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Abstract
In this paper we study the problem of tolerantly testing the property of being H-free (which also
implies distance approximation from being H-free).

In the general-graphs model, we show that for tolerant Kk-freeness testing can be achieved with
query complexity that is polynomial in the arboricity of the input graph G, arb(G), and independent
of the size of G (for graphs in which the average degree is Ω(1)).

Specifically for triangles, our algorithm distinguished graphs which are ϵ-close to being triangle-
free from graphs that 3ϵ(1 + η)-far from being triangle-free with expected query complexity which is
Õ(arb3(G)) (for constant η and ϵ).

For general k-cliques our algorithm distinguishes graphs which are ϵ-close to being Kk-free
from graphs which are

(
k
2

)
ϵ(1 + η)-far from being Kk-free with expected query complexity which is

polynomial in k, ϵ, γ and arb(G).
We then generalize our result and provide a similar result for any motif H which is 2-connected

of radius 1. This includes for example the wheel-graph.
Finally, we show that our tester can be applied to the bounded-degree model for tolerantly

testing H-freeness for any motif H. The query complexity of the algorithm is polynomial in the
degree bound, d, improving the previous state-of-the-art by Marko and Ron (TALG 2009) that
obtained quasi-polynomial query complexity in d.
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1 Introduction

The problem of testing H-freeness, where H is a small motif (namely, of size which is
independent of the input graph), has received a lot of attention due to its fundamental
importance for various fields including biology, sociology and network science. Detecting
specific patterns, such as subgraphs, can reveal community structures, vulnerabilities, or
anomalous behavior.

In the realm of property testing the decision problem is relaxed such that we are only
aiming to distinguish graphs which are H-free from graphs that are far from being H-free
(according to some predetermined distance measure). However, handling real-world data
often means dealing with noise, incompleteness, or small errors. In these scenarios, tolerant
testing (introduced by Parnas, Ron and Rubinfeld [15]) for H-freeness becomes crucial, as it
allows us to distinguish graphs that are nearly H-free from those that are far from being
H-free, thereby bypassing the problem of imperfections in the data. More specifically, a
tolerant property testing algorithm is required to distinguish objects that are ϵ1-close to
having a given property P from objects that are ϵ2-far from having P, for some parameters
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0 ≤ ϵ1 < ϵ2 ≤ 1. Clearly, by definition, tolerant-testing is at least as hard as testing. In fact,
the separation between tolerant and non-tolerant testing can be very dramatic [8]. Another
benefit of tolerant testing is that it implies (by a simple reduction) distance approximation
where the ratio of approximation depends on the parameters ϵ1, ϵ2 (see more details in [15]).
Therefore, whenever feasible, we should aim to develop tolerant testers, ideally without
incurring a significant overhead in query complexity.

One of the early works on tolerant testing by Marko and Ron [13] showed that it is
possible to tolerantly test H-freeness in the bounded-degree model [9] for any motif H with
query complexity that is quasi-polynomial in the degree bound and independent of the size
of the graph.

In the regime of non-tolerant testers, Levi [12] showed that it is possible to test triangle-
freeness with query complexity that depends linearly in the arboricity of the graph (which is
tight for graphs with arboricity O(

√
n)) and is independent of the size of the graph (assuming

the average degree is Ω(1)). Since graphs of bounded degree have bounded arboricity, this
result applies to a broader family of graphs. However, this tester is not tolerant.

One natural question is whether the result in [12] can be extended to show that tolerant
testing of triangle-freeness (and ideally other motifs) is possible in the general-graphs model
with query complexity that depends only on the arboricity of the graph. Such a result
would also generalize [13] (since bounded-degree graphs inherently have bounded arboricity).
Another important question is whether the query complexity of subgraph freeness in the
bounded-degree model can be improved to be polynomial in the degree bound (rather than
quasi-polynomial). In this paper, we answer both questions affirmatively.

1.1 Our Results
1.1.1 The general-graphs model
1.1.1.1 Tolerant Testing Kk-freeness

Our tester for the property of being Kk-free distinguishes graphs that are ϵ-close to be-
ing Kk free from graphs that are ϵ

(
k
2
)
(1 + η)-far from being Kk-free, where ϵ ∈ (0, 1]

and η ∈ (0, 1] are parameters. The expected query complexity of the algorithm is
Õ

(
k4θ2k−3

η2ϵd̄
+ k5θ2k−4θmin{2,k−2}

)
where θ = Θ(arb(G)/(ηϵ)) and d̄ is the average degree

(see Theorem 21).
Specifically, assuming d̄ = Ω(1), for the case of triangles, our algorithm distinguished

graphs which are ϵ-close to being triangle-free from graphs that 3ϵ(1 + η)-far from being
triangle-free with expected query complexity which is Õ(arb3(G)) · poly(ϵ−1, η−1, k).

For k-cliques where k > 3, our algorithm distinguishes graphs which are ϵ-close to being
Kk-free from graphs which are

(
k
2
)
ϵ(1 + η)-far from being Kk-free with expected query

complexity which is Õ(arb2k−2(G)) · poly(ϵ−1, η−1, k).

1.1.1.2 Tolerant H-freeness for H which is 2-connected with radius 1

We extend our result and apply our tester for motifs that are 2-connected with radius 1.
This includes for example the wheel-graph 1. Specifically our tester distinguishes graphs
that are ϵ-close to being H free from graphs that are ϵ|E(H)|(1 + η)-far from being H-free.
The expected query complexity of the algorithm is Õ

(
h7/η2 + h3/(ηϵd̄)

)
· θ3h−2) where

θ = Θ(arb(G)/(ηϵ)) and h = |V (H)| (see Theorem 28).

1 Any connected graph with an additional vertex that is incident to all other vertices is 2-connected with
radius 1.
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Specifically, assuming d̄ = Ω(1), the expected query complexity of our tester is
Õ(arb3h−2(G)) · poly(ϵ−1, η−1, h).

1.1.2 The bounded-degree graphs model
Tolerant H-freeness for any H

We show that our tolerant tester can be applied to the bounded-degree model to test H-
freeness for any motif H. Specifically the tester distinguishes graphs that are ϵ-close to being
H free from graphs that are ϵ|E(H)|(1 + η)-far from being H-free. The expected query
complexity of the algorithm is Õ

((
h7/η2 + h3/(ηϵd̄)

)
· d3h−2)

where h = |V (H)| and d is
the degree bound.

Specifically, assuming d̄ = Ω(1), the expected query complexity of our tester is Õ(d3h−2) ·
poly(ϵ−1, η−1, h).

This improves the result in [13] that has query complexity that is quasi-polynomial in d

to polynomial dependence in d.

▶ Remark 1. As noted in [13], the result of Bogdanov, Obata and Trevisan [2] implies
a linear lower bound on the query complexity of approximating the distance from being
triangle-freeness for some small multiplicative and/or additive error (even in bounded degree
graphs). Therefore, we can not hope to obtain tolerant testers of subgraph freeness for all
parameters ϵ1, ϵ2.

▶ Remark 2. As shown in [3], testing C4-freeness requires Ω(n1/4) queries. Therefore we can
not hope to obtain tolerant testers (in the general-graphs model) for general motifs whose
query complexity depends only on the arboricity of the graph.

1.2 Our Algorithm
In this section we describe our algorithm for tolerantly test Kk-freeness. This gives a good
perspective of our approach. The first ingredient of our algorithm, which also appears in [12],
is to perform the test on a subgraph of G. This subgraph, which we refer to as Gθ is the
graph after removing the edges between θ-heavy vertices, where a vertex is θ-heavy if its
degree is at least θ where θ = Θ(arb(G)/(ηϵ)). By doing this modification we might decrease
the distance by at most Θ(ηϵ), so if the graph is sufficiently far from being Kk-free, we will
still have enough witnesses of violation. On the positive side, since this subgraph does not
have edges in which both endpoints are θ-heavy, any Kk in this graph will include at most a
single θ-heavy vertex and therefore can be revealed by exploring the neighborhood of the
non-heavy vertices of the clique.

The second ingredient of our algorithm is to approximate the number of copies of Kk in
Gθ (it will become clear later why we need to approximate this parameter). This can be
done by sampling vertices, v, u.a.r. from G, checking if the degree of v is bounded by θ and
if so selecting k − 1 random indices in [θ]. We then perform k − 1 neighbor-queries on v,
according to the selected indices, and check if the subgraph induced on these neighbors (if
such neighbors exist) induces a k − 1-clique. Thus, our sample space is of size Θ(nθk−1) and
if the graph is ϵ-far from being Kk-free then we have at least ϵm copies of Kk so we need
Θ(nθk−1/(ϵm)) (which is O(arb(G)k−1/ϵ) when d̄ = Ω(1)) trials to get a good approximation.

Before we describe the last ingredient of our algorithm we shall define the H-copies graph
of Gθ, which we denote by (Gθ)H . In this graph the vertex set is the set of H-copies in
Gθ and a pair of copies are adjacent iff they share at least one edge. Consider a maximal
independent set (MIS), S, of this graph. By definition, the copies of this set are edge-disjoint.

ESA 2025
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Thus the minimum number of edges we need to remove from Gθ in order to make it H-free,
which we denote by distH(Gθ), is at least |S|. On the other hand, by the maximality of S it
follows that distH(Gθ) ≤ |E(H)||S| (since we can remove all H-copies in Gθ by removing all
the edges of the copies in S). Therefore if we can get a good approximation of any MIS of
(Gθ)H , then we will get a good approximation (up to a |E(H)|-factor) to the distance of Gθ

from being H-free. This is also true for any MIS that is constructed greedily according to
some order on the vertices.

Fortunately, as shown by the ingenious work of Yoshida, Yamamoto and Ito [17], if we
pick a random vertex v in a graph and a random ordering on the vertices of the graph then
the expected number of recursive calls we need to perform in order to locally simulate the
outcome of the greedy MIS algorithm on that graph (according to the random ordering
we picked) equals the average degree of the graph plus 1. Therefore, we can get a good
approximation to the average probability that a random H-copy belongs to a random greedy
MIS (which is determined by a random ordering) by executing the local simulation on random
H-copies and a random orderings (both selected uniformly and independently on each trial).
Since the ratio between any MIS in a graph F to the total number of vertices in F is at most
1/(∆(F ) + 1), where ∆(F ) denotes the maximum degree in F , we obtain that it suffices to
evaluate the outcome of a greedy MIS (each time according to a new random ordering) on
Θ(∆((Gθ)H)) copies selected uniformly at random. This will give us a good approximation
to the average probability that a random H-copy belongs to a random greedy MIS. When we
multiply this by the approximation to the total number of H-copies we previously obtained,
this will provide a good approximation to the distance of G from being H-free.

1.2.1 The extension for other motifs
We describe the above mentioned algorithm as a general framework for tolerant testing of
H-freeness and then implement (according to the defined interface) the necessary specific
procedures for testing Kk-freeness and then provide more general procedures for H-freeness
of any motif H which is 2-connected and has radius 1. Finally, we show that the procedures
for the latter family of motifs can be used to test H-freeness for any motif H in the bounded
degree model.

1.3 Related Work
1.3.1 Tolerant tesing of H-freeness in the bounded degree model
As mentioned-above Marko and Ron [13] studied the problem of tolerantly testing H-freeness
in the bounded degree model. They begin by describing a global algorithm that constructs
a cover of edges by first performing O(log d) iterations in which the edges of some of the
H-copies are added to the cover by a random process (that can be viewed as a distributed
randomized algorithm for constructing a large independent set of copies) and then a single
edge is added to the cover from each one of the uncovered copies. Since the global algorithm
has a distributed nature they show they can locally simulate its outcome by performing
dO(log d) queries and therefore obtain a good approximation to the size of the cover which
gives a good approximation to the distance from being H-free.

1.3.2 Non-tolerant testing of subgraph-freeness
In the bounded degree model Goldreich and Ron [9] observed that it is possible to test
triangle freeness with query complexity O(1/ϵ) in graphs of maximum degree bounded by
some constant.
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The problem of testing triangle freeness in the general graph model was first studied by
Alon, Kaufman, Krivelevich, Ron [1]. The query complexity of their algorithms depends on
n and d̄, the number of vertices in the graph and the average degree, respectively. They
provided sublinear upper bounds for almost the entire range of parameters. Moreover, their
upper bounds are at most quadratic in their lower bounds. However, they are tight only
when dmax = O(d̄) and d̄ ≤

√
n, where dmax denotes the maximum degree and d̄ denotes the

average degree of the graph or when d̄ = Θ(1). Shortly after, Rast [16] and Gugelmann [10]
improved the upper bound and lower bound of [1], receptively, for some ranges of the
parameters.

More recently, Levi [12] studied the complexity of testing triangle freeness as a function of
the arboricity of the graph (in the general graphs model). It was shown that the complexity
of testing triangle freeness depends linearly in the arboricity of the graph for graphs in which
the arboricity is O(

√
n) and the average degree is Ω(1).

Even more recently, Eden, Levi and Ron [3] studied the problem of testing Ck-freeness
and showed that if the motif is not a k-clique then it is not always possible to provide a
tester whose query complexity is independent of the size of the graph. In particular, they
showed that testing C4-freeness requires Ω(n1/4) queries.

1.3.3 Sublinear algorithms that receive the arboricity of the graph as a
parameter

Several sublinear-time graph algorithms for counting and sampling give improved results
when the graph G has bounded arboricity. This includes the following results. Eden, Ron
and Rosenbaum [4] designed an algorithm for sampling edges almost uniformly.

Eden, Ron and Seshadhri [6] estimate the degree distribution moments of an undirected
graph and in particular estimate the average degree of a graph.

In another paper, Eden, Ron and Seshadhri [7] give a (1 ± ϵ)-approximation for the
number of k-cliques. In a more recent work, Eden, Ron, and Rosenbaum [5] showed that in
this setting sampling cliques is harder than counting.

2 Preliminaries

We consider the general-graphs model [14, 11], where the algorithm can perform the following
types of queries:
1. For any v ∈ V , query for v’s degree;
2. For any vertex v ∈ V and index i, query for v’s i-th neighbor (if i > d(v), then a special

symbol is returned);
3. For any pair of vertices u, v, query whether {u, v} ∈ E.

We denote by ∆(G) the maximum degree of the graph G. We denote by δH(G) the
distance of G from being H-free, namely, the fraction of edges that we need to remove from
G to make it H-free. We denote by distH(G) = δH(G)|E(G)|, namely, the minimum number
of edges we need to remove from G in order to make is H-free. For a graph F we use V (F )
to denote its vertex set and E(F ) to denote its edge set.

When we say with high constant probability (w.h.c.p.) we mean we can adjust the high
constant probability without changing the asymptotic complexity of the algorithm.

▶ Definition 3 (Copies of a motif H). For a graph G and a motif H, we say that a subgraph
H of G is a copy of H in G if H is isomorphic to H.

ESA 2025
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We use nH(G) to denote the number of H-copies in G.
Given a threshold θ, we call the vertices, v, in G such that dG(v) > θ, θ-heavy and

otherwise we call them θ-light.
▶ Definition 4 (The graph Gθ). For a graph G = (V, E) and a threshold θ, the graph Gθ is
the graph whose vertex set is V and its edge set is:

E \ {{u, v} : u and v are θ-heavy}.

▶ Definition 5. The arboricity of a graph G, denoted by arb(G), is the minimum number of
forests into which the edges of the graph can be partitioned.
It is known that for θ = arb(G)/η where η ∈ (0, 1/2], |E(Gθ)| ≥ (1 − 2η)m (see, e.g., Claim 4
in [12]).

We assume that the arboricity of the input graph G as well as the number of edges, m,
and vertices, n, are known to the algorithm.
▶ Remark 6. If the algorithm is not provided with the arboricity of the graph, then it may run
the procedure from [12] that obtains the effective arboricity of the graph. More specifically,
it was shown in [12] how to obtain a value α∗ that with high constant probability satisfies
the following: (1) α∗ ≤ 2arb(G); (2) The number of edges between vertices whose degree is
at least Θ(α∗/ϵ) is at most ϵm, which is suffices for our needs. Up to polylogarithmic factors
in n and polynomial factors in 1/ϵ, the query complexity of the procedure is O(arb(G))
assuming the average degree is Ω(1).

2.1 The H-copies graph of G

In order to describe our algorithm we shall use the following definitions.
▶ Definition 7. Given a graph G = (V, E) and a motif H we define the H-copies graph of G,
GH to be the graph whose vertex set are the copies of H in G, H1, . . . , Hℓ and e = {H1, H2}
belongs to the edge set of GH iff H1 and H2 share at least one edge.

Next, we define the notion of an estimator for the number of H-copies of a graph G. The
estimator is given a guessed lower bound on nH(Gθ). If the guess is accurate, the estimator
produces a reliable estimate; otherwise, it does not significantly overshoot, as detailed in the
following definition.
▶ Definition 8. We say that an algorithm is a H-copies number estimator for a graph G if
it receives as parameters s, a guess of a lower bound on nH(G), and γ, the approximation
parameter, and possibly other parameters for which the following holds: If s ≤ nH(G) then
w.h.c.p. the return value of the algorithm is in (1 ± γ)nH(G). Otherwise, w.h.c.p. it is at
most (1 + γ)s.
▶ Remark 9. The role of the guess is to provide some (indirect) control to the user of the
estimator on the number of attempts to sample a copy from the graph by the estimator (e.g.
if the graph is H-free then the estimator might make too many attempts to sample a H-copy
with no success).
▶ Definition 10. An algorithm A is a H-copies oracle of a graph G = (V, E) if it supports
the following queries.
1. On query Random-copy with parameters t ∈ N and δ ∈ (0, 1], it returns a copy of H in G

uniformly at random or fails. If the number of copies in G is at least t then it returns a
copy w.p. at least 1 − δ.

2. On query All-neighbors(H), where H is a copy of H in G, it returns all the neighbors of
H in GH (see Definition 7).
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2.2 Local Simulation of Greedy Maximal IS
Our algorithm uses a local simulation of a greedy MIS algorithm. Algorithm 1 describes this
local simulation. For a vertex set V , we let SV denote the set of all permutations over V .

Algorithm 1 Local-Simulation-Greedy-MIS.
Input: Query access to a graph G = (V, E) and parameters π ∈ SV and v ∈ V

1. Perform an All-Neighbors query on v and sort its neighbors according to π. Let v1, . . . , vℓ

denote its neighbors according to this order.
2. For i = 1, . . . , ℓ :

a. If vi precedes v in π, recursively call Local-Simulation-Greedy-MIS with parameters π

and vi. If the return value is YES then return NO.
3. Return YES.

Let RG
π (v) denote the number of (recursive) calls to Local-Simulation-Greedy-MIS during

the evaluation of Local-Simulation-Greedy-MIS on G, π and v. We shall use the following
result from the work of Yoshida, Yamamoto and Ito [17].

▶ Theorem 11 ([17]). For any graph G = (V, E) with n vertices and m edges,

Eπ∈SV ,v∈V [RG
π (v)] ≤ 1 + m

n
.

3 The algorithm for tolerant testing of H-freeness

Before describing our algorithm we first relate the distance from being H-free to the size of a
Maximal-Independent-Set of GH as stated in the following claim. We then use this relation
to provide a relation between the expectation of a random variable to the distance from
being H-free.

▷ Claim 12. For any maximal independent set of GH , S, it holds that

|S| ≤ distH(G) ≤ |S| · |E(H)|.

Proof. Since S is an independent set in GH , it follows that any pair H1, H∈ ∈ S is a pair
of edge-disjoint copies of H in G (by definition). Since S is maximal, it follows that if we
remove for each H ∈ S all its edges from G then G becomes H-free (since we remove at least
one edge from each copy of H in G). ◁

▷ Claim 13. For v that is drawn u.a.r. from V (GH) and π which is drawn u.a.r. from SV it
follows that:

Pr[v ∈ MISπ(GH)] ∈
[

distH(G)
|E(H)|nH(G) ,

distH(G)
nH(G)

]
. (1)

Moreover,

Pr[v ∈ MISπ(GH)] ≥ 1/(∆(GH) + 1). (2)

Proof. By Claim 12, for any maximal IS in GH , S, it holds that distH (G)
|E(H)| ≤ |S| ≤ distH(G).

Therefore, for any such S it holds that Pr[v ∈ S] ∈
[

distH (G)
|E(H)|nH

, distH (G)
nH

]
, where v is drawn

u.a.r. from V (GH). This is true since |V (GH)| = nH . Since MISπ(GH) is maximal for any

ESA 2025
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π (by definition), the claim follows. Equation 2 follows from the fact that each vertex v in
the independent set covers at most d(v) + 1 vertices from the graph. Thus, any maximal
independent set is of size at least nH(G)/(∆(GH) + 1), in particular, MISπ(GH) (for any
π). This concludes the proof. ◁

By using the previous claims we arrive to the following claim.

▷ Claim 14. If s ≥ nH(G) then with high constant probability, the return value of
Approximate-Average-MIS-In-Auxiliary-Graph is in[

(1 − γ) distH(G)
|E(H)|nH(G) , (1 + γ)distH(G)

nH(G)

]
. (3)

Proof. Let E1 denote the event that in all the executions of Step 2a of the algorithm, a copy
of H was returned. By definition 10, the setting of δ and since s ≥ nH(G), w.h.c.p., E1
occurs. We henceforth assume E1 occurs. Consider the random variable Zi (see Step 2c
of the algorithm). By construction Zi takes values in {0, 1}. By Claim 13, Equation 1,
E(Zi) ∈

[
distH (G)

|E(H)|nH (G) , distH (G)
nH (G)

]
. By Equation 2, E(Zi) ≥ 1/(∆(GH) + 1). The claim follows

from the setting of ℓ and the multiplicative Chernoff’s bound (see Theorem 30). ◁

Algorithm 2 Approximate-Average-MIS-In-Auxiliary-Graph.
Input: γ - approximation parameter, s - guess on a lower bound on nH(G), ∆ - an upper bound
on ∆(GH), and access to H-copy oracle and H-copies estimator of G (see Definitions 8, 10)
1. Set ℓ = Θ(∆/γ2) and δ = Θ(1/ℓ).
2. For i = 1, . . . , ℓ

a. Run a H-copy oracle of G with parameters s and δ, and obtain a H-copy, H, uniformly
at random.

b. Draw π u.a.r. and run Algorithm 1 on H, π and the H-copies oracle of G, (see
Definition 7).

c. Set Zi = 1 if the algorithm returned YES and set Zi = 0 otherwise.
3. Return Ẑ =

∑
i∈[ℓ] Zi/ℓ.

Algorithm 3 Tolerant-Test-Subgraph-freeness.
Input: ϵ, η and query access to a graph G

1. Set γ = η/64 and θ = arb(G)/(2γϵ)
2. Run the number of H-copies estimator for the graph Gθ with parameters ϵm/2 and γ

(see Definition 8) and obtain n̂.
3. If n̂ is less than ϵm then return ACCEPT.
4. Run Approximate-Average-MIS-In-Auxiliary-Graph on the graph Gθ with parameters ϵm/2

and γ and ∆((Gθ)H . Let Ẑ denote the returned value.
5. if n̂Ẑ > ϵm(1 + γ)2 then return REJECT.

We next prove our main theorem for this section. In order to realize this theorem we
provide in the next sections concrete H-copies oracles and H-copies number estimators (first
for H which is a k-clique and then generalize, for H which is 2-connected and has radius 1).
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▶ Theorem 15. Given parameters ϵ ∈ (0, 1], η ∈ (0, 1] and query access to a graph G,
Tolerant-Test-Subgraph-freeness has the following guarantees. If G is ϵ-close to being H-free
then w.h.c.p. it accepts G. If G is ϵ|E(H)|(1 + η)-far from being H-free then w.h.c.p. it
rejects G.

Proof. Assume G is ϵ-close to being H-free. If the algorithm accepts G in Step 3 then we
are done. Otherwise, it follows that n̂ ≥ ϵm.

Let E1 denote the event that the estimator in Step 2 returns a good approximation as
described in Definition 8. Conditioned on E1 and the fact that n̂ ≥ ϵm it is implied that
nH(Gθ) ≥ ϵm/2 (assume otherwise and reach a contradiction to the fact that n̂ ≥ ϵm as
(1 + γ) < 2)) and hence its return value is in (1 ± γ)nH(Gθ).

Let E2 denote the event that Approximate-Average-MIS-In-Auxiliary-Graph returns a good
approximation as described in Claim 14. Conditioned on E1 ∩ E2 we obtain that

n̂Ẑ ∈
[
(1 − γ)2 distH(Gθ)

|E(H)| , (1 + γ)2distH(Gθ)
]

. (4)

Since distH(Gθ) ≤ distH(G) ≤ ϵm we obtain that n̂Ẑ ≤ (1 + γ)2ϵm and hence the algorithm
accepts G.

Assume G is β-far from being H-free where β = ϵ|E(H)|(1 + η). By the setting of θ it
follows that distH(Gθ) ≥ (1 − γ)βm. Thus, nH(Gθ) ≥ (1 − γ)βm. Therefore, conditioned
on E1 ∩ E3 we obtain that n̂ ∈ (1 ± γ)nH(Gθ). In particular, it holds that nH(Gθ) ≥ ϵm/2.
Hence conditioned on E1 ∩ E2 ∩ E3 we obtain that Equation 4 holds in this case as well. In
particular n̂Ẑ ≥ (1 − γ)3 βm

|E(H)| > ϵm(1 + γ)2 (since (1 + η) > (1 + 2γ)5 > (1 + γ)2/(1 − γ)3).
Thus, conditioned on E1 ∩ E2 ∩ E3, the algorithm rejects G, as desired. ◀

▷ Claim 16. The expected query complexity of Tolerant-Test-Subgraph-freeness is bounded
above by the query complexity of performing ℓ = Θ(∆/η2) random-copy queries to (Gθ)H

with parameters s = ϵm/2 and δ = Θ(η2/∆) (see Definition 7), Θ(ℓ · ∆) all-neighbor queries
to (Gθ)H , where ∆ = ∆((Gθ)H), and a single execution of a H-copies number estimator for
Gθ (see Definition 8).

Proof. By construction, linearity of expectation and Theorem 11. ◁

4 The oracles for k-cliques

In this section we describe our Kk-copies oracle and Kk-copies number estimator. We
conclude with our main theorem about tolerant testing of Kk-freeness (Theorem 21).

▷ Claim 17. For every iteration j ∈ [t] of Algorithm 4 it holds that:

E(Yj) = nKk
(Gθ)/

(
n ·

(
θ

k − 1

))
. (5)

Proof. Consider a copy, K, of Kk in Gθ. Let y(K) denote the number of θ-light vertices in
K. The probability that K is found in Step 2f of Approximate-Kk-copies-in-Gθ is exactly
y(K) · 1/(n

(
θ

k−1
)
). Conditioned on the event that indeed K was found in Step 2f of iteration

j the probability that Yj is set to be 1 is 1/y(K). Thus, for every j, Pr(Yj = 1) =
nKk

(GΘ)/(n
(

θ
k−1

)
). The claim follows. ◁

▷ Claim 18. Approximate-Kk-copies-in-Gθ is a Kk-copies number estimator of the graph
Gθ. Its query complexity is O(k2n

(
θ

k−1
)
/(γ2s)).
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Algorithm 4 Approximate-Kk-copies-in-Gθ .
Input: θ, s, γ ∈ (0, 1/2]
1. Set t = Θ(n

(
θ

k−1
)
/(γ2s))

2. For j = 1, . . . , t

a. Sample a vertex v ∈ V u.a.r. and a set of k − 1 indexes, i1, . . . , ik−1 u.a.r. from
( [θ]

k−1
)
.

b. If v θ-heavy then set Yj = 0 and go to the next iteration.
c. Otherwise, query (v, iℓ) for each ℓ ∈ [k − 1]. Let u1, . . . , uk−1 denote the respective

return values.
d. Let y denote the number of θ-light vertices in {ui}i∈[ℓ].
e. If y < k − 2 then set Yj = 0 (there is more than a single θ-heavy vertex in the set).
f. If the subgraph induced on {ui}i∈[ℓ] is a (k − 1)-clique then set Yj = 1 w.p. 1/(y + 1).

Otherwise set Yj = 0.
3. Return n ·

(
θ

k−1
)

·
∑

j∈[t] Yj/t.

Proof. For s ≤ nKk
(Gθ) the claim follows from Claim 16, the setting of t and multiplicative

Chernoff’s bound (see Theorem 30). To see the correctness of the second part, consider
s = nKk

(Gθ). By the first part of the claim, w.h.c.p. the return value of the algorithm is
in (1 ± γ)nKk

(Gθ) = (1 ± γ)s. Namely, at most (1 + γ)s. Now consider the case in which
s > nKk

. By a coupling argument, w.h.c.p. the return value is at most (1 + γ)s in this case.
To see this, couple the return value of the algorithm to the return value of the algorithm
on the graph after we add s − nKk

copies to the graph (arbitrarily). Since we added copies,
the return value of the algorithm on the modified graph dominates the return value on
the original graph (to see this consider executing the algorithm in parallel in both graphs
- the outcome in the modified graph is always at least as high) but is guaranteed to be at
most (1 + γ)s w.h.c.p. by the above. The claim about the query complexity follows from
construction. This concludes the proof. ◁

Algorithm 5 Get-Random-Kk-Copy-in-Gθ .
Input: θ, s, δ

1. Repeat Θ(n
(

θ
k−1

)
log(1/δ)/s) times:

a. Sample a vertex v ∈ V u.a.r. and a set of k − 1 indexes, i1, . . . , ik−1 u.a.r. from
( [θ]

k−1
)
.

b. If v is not θ-light then break.
c. Otherwise, query (v, iℓ) for each ℓ ∈ [k − 1]. Let u1, . . . , uk−1 denote the respective

return values.
d. Let y denote the number of θ-light vertices in {ui}i∈[ℓ].
e. If y < k − 2 or if the subgraph induced on {ui}i∈[ℓ] is not a clique, then go to the next

iteration.
f. Otherwise, w.p. 1/(y + 1), return the k-clique induced on v and {ui}i∈[ℓ].

▷ Claim 19. The query complexity of Get-Random-Kk-Copy-in-Gθ is Θ(k2n
(

θ
k−1

)
log(1/δ)/s).

If s < nKk
(Gθ) then it returns a copy w.p. at least 1 − δ.

Proof. For any copy of Kk, K, in each iteration of the while-loop, the probability that we
return K in Step 1f of the algorithm is exactly 1/(n

(
θ

k−1
)
). Therefore if the number of copies

is greater than s then the probability that it will return a copy during in a single iteration is
at least s/(n

(
θ

k−1
)
). The claim follows by the setting of the number of iterations. ◁
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Algorithm 6 Kk-All-Neighbors-in-Gθ .
Input: θ, K
1. Set C = ∅
2. If k = 3, reveal the neighbors of all the θ-light vertices of K. Let S denote the set of

revealed neighbors. If there is a θ-heavy vertex, u, in K, perform a pair query between u

and each one of the vertices in S.
3. Otherwise, for each θ-light vertex, v, of K: Reveal all the neighbors of v in G and then

for each θ-light neighbor, reveal all its neighbors.
4. Add all the Kk-copies that were revealed in the previous steps that belong to Gθ (namely,

that have at most one θ-heavy vertex) and share an edge with K.
5. Return C.

▷ Claim 20. The query complexity of Kk-All-Neighbors-in-Gθ is O(kθ) for k = 3 and O(kθ2)
for k > 3.

Proof. The claim follows from construction. ◁

▶ Theorem 21. There exists a tolerant tester for the property of being Kk-free that distin-
guishes graphs that are ϵ-close to being Kk free from graphs that are ϵ

(
k
2
)
(1 + η)-far from

being Kk-free, where ϵ ∈ (0, 1] and η ∈ (0, 1] are parameters. The expected query complexity
of the algorithm is Õ

(
k4θ2k−3

η2ϵd̄
+ k5θ2k−4θmin{2,k−2}

)
where θ = Θ(arb(G)/(ηϵ)).

Proof. The theorem follows from the fact that ∆((Gθ)H) ≤
(

k
2
)
θk−2, Theorem 15 and

claims 16-20. ◀

5 The oracles for 2-connected motifs of radius 1

In this section, H is a motif which is 2-connected and has radius 1. We make the following
observation on the copies of H in Gθ.

▶ Observation 22. For any copy of H, H, in Gθ, at least one of the following holds:
1. there exists a θ-light vertex in H which is incident to all the vertices in H.
2. there is exactly one θ-heavy vertex in H.

Proof. Let v be a vertex in H which is incident to all other vertices in H (such vertex exists
since H has radius 1). If v is θ-light then Item 1 holds. Otherwise, v is θ-heavy. Since there
are no edges in Gθ such that both endpoints are θ-heavy, the claim follows. ◀

We say that a BFS is a θ-restricted if it explores only the neighbors of the θ-light vertices it
reaches. We say that an exploration reveals a copy H if all the vertices of H appeared in the
exploration.

▷ Claim 23. Let H be a motif that is 2-connected and has radius 1. In every copy of H in
Gθ, H, for every θ-light vertex v in H, a θ-restricted BFS from v of depth |V (H)| reveals H.

Proof. If item 1 of observation 22 holds, then clearly the claim follows. Otherwise, there
is exactly one θ-heavy vertex, u, in H. Since H is 2-connected, after we remove u from H,
H remains connected and its diameter is at most |V (H)| − 1. Thus, a θ-restricted BFS of
depth |V (H)| − 1 from any θ-light vertex of H reveals all the θ-light vertices of H. The claim
follows from the fact that at least one of the θ-light vertices in H is a neighbor of u. ◁
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Therefore, by Claim 23, finding for a θ-light vertex, v, all the H-copies in Gθ that include v,
can be done by using O(θ|V (H)|) queries. Consequently, a query for all-neighbors in (Gθ)H

can be answered by making O(|V (H)|θ|V (H)|) queries to G. This can be achieved by going
over all vertices of the queried copy, H, and for each θ-light vertex, finding all its copies.
From the union of these sets we then remove all the copies that do not share an edge with H
and obtain all the neighbors of H in (Gθ)H .

To support random copy queries we assign each copy of H to its θ-light vertex of lowest
id. To sample a H-copy u.a.r. from Gθ we first pick a vertex v ∈ V u.a.r., if it is θ-light
then we find all its H-copies as described above. We then pick a copy that is assigned to v

u.a.r. and return it w.p. aH,θ(v)/amax
H,θ where aH,θ(v) denotes the number of copies that are

assigned to v in Gθ and amax
H,θ denotes the maximum number of copies that include a specific

θ-light vertex (recall that the copies in Gθ are assigned only to θ-light vertices). Clearly,
the above algorithm samples each copy of H in Gθ w.p. 1/(n · amax

H,θ ). Consequently, the
probability that it returns a copy is nH(Gθ)/(n · amax

H,θ ). Thus, the success probability of the
algorithm depends on amax

H,θ ). A straightforward upper-bound on amax
H,θ is |V (H)|!

(
θ|V (H)|

|V (H)|
)

where the first term is due to all possible labeling of the vertices and the second term is due
to all possible ways to pick the vertices of the copy from the set of vertices we explored. In
the next claim we provide a tighter bound on amax

H,θ .

▷ Claim 24. For any motif H, it holds that amax
H,θ ≤ |V (H)| · θ|V (H)|−1.

Proof. Fix an arbitrary labeling of H. Let v ∈ V . We next bound aH,θ(v). Label the
H-copies that v belongs to according to the fixed labeling of H (each copy has its own
labeling). If there is more than one such labeling per copy (due to automorphism), pick one
arbitrarily. We next describe a one-to-one mapping from the set of labeled copies to a set of
sequences of integers. We then bound the cardinality of the latter set and obtain a bound on
the number of H-copies that v belongs to and hence a bound on amax

H,θ . Fix a labeled copy
of v, H, and consider the BFS exploration of H starting at v, where vertices with smaller
label are explored first. Given the label of v and the sequence of the vertices in H by their
BFS order we can reconstruct the labels of all the vertices in the copy. The set of vertices
and their labels are mapped to a single copy. Moreover, by the above, we can identify the
copy by the identity of the root, its label and a sequence of |V (H) − 1| indexes in [θ]. Each
index indicates the index of the respective element in its parent adjacency-list. The indexes
are listed according to the BFS exploration. Since the identity of the root is known, we can
inductively reconstruct the tree by the sequence of indexes. Note that the parents are always
θ-light (while the leaves may be θ-heavy) therefore it suffices to use indexes in [θ]. From the
above we see that for a specific label of v there are at most θ|V (H)|−1 copies of H to which v

belongs. Since there are |V (H)| possible labels, we get the desired bound. ◁

▷ Claim 25. Approximate-H-copies-in-Gθ is a H-copies number estimator of the graph Gθ.
Its query complexity is O(n · amax

H,θ · θ|V (H)|/(γ2s)).

Proof. The claim about the query complexity follows by construction. Consider the random
variable Yj which is defined in Approximate-H-copies-in-Gθ . Since E(Yj) ≥ nH(Gθ)/n and
Yj ≤ amax

H,θ , for s ≤ nH(Gθ), by the setting of t and the multiplicative Chernoff’s bound
(Theorem 30), w.h.c.p the output of the algorithm is in (1 ± γ)nH(G), as required. For
s > nH(Gθ), by a coupling argument, w.h.c.p. the output of the algorithm is at most (1 + γ)
(see more details in the proof of Claim 14). ◁
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Algorithm 7 Approximate-H-copies-in-Gθ .
Input: s, γ ∈ (0, 1/2], θ

1. Set t = Θ(n · amax
H,θ /(γ2s))

2. For j = 1, . . . , t

a. Sample a vertex v ∈ V u.a.r.
b. If v is not θ-light then set Yj = 0 and go to the next iteration.
c. Otherwise, perform a θ-restricted BFS from v to depth |V (H)| and reveal all the

H-copies assigned to v in Gθ. Set Yj to be this number.
3. Return n ·

∑
j∈[t] Yj/t.

Algorithm 8 Get-Random-H-Copy-in-Gθ .
Input: θ, s, δ

1. Repeat Θ(n · amax
H,θ log(1/δ)/s) times:

a. Sample a vertex v ∈ V u.a.r.
b. If v is θ-heavy then go to the next iteration.
c. Otherwise, perform a θ-restricted BFS from v to depth |V (H)| and reveal all the

H-copies assigned to v in Gθ.
d. Pick a random copy from the H-copies assigned to v and return it with probability

aH,θ(v)/amax
H,θ .

▷ Claim 26. The query complexity of Get-Random-H-Copy-in-Gθ is Θ(θ|V (H)| · n ·
amax

H,θ log(1/δ)/s). It returns a H-copy w.p. at least 1 − δ.

Proof. The claim about the query complexity follows by construction. In each iteration of the
algorithm, each copy of H is returned with probability 1/(n · amax

H,θ ). Thus, in each iteration
a copy is returned w.p. nH(Gθ)/(n · amax

H,θ ). Thus, if s ≤ nH(G), a copy is returned w.p. at
least 1 − δ by the setting of the number of iterations. ◁

Algorithm 9 H-All-Neighbors-in-Gθ .
Input: θ

1. Set C = ∅
2. For each vertex v of H:

a. Reveal all the H-copies of v in Gθ by performing a θ-restricted BFS to depth |V (H)|
from v in G.

b. Add to C all the revealed H-copies that share an edge with H.
3. Return C.

▷ Claim 27. The query complexity of Kk-All-Neighbors-in-Gθ is O(|V (H)|θ|V (H)|).

Proof. By Construction. ◁

▶ Theorem 28. There exists a tolerant tester for the property of being H-free for H that
is 2-connected and has radius 1 that distinguishes graphs that are ϵ-close to being H free
from graphs that are ϵ|E(H)|(1 + η)-far from being H-free, where ϵ ∈ (0, 1] and η ∈ (0, 1] are
parameters. The expected query complexity of the algorithm is Õ

((
h7/η2 + h3/(ηϵd̄)

)
· θ3h−2)

where θ = Θ(arb(G)/(ηϵ)) and h = |V (H)|.
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Proof. The theorem follows from the fact that ∆((Gθ)H) ≤ h · amax
H,θ , Theorem 15 and

claims 24–27. ◀

6 The tester for the bounded-degree model

Clearly, Tolerant-Test-Subgraph-freeness applies also to bounded degree graphs. Moreover,
for the setting where θ = d + 1 the graph Gθ is simply G and all the vertices in the graph
are θ-light. Consequently, we can test H-freeness for any motif H by using the oracles in
Section 5 without making any modifications 2. We obtain the following result.

▶ Theorem 29. There exists a tolerant tester, in the bounded degree model, for the property
of being H-free for any motif H. Specifically the tester distinguishes graphs that are ϵ-
close to being H free from graphs that are ϵ|E(H)|(1 + η)-far from being H-free, where
ϵ ∈ (0, 1] and η ∈ (0, 1] are parameters. The expected query complexity of the algorithm is
Õ (( h7/η2 + h3/(ηϵd̄)

)
·d3h−2)

where h = |V (H)| and d is the degree bound.

Proof. By the proof of Theorem 21. ◀
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A Appendix

▶ Theorem 30 (Multiplicative Chernoff’s Bound). Let X1, . . . , Xn be identical independent
random variables ranging in [0, 1], and let p = E[X1]. Then, for every γ ∈ (0, 2], it holds that

Pr

∣∣∣∣∣∣ 1
n

·
∑
i∈[n]

Xi − p

∣∣∣∣∣∣ > γ · p

 < 2 · e−γ2pn/4 . (6)

ESA 2025

https://doi.org/10.1137/S0097539703436424
https://doi.org/10.1137/S0097539703436424
https://doi.org/10.4230/LIPICS.ICALP.2021.93
https://doi.org/10.1145/1497290.1497298
https://doi.org/10.1145/1497290.1497298
https://doi.org/10.1002/RSA.10013
https://doi.org/10.1016/j.jcss.2006.03.002
https://doi.org/10.1016/j.jcss.2006.03.002
https://doi.org/10.1137/110828691

	1 Introduction
	1.1 Our Results
	1.1.1 The general-graphs model
	1.1.2 The bounded-degree graphs model

	1.2 Our Algorithm
	1.2.1 The extension for other motifs

	1.3 Related Work
	1.3.1 Tolerant tesing of H-freeness in the bounded degree model
	1.3.2 Non-tolerant testing of subgraph-freeness
	1.3.3 Sublinear algorithms that receive the arboricity of the graph as a parameter


	2 Preliminaries
	2.1 The H-copies graph of G
	2.2 Local Simulation of Greedy Maximal IS

	3 The algorithm for tolerant testing of H-freeness
	4 The oracles for k-cliques
	5 The oracles for 2-connected motifs of radius 1
	6 The tester for the bounded-degree model
	A Appendix

