
Semi-Streaming Algorithms for Hypergraph
Matching
Henrik Reinstädtler #

Heidelberg University, Germany

S M Ferdous #

Pacific Northwest National Laboratory, Richland, WA, USA

Alex Pothen #

Purdue University, West Lafayette, IN, USA

Bora Uçar # Ñ

CNRS and LIP, ENS de Lyon, France
UMR5668 (CNRS, ENS de Lyon, Inria, UCBL1), France

Christian Schulz #

Heidelberg University, Germany

Abstract
We propose two one-pass streaming algorithms for the N P-hard hypergraph matching problem.
The first algorithm stores a small subset of potential matching edges in a stack using dual variables
to select edges. It has an approximation guarantee of 1

d(1+ε) and requires O((n
ε

) log2 n) bits of
memory, where n is the number of vertices in the hypergraph, d is the maximum number of vertices
in a hyperedge, and ϵ > 0 is a parameter to be chosen. The second algorithm computes, stores,
and updates a single matching as the edges stream, with an approximation ratio dependent on
a parameter α. Its best approximation guarantee is 1

(2d−1)+2
√

d(d−1)
, and it requires only O(n)

memory.
We have implemented both algorithms and compared them with respect to solution quality,

memory consumption, and running times on two diverse sets of hypergraphs with a non-streaming
greedy and a naive streaming algorithm. Our results show that the streaming algorithms achieve
much better solution quality than naive algorithms when facing adverse orderings. Furthermore,
these algorithms reduce the memory required by a factor of 13 in the geometric mean on our test
problems, and also outperform the offline Greedy algorithm in running time.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Hypergraphs

Keywords and phrases hypergraph, matching, semi-streaming

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.79

Related Version Full Version: https://arxiv.org/abs/2502.13636 [38]

Supplementary Material Dataset: https://doi.org/10.5281/zenodo.15778413
Software: https://github.com/HeiHGM/Streaming [37]

archived at swh:1:dir:4e4522550296fb38202457ce7371bf7034ae45d9

Funding We acknowledge support by DFG grant SCHU 2567/8-1. Moreover, we like to acknowledge
Dagstuhl Seminar 24201 on discrete algorithms on modern and emerging compute infrastructure.
Alex Pothen’s research was supported by the U.S. Department of Energy grant SC-0022260. S M
Ferdous’s research was supported by the Laboratory Directed Research and Development Program
at PNNL.

© Henrik Reinstädtler, S M Ferdous, Alex Pothen, Bora Uçar, and Christian Schulz;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 79; pp. 79:1–79:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:henrik.reinstaedtler@informatik.uni-heidelberg.de
https://orcid.org/0009-0003-4245-0966
mailto:sm.ferdous@pnnl.gov
https://orcid.org/0000-0001-5078-0031
mailto:apothen@purdue.edu
https://orcid.org/0000-0002-3421-3325
mailto:bora.ucar@ens-lyon.fr
http://perso.ens-lyon.fr/bora.ucar
https://orcid.org/0000-0002-4960-3545
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
https://doi.org/10.4230/LIPIcs.ESA.2025.79
https://arxiv.org/abs/2502.13636
https://doi.org/10.5281/zenodo.15778413
https://github.com/HeiHGM/Streaming
https://archive.softwareheritage.org/swh:1:dir:4e4522550296fb38202457ce7371bf7034ae45d9;origin=https://github.com/HeiHGM/Streaming;visit=swh:1:snp:981431da5340cbbf116e22fe0896634c2d164c50;anchor=swh:1:rev:acc7c88e5544a70f356db838f4027629ae8ffb4b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

79:2 Semi-Streaming Algorithms for Hypergraph Matching

1 Introduction

We propose two streaming algorithms for the hypergraph matching problem, derive their
approximation ratios, and implement them to evaluate their practical performance on a large
number of test hypergraphs. Recall that hypergraphs are a natural extension of graphs and
can help to model our ever evolving earth and society. In a hypergraph, a hyperedge is a
subset of vertices and can contain any number of them, instead of just two. The hypergraph
matching problem asks for a set of vertex-disjoint hyperedges. Two common objectives in the
hypergraph matching problem are to maximize the number or total weight of the matching
hyperedges. The hypergraph matching problem has applications ranging from personnel
scheduling [17] to resource allocations in combinatorial auctions [21]. The hypergraph
matching problem with either of the objective functions is NP-complete [24], but a simple
Greedy algorithm is 1/d-approximate, where d is the maximum size of a hyperedge [5, 28].

There are a few papers with computational studies for the hypergraph matching problem,
in a single CPU in-memory setting [11] and in a distributed computing setting [23]. However,
little to no attention was paid to increasing data sizes and approximation guarantees.
Streaming and semi-streaming algorithms address this trend of ever-increasing data size.
In a streaming setting, hyperedges arrive one by one in arbitrary order. The amount of
memory that can be used is strictly bounded by the size of the final solution. In the case
of hypergraph matching, this is Θ(n), where n is the number of vertices in the hypergraph,
because every vertex can be matched at most once. For a semi-streaming setting, this criterion
is relaxed to allow for an additional polylog factor. Furthermore, establishing a bound on the
degree of suboptimality is essential for evaluating the solution’s effectiveness. For matchings
in graphs, there is a semi-streaming algorithm having an approximation guarantee of 1

2
by Paz and Schwartzman [33].

The algorithm by Paz and Schwartzman requires one variable per vertex, the dual variable,
and uses a stack to store candidate matching edges. When an edge appears in the stream,
the algorithm adds it to a stack if its weight dominates the sum of the duals of its vertices,
and then updates the duals with the difference between the edge weight and the sum of duals.
Otherwise, the edge is discarded. After all edges have been streamed, non-conflicting edges
are added from the stack beginning at the top. Ghaffari and Wajc [18] give a simplified proof
of the approximation guarantee of this algorithm using the primal-dual linear programming
framework.

Our contributions are as follows. We first propose a novel streaming framework for
hypergraph matching and prove an approximation guarantee in relation to the largest
hyperedge size by extending the stack-based algorithm of Paz and Schwartzman [33] to
hypergraphs. In essence, our algorithm puts hyperedges that potentially belong to a good
matching on a stack, and in the end computes a matching out of those hyperedges. Given
the maximum hyperedge size d (the maximum number of vertices in a hyperedge), we use
primal-dual techniques to prove a 1

d(1+ε) approximation factor, where ϵ > 0 is a parameter
to be chosen. Our most memory-saving algorithm requires O(n log2 n/ε) bits of space. We
then propose a second family of algorithms which do not need a stack and require less space
and work by greedily swapping hyperedges from the current matching with the incoming
ones. Like the first stack-based algorithm, this algorithm family requires O(|E| · d) work.
They have an approximation guarantee depending on a factor α > 0, which can be tuned to
result in a guarantee of 1

(2d−1)+2
√

(d−1)d
. In experiments, we show the competitiveness of

our approaches and benchmark them on a set of social link hypergraphs and a large set of
instances from hypergraph partitioning. We compare our algorithms with a Naive streaming

H. Reinstädtler, S. M. Ferdous, A. Pothen, B. Uçar, and C. Schulz 79:3

algorithm that maintains a maximal matching in the hypergraph by adding a hyperedge from
the stream to the match if it does not overlap in any vertex with the current matching edges,
and a non-streaming Greedy algorithm. The stack-based algorithms reduce the memory
consumption by up to 13 times in comparison to the non-streaming Greedy algorithm on social
link hypergraphs. We investigate the impact of ordering the hyperedges in the stream and
show that our stack algorithm can handle them better than the non-streaming Greedy and
Naive streaming algorithms, while requiring only 26% more time than the Naive algorithm.
We show the impact of the parameters α and ε on their respective algorithms.

The rest of the paper is organized as follows. After introducing the notation and related
work in Section 2, we show our approximation guarantee for an adaptation of the Paz-
Schwartzman semi-streaming algorithm and discuss further improvements in Section 3.
Section 4 introduces our greedy swapping algorithm for streaming based on McGregors [31]
algorithm. These approaches are then extensively evaluated by experiments in Section 5. We
conclude in Section 6. The Appendix of the full version of the paper contains the proof of
the approximation guarantee for the algorithm from Section 4, and additional statistics on
the test problems as well.

2 Preliminaries

2.1 Basic Concepts
Hypergraphs. A weighted undirected hypergraph H = (V, E, W) consists of a set V of n

vertices and a set E of m hyperedges. Each hyperedge e is a subset of vertices and is
assigned a positive weight by the weight function W : E → R>0. The number of vertices in
a hyperedge e is its size, and is denoted by |e|, and the maximum size of a hyperedge or
rank of the hypergraph is denoted by d := maxe∈E |e|. For clarity and brevity, we refer to a
hyperedge simply as an edge when it is evident from the context that a hypergraph is under
consideration.

Matching. A subset of (hyper-)edges M ⊂ E is a matching, if all (hyper-)edges in M are
pairwise disjoint, i.e., only at most one (hyper-)edge is selected at every vertex. A matching M

is called maximal, if there is no (hyper-)edge in E which can be added to M without violating
the matching constraint. The weight of a matching is defined by W (M) :=

∑
e∈M W (e) and

a maximum matching is a matching with the largest weight.

Related N P-hard Problems. The unweighted hypergraph matching problem is closely
related to the maximum independent set and the k-set packing problems. Both problems are
NP-hard [27]. An independent set in a graph is a subset of vertices in which no two vertices
are adjacent. There is a simple transformation from hypergraph matching to maximum
independent set using the line graph of the hypergraph; in the line graph, every hyperedge
becomes a vertex, and two such vertices are connected if the corresponding hyperedges share
a common vertex. Given a ground set S and some subsets S1, . . . , Sn, each of size at most k,
the k-set packing problem asks to select the maximum number of disjoint subsets. It can be
translated to the hypergraph matching setting, by choosing the set S to correspond to the
vertices V , while the subsets S1, . . . , Sn correspond to the hyperedges.

(Semi-)Streaming Algorithms. If the input size exceeds the memory of a machine, a typical
solution is to stream the input. There are several definitions for streaming in graphs and
hypergraphs. When (semi-)streaming, the (hyper-)edges of a (hyper-)graph are usually

ESA 2025

79:4 Semi-Streaming Algorithms for Hypergraph Matching

presented in an arbitrary (even adverse) order one-by-one in several passes. In this paper
we consider having only one pass over the input. In a streaming setting, the memory is
strictly bounded by the solution size and, hence, for matching in hypergraphs, it is limited
by the number of vertices. When using the semi-streaming model the memory is bounded
by O(n · polylog(n)).

Approximation Factors. Algorithms can be classified into three categories: exact algorithms,
heuristics without approximation guarantees, and approximation algorithms. The quality
of an approximation algorithm is measured by comparing its solution’s value to that of an
optimal solution. For an instance I of a maximization problem, let the optimum objective be
denoted by M(I). If an algorithm A is guaranteed to find a solution that is bigger than αM(I)
for every instance, where α ∈ R+

<1 and is chosen to be as large as possible, then A provides
an α-approximation guarantee. In some communities, the convention is to report 1

α > 1 as
the approximation ratio, although we do not follow it here. For an overview of techniques to
design approximation algorithms, we refer the reader to Williamson and Shmoys [42].

(Integer) Linear Programs. Many optimization problems can be formulated as integer
linear programs (ILP). In a maximization problem, an (integer) linear program finds an
(integer) vector x with components xi, that maximizes a linear cost function

∑
cixi such that

a constraint Ax ≤ b, where A is a matrix, is satisfied, with typically additional constraints on
the components of x, e.g., xi ≥ 0. If the variables of the problem are integer, some problems
are NP-hard, while other problems (where the constraint matrix is unimodular) are solvable
in polynomial time [43]. When the integer constraint is dropped, any linear program is
solvable in polynomial time [44]. For every linear program one can find a dual problem [42].
Given a maximization problem as described before, the dual problem is to find a vector
yi ≥ 0, that minimizes

∑
biyi subject to AT y ≥ c. The weak duality theorem [42] states that

for any primal maximization problem, the dual minimization problem for any feasible solution
has an objective value larger than the optimal solution of the primal problem. The strong
duality theorem states that if the primal problem has an optimal solution then the dual is
solvable as well and the optimum values are the same. For a more detailed introduction, we
refer the reader to the Appendix of [42].

2.2 Related Work
Matching is a well-studied problem in computer science, and here we give a brief overview of
matchings in graphs and hypergraphs.

Matching in Graphs and Streaming. The polynomial-time complexity of matchings in
graphs is one of the classical results in theoretical computer science [12]. While Preis [36]
presents the first linear time 1

2 -approximation, Drake and Hougardy [10] show a simpler
algorithm with the same approximation ratio by path growing (PGA) in linear time. A number
of other 1/2-approximation algorithms have been developed, including the proposal-based
Suitor algorithm of Manne and Halappanavar [29]. Pettie and Sanders [34] propose a 2

3 − ε

approximation with expected running time of O(m log 1
ε). The GPA algorithm by Maue

and Sanders [30] bridges the gap between greedy and path-searching algorithms, showing
that a combination of both works best in practice. Pothen, Ferdous and Manne [35] survey
these approximation algorithms. Birn et al. [6] develop a parallel algorithm in the CREW
PRAM model with 1

2 -approximation guarantee and O(log2 n) work. Feigenbaum et al. [14]
present a 1

6 -approximation for the weighted matching problem in the semi-streaming setting

H. Reinstädtler, S. M. Ferdous, A. Pothen, B. Uçar, and C. Schulz 79:5

using a blaming-based analysis. McGregor [31] develop a multipass algorithm that returns a
1

2+ε approximation in O(ε−3) rounds, with the initial matching having an approximation
guarantee of 1

3+2
√

2 . Paz and Schwartzman [33] give a 1
2+ε -approximation algorithm, which

employs a dual solution to admit candidate edges into a stack, while also updating the dual
solution. The matching is constructed by removing edges from the top of the stack, and those
that do not violate the matching property are added to the solution. The resulting matching is
not necessarily maximal. Ghaffari and Wajc [18] provide a simpler proof of the approximation
ratio using a primal-dual analysis. Ferdous et al. [15] show empirically that the algorithm by
Paz and Schwartzman can compete quality-wise with offline 1

2 -approximation algorithms like
GPA, while requiring less memory and time. Ferdous et al. [16] present two semi-streaming
algorithms for the related weighted k-disjoint matching problem, building upon the algorithms
of Paz and Schwartzman, and Huang and Sellier [25, 33] for streaming b-matching.

Hypergraph Matching. Hazan et al. [24] prove that for the maximum k-set packing
problem there is no approximation within a factor of Ω(k/ log k) unless P = NP. This
directly translates to d-uniform cardinality hypergraph matching, where every edge has size
d, with k = d and the number of edges selected is maximized. Dufosse et al. [11] investigate
reduction rules and a scaling argument for finding large matchings in d-partite, d-uniform
hypergraphs. There are several approximation results and local search approaches, most
notably by Hurkens and Schrijver [26] and Cygan [7] with an approximation guarantee
of O(

(
d+1+ε

3
)
). Hanguir and Stein [23] propose three distributed algorithms to compute

matchings in hypergraphs, trading off between quality guarantee and number of rounds
needed to compute a solution.

The Greedy algorithm for maximum weight hypergraph matching, which considers
hyperedges for matching in non-increasing order of weights, is 1/d-approximate, where
d is the maximum size of a hyperedge [5, 28]. For the weighted k-set packing problem
Berman [4] introduces a local search technique. Improving on these results, Neuwohner [32]
presents a way to guarantee an approximation threshold of k

2 . We are not aware of any
practical implementations of these techniques. For the more general weighted hypergraph b-
matching problem, Großmann et al. [22] present effective data-reduction rules and local
search methods. In the online setting, when hyperedges arrive in an adversarial order, and
one must immediately decide to include the incoming hyperedge or not in the matching,
Trobst and Udwani [40] show that no (randomized) algorithm can have a competitive ratio
better than 2+o(1)

d .
We are unaware of any studies or implementations for streaming hypergraph matching.

3 Stack-based Algorithm

We now present our first algorithm to tackle the hypergraph matching problem in the
semi-streaming setting. Our algorithm uses dual variables to evaluate whether a streaming
hyperedge is good enough to be retained in a stack. Once the stream has been ingested, the
stack is evaluated from top to bottom to determine a matching, achieving an approximation
guarantee of 1

d(1+ε) . We also discuss a more permissive and lenient update function that
allows more hyperedges into the stack. Finally, we discuss the space complexity of our
algorithms.

Algorithm 1 shows our framework for computing a hypergraph matching in a streaming
setting. This algorithm is an extension of an algorithm by Paz and Schwartzman [33]
proposed for graphs. The algorithm starts with an empty stack and keeps a dual variable ϕv

for each vertex v of the hypergraph. Throughout the algorithm the stack contains candidate
hyperedges for inclusion in a matching.

ESA 2025

79:6 Semi-Streaming Algorithms for Hypergraph Matching

For each streamed hyperedge e, the algorithm checks if the weight of the dual variables
of e’s vertices and thereby the solution can be improved by adding e to the stack. More
precisely, with Φe :=

∑
v∈e ϕv, the algorithm checks if W (e) ≥ Φe(1 + ε). The parameter ε ∈

R≥0 is used to trade quality for memory. A smaller ε yields a better approximation guarantee,
while a higher ε yields a smaller memory consumption. With ε = 0, the algorithm no longer
provides memory guarantees. If W (e) ≥ Φe(1 + ε), then e is added to the stack, and the
dual variables of the vertices of e are then updated using an update function. The update
functions that we consider take O(1) time per vertex.

After all hyperedges have been streamed, a matching containing only the hyperedges
stored in the stack is computed. To do that, our algorithm takes the hyperedges in reverse
order from the stack and adds non-overlapping hyperedges to the matching. Note that
hyperedges processed earlier that have conflicting heavier (later) hyperedges will be ignored.
This is crucial to prove the performance guarantee later. The amount of total work needed
for scanning one hyperedge e is O(|e|), because we need to sum up the dual variables of e’s
vertices and update them.

The update functions determine whether an approximation guarantee can be provided
and directly impact the results. Upon processing a hyperedge e, the update function applied
to the dual variable of a vertex v ∈ e can use the prior value ϕv and sum Φe :=

∑
v∈e ϕv

as well as e’s size and weight. We define the following update function for proving the
approximation guarantee

ϕnew
v := δg(e, ϕv, Φe, W (e)) := ϕv +

w′
e︷ ︸︸ ︷

W (e)− Φe . (1)

The δg function is exactly the function used by Paz and Schwartzman [33]. For a hyperedge
e added to the stack, the ϕ(v) value of its endpoints is increased by the potential gain in
matching weight, w′

(e). This follows since ϕ(v) stores the gain in weight of all earlier edges
incident on v that have been added to the stack thus far.

We introduce a different update function later.
At the core of this method are the variables ϕv for each v and the update mechanism.

These core components and local ratio techniques are used to prove the approximation
guarantee in the original work [33]. We follow the structure of the proof derived from a
primal-dual analysis [18].

3.1 Approximation Guarantee
We make use of the primal-dual framework for showing the approximation guarantee. For
general linear programming concepts, we refer the reader to books [1, 44], and for an excellent
overview of primal-dual approximation method to the book [42].

We show that using δg update function (1) in our algorithm leads to a 1
d(1+ε) -approxima-

tion, when the stack is unwound and hyperedges are selected in that order which they are on
the stack. When streaming the hyperedges in descending order of weights, we can prove that
the Greedy algorithm achieves a 1/d approximation factor.

We now proceed with a primal-dual analysis of an ILP formulation of the hypergraph
matching problem. In our formulation, there is a binary decision variable associated with
each hyperedge to designate if that hyperedge is selected to be in the matching. The objective
function is to maximize the sum of the weights of the selected hyperedges. The constraint is
to select at most one hyperedge containing a given vertex. The linear programming relaxation,
shown in Figure 1a, is obtained by dropping the binary constraint on the hyperedge variables.

H. Reinstädtler, S. M. Ferdous, A. Pothen, B. Uçar, and C. Schulz 79:7

Algorithm 1 Simple Streaming Algorithm.
1: procedure StackStreaming(H = (V, E, W))
2: S ← emptystack

3: ∀v ∈ V : ϕv = 0
4: for e ∈ E in any (even adverse) order do
5: Φe ←

∑
v∈e ϕv

6: if W (e) < Φe(1 + ε) then
7: next
8: end if
9: S.push(e)

10: for v ∈ e do
11: ϕv ← δ(e, ϕv, Φe, W (e)) {update}
12: end for
13: end for
14: M ← ∅
15: while S ̸= ∅ do
16: e← S.pop()
17: if ∀f ∈M : f ∩ e = ∅ then
18: M ←M ∪ {e}
19: end if
20: end while
21: end procedure

The objective value of the relaxation is naturally greater or equal than the integer version
of the linear program. The dual problem of the relaxed hypergraph matching is given in
Figure 1b. Following the weak duality theorem for linear programs, we know that any feasible
solution of the dual has an objective value greater or equal to the objective value of any
feasible primal solution. Furthermore, the optimal value of the linear program OPT(LP) is
equal for both problems (strong duality). The first step for the proof is to check that the
variables (1 + ε)

∑
v∈e ϕv (from Algorithm 1) constitute a valid dual solution.

▶ Observation. Function δg and Algorithm 1 generate valid dual solutions for all ε ≥ 0.

Proof. For each hyperedge e not on the stack, there was enough weight in the ϕv values of
its vertices, when e was scanned in Line 6. In the update for every added hyperedge to the
stack, all vertices ϕv values are increased by w(e)−Φe such that clearly the sum of vertex ϕv

values is higher than the weight of the hyperedge just added. Therefore, for any hyperedge it
holds

∑
v∈e ϕv ≥W (e), satisfying the dual equation (2). ◀

Such a valid dual solution has a greater objective value then the optimum solution of
the relaxed dual, and the LP duality theorem gives an upper bound for every matching,
including the optimal one M∗ by W (M∗) ≤ OPT(LP) ≤ (1 + ε)

∑
v ϕv.

Now, we connect the changes to the dual variables with the hyperedges that have already
been processed. Define

∆ϕe =
{∑

v∈e(δg(e, ϕv, Φe, W (e))− ϕv) = |e| (W (e)− Φe) if e ∈ S

0 else
(3)

as the change to the dual
∑

v ϕv by inspecting e. We give a bound for the change of the dual
variable w.r.t. the preceding hyperedges in Lemma 1.

ESA 2025

79:8 Semi-Streaming Algorithms for Hypergraph Matching

Figure 1 Primal and Dual LPs for Hypergraph Matching.

(a) LP

maximize
∑
e∈E

W (e)xe

subject to

∀v ∈ V :
∑
e∋v

xe ≤ 1

∀e ∈ E : xe ≥ 0.

(b) Dual LP

minimize
∑
v∈V

ϕv

subject to

∀e ∈ E :
∑
v∈e

ϕv ≥ W (e) (2)

∀v ∈ V : ϕv ≥ 0.

▶ Lemma 1. For a hyperedge e, let W ′
e := W (e)− Φe. For each hyperedge e ∈ E added to

stack S, if we denote its preceding neighboring hyperedges (including itself) by P(e) := {c |
c ∩ e ̸= ∅, c added before e} ∪ {e}, then W (e) ≥

∑
e′∈P(e)

1
d

∆ϕe′ =
∑

e′∈P(e) W ′
e′ .

Proof. From the definition (3), we have ∆ϕe = |e|W ′
e for δg, because of line 11 of Algorithm 1.

Φe :=
∑

v∈e ϕv is defined as the previous value of the dual variables before inspecting e. Each
of these dual values ϕv consists of the sum

∑
c∈P(e) s.t. v∈c W ′

c for all preceding hyperedges.
This leads to Φe =

∑
v∈e ϕv ≥

∑
c∈P(e)\{e}

1
|e| ∆ϕe′ ≥

∑
c∈P(e)\{e}

1
d ∆ϕc. So we can conclude

W (e) = W ′
e + Φe ≥ 1

d ∆ϕe +
∑

e′∈P(e)\{e}
1
d ∆ϕe′ . ◀

The previous bound relates the weight of a hyperedge to the change in dual variables by its
predecessors. In conclusion, we show that our algorithm returns a 1

d(1+ε) -approximation.

▶ Lemma 2. Algorithm 1 with δg function guarantees a 1
d(1+ε) -approximation.

Proof. We show a lower bound on the weight of any matching M constructed by the algorithm.
For any hyperedge e not in the stack, ∆ϕe = 0, as when a hyperedge is not pushed into the
stack, no dual variables are updated. Furthermore, any hyperedge in the stack that is not
included in the matching must be a previously added neighbor of a matching hyperedge as
defined in Lemma 1. Therefore, Lemma 1 applies, and the weight can be lower-bounded.
The sum of changes

∑
e ∆ϕe to ϕ is equal to the sum of dual variables

∑
v ϕv at the end.

We have

W (M) =
∑

e∈M W (e)
L. 1
≥

∑
e

1
d

∆ϕe ≥ 1
d

∑
e ∆ϕe = 1

d

∑
v ϕv

LP Duality
≥ 1

d(1 + ε)W (M∗).
◀

3.2 Improving Solution Quality
Now we look into optimizing the solution quality. The design space for optimizations is vast,
therefore we focus on simple yet effective techniques. We propose a second update function
allowing more hyperedges than δg into the stack, with the same approximation guarantee.

Lenient Update Function. The δg in Equation 1 builds a dual solution much larger than
needed. For every successfully added hyperedge, the difference between the current dual
solution and the weight of the hyperedge is added to every vertex of the hyperedge. We
address this by combining it with a scaling argument. The resulting function is

δlenient(e, ϕv, Φe, W (e)) := ϕv + (W (e)− Φe)/ |e| . (4)

H. Reinstädtler, S. M. Ferdous, A. Pothen, B. Uçar, and C. Schulz 79:9

This function produces a valid dual solution, and Lemma 1 also holds. For every previously
added neighboring hyperedge e′ the change ∆ϕe = W ′

e′ was distributed over all vertices of
the hyperedge, so Φe ≥

∑
e′ added before

1
d∆ϕe′ . Lemma 2 follows and gives us the desired

approximation factor of 1
d(1+ε) .

3.3 Space Complexity Analysis
The space complexity of δg and δlenient can be deduced by simple counting arguments. Let W

be the maximum normalized weight of a hyperedge in the hypergraph, i.e., W := maxe∈E W (e)
mine∈E W (e) ,

and let W be O(poly(n)). We discuss both update functions separately.

Guarantee Function. On every vertex we can observe up to 1 + log1+ε(W) incrementing
events, because every change in the dual variables has to be bigger by a factor of (1 + ε).
This causes the stack to contain O(

∑
v(1 + log W/ε)) vertices in its edges. Each vertex in

an edge requires log n bits. Therefore, the overall space complexity is O((1/ε)n log2 n) bits
since W is O(poly(n)).

Lenient Function. This function updates ϕv for every vertex in an edge e added to the stack
by W (e)−Φv

d , resulting in 1 + d · log1+ε(W) possible increases to reach the total sum of W .
Following the same argument, the stack’s space complexity in bits is O((1/ε)nd log2 n). Note
that with this update function the algorithm is semi-streaming only if d is O(polylog(n)).

The time complexity per edge is in O(d) and Ω(md) overall in the scanning phase, as for
every edge its vertices need to be scanned and optionally updated once. The unwinding of the
stack takes d checks per hyperedge, when reusing the memory of ϕv from the previous step.
Overall, since the stack size is naturally bounded by m, the complexity of this algorithm is
O(md). In Section 5.2 we show the difference in the stack size in experiments under several
orderings of the input.

4 Greedy Swapping Algorithm

We now propose a second streaming algorithm that computes, stores, and updates a matching
in the hypergraph as the edges stream. It is conceptually similar to a streaming matching
algorithm for graphs [31]. It requires a constant amount of memory per vertex, has an
approximation factor that depends on the maximum size of a hyperedge d and a parameter
α and obtains high-quality matchings in practice.

The proposed approach is described in Algorithm 2. We store for every vertex v a
reference to the current matching hyperedge containing v; the ⊥ sign symbolizes that no
matching hyperedge contains v. For simplifying the presentation, we define W (⊥) = 0. When
we inspect a hyperedge e, we compute the sum of the weights of its adjacent hyperedges
that are currently in the matching. If the weight of the incoming hyperedge is larger than
(1 + α) times the previous conflicting hyperedges, we first remove the previous hyperedges
from all their vertices. Afterwards we can set the reference to the new incoming hyperedge.
The overall space consumption of this algorithm is O(n). There are n references involved,
and each hyperedge of size d holds the d vertices referencing it. Removing a hyperedge
is linear in d, because up to d vertices in Bv must be set to ⊥; it follows that the total
work is O(d · |E|).

We show its approximation guarantee of 1
(1+α)(d−1

α +d) , which is optimal for α=
√

(d− 1)/d,
in the Appendix of the full version. In our experimental evaluation, we look at various values
of α ∈ {0, 0.1, 1} and α =

√
(d− 1)/d. Note that for α = 0 the algorithm has no guarantee.

ESA 2025

79:10 Semi-Streaming Algorithms for Hypergraph Matching

Algorithm 2 Swapping streaming algorithm.

1: procedure SwapSet((H = (V, E, W), α))
2: ∀v ∈ V : Bv = ⊥{ Initialize best hyperedge to empty}
3: W (⊥) := 0
4: for e ∈ E in arbitrary order do
5: C ←

⋃
v∈e Bv

6: Φe ←W (C){ weight of hyperedges to be removed.}
7: if W (e) ≥ (1 + α) · Φe then
8: for v ∈ e do
9: if Bv ̸= ⊥ then

10: for w ∈ Bv do
11: Bw ← ⊥ { Unmatch vertices in B.}
12: end for
13: end if
14: Bv ← e

15: end for
16: end if
17: end for
18: M ←

⋃
v∈V Bv

19: return M

20: end procedure

5 Experimental Evaluation

We now evaluate our algorithms with respect to solution quality, running time, and memory
usage. Specifically, we address the following research questions:

RQ1: How does the ordering of the hyperedges affect our metrics (memory, running
time, and quality)?
RQ2: How do other instance properties affect our algorithms in their memory needs?
RQ3: How do our algorithms compare with offline greedy or naive streaming approaches?

5.1 Setup and Data Set
We implemented our approaches in C++ using g++-14.2 with full optimization turned on
(-O3 flag). We tested on two identical machines, equipped with 128 GB of main memory
and a Xeon w5-3435X processor running at 3.10 GHz having a L3 cache of 45 MB each. We
repeat each experiment three times, and the results are compared only if experiments are
run on the same machine and the same compute job. For memory consumption, we used
the jemalloc malloc implementation [13]. The time needed for loading the hypergraph is
not measured. We scheduled eight experiments (RQ1) and ten experiments (RQ2) to run in
parallel, and the order of the experiments was randomized. In order to compare the results
we use performance profiles as suggested by Dolan and Moré [9]. We plot the fraction of
instances that could be solved within a factor τ < 1 of the best result per instance. In the
plot (Figure 7), the algorithm towards the top left corner is the best performer.

Our benchmark includes general hypergraphs that are primarily used for partitioning
and social link hypergraphs generated from question-answering websites. In social link
hypergraphs, a hypergraph matching can be used to summarize the overall websites, as
it represents a subset of disjoint pages from different categories or users. In hypergraph

H. Reinstädtler, S. M. Ferdous, A. Pothen, B. Uçar, and C. Schulz 79:11

partitioning, matchings can be used to contract the hypergraph in a multilevel scheme. In a
social hypergraph, each page (e.g., a post on StackOverflow or an article in Wikipedia) is
considered as a hyperedge. The (Threads) graphs model participating users as vertices,
whereas the (Tags) ones model the tags of the posts as vertices. We use three stackexchange
networks by Benson et al. [3], and set the number of views as weights from [39]. For the
StackOverflow instance, the weights are set by querying the public dataset from BigQuery [19].
We created an additional instance from this source. We also generated a new hypergraph
from the English Wikipedia dump, where the categories represent the vertices and the articles
represent the hyperedges. We selected a category as a vertex if it has at least 25 mentions,
which resulted in 293K vertices for 8M articles. The access frequency of each article in
December 2024 is set as weight. We answer RQ1 and RQ3 with this data set.

We use the hypergraph data set LHG collected earlier [20] for hypergraph partitioning to
address RQ2 and RQ3. The set consists of 94 instances, spanning a wide range of applications
from DAC routability-driven placement [41], general matrices [8] to SAT solving [2]. As
weights we use max |e| − |e|. This function maximizes the cardinality (number of edges
matched). These instances have up to 1.4 × 108 hyperedges/-vertices and a maximum
hyperedge size of 2.3× 106 vertices. More statistics are in the Appendix of the full version.

For the stack-based approach of Section 3, we implemented the Guarantee and Lenient
update functions. For simplicity, we refer to the algorithm with the stricter Guarantee
function as Stack and the one with the lenient function as StackLenient. Both approaches
can be configured by their ε parameter. The algorithms from Section 4 are named SwapSet.
The SwapSet algorithm has a parameter α ≥ 0. For comparison, we use a non-streaming
Greedy algorithm that sorts the hyperedges based on weight in descending order and greedily
adds them to a matching. We also implemented a Naive streaming algorithm that maintains
a maximal hypergraph matching (i.e, it includes a hyperedge if it is feasible w.r.t the current
matching) in the order that they are streamed.

5.2 Impact of Streaming Order
We now investigate the impact of different streaming orders on our algorithms (RQ1). To
this end, we stream the hyperedges of the social-link hypergraphs in three ways: by ascending
weight, descending weight, and the original input order. The original input order is the order
given by either the original files [3] or, in the case of the wikipedia instance, the order that
the articles appear in the dump.

Memory. Figure 2 shows the geometric mean memory consumption for all approaches
grouped by the ordering. Interestingly, for lower values of ε, the memory consumption is
significantly higher for the ascending order, up to 2.97 times over the descending order
(StackLenient ε = 0). For the swapping based algorithms (SwapSet) the differences between
the orderings are only minimal, nearly reaching the memory consumption of the Naive
algorithm. The Greedy algorithm utilizes the same amount of memory for all orderings,
13.43 times more memory than the stack approaches in the geometric mean. The ordering
heavily affects our stack-based algorithms, but they still require less memory than the Greedy
approach. The SwapSet algorithms are not significantly impacted by the order. Both results
are in line with the theoretical results derived in Section 3.3 and 4.

Running time. In Figure 3 the geometric mean of the running times of the compared
algorithms are shown. The Naive streaming algorithm is the fastest, requiring similar time
over every ordering. The ascending ordering requires more time for both greedy swapping and

ESA 2025

79:12 Semi-Streaming Algorithms for Hypergraph Matching

Naive

ε = 0 ε = 0.1 ε = 0.5︸ ︷︷ ︸
Stack

ε = 1 ε = 0 ε = 0.1 ε = 0.5︸ ︷︷ ︸
StackLenient

ε = 1 α = 0 α = 0.1︸ ︷︷ ︸
SwapSet

α = 1 α = best

Greedy

101

102

Memory Consumption [MB]

Ascending

Descending

Original

Figure 2 Geometric mean of the memory consumption on the social-link hypergraphs. Note the
log -scale on the y-axis.

stack-based approaches since more replacements in the swapping algorithm and placements
in the stack happen in that order. The stack-based approaches have a running time only
26% higher than the Naive. We observe that preordering the hyperedges speeds up the offline
Greedy algorithm by a factor of 2.73 in comparison to the original ordering, but it is still
slower than the stack-based algorithms. This is due to our use of std::sort that is partly
optimized for ordered data. The running time of the SwapSet algorithms is comparable to
the running time of Greedy with natural ordering. The cost for voiding edges in the SwapSet
algorithm is higher than simply pushing edges on the stack. In general, the streaming process
of Stack and StackLenient is similar to that of Naive. The small overhead is rooted in the
required pass through the stack to build the matching. The ordering affects how many edges
are added to the stack (see the following Memory section) and so the running time as well,
but not as much as in the Greedy algorithm.

Quality. We present the geometric mean of the weights of matchings in Figure 4. As
expected, the Greedy algorithm is not affected by the ordering since it computes its own
order in the beginning. The quality of Naive algorithm is heavily affected by orderings,
where the best weight is achieved when the hyperedges are streamed in descending order.
On ascending and original order, the quality of the Naive is significantly worse. Under the
descending orderings, the swapping algorithm (SwapSet) produces the same results as the
Greedy algorithm, whereas the ascending order produces worse quality results in the SwapSet
algorithm. The Stack and StackLenient approaches are more robust under different orderings
and compute better quality matchings in the adversarial ascending order compared to other
algorithms..

H. Reinstädtler, S. M. Ferdous, A. Pothen, B. Uçar, and C. Schulz 79:13

Naive

ε = 0 ε = 0.1 ε = 0.5︸ ︷︷ ︸
Stack

ε = 1 ε = 0 ε = 0.1 ε = 0.5︸ ︷︷ ︸
StackLenient

ε = 1 α = 0 α = 0.1︸ ︷︷ ︸
SwapSet

α = 1 α = best

Greedy

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Running Time [s]

Ascending

Descending

Original

Figure 3 Geometric mean of running times on the social-link hypergraphs.

Naive

ε = 0 ε = 0.1 ε = 0.5︸ ︷︷ ︸
Stack

ε = 1 ε = 0 ε = 0.1 ε = 0.5︸ ︷︷ ︸
StackLenient

ε = 1 α = 0 α = 0.1︸ ︷︷ ︸
SwapSet

α = 1 α = best

Greedy

0

2

4

6

8

1e7 Weight

Ascending

Descending

Original

Figure 4 Geometric mean of weights on the social-link hypergraphs.

ESA 2025

79:14 Semi-Streaming Algorithms for Hypergraph Matching

105 106 107 108

n

101

102

103

104

M
em

or
y

[M
B]

Memory

Naive
Stack ε= 0

Stack ε= 1

StackLenient ε= 0

StackLenient ε= 1

SwapSet α= 0

SwapSet α= 1

Greedy

Figure 5 Geometric mean of the memory consumption on hypergraphs from partitioning plotted
against the number of vertices.

5.3 Impact of Other Properties
We now test whether some other properties of the instances have an impact on the memory
consumption of the algorithm (RQ2). Namely, we check if the number of vertices and the
number of pins (sum of all edge sizes) are correlated with the memory consumption. We
use the data set by Gottesbüren et al. [20] from hypergraph partitioning, which contains
many larger-scale instances. This data set contains 94 diverse instances, making it more
suitable for statistical testing. The ordering is the original ordering as given by the files
in [20]. Instance details can be found in the Appendix of the full version. A hyperedge e

in these instances has a weight of (maxe∈E |e|)− |e|, optimizing the number of hyperedges
matched. We set ε (and also α) to {0, 1} since they represent the two extremes in terms of
memory usage.

Number of Vertices. Figure 5 shows the memory consumption plotted against the number
of vertices in each instance. The plot is on a log-log-scale. Naturally, Naive requires the least
amount of memory. Our SwapSet algorithm follows, as well as the Stack algorithm and the
StackLenient. Finally, the offline Greedy requires even more memory. This is also backed by
the theoretical results of Sections 3.3 and 4. The higher the number of vertices, the smaller is
the difference in magnitudes between the approaches. This is due to the additional memory
needed for the list of finally matched hyperedges and the overhead in some allocations. The
measured peak allocation may contain some overallocated memory caused by the growing
result vectors.

Number of Pins. In Figure 6, a plot of the geometric mean memory consumption against
the number of pins (sum of all edge sizes) for our approaches and the competitors is shown.
Additionally, we added a linear regression line for the Greedy algorithm’s memory consumption.
The linear model achieves an R2 score of 0.96 when (randomly) splitting the data set into a

H. Reinstädtler, S. M. Ferdous, A. Pothen, B. Uçar, and C. Schulz 79:15

107 108 109

Pins

101

102

103

104
M

em
or

y
[M

B]

Memory Consumption [MB]

Naive
Stack ε= 0

Stack ε= 1

StackLenient ε= 0

StackLenient ε= 1

SwapSet α= 0

SwapSet α= 1

Greedy
Greedy - Linear Fit

Figure 6 Geometric mean of the memory consumption on the hypergraphs from partitioning.
Linear Regression line for the offline Greedy algorithm.

training (n = 75) and evaluation test set (n = 19), on the latter. This shows that the greedy
algorithm requires memory linear in the number of pins since it loads the whole hypergraph
at the start. Our proposed algorithms require less memory, especially the SwapSet algorithms
nearly match the memory consumption of the Naive approach.

Other Properties. We also tested the dependence of the memory consumption on the
average hyperedge size and the number of hyperedges, but found no pattern. Note that the
number of pins is equal to the product of the number of edges and the average hyperedge
size.

5.4 Comparison with Offline Greedy and Naive Streaming
In this section, we compare the algorithms on the instances stemming from hypergraph
partitioning (RQ3). The Results on the social set of instances can be found in Section 5.2.
Figure 7 shows a performance profile for the cardinality/size of the matchings for our
algorithms as well as the Naive streaming and offline Greedy algorithm. The StackLenient
variant with ε = 0 computes the biggest matchings and is the best performing algorithm,
followed by SwapSet α = 0. The Greedy algorithm has similar results to StackLenient ε = 1.
The Stack ε = 1 and SwapSet α = 1 are our worst-performing algorithms, having results
very close to the Naive streaming algorithm. Their higher parameters (α = ε = 1) cause the
algorithm to converge to the naive algorithm.

6 Conclusion

We have proposed two (semi-)streaming algorithms for hypergraph matching. The first,
inspired by Paz-Schwartzman [33], uses a stack and adds hyperedges to it, based on dual
variables it keeps track of and updates according to an update function. The approximation

ESA 2025

79:16 Semi-Streaming Algorithms for Hypergraph Matching

0.30.40.50.60.70.80.91.0
τ

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 In

st
an

ce
s

Size

StackLenient ε= 0

SwapSet α= 0

StackLenient ε= 1

Greedy
Stack ε= 0

Naive
SwapSet α= 1

Stack ε= 1

Figure 7 Performance Profile for the size of the matching in hypergraphs used in partitioning.

guarantee for this algorithm is 1
d(1+ε) , and its running time per hyperedge is linear in hyperedge

size. We have proposed two other update functions to be used in this algorithm. The proposed
update functions result in a space complexity of O((1/ε)n log2 n) and O((1/ε)nd log2 n)
bits. The second proposed algorithm works by greedily swapping out hyperedges and
maintaining only one solution, requiring only O(n) memory. Inspired by McGregor’s 1

3+2
√

2 -
approximation guarantee [31], we have shown that if every swap increases the weight by
at least (1 + α), the algorithm has an approximation guarantee of 1

(1+α)(d−1
α +d) . The best

choice is α =
√

(d− 1)/d.
In extensive experiments, we have shown the competitiveness of the proposed algorithms

in comparison to the standard non-streaming Greedy and a Naive streaming approach with
respect to running time, memory consumption, and quality. We showed that the order of the
hyperedges in the stream directly impacts the solution quality and that our stack algorithms
handle worst-case orderings (like ascending weights for the Naive algorithm) even better than
the offline Greedy algorithm. The running times of our Stack algorithm are only 26% higher
than the Naive algorithm. Furthermore, we validated that the memory consumption for both
families of algorithms is not linear in the number of pins, as it is for the Greedy algorithm;
for the Stack approaches on the social link hypergraphs it is 13 times lower than Greedy.
Lastly, we report that our algorithm obtains considerably better cardinality matchings in
general hypergraphs from partitioning tasks.

Avenues of future work include improving the solution quality and extending to problems
with relaxed capacity constraints. We aim to develop a streaming algorithm that can
efficiently handle instances with capacity b(v) > 1 at each vertex, while maintaining a
reasonable approximation ratio and computational overhead.

References
1 Mokhtar S Bazaraa, John J Jarvis, and Hanif D Sherali. Linear Programming and Network

Flows. John Wiley & Sons, 2011.
2 Anton Belov, Daniel Diepold, Marijn Heule, and Matti Järvisalo. The SAT competition 2014.

http://www.satcompetition.org/2014/index.shtml, 2014.

http://www.satcompetition.org/2014/index.shtml

H. Reinstädtler, S. M. Ferdous, A. Pothen, B. Uçar, and C. Schulz 79:17

3 Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and Jon M. Kleinberg.
Simplicial closure and higher-order link prediction. Proc. Natl. Acad. Sci. USA, 115(48):E11221–
E11230, 2018. doi:10.1073/pnas.1800683115.

4 Piotr Berman. A d/2 approximation for maximum weight independent set in d-claw free
graphs. In Magnús M. Halldórsson, editor, Algorithm Theory - SWAT 2000, 7th Scandinavian
Workshop on Algorithm Theory, Bergen, Norway, July 5-7, 2000, Proceedings, volume 1851
of Lecture Notes in Computer Science, pages 214–219, Berlin, Heidelberg, 2000. Springer.
doi:10.1007/3-540-44985-X_19.

5 B. Besser and M. Poloczek. Greedy matching: Guarantees and limitations. Algorithmica,
77:201–234, 2017. doi:10.1007/S00453-015-0062-2.

6 Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari Sitchinava. Efficient
parallel and external matching. In Felix Wolf, Bernd Mohr, and Dieter an Mey, editors,
Euro-Par 2013 Parallel Processing - 19th International Conference, Aachen, Germany, August
26-30, 2013. Proceedings, volume 8097 of Lecture Notes in Computer Science, pages 659–670.
Springer, Springer, 2013. doi:10.1007/978-3-642-40047-6_66.

7 Marek Cygan. Improved approximation for 3-dimensional matching via bounded pathwidth
local search. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 509–518. IEEE, IEEE Computer Society,
2013. doi:10.1109/FOCS.2013.61.

8 Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, December 2011. doi:10.1145/2049662.2049663.

9 Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Math. Program., 91(2):201–213, 2002. doi:10.1007/s101070100263.

10 Doratha E. Drake and Stefan Hougardy. A simple approximation algorithm for the weighted
matching problem. Inf. Process. Lett., 85(4):211–213, 2003. doi:10.1016/S0020-0190(02)
00393-9.

11 Fanny Dufossé, Kamer Kaya, Ioannis Panagiotas, and Bora Uçar. Effective heuristics for
matchings in hypergraphs. In Ilias S. Kotsireas, Panos M. Pardalos, Konstantinos E. Par-
sopoulos, Dimitris Souravlias, and Arsenis Tsokas, editors, Analysis of Experimental Algorithms
- Special Event, SEA2 2019, Kalamata, Greece, June 24-29, 2019, Revised Selected Papers,
volume 11544 of Lecture Notes in Computer Science, pages 248–264. Springer, Springer, 2019.
doi:10.1007/978-3-030-34029-2_17.

12 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
doi:10.4153/CJM-1965-045-4.

13 Jason Evans. jemalloc. http://jemalloc.net/, 2006–. Accessed: 2025-04-15.
14 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.

On graph problems in a semi-streaming model. Departmental Papers (CIS), page 236, 2005.
doi:10.1016/j.tcs.2005.09.013.

15 S. M. Ferdous, Alex Pothen, and Mahantesh Halappanavar. Streaming matching and edge
cover in practice. In Leo Liberti, editor, 22nd International Symposium on Experimental
Algorithms, SEA 2024, July 23-26, 2024, Vienna, Austria, volume 301 of LIPIcs, pages
12:1–12:22, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.SEA.2024.12.

16 S. M. Ferdous, Bhargav Samineni, Alex Pothen, Mahantesh Halappanavar, and Bala Krish-
namoorthy. Semi-streaming algorithms for weighted k-disjoint matchings. In Timothy M.
Chan, Johannes Fischer, John Iacono, and Grzegorz Herman, editors, 32nd Annual European
Symposium on Algorithms, ESA 2024, September 2-4, 2024, Royal Holloway, London, United
Kingdom, volume 308 of LIPIcs, pages 53:1–53:19, Dagstuhl, Germany, 2024. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2024.53.

17 Aurélien Froger, Olivier Guyon, and Eric Pinson. A set packing approach for scheduling
passenger train drivers: the French experience. In RailTokyo2015, 2015.

ESA 2025

https://doi.org/10.1073/pnas.1800683115
https://doi.org/10.1007/3-540-44985-X_19
https://doi.org/10.1007/S00453-015-0062-2
https://doi.org/10.1007/978-3-642-40047-6_66
https://doi.org/10.1109/FOCS.2013.61
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/s101070100263
https://doi.org/10.1016/S0020-0190(02)00393-9
https://doi.org/10.1016/S0020-0190(02)00393-9
https://doi.org/10.1007/978-3-030-34029-2_17
https://doi.org/10.4153/CJM-1965-045-4
http://jemalloc.net/
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.4230/LIPIcs.SEA.2024.12
https://doi.org/10.4230/LIPIcs.ESA.2024.53

79:18 Semi-Streaming Algorithms for Hypergraph Matching

18 Mohsen Ghaffari and David Wajc. Simplified and space-optimal semi-streaming (2+epsilon)-
approximate matching. In Jeremy T. Fineman and Michael Mitzenmacher, editors, 2nd
Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, San Diego, CA,
USA, volume 69 of OASIcs, pages 13:1–13:8, Dagstuhl, Germany, 2019. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/OASIcs.SOSA.2019.13.

19 Google Cloud Platform. Bigquery public datasets. https://cloud.google.com/bigquery/
public-data. Accessed: 2025-04-19.

20 Lars Gottesbüren, Tobias Heuer, Nikolai Maas, Peter Sanders, and Sebastian Schlag. Scalable
high-quality hypergraph partitioning. CoRR, abs/2303.17679, 2023. doi:10.48550/arXiv.
2303.17679.

21 Georg Gottlob and Gianluigi Greco. Decomposing combinatorial auctions and set packing
problems. J. ACM, 60(4):24:1–24:39, 2013. doi:10.1145/2508028.2505987.

22 Ernestine Großmann, Felix Joos, Henrik Reinstädtler, and Christian Schulz. Engineering
hypergraph b-matching algorithms. arXiv preprint arXiv:2408.06924, 2024. doi:10.48550/
arXiv.2408.06924.

23 Oussama Hanguir and Clifford Stein. Distributed algorithms for matching in hypergraphs. In
Christos Kaklamanis and Asaf Levin, editors, Approximation and Online Algorithms - 18th
International Workshop, WAOA 2020, Virtual Event, September 9-10, 2020, Revised Selected
Papers, volume 12806 of Lecture Notes in Computer Science, pages 30–46. Springer, Springer,
2020. doi:10.1007/978-3-030-80879-2_3.

24 Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating k-set
packing. Comput. Complex., 15(1):20–39, 2006. doi:10.1007/s00037-006-0205-6.

25 Chien-Chung Huang and François Sellier. Semi-streaming algorithms for submodular function
maximization under b-matching constraint. In Mary Wootters and Laura Sanità, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle, Washington,
USA (Virtual Conference), volume 207 of LIPIcs, pages 14:1–14:18, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.APPROX/RANDOM.
2021.14.

26 Cor A. J. Hurkens and Alexander Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing problems.
SIAM J. Discret. Math., 2(1):68–72, 1989. doi:10.1137/0402008.

27 Richard M. Karp. Reducibility among combinatorial problems. In Michael Jünger, Thomas M.
Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt,
Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer Programming 1958-
2008 - From the Early Years to the State-of-the-Art, pages 219–241. Springer, 2010. doi:
10.1007/978-3-540-68279-0_8.

28 B. Korte and D. Hausmann. An analysis of the greedy algorithm for independence systems.
Annals of Discrete Mathematics, 2:65–74, 1978.

29 Fredrik Manne and Mahantesh Halappanavar. New effective multithreaded matching algorithms.
In 2014 IEEE 28th International Parallel and Distributed Processing Symposium, pages 519–528.
IEEE Computer Society, 2014. doi:10.1109/IPDPS.2014.61.

30 Jens Maue and Peter Sanders. Engineering algorithms for approximate weighted matching. In
Camil Demetrescu, editor, Experimental Algorithms, 6th International Workshop, WEA 2007,
Rome, Italy, June 6-8, 2007, Proceedings, volume 4525 of Lecture Notes in Computer Science,
pages 242–255. Springer, Springer, 2007. doi:10.1007/978-3-540-72845-0_19.

31 Andrew McGregor. Finding graph matchings in data streams. In Chandra Chekuri, Klaus
Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation, Randomization and
Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th
InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley, CA,
USA, August 22-24, 2005, Proceedings, volume 3624 of Lecture Notes in Computer Science,
pages 170–181. Springer, Springer, 2005. doi:10.1007/11538462_15.

https://doi.org/10.4230/OASIcs.SOSA.2019.13
https://cloud.google.com/bigquery/public-data
https://cloud.google.com/bigquery/public-data
https://doi.org/10.48550/arXiv.2303.17679
https://doi.org/10.48550/arXiv.2303.17679
https://doi.org/10.1145/2508028.2505987
https://doi.org/10.48550/arXiv.2408.06924
https://doi.org/10.48550/arXiv.2408.06924
https://doi.org/10.1007/978-3-030-80879-2_3
https://doi.org/10.1007/s00037-006-0205-6
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.14
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.14
https://doi.org/10.1137/0402008
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1109/IPDPS.2014.61
https://doi.org/10.1007/978-3-540-72845-0_19
https://doi.org/10.1007/11538462_15

H. Reinstädtler, S. M. Ferdous, A. Pothen, B. Uçar, and C. Schulz 79:19

32 Meike Neuwohner. Passing the limits of pure local search for weighted k-set packing. In Nikhil
Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 1090–1137.
SIAM, SIAM, 2023. doi:10.1137/1.9781611977554.ch41.

33 Ami Paz and Gregory Schwartzman. A (2+ϵ)-approximation for maximum weight matching
in the semi-streaming model. ACM Trans. Algorithms, 15(2):18:1–18:15, December 2019.
doi:10.1145/3274668.

34 Seth Pettie and Peter Sanders. A simpler linear time 2/3-ε approximation for maximum
weight matching. Information Processing Letters, 91(6):271–276, 2004. doi:10.1016/j.ipl.
2004.05.007.

35 Alex Pothen, SM Ferdous, and Fredrik Manne. Approximation algorithms in combinatorial
scientific computing. Acta Numerica, 28:541–633, 2019. doi:10.1017/S0962492919000035.

36 Robert Preis. Linear time 1/2-approximation algorithm for maximum weighted matching
in general graphs. In Christoph Meinel and Sophie Tison, editors, STACS 99, 16th Annual
Symposium on Theoretical Aspects of Computer Science, Trier, Germany, March 4-6, 1999,
Proceedings, volume 1563 of Lecture Notes in Computer Science, pages 259–269. Springer,
Springer, 1999. doi:10.1007/3-540-49116-3_24.

37 Henrik Reinstädtler, S M Ferdous, Alex Pothen, Bora Uçar, and Chris-
tian Schulz. HeiHGM/Streaming. Software, DFG-SCHU 2567/8-1, swhId:
swh:1:dir:4e4522550296fb38202457ce7371bf7034ae45d9 (visited on 2025-09-05). URL:
https://github.com/HeiHGM/Streaming, doi:10.4230/artifacts.24674.

38 Henrik Reinstädtler, S M Ferdous, Alex Pothen, Bora Uçar, and Christian Schulz. Semi-
streaming algorithms for hypergraph matching, 2025. doi:10.48550/arXiv.2502.13636.

39 StackExchange. Stackexchange data explorer. https://data.stackexchange.com/. Accessed:
2025-04-19.

40 Thorben Tröbst and Rajan Udwani. Almost tight bounds for online hypergraph matching.
arXiv preprint arXiv:2402.08775, 2024. doi:10.1016/j.orl.2024.107143.

41 Natarajan Viswanathan, Charles J. Alpert, Cliff C. N. Sze, Zhuo Li, and Yaoguang Wei. The
DAC 2012 routability-driven placement contest and benchmark suite. In Patrick Groeneveld,
Donatella Sciuto, and Soha Hassoun, editors, The 49th Annual Design Automation Conference
2012, DAC ’12, San Francisco, CA, USA, June 3-7, 2012, DAC ’12, pages 774–782, New York,
NY, USA, 2012. ACM. doi:10.1145/2228360.2228500.

42 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. URL: http://www.cambridge.org/de/knowledge/isbn/
item5759340/?site_locale=de_DE.

43 Laurence A Wolsey. Integer Programming. John Wiley & Sons, 2020.
44 Stephen J. Wright. Primal-Dual Interior-Point Methods. SIAM, 1997. doi:10.1137/1.

9781611971453.

ESA 2025

https://doi.org/10.1137/1.9781611977554.ch41
https://doi.org/10.1145/3274668
https://doi.org/10.1016/j.ipl.2004.05.007
https://doi.org/10.1016/j.ipl.2004.05.007
https://doi.org/10.1017/S0962492919000035
https://doi.org/10.1007/3-540-49116-3_24
https://archive.softwareheritage.org/swh:1:dir:4e4522550296fb38202457ce7371bf7034ae45d9;origin=https://github.com/HeiHGM/Streaming;visit=swh:1:snp:981431da5340cbbf116e22fe0896634c2d164c50;anchor=swh:1:rev:acc7c88e5544a70f356db838f4027629ae8ffb4b
https://github.com/HeiHGM/Streaming
https://doi.org/10.4230/artifacts.24674
https://doi.org/10.48550/arXiv.2502.13636
https://data.stackexchange.com/
https://doi.org/10.1016/j.orl.2024.107143
https://doi.org/10.1145/2228360.2228500
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
https://doi.org/10.1137/1.9781611971453
https://doi.org/10.1137/1.9781611971453

	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Related Work

	3 Stack-based Algorithm
	3.1 Approximation Guarantee
	3.2 Improving Solution Quality
	3.3 Space Complexity Analysis

	4 Greedy Swapping Algorithm
	5 Experimental Evaluation
	5.1 Setup and Data Set
	5.2 Impact of Streaming Order
	5.3 Impact of Other Properties
	5.4 Comparison with Offline Greedy and Naive Streaming

	6 Conclusion

