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Abstract
Property Testing is a formal framework to study the computational power and complexity of sampling
from combinatorial objects. A central goal in standard graph property testing is to understand
which graph properties are testable with sublinear query complexity. Here, a graph property P is
testable with a sublinear query complexity if there is an algorithm that makes a sublinear number
of queries to the input graph and accepts with probability at least 2/3, if the graph has property P ,
and rejects with probability at least 2/3 if it is ε-far from every graph that has property P .

In this paper, we introduce a new variant of the bounded degree graph model. In this variant, in
addition to the standard representation of a bounded degree graph, we assume that every vertex v

has a unique label num(v) from {1, . . . , |V |}, and in addition to the standard queries in the bounded
degree graph model, we also allow a property testing algorithm to query for the label of a vertex
(but not for a vertex with a given label).

Our new model is motivated by certain graph processes such as a DFS traversal, which assign
consecutive numbers (labels) to the vertices of the graph. We want to study which of these numberings
can be tested in sublinear time. As a first step in understanding such a model, we develop a property
testing algorithm for discovery times of a DFS traversal with query complexity O(n1/3/ε) and for
constant ε > 0 we give a matching lower bound.
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1 Introduction

Depth-first search (DFS) is one of the most useful and frequently used algorithmic primitives
in graph algorithms. The DFS algorithm is known for well over a century [17, 23] as a
technique for threading mazes and has been widely used in the design of graph and network
algorithms since the late 1950s. DFS is a basic tool to traverse a graph in a structured
way and is central to solve textbook problems such as connectivity, topological sorting [22],
determining strongly connected components in directed graphs [21], biconnected components
in undirected graphs [21], and to test planarity [15]. Because of its versatility and usefulness
for solving many graph problems, DFS has become one of the most important tools in the
design of algorithms for graphs, taught in the first year of many computing science study
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programs. One of the most useful combinatorial properties of DFS is the DFS numbering of
vertices, which is the order in which a DFS algorithm discovers all vertices of the input graph
[21]. (See also Algorithms 1 and 2, where N(v) denotes the set of neighbors of vertex v.)

Algorithm 1 DFS numbering of G.
Input: undirected graph G = (V, E)
Output: num : V → {1, . . . , |V |}

1 mark all vertices as undiscovered
2 t← 1 // smallest unused ID
3 for v ∈ V do // arbitrary order
4 if v is undiscovered then

DSFVisit(v)

Algorithm 2 DSFVisit(v).

1 mark v as discovered
2 num(v)← t

3 t← t + 1
4 for u ∈ N(v) do // arbitrary order
5 if v is undiscovered then

DSFVisit(v)

We remark that sometimes, e.g., in the widely used textbook by Cormen et. al. (see
Chapter 20.3 in [5]), the DFS numbering is also used together with finishing numbers. We
also remark that the labeling is not unique and depends on the ordering in which the vertices
are traversed in the for-loops of Algorithms 1 and 2.

▶ Definition 1 (DFS numberings). Let G = (V, E) be a labeled undirected graph on n vertices.
A labeling num : V → {1, . . . , n} is called a DFS numbering of G if DFS gives rise to it for
some order of processing the vertices in the for-loops of Algorithms 1 and 2.

Given a wide applicability of DFS and DFS numbering, a natural problem is to verify
whether a given graph is correctly DFS-numbered, i.e., the labels assigned to the vertices are
a DFS numbering for some ordering of vertices and neighbors. The latter problem is easy to
solve by simulating a DFS using the given numbering and locally verifying that the DFS is
performed correctly. However, is it also possible to approximately verify whether the graph
is properly DFS-numbered using a sampling based algorithm? An answer to this question
sheds some light on how the local structure of a DFS-numbered graph (as implicitly given by
the sample distribution) is related to the global DFS numbering.

We will study this question in the framework of Property Testing (see, e.g., the monographs
[4, 9]). Property Testing provides a formal setting to study approximate decision problems.
The goal is to distinguish objects that satisfy the tested property from those that are ε-far
from every object that satisfies the property. Here, ε-far means that one has to modify more
than an ε-fraction of the object’s description to obtain an object that has the property. A
property testing algorithm requires some form of sampling access to the object.

In this paper we will introduce a variant of the standard bounded-degree graph model
[12] that in addition to the standard setting, allows also label queries. We will assume that
there exists some labeling that assigns unique labels from the set {1, . . . , |V |} to the vertex
set V , i.e., the labeling is a bijection num : V → {1, . . . , |V |}. We say that a graph with
maximum degree d is ε-far from a DFS-numbered graph, if we have to modify (insert or
delete) more than ε|V | edges to obtain a graph that is correctly DFS-numbered1. We do
not allow to modify labels, though we notice that allowing to modify labels would also be a
valid model (see Section 2.1 for some discussion). Our motivation to not consider it here was
merely to stick as closely to the standard testing model as possible.

1 While one often uses the bound of εd|V | edges instead of ε|V | edges, in the setting when d = O(1) these
terms differ only by a constant factor and as such there are essentially indistinguishable.
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In this new framework we study a fundamental problem of whether the input labeled
undirected graph is properly DFS-numbered or it is ε-far from having a valid DFS numbering.
Our main result is a tight (for constant d and ε) complexity bound for this task. First,
we show that any tester for the DFS numbering requires Ω(n1/3) queries, and then, we
complement this bound with an algorithm that tests DFS numbering with O(n1/3/ε) queries.

The proof of the lower bound (Theorem 7 in Section 4) is by constructing two families
(Gn)n∈N and (Bn)n∈N of good and bad random labeled graphs for which we will show that
distinguishing between these families is necessary for any DFS-tester. Then we will show
that distinguishing between these families requires Ω(n1/3) queries.

The proof of the upper bound (Theorem 11 in Section 5) relies on a characterization
of labelings that are ε-far from a valid DFS numbering. The characterization is described
in a form of some conflicts between the labelings and we design two algorithms detecting
such conflicts: one for local conflicts and one for global conflicts. By combining these two
algorithms we will obtain an algorithm that tests DFS numbering with O(n1/3/ε) queries.

1.1 Related work
Property Testing was introduced by Rubinfeld and Sudan [20] and first studied in the dense
graph setting by Goldreich and Ron [10]. Constant time testability in the dense graph model
has been fairly well understood [2] and is closely related to the regularity lemma. In our
paper we build upon the bounded degree graph model, as introduced by Goldreich and
Ron [12]. First results in this model included testers for properties such as connectivity,
k-connectivity and being Eulerian [12]; bipartiteness [11] and cycle freeness [6] can be tested
in the bounded degree graph model in O(

√
n

εO(1) ) time. A series of papers proved that every
hyperfinite property of bounded degree graphs is testable in constant time [3, 7, 14, 18]. Also,
every constant time testable property in bounded degree graphs is either finite or contains
a hyperfinite property [8]. Furthermore, it is known that every first-order logic property
of bounded degree graph with an ∃∀ quantification is constant time testable while some
properties with a ∀∃ quantification are not [1]. Further works in the bounded degree graph
model include, e.g., testability using proximity oblivious testers [13].

2 Preliminaries: The model

In this paper, let G = (V, E) denote an undirected graph with n = |V | vertices and m = |E|
edges. Let N(v) denote the set of neighbors of v, i.e., N(v) := {u ∈ V : {v, u} ∈ E}, and d

be an upper bound on the maximum number of edges incident to any vertex in V . We will
assume that G is a labeled graph, i.e., there is a bijection (permutation) num : V → [n] that
assigns numbers to the vertices of G and we use [n] := {1, . . . , n}.

2.1 Bounded degree graph model for labeled graphs
In this section we describe how our algorithm can access the input graph G = (V, E) of
maximum degree d with vertex labeling num. Our model is a slight modification of the
standard bounded degree graph model [12] that in addition allows access to labels. As usual
in this model, we assume that V = [n] and n as well as d are given to the algorithm. The
algorithm can ask the following two types of queries and receives an answer in constant time:

Neighbor queries: for every vertex v ∈ V and every 1 ≤ i ≤ d, one can query the ith
neighbor of vertex v.
Label queries: for every vertex v ∈ V , one can query the label of v, num(v).

ESA 2025
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Observe that we allow access to vertices and their neighbors, and we can check the label
num(v) of any vertex v, but we have no access to vertices through their labels num.
In particular, to access vertex v with a given label num, we have to query the oracle until
such vertex is returned. This is a special feature distinguishing our model from the standard
model used in graph property testing and making the problem challenging: we have a labeled
graph, but we cannot access the graph (its vertices) through the labels! Instead, the only
way to access the graph is by taking any vertex v ∈ V = [n] and either querying its label
num(v) (via the label query) or querying its ith neighbor (via a neighbor query).

The query complexity of a testing algorithm is the number of oracle queries.
A property testing algorithm (in short, property tester) for DFS-numbered graphs is

an algorithm that has access to an input graph as described above and that accepts the
input with probability at least 2/3, if G is a graph with num being a valid DFS-numbering.
The algorithm rejects G with probability at least 2/3 if G is ε-far from having a valid DFS
numbering num according to the following definition. (The algorithm developed in this paper
is a property tester with one-sided error, i.e., it always accepts, if num is a DFS-numbering.)

▶ Definition 2 (ε-far from DFS numberings in bounded degree graphs). Let G = (V, E) be
an undirected graph on n vertices with maximum degree at most d and let num : V → [n] be
a bijection that assigns labels to V . We say the labeled graph G num is ε-far from having
a valid DFS numbering, if one has to modify2 more than εn edges in G to obtain a graph
G′ = (V, E′) of maximum degree at most d for which num is a valid DFS numbering.

Implicitly labeled graphs. To simplify the presentation, we will often assume num(v) = v.
However, we will not use this knowledge in the algorithm as the model prevents us from
querying num−1. Our tester will only ask for a random vertex or for a vertex that occurred
as the neighbor of a previously queried vertex.

Further thoughts about the model: Modifying the labels. Observe that in general, it might
be natural to consider a revised definition of a labeling num being ε-far from a valid DFS
numbering, where while defining graph G′ in Definition 2, in addition to edge modifications,
one would allow also for modifications of the labels3. We observe that for bounded degree
graphs, adding the labels modifications does not change the problem significantly.

▶ Lemma 3. Let num be a permutation of V to {1, . . . , n}. For a given bounded degree
graph G = (V, E), a labeling num is ε-far from a valid DFS numbering according to the edges
modifications if and only if num is Θ(ε)-far from a valid DFS numbering according to the
edges and labels modifications.

Proof. Observe that the number of modifications of the edges to obtain a valid DFS
numbering is not smaller than the number of modifications of the edges and the labels to
obtain a valid DFS numbering. Therefore, if for a given bounded degree graph G, a labeling
num is ε-far from a valid DFS numbering according to the edges and labels modifications
then num is also ε-far from a valid DFS numbering according to the edges modifications.

2 Modification of the edges means edge insertions and deletions, i.e., we require |E△E′| > εn, where △ is
the symmetric difference.

3 We use the following revised definition: a labeling num is ε-far from a valid DFS numbering of G if
for any graph G′ = (V, E′) of maximum degree at most d with a valid DFS numbering num′ we have
|E△E′|+ |{v ∈ V : num(v) ̸= num′(v)}| ≥ εn.
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For the other direction, if num is ε-far from a valid DFS numbering according to the edges
modifications then we can simulate modification of the labels by modification of the edges:
to assign a given label to a vertex we just remove all its incident edges and add all edges
incident to the vertex with the label sought. (Observe that a vertex might have had some
edges of its own that have to be removed but by correcting the labels one by one, we can
ensure that once we fix vertex v by assigning it to label i with vertex u having label i before,
then later we will have to fix the label of vertex u, resolving the issue.) Observe that if we
apply this operation to all vertices with the labels to be changed, then we do not increase
the maximum degree, and hence, modifying of k labels can be simulated by modifying at
most 2dk edges. Therefore, if a labeling num is ε-far from a valid DFS numbering according
to the edges modifications then num is also (2dε)-far from a valid DFS numbering according
to the edges and labels modifications. ◀

Why should the labels be a permutation? Our model assumes that the input labeling
num is a permutation (bijection) of V to {1 . . . , n}, but it may be natural to consider the
case when num is not necessarily a permutation but rather an arbitrary function from V to
{1 . . . , n}, allowing repetitions of labels. Observe that already the simple problem of testing
if num is a permutation or is ε-far from being a permutation (also known as the element
distinctness problem) is known to require Θ(

√
n/ε) queries (see, e.g., [19]). In view of that

bound, the best what we could hope for without assuming that num is a permutation of V

to {1 . . . , n} is to achieve query complexity of Θ(
√

n/ε). And this can be easily obtained
by combining our algorithm in Theorem 11 with the known algorithms testing element
distinctness, leading to a testing algorithm with Θ(

√
n/ε) queries.

3 Basic Properties of DFS Numberings

We begin with a review of basic DFS terminology, introduce some notions of our own, and
make a few useful observations. (We also refer to standard textbooks, e.g., [5, 16].)

The DFS algorithm, as given in Algorithm 1, numbers every vertex even if G is dis-
connected due to the outer loop over all vertices. Every vertex is initially undiscovered.
When DSFVisit(v) is called, v becomes discovered. We say v is active as long as the call
DSFVisit(v) persists and is finished as soon as it ends. The vertex p that initiates the call
of DSFVisit(v) is the parent of v. If the call of DSFVisit(v) is initiated from the outer
loop then we say that v is an orphan with virtual parent 0. The idea is that the outer loop
iterating over all vertices is like a call to DSFVisit(0) where 0 is a virtual vertex connected
to all other vertices. Each connected component of G has exactly one orphan, which receives
the smallest number in its connected component. At any point during the execution the
white path consists of all active vertices including the virtual vertex 0, with every active
vertex (other than 0) connected to its parent. The DFS numbers appear in increasing order
along the white path. In an implicitly labeled graph G = (V, E), we define p(v) for v ∈ V as

p(v) :=
{

max{u ∈ N(v) ∩ [v − 1]} if N(v) ∩ [v − 1] ̸= ∅ ,

0 otherwise.

▷ Claim 4. If the numbers in an implicitly labeled graph correspond to a DFS numbering
then p(v) is the (possibly virtual) parent of v.

Proof. If v is an orphan then it has the smallest number in its connected component so
{u ∈ N(v) : u < v} = ∅. Hence p(v) = 0, which is the virtual parent of orphans by definition.

ESA 2025
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Now assume v was discovered from a non-virtual parent x ∈ V . Then x ∈ N(v) with
x < v so x ∈ {u ∈ N(v) : u < v}. To see that x is the maximum of {u ∈ N(v) : u < v},
consider x′ ∈ {x + 1, . . . , v − 1}. Immediately before v is discovered, x is at the end of the
white path, hence the largest active vertex. Since x′ > x has been discovered, x′ must be
finished. Hence all neighbours of x′ have been discovered. Since v is not discovered we have
x /∈ N(v) so x /∈ {u ∈ N(v) : u < v}. ◁

Observe that any edge e = {u, v} with u < v in an implicitly labeled graph corresponds
to an interval [u, v] representing a range of elements with respect to the DFS numbering.
The analysis of the inter-relation between such intervals plays a central role in our analysis.

▶ Definition 5. A pair (v, {u, w}) ∈ V × E is a conflicting pair if p(v) < u < v < w.

The following central lemma shows that the absence of conflicting pairs is necessary and
sufficient for the validity of a DFS numbering (we defer a simple proof to the full version).

▶ Lemma 6. Let G = (V, E) be an implicitly labeled graph. The following are equivalent.
(i) G has a valid DFS numbering.
(ii) There exists no conflicting pair.

4 Testing DFS Numbering Requires Ω(n1/3) Queries

In this section, we prove our first main result.

▶ Theorem 7. Every property tester for the property of having a valid DFS-labeling has a
query complexity of Ω(n1/3).

Let ε > 0 be sufficiently small (any ε ≤ 1
33 would do). The proof of Theorem 7 is by

constructing two families (Gn)n∈N and (Bn)n∈N of good and bad random labeled graphs for
which we will show that distinguishing between these families is necessary for any DFS-tester.
Then we will show that distinguishing between these families requires Ω(n1/3) queries.

4.1 Construction of good and bad random labeled graphs (Gn) and
(Bn)

Let n, N ∈ N. Each graph Gn and Bn consists of ⌊ n
8N ⌋ arms of 8N vertices each. The roots

of these arms are connected with some binary tree that is the same for Gn and Bn.
There are four types of arms, as described in details in Figure 1. Each arm of Gn is a

copy of (G1) or (G2) chosen independently and uniformly at random. Similarly, each arm of
Bn is a copy of (B1) or (B2) chosen independently and uniformly at random.

The labeling of Gn is then obtained by starting in the root of the tree T and using within
the arms the relative ordering defined by the numbering of the arms (G1) or (G2). For an
example, see, e.g., Figure 3. (Since each arm has the same number of vertices, the choice of
one arm, whether in (G1) or (G2), does not affect the numbering of other arms.)

Similarly (see Figure 4), the labeling of Bn is defined by starting at a root of T and using
within the arms the relative ordering defined by the numbering of the arms (B1) or (B2).

4.2 Properties of DFS numberings of random labeled graphs Gn and Bn

Let us first notice that our construction of good random labeled graphs (Gn)n∈N easily
ensures that they have valid DFS numberings (with probability 1).
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0 1

7

53 42,6

Arm (G1)

0 1

7

53 42

Arm (B1)

6

0 1 2 64,7 53

Arm (G2)

0 1 2,6 4,7 53

Arm (B2)

Figure 1 Four types of arms (G1), (G2), (B1), and (B2) used in our construction of (Gn)n∈N and
(Bn)n∈N. Each arm starts with a root, denoted by ■. Each link

𝑖
corresponds to a path on N

vertices and labels iN + 1, . . . , i(N + 1) ascending in the direction of the arrow (see Figure 2(a)).
We also have a comb graph

𝑖, 𝑗
(see Figure 2(b)), which is obtained from

𝑖
by adding

N new vertices, adding a matching between the new vertices and the vertices from
𝑖

, and
labeling the new vertices with jN + 1, . . . , (j + 1)N , this time descending in the direction of the
arrow (i.e., the vertex with label iN + k is adjacent to the vertex with label jN + N − k + 1).

(a)

𝑖

𝑖𝑁 + 1 𝑖𝑁 + 2 𝑖𝑁 + 3…………𝑖𝑁 + 𝑁 − 1 𝑖𝑁 + 𝑁

(b)

…………

𝑖, 𝑗

𝑖𝑁 + 1 𝑖𝑁 + 2 𝑖𝑁 + 3 𝑖𝑁 +𝑁 − 1 𝑖𝑁 + 𝑁

𝑗𝑁 + 𝑁 𝑗𝑁 + 𝑁 − 1 𝑗𝑁 + 𝑁 − 2 𝑗𝑁 + 2 𝑗𝑁 + 1

Figure 2 Graphs corresponding to (a) a path
𝑖

and (b) a comb graph
𝑖, 𝑗

.

▶ Lemma 8. Gn has a valid DFS numbering. ◀

A situation is different for bad random labeled graphs (Bn)n∈N. While the arms of type
(B1) also locally maintain a valid DFS-order, the arms of type (B2) do not (because of the
two comb graphs). As the result, the construction of (Bn)n∈N typically gives labelings that
are ε-far from valid DFS numberings.

▶ Lemma 9. Let 0 ≤ ε ≤ 1
33 and let n be sufficiently large. Then Bn has a labeling that is

ε-far from a valid DFS numbering with probability 1− o(1).

Proof. Consider the numbering for (B2). Let us fix any k ∈ {1, 2, . . . , N} and focus on
vertices p1, c1, p2, c2 with labels 2N + k, 7N − k + 1, 4N + k, 8N − k + 1, respectively. (For
example, in Figure 4 in the top branch (where numbers have an offset of 1), if we took
k = 2 then we would have ⟨p1, c1, p2, c2⟩ to be vertices with labels ⟨11, 28, 19, 32⟩ in B64.)
Observe that the fact that num(p1) < num(p2) < num(c1) < num(c2) implies that this is not
a valid DFS numbering as long as c1 is the DFS-child of p1 and c2 is the DFS-child of p2.
Therefore, to turn the labeled graph into one consistent with DFS numbering, one has to add
or delete at least one edge incident to a vertex from {p1, c1, p2, c2}. Since such a quadruple is
obtained for each k ∈ {1, . . . , N} and since each of these quadruples is disjoint (for example,
in Figure 4, the there are four such quadruples formed by vertices with labels ⟨10, 29, 18, 33⟩,
⟨11, 28, 19, 32⟩, ⟨12, 27, 20, 31⟩, and ⟨13, 26, 21, 30⟩), one needs to modify at least N

2 edges
to obtain a valid DFS numbering. Since the expected number of copies of (B2) in Bn is
1
2 · ⌊

n
8N ⌋, the expected number of changes required in Bn to obtain a valid DFS numbering

is at least N
4 · ⌊

n
8N ⌋. For sufficiently large n, a standard Chernoff bound implies that graph

Bn is 1
33 -far from having a valid DFS numbering with high probability. ◀

ESA 2025
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

33 32 31 30
1

65

64

63

62

0 1 2 3 4,7 5

0 1 2,6 3 54

7

61 60 59 58

26 27 28 29

6

Figure 3 An example of labeling of Gn with n = 64, N = 4, using ⌊ n
8N
⌋ = 2 arms of size 8 ·4 = 32.

Vertices with labels 1, 2, 34 are in the tree T , the top branch (with labels 2–33) corresponds to arm
(G2) and the bottom branch (with labels 34–65) corresponds to arm (G1). For each arm, we also
marked the corresponding parts defining it.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

29 28 27 26 33 32 31 30
1

58 59 60 61

65

64

63

62

0 1 2,6 3 4,7 5

0 1 2 3 654

7

Figure 4 An example of labeling of Bn with n = 64, N = 4, using ⌊ n
8N
⌋ = 2 arms of size 8 ·4 = 32.

Vertices with labels 1, 2, 34 are in the tree T , the top branch (with labels 2–33) corresponds to arm
(B2) and the bottom branch (with labels 34–65) corresponds to arm (B1). For each arm, we also
marked the corresponding parts defining it.

4.3 Hardness of distinguishing between good and bad labeled graphs

Our next central lemma provides a lower bound for the number of queries of any algorithm
ALG that distinguishes between the families of random labeled graphs (Gn)n∈N and (Bn)n∈N.
We will assume that the input In for n ∈ N on which ALG requires qn oracle queries is

obtained by first selecting a random bit b ∈ {0, 1} and then setting In =
{

Gn if b = 0,

Bn if b = 1.

▶ Lemma 10. Let 0 < ξ ≤ N3

n . For every randomized algorithm ALG’ that receives In as

input, performs qn ≤
√

ξn
4N queries, and outputs a bit b′ ∈ {0, 1}, we have Pr[b = b′] ≤ 1

2 + ξ.

Proof. Let ALG’ be an algorithm that receives In as its input. We assume that ALG’ can
query the oracle for any vertex u by submitting an ID of u, and the oracle returns the label
num(u) of u, and the IDs of all neighboring vertices. Further, without loss of generality, we
assume that the IDs 1, . . . , n are randomly assigned to the vertices of the graph. Therefore
ALG’ is limited to querying for a random vertex (a random query) or for a vertex that has
been previously found as a neighbor of an earlier queried vertex (an explorative query).

Without loss of generality, we can assume that the vertices selected by random queries are
chosen in the order v1, v2, . . . before the run of ALG’; let VR = {v1, . . . , vqn} be the sequence
of these first qn random vertices (ALG can select only these vertices). Let E be the random
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event that no two vertices u, u′ ∈ VR come from the same arm of In. We prove the following:

Pr[¬E ] ≤ ξ (1)
Pr[b = b′|E ] = 1

2 (2)

Observe that the two inequalities (1)–(2) imply Lemma 10:

Pr[b = b′] = Pr[b = b′|E ] · Pr[E ] + Pr[b = b′|¬E ] · Pr[¬E ] ≤ 1
2 · 1 + 1 · ξ ≤ 1

2 + ξ .

In order to prove inequality (1), let us first define C to be the number of pairs i ̸= j with
i, j ≤ qn such that both vi and vj come from the same arm of In, or in other words, so that
vi and vj belong to the same copy of arm (B1). We have,

E[C] =
∑

1≤i<j≤qn

Pr[vi and vj are in the same arm] ≤
(

qn

2

)
· 8N

n
≤ 4q2

nN

n
≤

4( ξn
4N )N
n

≤ ξ .

Therefore we can conclude (1) by Markov’s inequality: Pr[¬E ] = Pr[C ≥ 1] ≤ E[C] ≤ ξ.
Next, we want to prove inequality (2). Let V ∗

R be the set of vertices reachable from
vertices in VR in at most qn steps, that is, V ∗

R = {u : ∃1≤i≤qn
dist(vi, u) ≤ qn}. Let In(V ∗

R)
be the subgraph of In induced by the vertex set V ∗

R. We observe that ALG’ will make its
decision solely on seeing some subgraph of In(V ∗

R). Hence, the output b′ of ALG’ is a (random)
function of In(V ∗

R). Now, we claim that conditioned on E , the random variables b and In(V ∗
R)

are stochastically independent, which in turn, would imply identity (2).
To prove that b and In(V ∗

R) are independent, let us consider a single vertex vi from VR

and the subgraph In(vi) induced by vertices with distance at most qn from vi. If In(vi)
contains at least one vertex from T , then In(vi) consists solely of some of the vertices from
T and some vertices that are close to the roots of some of the arms (within parts denoted by
0−→ of the arms, since each such part has length N and we have qn ≤ N

2 since qn ≤
√

ξn
4N and

ξ ≤ N3

n ). Since these parts are identical in Gn and Bn, such paths share no information on b.
Otherwise, if In(vi) contains no vertex from T , then In(vi) is a part of an arm of In. But

then, due to qn ≤ N
2 , at most one joint4 of this arm is contained in In(vi). Since the labels

of the roots of the arms are the same in Gn and Bn, it is always well-defined what the offset
of a label within its arm is. For more details, see the full version of the paper. ◀

4.4 Hardness of testing DFS numbering (proof of Theorem 7)
By Lemmas 8 and 9, any algorithm ALG that accepts a labeled graph with a valid DFS
numbering with probability at least 2

3 and rejects a labeled graph with a DFS numbering
that is ε-far (for 0 < ε ≤ 1

33 ) from being valid DFS numbering with probability at least 2
3 ,

must be able to distinguish with probability at least 5
8 between the families of good and bad

random labeled graphs (Gn)n∈N and (Bn)n∈N. However by Lemma 10, by setting ξ = 1
8 and

N = ⌊n1/3⌋, the tasks of distinguishing between these families requires Ω(n1/3) queries. ◀

5 Testing DFS Numbering with O(n1/3/ε) Queries

Our second main result shows that the lower bound in Theorem 7 is asymptotically tight.

4 By a joint we mean an endpoint of a path or comb from which the arm was stitched together.
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▶ Theorem 11. Let 0 < ε < 1. There is an algorithm that with oracle access to a labeled
bounded degree undirected graph G on n vertices, performs O(n1/3/ε) queries to the oracle
and accepts, if G has a valid DFS numbering, and rejects with probability at least 2

3 , if G is
ε-far from having a valid DFS numbering.

(One can show that our tester achieves also the same O(n1/3/ε) running time.)

For the rest of the section, let G be a corresponding labeled graph equipped with a
possibly inappropriate DFS numbering num : V → [n]. As in Section 3, we assume that num

is implicit so that we can, for instance, write v < w for v, w ∈ V instead of num(v) < num(w).

Outline. Our approach to prove Theorem 11 is first to extend Lemma 6 (which characterizes
valid DFS numberings) to describe a simple and useful property of labelings that are ε-far
from a valid DFS numbering. In Lemma 13 in Section 5.1, we will show that if the numbering
is ε-far from a valid DFS numbering then not only we have Ω(εn) conflicting pairs (in the
sense of Lemma 6), but in fact we have Ω(εn) conflicting pairs that are “unrelated.” Once
we have this property, the task in hand will be to detect any of such conflicting pair. We
observe that there are two types of conflicting pairs, local pairs involving vertices whose DFS
numbers are close to each other, and global conflicts. In order to detect local conflicts, we first
develop (in Section 5.2) some basic tools to traverse a given graph following DFS numbering.
Once we know how to traverse the graph, we can design an algorithm that can determine if
a given pair (v, {u, w}) is conflicting pair. Unfortunately, this algorithm is efficient only if
vertex u or w is close to p(v) or v (that is, if one of num(u)− num(p(v)), num(v)− num(u),
num(w)− num(v) is small), and so we can use this approach to deal with local conflicts. In
order to study global conflicts, we notice that if vertices u and w are far away from vertices
p(v) and v, then in fact a conflicting pair (v, {u, w}) can be also extended to multiple vertices
v. Once we have that property, we will show that if we sample randomly Θ(n1/3/ε) vertices
and Θ(n1/3/ε) edges, then if there were many global conflicts, then there would be one that
is determined by one of the sampled vertices and one of the sampled edges.

5.1 Properties of labelings that are ε-far from any valid DFS numbering
We begin with describing a useful property of labelings that are ε-far from a valid DFS
numbering that they have Ω(εn) conflicting pairs that are “unrelated.” Recall that by
Lemma 6 a numbering is a valid DFS numbering if and only if there is no conflicting pair
(v, {u, w}) ∈ V × E with p(v) < u < v < w. In that case, when p(v) < u < v < w, we speak
of a conflict involving vertex v and edge {u, w}. While Lemma 6 characterizes valid and
invalid DFS numberings, we will need a stronger claim about properties of numberings that
are ε-far from valid DFS numberings. For that, we need to understand numberings that are
not ε-far from valid DFS numberings because we can modify the input graph with at most
εn edge modifications to ensure that the resulting graph will have a valid DFS numbering.

Observe that Lemma 6 provides a simple tool to edit the input labeled graph to obtain
a valid DFS numbering – to remove all conflicting pairs. With that in mind, the following
claim provides a simple fix to remove all conflicts involving a specific vertex or all conflicts
involving a specific edge (notice that the resulting graph may violate our degree bound d,
but one can address this issue using a “degree reduction framework,” see the full version.

▶ Lemma 12. Let v ∈ V and {u, w} ∈ E with u < w.
(i) Adding the edge {v− 1, v} to G (and doing nothing if {v− 1, v} is already present) does

not create any new conflicts and resolves all conflicts involving v.
(ii) Removing {u, w} from G and adding {w− 1, w} (if not already present) does not create

any new conflicts and resolves all conflicts involving {u, w}.
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Proof.
(i) After the edit we have p(v) = v − 1 so no u ∈ V can satisfy p(v) < u < v any more,

meaning all conflicts involving v are resolved. We do not create any new conflicts
because p(v − 1) does not change and the new edge {v − 1, v} cannot be involved in a
conflict because (again) no v′ can satisfy v − 1 < v′ < v.

(ii) Deleting {u, w} clearly resolves all conflicts of this edge. However, new conflicts involving
w may arise since p(w) may change if we had p(w) = u before. By (i) we can fix these
by adding {w − 1, w}. ◀

Lemma 12 shows that adding or removing a few edges can resolve many related conflicts.
We use this claim to show that in order for G to be ε-far from having a valid DFS numbering,
not only do there have to be many conflicts, but in fact there have to be many mutually
unrelated conflicts. To formalize this idea we consider the bipartite conflict graph C = (V, E, C)
where C ⊆ V ×E contains an edge (v, {u, w}) precisely if it is a conflicting pair. The intuition
of mutually unrelated conflicts corresponds to a matching in C. We have the following.

▶ Lemma 13 (ε-far DFS numberings). If G is ε-far from having a valid DFS numbering then
there is a matching M ⊆ C of size |M | ≥ εn/5 in C.

Proof. We will prove Lemma 13 by showing that if G is ε-far from having a valid DFS
numbering then C has a vertex cover of size at least εn/5, for if not, then we could modify at
most εn edges of G to make the labeling to be a valid DFS numbering of the resulting graph.
Then Lemma 13 follows from König’s theorem.

Let M ⊆ C be a maximum matching in C. By Kőnig’s theorem there is a vertex cover
VC ⊆ V ∪E of size |VC| = |M |, i.e., a set of vertices and edges of G (vertices of C) such that
for every conflict pair (v, {u, w}) (for every edge of C) v ∈ VC or {u, w} ∈ VC. We can fix all
conflicts in G in ≤ 2|VC| edits by applying for each v ∈ VC ∩ V the fix of Lemma 12 (i) (one
edit) and for each {u, w} ∈ VC ∩ E the fix of Lemma 12 (ii) (two edits). We obtain a graph
G∗ with a valid DFS numbering. However, the vertices that appeared in a fix in the role
of v or w may have degree d + 1 in G∗, higher than permitted. By our “degree reduction
framework” (see full version), another 3|VC| edits suffices to transform G∗ into G∗∗ = (V, E∗∗)
with maximum degree d while maintaining the validity of the DFS numbering. Overall
|E∗∗△E| ≤ 5|VC| and since G is ε-far we have |E∗∗△E| ≥ εn. Hence |M | = |VC| ≥ εn/5. ◀

Lemma 13 immediately implies a simple tester detecting ε-far instances: we randomly
sample Ω(

√
n/ε) vertices and Ω(

√
n/ε) edges, and then with a constant probability one of

the sampled vertices v and one of the sampled edges e will form a conflicting pair (v, e).

▶ Corollary 14. There is an algorithm that with oracle access to a labeled bounded degree graph
G on n vertices, performs O(

√
n/ε) queries to the oracle and accepts, if G has a valid DFS

numbering, and rejects with probability 2
3 , if G is ε-far from having a valid DFS numbering. ◀

In what follows, we will show how to improve this result, as promised in Theorem 11.

5.2 Navigating (would-be) DFS trees

In this section, we develop tools to find conflicting pairs for vertices. We first show how to
traverse a graph using consecutive labels (a simple proof is deferred to the full version).
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▶ Fact 15. Let T be an ordered tree of bounded degree and S its canonical DFS ordering5.
For a randomly selected vertex v from T , given oracle access to T , it is possible to locate the
successor (and the predecessor) of v in S, if one exists, with O(1) queries to T in expectation.

Using Fact 15, we can prove the following lemma.

▶ Lemma 16 (dfs-next). There is an algorithm dfs-next that for a given vertex v ∈ V :
If the numbering of G is a valid DFS numbering then either vertex v + 1 is returned or
end-of-component is returned if v is the largest vertex in its connected component.
The expected (over vertices in V ) number of queries to G of algorithm dfs-next is O(1).

There also exists an algorithm dfs-prev with corresponding properties.

Proof. Let T be the ordered tree on V ∪ {0} rooted at 0 with the edges {p(v), v} for v ∈ V

and children ordered ascending by number. If the numbering of G is a valid DFS numbering
then (by Claim 4) T is precisely the DFS tree that gave rise to the numbering. We can
navigate to successors and predecessors in T (by Fact 15) with an expected number of O(1)
queries to G per step. The only problem is that the virtual vertex 0 cannot be accessed and
has unbounded degree. Whenever we would have to access it, we return end-of-component
instead, which is appropriate because a valid DFS backtracks to 0 precisely if a connected
component has been fully explored. (If the numbering of G is invalid, the produced answer
may be meaningless, but it is still obtained within the claimed expected time budget.) ◀

5.3 Testing for conflicts
Lemma 13 implies that an ε-far instance has Ω(εn) pairwise distinct vertices and edges
involved in conflicts. In this section, we will extend that approach and study separately local
conflicting pairs and global conflicting pairs in order to improve the tester from Corollary 14.
This notion depend on a locality parameter that we will later choose as ℓ = n1/3.

▶ Definition 17. Let (v, {u, w}) ∈ V ⊆ E with p(v) < u < v < w be a conflicting pair. We
speak of a local conflict of the following (not mutually exclusive) types (L1) if u− p(v) ≤ ℓ

and p(v) ̸= 0, (L2) if v − u ≤ ℓ, (L3) if w − v ≤ ℓ. In all other cases we speak of a global
conflict: (G) if p(v) = 0 and max{v − u, w − v} > ℓ; or if max{u− p(v), v − u, w − v} > ℓ.

Informally, local conflicts occur when u is close (in the sense of its DFS number) to p(v)
or v, or w is close v, in which case one can traverse the input graph to efficiently detect the
conflict. For global conflicts, some more global approach will be needed.

5.3.1 Testing for local conflicts
We can detect local conflicts by sampling vertices at random and walking forwards and
backwards in the (supposed) DFS order using Lemma 16 as follows.

▶ Lemma 18. There is an algorithm that with O(ℓ/ε) queries in expectation accepts all valid
DFS numberings and rejects with probability 2/3 if there is a matching M ⊆ V ⊆ E of size
at least εn

30 consisting of conflicting pairs of type (L1). The same applies to types (L2), (L3).

Proof. Consider the following procedure walk-from-p(v) that is given v ∈ V as input.
It first checks if p(v) ̸= 0. If so, it attempts to locate vertices p(v) + 1, p(v) + 2, . . . using
dfs-next from Lemma 16 until one of the following happens.

5 The DFS starts at the root and respects the order of children when visiting them in pre-order traversal.
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If dfs-next reaches vertices out of order, then report the error.
If dfs-next reaches a vertex u that has a neighbour w > v then report the error.
If v or p(v) + ℓ is reached without finding an error, then conclude that v is not involved
in a conflict of type (L1).

Clearly walk-from-p(v) finds an error if v is involved in a conflict of type (L1) and by
Lemma 16 it performs O(ℓ) queries in expectation (over all v ∈ V ). Our algorithm to detect
conflicts of type (L1) is now simply to repeat walk-from-p(v) for many v sampled uniformly
at random. Since the εn

30 vertices matched in M are pairwise distinct, a random vertex from
V is involved in a conflict of type (L1) with probability ε

30 . If we sample 60
ε vertices at

random then the probability of sampling at least one v involved in a conflict of type (L1) is

≥ 1− (1− ε/30)60/ε ≥ 1− e−(ε/30)·(60/ε) = 1− e−2 ≥ 2/3 .

The expected total number of queries amounts to O(ℓ/ε), which concludes the claim.
For conflicts of type (L2) a similar procedure walk-backwards-from-v works. For

conflicts of type (L3) a procedure walk-forwards-from-v would not work because dfs-
next might report end-of-component before w is reached (and without us being aware of
w’s existence). A procedure walk-backwards-from-w does work, however. Note that we
have to sample 60d

ε edges uniformly at random which is still O(1/ε) because d is constant. ◀

5.3.2 Testing for global conflicts

Lemma 18 provides an efficient tool to detect local conflicts but for global conflicts we use a
different approach. We rely on Lemma 13 that promises that there is a matching M ⊆ V ⊆ E

of size at least εn/10 consisting of conflicting pairs. Therefore, if most of conflicts defining
the matching M are global, we can use the following lemma.

▶ Lemma 19. There is an algorithm that performs O(
√

n/ℓ/ε) queries in expectation and
accepts all valid DFS numberings and that rejects with probability at least 2/3 if there is a
matching M ⊆ V ⊆ E of size at least εn/10 consisting of conflicting pairs of type (G).

Proof. Let us partition matching M into strips M1 ⊕M2 ⊕ · · · ⊕M⌈ n
ℓ ⌉ according to the

number of u, so that Mj = {(v, {u, w}) ∈M : ⌈u/ℓ⌉ = j}. Let us define sets Vj := {v ∈ V :
∃e∈E (v, e) ∈ Mj} and Ej := {e ∈ E : ∃v∈V (v, e) ∈ Mj}. Let v̄j be the median of Vj . Let
V −

j be those vertices from Vj that are at most v̄j and E+
j those edges from Ej matched to a

vertex that is at least v̄j . Let mj := |V −
j | and note that |E+

j | = mj and that mj ≥ |Mj |
2 .

We claim that every pair in V −
j × E+

j is a conflicting pair. Indeed, let v1 ∈ V −
j ,

{u2, w2} ∈ E+
j with u2 < w2, and let p1 = (v1, {u1, w1}) and p2 = (v2, {u2, w2}) be the

corresponding pairs in Mj . Then we observe the following:

p(v1)
(1)
≤ max{0, u1 − ℓ}

(2)
< u2

(2)
< u1 + ℓ

(1)
< v1

(3)
≤ v̄j

(3)
≤ v2

(4)
< w2 .

To see this, we notice the following:
(1) p1 is of type (G). Hence u1 − p(v1) > ℓ, unless p(v1) = 0; moreover v1 − u1 > ℓ;
(2) since both p1 and p2 are in Mj , we have |u1 − u2| < ℓ;
(3) by the definition of V −

j and E+
j the values of v1 and v2 fall on the respective side of the

median v̄j ;
(4) p2 is a conflicting pair.
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In view of the above, since every pair in V −
j × E+

j is a conflicting pair, we observe that
over all j we do not just have m = |M | conflicting pairs to work with, but a collection of
bicliques with

∑⌈n/ℓ⌉
i=1 (mj)2 conflicting pairs in total. If we happen to get hold of a v ∈ V −

j

and an e ∈ E+
j for the same j, then we have a conflicting pair (v, e).

In order to find a conflicting pair using the approach above, let us sample (i.u.r.) s vertices
from V and then (i.u.r.) s edges from E, where s will be set up momentarily.

For any 1 ≤ i, r ≤ s, let Xi,r to be the indicator random variable that the ith sampled
element from V and the rth sampled element from E are (respectively) from the sets V −

j and
E+

j for the same j. Observe that if we define random variable X as X =
∑s

i=1
∑s

r=1 E[Xi,r],
then by the arguments above, if X is positive then we have detected a conflicting pair. Using
the second moment method, we get prove the following lemma.

▶ Lemma 20. Let s ≥ c
√

n3

ℓ·|M |2 for a sufficiency large constant c and let s = ω((d/ε)3).
Then Pr[X > 0] ≥ 0.99.

Hence, if we sample i.u.r. at least c ·
√

n3

ℓ|M |2 vertices from V and at least c ·
√

n3

ℓ|M |2 edges
from E for a sufficiently large constant c, then with a constant probability we will detect a
conflicting vertex. At the same time, if the DFS numbering is valid then the algorithm will
accept it. This yields Lemma 19 since in our setting |M | = Ω(εn) and ℓ = n1/3. ◀

5.4 Putting all together: the proof of Theorem 11
Now we are ready to complete the proof of Theorem 11. Our algorithm runs the algorithms
from Lemma 18 (responsible or conflicts of type (L1), (L2) and (L3)) and from Lemma 19
one after the other. If any of them rejects G then we reject G, otherwise we accept G. The
expected total running time is O(ℓ/ε +

√
n/ℓ/ε), which with ℓ = Θ(n1/3) gives O(n1/3/ε) as

claimed. (The query complexity can be made O(n1/3/ε) using Markov inequality.)
Concerning correctness, it is clear that instances with valid DFS numberings are always

accepted. If G is ε-far from a valid DFS numbering then by Lemma 13 there is a matching
M ⊆ V ⊆ E of |M | ≥ εn/5 conflicting pairs. Since each matching edge falls into (at least)
one type, at least one of the following statements holds.

There is a matching M(L1) of |M(L1)| ≥ εn/30 conflicting pairs of type (L1).
There is a matching M(L2) of |M(L2)| ≥ εn/30 conflicting pairs of type (L2).
There is a matching M(L3) of |M(L3)| ≥ εn/30 conflicting pairs of type (L3).
There is a matching M(G) of |M(G)| ≥ εn/10 conflicting pairs of type (G).

In each case, the corresponding algorithm rejects G with probability 2/3 so overall we reject
G with probability at least 2/3. ◀

6 Conclusions

In this paper we introduced a variant of the standard bounded-degree graph model in the
property testing setting that works for labeled graphs and allows also label queries. We
demonstrated the strength of the model on our new study of DFS numbering. Our main
technical contribution is a tight analysis for detecting whether the input labeled graph is
properly DFS-numbered or it is ε-far from having a valid DFS numbering. We demonstrated
that this task can be solved with Ω(n1/3/ε) queries and also Ω(n1/3) queries are necessary.

We observe that while our analysis is presented for undirected graphs, similar arguments
hold also for directed graphs. The lower bound from Theorem 7 trivially extends to directed
graphs and a careful pass through the algorithm in Theorem 11 shows that the analysis can
be extended accordingly. However, to implement this algorithm efficiently in our setting, we
need to allow access to incoming and outgoing edges. (See the full version of the paper.)
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Our analysis can be also extended (but only for undirected graphs) to the DFS finishing
numbers (FIN-numberings [5]). We can show that (for undirected graphs) a numbering
num : V → [n] is a valid FIN numbering iff the reverse numbering ←−num with ←−num(i) = n+1−i

is a valid DFS numbering. This immediately implies that our results for testing valid DFS
numberings extend to testing valid FIN numberings in undirected graphs.
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