that the state of {x, y} is ξω. Recall that all pairs are initially in mode α, and note that
their initial flavor is d. That is, the initial state of all pairs is αd.

We will sometimes combine the flavors o with e, stating that the pair is in state ξoe if its
mode is ξ and its flavor is o or e. Similarly, we will also combine flavors n and e.

Pair potential. To each pair {x, y} of items, we assign a non-negative pair potential Φxy. We
abuse the notation and use ξω not only to denote the pair state, but also the corresponding
values of the pair potential. That is, we assign the potential Φxy = ξω if pair {x, y} is in
state ξω. We pick the actual values of these potentials only later in Subsection 4.5.

We emphasize that the states of each item pair depend on work functions for this pair
that are easily computable in online manner. Thus, Fpm may compute the current values
of Φxy, and also compute how their values would change for particular choice of a move.

Choosing the cheaper move. For a step t, let ∆tFpm be the cost of Fpm in this step, and
for a pair {x, y} ∈ P , let ∆tΦxy be the change of the potential of pair {x, y} in step t. Let z∗

denote the requested item. Fpm chooses the move (full or partial) with the smaller value of

∆tFpm +
∑

y≺z∗

∆tΦz∗y,

breaking ties arbitrarily. Importantly, note that the value that Fpm minimizes involves only
pairs including the requested item z∗ and items currently preceding it.

4 Analysis of Full-Or-Partial-Move

In this section, we show that for a suitable choice of pair potentials, Fpm is 3.3904-competitive.
To this end, we first make a few observations concerning how the modes, flavors (and thus

states) of item pairs change due to the particular actions of Fpm. These are summarized in
Table 1, Table 2, and Table 3, and proved in Subsection 4.2 and Subsection 4.3.

Next, in Subsection 4.4 and Subsection 4.5, we show how these changes influence the
amortized cost of Fpm pertaining to particular pairs. We show that for a suitable choice of
pair potentials, we can directly compare the amortized cost of Fpm with the cost of Opt.

4.1 Structural Properties
Note that requests to items other than x and y do not affect the mutual relation between x

and y. Moreover, to some extent, they preserve the relation between targets θx and θy, as
stated in the following lemma.

▶ Lemma 4. Fix a pair {x, y} ∈ P and assume that θy ⪯ θx (resp. θy = θx). If Fpm serves
a request to an item z∗ different than x and y, then these relations are preserved. The relation
θy ≺ θx changes into θy = θx only when θy and θx are adjacent and z∗ = θy.

Proof. By the definition of Fpm, the targets of non-requested items are updated (during
the target cleanup) only if they are equal to z∗. In such a case, they are updated to the
successor of z∗. We consider several cases.

If z∗ /∈ {θx, θy}, the targets θx and θy are not updated.
If z∗ = θy = θx, both targets are updated to the successor of z∗, and thus they remain
equal.

ESA 2025
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If z∗ = θy ≺ θx, target θy is updated. If θy and θx were adjacent (θy was an immediate
predecessor of θx), they become equal. In either case, θy ⪯ θx.
If θy ≺ θx = z∗, target θx is updated, in which case the relation θy ≺ θx is preserved. ◀

4.2 Mode Transitions
Now, we focus on the changes of modes. It is convenient to look first at how they are affected
by the request itself (which induces an update of the work function), and subsequently due
to the actions of Fpm (when some items are swapped). The changes are summarized in the
following observation.

▶ Observation 5. Let z∗ be the requested item.
Fix an item y ≻ z∗. The mode transitions of the pair {z∗, y} due to request are α → α,
β → α, and γ → β. Subsequent movement of z∗ does not further change the mode.
Fix an item y ≺ z∗. Due to the request, pair {z∗, y} changes first its mode due to the
request in the following way: α → β, β → γ, and γ → γ. Afterwards, if Fpm moves z∗

before y, the subsequent mode transitions for pair {z∗, y} are β → β and γ → α.

4.3 State Transitions
Throughout this section, we fix a step and let z∗ be the requested item.

We analyze the potential changes for both types of movements. We split our considerations
into three cases corresponding to three types of item pairs. The first two types involve z∗ as
one pair item, where the second item either initially precedes z∗ (cf. Lemma 7) or follows z∗

(cf. Lemma 8). The third type involves pairs that do not contain z∗ at all (cf. Lemma 9).
While we defined 12 possible states (3 modes × 4 flavors), we will show that αn, γd,

and γo never occur. This clearly holds at the very beginning as all pairs are then in state αd.
For succinctness, we also combine some of the remaining states, reducing the number

of states to the following six: αd, βd, αoe, βo, βne and γne. (For example, a pair is in state
αoe if it is in state αo or αe.) In the following we analyze the transitions between them. We
start with a simple observation.

▶ Lemma 6. Fix an item y ̸= z∗. If Fpm performs a full move, then the resulting flavor of
the pair {z∗, y} is d.

Proof. Item z∗ is moved to the front of the list, and its target θz∗ is reset to this item,
i.e., z∗ = θz∗ . After the movement, we have z∗ ≺ θy. This relation follows trivially if z∗ is
indeed moved. However, it holds also if z∗ was already on the first position: even if θy = z∗

before the move, θy would be updated to the successor of z∗ during the target cleanup. The
resulting ordering is thus θz∗ = z∗ ≺ θy ⪯ y, i.e., the flavor of the pair becomes d. ◀

▶ Lemma 7. Fix y ≺ z∗. The state transitions for pair {z∗, y} are given in Table 1.

Proof. First, suppose Fpm performs a full move. The pair {z∗, y} is swapped, which changes
its mode according to Observation 5 (α → β, β → α, γ → α). By Lemma 6, the flavor of the
pair becomes d. This proves the correctness of the transitions in row three of Table 1.

In the rest of the proof, we analyze the case when Fpm performs a partial move. We
consider three sub-cases depending on the initial flavor of the pair {z∗, y}. For the analysis
of mode changes we will apply Observation 5.
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Table 1 State transitions for pairs {z∗, y} where y ≺ z∗ right before the request to z∗.

State before move αd βd αoe βo βne γne

State after partial move βne γne βd or βo or βne αoe αd αd

State after full move βd αd βd αd αd αd

Table 2 State transitions for pairs {z∗, y} where z∗ ≺ y right before the request to z∗.

State before move αd βd αoe βo βne γne

State after move αd αd αd αd αd or αoe βd or βo or βne

Before the movement, the flavor of the pair was d, i.e., θy ⪯ y ≺ θz∗ ⪯ z∗.
The movement of z∗ does not swap the pair, i.e., its mode transitions are α → β and
β → γ. As θz∗ is set to the list front, after the movement θz∗ ⪯ θy ⪯ y ≺ z∗, i.e., the
flavor of the pair becomes either e or n. This explains the state transitions αd → βne

and βd → γne.
Before the movement, the flavor of the pair was o, i.e., θy ≺ θz∗ ⪯ y ≺ z∗.
Due to the movement, the pair is swapped, and its mode transitions are α → β and
β → α. As θz∗ is set to the list front, we have θz∗ ⪯ θy. After the movement, θy ⪯ z∗ ≺ y,
i.e., the flavor of the pair becomes either o or e. This explains the state transitions
αoe → (βo or βne) and βo → αoe.
Before the movement, the flavor of the pair was e or n, i.e., θz∗ ⪯ θy ⪯ y ≺ z∗.
The movement swaps the pair, and its mode transitions are α → β, β → α and γ → α.
After the movement z∗ ≺ θy, and target θz∗ is set to the list front, which results in
θz∗ ⪯ z∗ ≺ θy ⪯ y, i.e., the pair flavor becomes d. This explains the state transitions
αoe → βd, βne → αd, and γne → αd ◀

▶ Lemma 8. Fix y ≻ z∗. The state transitions for pair {z∗, y} are given in Table 2.

Proof. The pair {z∗, y} is not swapped due to the request, and thus, by Observation 5, its
mode transition is α → α, β → α, γ → β.

If Fpm performs a full move, the flavor of the pair becomes d by Lemma 6. This explains
the state transitions αd → αd, βd → αd, αoe → αd, βo → αd, βne → αd, and γne → βd.

In the following, we assume that Fpm performs a partial move, and we will identify cases
where the resulting pair flavor is different than d. We consider two cases.

The initial flavor is d, o or e. That is θz∗ ⪯ z∗ ≺ y and θz∗ ⪯ θy ⪯ y. During the target
cleanup, θy may be updated to its successor, but it does not affect these relations, and in
particular we still have θz∗ ⪯ θy. Thus, when z∗ is moved, it gets placed before θy. This
results in the ordering θz∗ ⪯ z∗ ≺ θy ⪯ y, i.e., the resulting flavor is d.
The initial flavor is n, i.e., θy ≺ θz∗ ⪯ z∗ ≺ y. As θy ̸= z∗, the target θy is not updated
during the target cleanup. As z∗ is moved right before original position of θz∗ , it is placed
after θy, and the resulting ordering is θz∗ ⪯ θy ≺ z∗ ≺ y. That is, the flavor becomes o

or e, which explains the state transitions βne → αoe and γne → (βo or βne). ◀

▶ Lemma 9. Fix y ≺ x, such that x ̸= z∗ and y ̸= z∗. State transitions for pair {x, y} are
given in Table 3.
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Table 3 State transitions for pairs {x, y} where x ̸= z∗ and y ̸= z∗ right before the request to z∗.

State before move αd βd αoe βo βne γne

State after move αd βd αoe βo or βne βne γne

Proof. The mode of the pair {x, y} is not affected by the request to z∗.
The flavor of the pair {x, y} depends on mutual relations between x, y, θx and θy.

By Lemma 4, the only possible change is that θx and θy were different but may become
equal: this happens when they were adjacent and the earlier of them is equal to z∗. We
consider four cases depending on the initial flavor of the pair.

The initial flavor was e (θy = θx ⪯ y ≺ x). As θy and θx are not adjacent, the flavor
remains e.
The initial flavor was d (θy ⪯ y ≺ θx ⪯ x). Suppose θy = z∗. As y ̸= z∗, we have
θy = z∗ ≺ y ≺ θx. That is, θx and θy are not adjacent, and thus the flavor remains d.
The initial flavor was o (θy ≺ θx ⪯ y ≺ x). In this case it is possible that θy and θx are
adjacent and z∗ = θy. The flavor may thus change to e or remain o.
The initial flavor was n (θx ≺ θy ⪯ y ≺ x). Similarly to the previous case, it is possible
that θx and θy are adjacent and z∗ = θx. The flavor may thus change to e or remain n. ◀

4.4 Amortized Analysis
We set R = 1

8 (23 +
√

17) ≤ 3.3904 as our desired competitive ratio.
In the following, we fix a step t in which item z∗ is requested. We partition P into three

sets corresponding to the three types of pairs:
Pt

1 ≜ {{y, z∗} : y ≺ z∗} (pairs where z∗ is the second item, analyzed in Table 1),
Pt

2 ≜ {{y, z∗} : z∗ ≺ y} (pairs where z∗ is the first item, analyzed in Table 2),
Pt

3 ≜ {{x, y} : x ̸= z∗ ∧ y ̸= z∗} (pairs where z∗ is not involved, analyzed in Table 3).

For succinctness, wherever it does not lead to ambiguity, we omit subscripts t, i.e., write
∆Φxy and ∆wxy instead of ∆tΦxy and ∆tw

xy. We also omit superscripts t in Pt
1, Pt

2, and Pt
3.

Our goal is to show the following three bounds:
∆Fpm +

∑
{x,y}∈P1

∆Φxy ≤ R ·
∑

{x,y}∈P1
∆wxy,∑

{x,y}∈P2
∆Φxy ≤ R ·

∑
{x,y}∈P2

∆wxy,∑
{x,y}∈P3

∆Φxy ≤ R ·
∑

{x,y}∈P3
∆wxy.

Note that the left hand sides of these inequalities correspond to the portions of amortized
cost of Fpm corresponding to sets P1, P2, P3, while the right hand sides are equal to R times
the corresponding portion of the cost of pair-based Opt. Hence, if we can show the above
inequalities for every step t, the competitive ratio of R will follow by simply adding them up.

As we show in the sections that follow, these bounds reduce to some constraints involving
state potentials αd, βd, αoe, βo, βne and γne. The bounds for P2 and P3, while they involve
summations over pairs, can be justified by considering individual pairs and the needed
constraints are simple inequalities between state potentials, summarized in the following
assumption:

▶ Assumption 10. We assume that
αd = 0,
all constants βd, αoe, βo, βne and γne are non-negative,
αoe ≤ βne + 1

2 R ≤ βo + 1
2 R,

max{βd, βo} ≤ γne + 1
2 R.
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The bound for P1 is most critical (not surprisingly, as it corresponds to requesting the
second item of a pair). To analyze this bound, the needed constraints, besides the state
potentials also need to involve the numbers of pairs that are in these states. This gives rise
to a non-linear optimization problem that we need to solve.

4.4.1 Analyzing pairs from set P1

The proof of the following lemma is deferred to Subsection 4.5.
▶ Lemma 11. There exist parameters αd, βd, αoe, βo, βne and γne, satisfying Assumption 10,
such that for any step t, it holds that ∆Fpm +

∑
{x,y}∈P1

∆Φxy ≤ R ·
∑

{x,y}∈P1
∆wxy.

4.4.2 Analyzing pairs from set P2

▶ Lemma 12. For any step t, it holds that
∑

{x,y}∈P2
∆Φxy ≤ R ·

∑
{x,y}∈P2

∆wxy.
Proof. Recall that P2 contains all pairs {z∗, y}, such that z∗ ≺ y. Thus, it is sufficient to
show that ∆Φz∗y ≤ R · ∆wz∗y holds for any such pair {z∗, y}. The lemma will then follow
by summing over all pairs from P2.

By Assumption 10, we have

αd − αoe ≤ 0, (1)
max{αd, αoe} − βne = αoe − βne ≤ 1

2 R, (2)
max{βd, βo, βne} − γne = max{βd, βo} − γne ≤ 1

2 R. (3)

We consider two cases depending on the initial mode of the pair {z∗, y}. In each case,
we upper-bound the potential change on the basis of possible state changes of this pair
(cf. Table 2).

The initial mode of {z∗, y} is α. By Table 2, this mode remains α, and thus by Observa-
tion 3, ∆wz∗y = 0. Then,

∆Φz∗y ≤ max
{

αd − αd, αd − αoe
}

(by Table 2)

= 0 = R · ∆wz∗y. (by (1))

The initial mode of {z∗, y} is β or γ. By Table 2, its mode changes due to the request
to z∗, and hence, by Observation 3, ∆wz∗y = 1

2 . Then,

∆Φz∗y ≤ max{αd − αd, αd − βd, αd − αoe, αd − βo,

max{αd, αoe} − βne,

max{βd, βo, βne} − γne} (by Table 2)
≤ max{−βd, −βo, 1

2 R, 1
2 R} (by αd = 0, (1), (2) and (3))

= 1
2 R = R · ∆wz∗y. ◀

4.4.3 Analyzing pairs from set P3

▶ Lemma 13. For any step t, it holds that
∑

{x,y}∈P3
∆Φxy ≤ R ·

∑
{x,y}∈P3

∆wxy.
Proof. As in the previous lemma, we show that the inequality ∆Φxy ≤ R · ∆wxy holds for
any pair {x, y} ∈ P3, i.e., for a pair {x, y}, such that x ̸= z∗ and y ̸= z∗. The lemma will
then follow by summing over all pairs {x, y} ∈ P3.

Possible state transitions of such a pair {x, y} are given in Table 3. Hence, such a pair
either does not change its state (and then ∆Φxy = 0) or it changes it from βo to βne (and
then ∆Φxy = βne − βo ≤ 0 by Assumption 10). In either case, ∆Φxy ≤ 0 ≤ R · ∆wxy. ◀
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4.4.4 Proof of R-competitiveness
We now show that the three lemmas above imply that Fpm is R-competitive.

▶ Theorem 14. For an appropriate choice of parameters, the competitive ratio of Fpm is at
most R = 1

8 (23 +
√

17) ≤ 3.3904.

Proof. Fix any sequence σ consisting of T requests. By summing the guarantees of Lemma 11,
Lemma 12, and Lemma 13, we obtain that for any step t, it holds that

∆tFpm +
∑

{x,y}∈P

∆tΦxy ≤ R ·
∑

{x,y}∈P

∆tw
xy.

By summing over all steps, observing that the potentials are non-negative and the ini-
tial potential is zero (cf. Assumption 10), we immediately obtain that Fpm(σ) ≤ R ·∑T

t=1
∑

{x,y}∈P ∆wxy ≤ R · Opt(σ). The second inequality follows by Lemma 2. ◀

4.5 Proof of Lemma 11
Again, we focus on a single step t, in which the requested item is denoted z∗. We let Ad, Bd,
Aoe, Bo, Bne, Cne be the number of items y preceding z∗ such that pairs {z∗, y} have states
αd, βd, αoe, βo, βne and γne, respectively. Let

V ≜ [Ad, Bd, Aoe, Bo, Bne, Cne].

Note that ∥V ∥1 is the number of items preceding z∗, and thus also the access cost Fpm pays
for the request. Moreover, Ad + Bd is the number of items that precede θz∗ . We use ⊙ to
denote scalar product (point-wise multiplication) of two vectors.

We define three row vectors GOPT, GPM, and GFM, such that GPM
GFM
GOPT

 =

1 1 2 2 2 2
2 2 2 2 2 2
1
2

1
2

1
2

1
2

1
2 0


+

βne (γne − βd) (max{βd, βo} − αoe) (αoe − βo) −βne −γne

βd −βd (βd − αoe) −βo −βne −γne

0 0 0 0 0 0


Expressing costs as vector products. Recall that to prove Lemma 11, we need to relate the
P1 portion of the amortized cost of Fpm, i.e., ∆Fpm+

∑
{x,y}∈P1

∆Φxy and the corresponding
portion of the cost of pair-based Opt, i.e.,

∑
{x,y}∈P1

∆wxy. In the following two lemmas,
we show how to express both terms as vector products.

▶ Lemma 15. It holds that
∑

y≺z∗ ∆wz∗y = GOPT ⊙ V .

Proof. The right-hand side of the lemma relation is equal to 1
2 (Ad + Bd + Aoe + Bo + Bne).

By Observation 5, due to request to z∗:
Ad + Aoe pairs change mode from α to β, and
Bd + Bo + Bne pairs change mode from β to γ.

By Observation 3, each such mode change contributes 1
2 to the left hand side of the lemma

equation. Note that Cne pairs of mode γ do not change their mode due to the request. ◀

▶ Lemma 16. It holds that ∆Fpm +
∑

y≺z∗ ∆Φz∗y = G ⊙ V , where
G = GPM if Fpm performs a partial move, and
G = GFM if Fpm performs a full move.
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Proof. First, assume that Fpm performs a partial move. By the definitions of Ad, Bd, Aoe,
Bo, Bne, and Cne, ∆Fpm = [1, 1, 2, 2, 2, 2] ⊙ V . By Table 1,∑

y≺z∗

∆Φz∗y

≤
[
βne − αd, γne − βd, max{βd, βo, βne} − αoe, αoe − βo, αd − βne, αd − γne

]
⊙ V

=
[
βne, γne − βd, max{βd, βo} − αoe, αoe − βo, −βne, −γne

]
⊙ V,

where the second equality follows as αd = 0 and βo ≥ βne (by Assumption 10). Thus, the
lemma holds for a partial move.

Next, assume Fpm performs a full move. Then, ∆Fpm = [2, 2, 2, 2, 2, 2] ⊙ V . By Table 1,∑
y≺z∗

∆Φz∗y =
[
βd − αd, αd − βd, βd − αoe, αd − βo, αd − βne, αd − γne

]
⊙ V

=
[
βd, −βd, βd − αoe, −βo, −βne, −γne

]
⊙ V,

where in the second equality we used αd = 0 (by Assumption 10). Thus, the lemma holds
for a full move as well. ◀

Recall that Fpm is defined to choose the move that minimizes ∆Fpm +
∑

y≺z∗ ∆Φz∗y.

▶ Corollary 17. It holds that ∆Fpm +
∑

y≺z∗ ∆Φz∗y = min{GPM ⊙ V, GFM ⊙ V }.

Finding Parameters. We may now prove Lemma 11, restated below for convenience.

▶ Lemma 11. There exist parameters αd, βd, αoe, βo, βne and γne, satisfying Assumption 10,
such that for any step t, it holds that ∆Fpm +

∑
{x,y}∈P1

∆Φxy ≤ R ·
∑

{x,y}∈P1
∆wxy.

Proof. We choose the following values of the parameters:

αd = 0 βd = 1
16 (5 + 3

√
17) ≈ 1.086 αoe = 2

βo = 1
16 (1 + 7

√
17) ≈ 1.866 βne = 1

16 (9 −
√

17) ≈ 0.305 γne = 2

It is straightforward to verify that these values satisfy the conditions of Assumption 10. We
note that relation αoe ≤ βne + 1

2 R holds with equality.
By Corollary 17, ∆Fpm +

∑
{x,y}∈P1

∆Φxy = ∆Fpm +
∑

y≺z∗ ∆Φz∗y = min{GPM ⊙
V, GFM ⊙ V }. On the other hand, by Lemma 15,

∑
{x,y}∈P1

∆wxy =
∑

y≺z∗ ∆wz∗y =
GOPT ⊙ V . Hence, it remains to show that min{GPM ⊙ V, GFM ⊙ V } ≤ R · GOPT ⊙ V .

We observe that

GPM = 1
16 ·

[
25 −

√
17, 43 − 3

√
17, 1 + 7

√
17, 63 − 7

√
17, 23 +

√
17, 0

]
,

GFM = 1
16 ·

[
37 + 3

√
17, 27 − 3

√
17, 5 + 3

√
17, 31 − 7

√
17, 23 +

√
17, 0

]
.

Let c = 1
4 (

√
17 − 1) and let GCOMB = c · GPM + (1 − c) · GFM. Then,

GCOMB = 1
16 ·

[
23 +

√
17, 23 +

√
17, 23 +

√
17, 23 +

√
17, 23 +

√
17, 0

]
.

Now for any vector V ,

min{GPM ⊙ V, GFM ⊙ V } ≤ c · GPM ⊙ V + (1 − c) · GFM ⊙ V

= (c · GPM + (1 − c) · GFM) ⊙ V

= GCOMB ⊙ V = R · GOPT ⊙ V,

completing the proof. ◀
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5 Final Remarks

The most intriguing question left open in our work is whether competitive ratio of 3 can
be achieved. We have shown computationally (see the full version of the paper [14]) that
3-competitive algorithms exist for lists with up to 6 items.

However, even for short lists the definition of such 3-competitive algorithm remains
elusive. For many online problems, the most natural candidate is the generic work function
algorithm. This algorithm is 2-competitive in the LUPS model [9]. However, our computer-
aided calculation of its performance shows that its ratio is larger than 3 already for 5 items
(see the full version of the paper [14]). It is 3-competitive for lists of length up to 4, though.

We do not know whether the analysis of Fpm is tight. For the specific choice of parameters
used in the paper, we verified that Fpm is 3-competitive for lists of length 3, but not better
than 3.04-competitive for lists of length 5 (see the full version of the paper [14]).

The focus of this paper is on the LUP1 model (also known as P 1); we believe that
the setting of d = 1 captures the essence and hardness of the deterministic variant. That
said, extending the definition and analysis of Fpm to the P d model (for arbitrary d) is
an interesting open problem that deserves further investigation.
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