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1 Introduction

Finding shortest paths in graphs is a classic topic covered in all basic courses and textbooks
on algorithms. In the most basic setting, which is the setting we consider here, the graph
is unweighted and the length of a path refers to the number of edges in the path. In the
single-source shortest-path (SSSP) problem, the task is to compute shortest paths from a
given vertex, the source, to all other vertices of the graph. The solution is represented using
a so-called shortest-path tree.

The SSSP problem for a graph with n vertices and m edges can be solved in O(n + m)
time by breadth-first search, which is optimal if the graph is given as a collection of vertices
and edges. In this paper we will consider the SSSP problem for implicitly defined graphs.
In particular, we consider (planar) intersection graphs: graphs whose node set corresponds
to a set D of n objects in the plane and that contain an edge (D, D′) between two distinct
objects D, D′ ∈ D iff D and D′ intersect. If the objects in D are disks then the intersection
graph, which we denote by G×[D], is called a disk graph – see Figure 1 – and if all disks have
unit radius then it is called a unit-disk graph. Disk graphs are arguably the most popular
and widely studied intersection graphs. One can solve the SSSP problem on intersection
graphs by first constructing G×[D] explicitly and then running breadth-first search. In the
worst case, however, this requires Ω(n2) time. This raises the question: is it possible to solve
the SSSP problem on intersection graphs in subquadratic time in the worst case?

Given the basic nature of the SSSP problem and the prominence of (unit-)disk graphs,
it is not surprising that this question has already been considered for such graphs. For
unit disks, Roditty and Segal [24] noticed that the dynamic data structure of Chan [6] for
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nearest-neighbor queries can be used to solve the problem in O(n polylog n) expected time.
Cabello and Jejčič [4] gave an O(n log n) algorithm and showed that this is asymptotically
optimal in the algebraic decision-tree model. They remarked that Efrat noted that the
semi-dynamic data structure of Efrat, Itai and Katz [14] also gives an algorithm with running
time O(n log n). Finally, Chan and Skrepetos [8] provided a simpler O(n log n) algorithm.
The above algorithms either use Delaunay triangulations [4] or fixed-resolution grids [8, 14];
these approaches are not applicable for disks of arbitrarily different sizes.

For arbitrary disks graphs, Kaplan et al. [20] and Liu [22] presented algorithms running
in O(n log4 n) time. This was recently improved by Klost [21], who presented a general
framework for solving SSSP problems in intersection graphs. She used the framework to
obtain an O(n log2 n) algorithm for the SSSP problem on disk graphs, and to obtain an
O(n log n) algorithm for intersection graphs of axis-aligned squares.

Our results. Our main result in this paper is an algorithm for the SSSP problem in disk
graphs that runs in O(n log n) expected time. We obtain this result using a version of the
framework proposed by Klost [21]; our specialized framework and its relation to Klost’s
framework are discussed in detail in Section 2. A core ingredient in the framework is a
clique-based contraction of the intersection graph G×[D]: a graph obtained from G×[D] by
contracting certain cliques to single nodes. To compute such a clique-based contraction in
O(n log n) time, we combine shifted quadtrees [5] and skip quadtrees [15] – powerful and
beautiful concepts that we believe deserve more attention – with standard techniques for
stabbing fat objects.

Our algorithm for computing a clique-based contraction not only applies to disk graphs
but also to intersection graphs of fat triangles, that is, triangles all of whose internal angles
are lower bounded by a fixed constant α > 0 [2]. By combining this with a novel intersecting-
detection data structure for fat triangles, we obtain an O(n log3 n) algorithm for the SSSP
problem on intersection graphs of fat triangles. We are not aware of previous work on the
SSSP problem for fat triangles. The all-pairs shortest-path (APSP) problem, however, has
been considered for fat triangles, by Chan and Skrepetos [9]. The algorithm they present
runs in O(n2 log4 n) time, under the condition that the fat triangles have roughly the same
size. (They also present an O(n2 log n) algorithm for the APSP problem for arbitrary disk
graphs, and an O(n2) algorithm for unit-disk graphs [8].) Running our new SSSP algorithm
n times, once for each input triangle as the source, we obtain an APSP algorithm for
arbitrarily-sized fat triangles that runs in O(n2 log3 n) time. This is faster and more general
than the algorithm of Chan and Skrepetos. (The improvement for the APSP problem is
mainly because of our new intersection-detection data structure for fat triangles; using this
data structures in the existing algorithm [9] would also give an O(n2 log3 n) algorithm.)
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Figure 1 A set D of five disks (left) and their intersection graph (right).
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In the full version of this work [11] we provide two enhancements: we obtain a deterministic
O(n log n) algorithm for the SSSP problem in disk graphs and we reduce the running time for
the SSSP problem on intersection graphs of fat triangles to O(n log2 n). The basic structure
of the algorithms is the same as here, but we improve some of the subroutines that we use.

On the model of computation. We use the real-RAM model – this is the standard model
in computational geometry, which allows us for example to check in O(1) time if two disks
intersect – extended with an additional operation that allows us to compute a compressed
quadtree on a set of n points in O(n log n) time. This extension is common when working
with quadtrees; see the book by Har-Peled [19].

2 The framework

Our framework for computing a shortest-path tree on an intersection graph G×[D] is an
instantiation of the framework of Klost [21]. We describe it in detail to keep the paper
self-contained and make the required subroutines explicit; at the end of this section we discuss
the correspondence of our approach to that of Klost. For convenience, we will from now on
not distinguish between the objects in the set D and the corresponding nodes in G×[D].

Let Dsrc ∈ D be the given source node, and let Tsp be the shortest-path tree of G×[D]
that we want to compute for the given source. For an object D ∈ D, let dist[D] be the
distance from Dsrc to D in G×[D], and let Lℓ := {D ∈ D : dist[D] = ℓ}. Thus, Lℓ is the set
of nodes at level ℓ in Tsp. We follow the natural approach of computing Tsp level by level.
To be able to go from one level to the next, we need a subroutine for the following problem.

Bichromatic Intersection Testing. Given a set B of nB blue objects and a
set R of nR red objects, report the blue objects that intersect at least one red object,
and for each reported blue object, report a witness (a red object intersecting it).

A subroutine BIT-Subroutine that solves Bichromatic Intersection Testing allows us
to compute Lℓ+1 by setting R := Lℓ and B := Dcand, where Dcand is a set of candidate objects
that should contain all objects from Lℓ+1 and no objects from L⩽ℓ, where L⩽ℓ :=

⋃ℓ
i=0 Li.

We could simply set Dcand := D \ L⩽ℓ, but this will not be efficient; we must keep the
total size of the candidates sets over all levels ℓ under control. We do this using a so-called
clique-based contraction, as defined next.

Let G = (V, EG) be an (undirected) graph. We say that a graph H = (C, EH) is a
clique-based contraction of G if

each node C ∈ C corresponds to a clique in G and the cliques in C form a partition1 of
the nodes in V ;
there is an edge (C, C ′) ∈ EH iff there are nodes v ∈ C and v′ ∈ C ′ such that (v, v′) ∈ EG .

Note that for each edge (v, v′) ∈ EG there exists a clique C ∈ C that contains both v and v′,
or there are cliques C ∋ v and C ′ ∋ v′ such that (C, C ′) ∈ EH.

A clique-based contraction H of the intersection graph G×[D] helps us to find good
candidate sets. To see this, let Cℓ ⊂ C denote the set of cliques2 that contain at least one
object from Lℓ. Then any object D ∈ Lℓ+1 must be part of a clique C that is either in Cℓ

1 In our application, it would also be sufficient to require that each node in V appears in O(1) cliques,
but we do not need this extra flexibility.

2 With a slight abuse of terminology, we not only use the term clique to refer a complete graph, but also
to refer to a set of geometric objects whose intersection graph is a clique.
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itself or that is a neighbor in H of a clique in Cℓ. In other words, if D ∈ Lℓ+1 then D ∈ C

for some clique C ∈ NH[Cℓ], where NH[Cℓ] denotes the closed neighborhood of Cℓ in H.
Moreover, the objects in a clique are in at most two levels in the shortest-path three Tsp,
which helps to control the total size of the candidate sets. The following pseudocode describes
our framework in detail. It does not explicitly construct the shortest-path tree itself (it only
constructs the levels), but this is easy to do using the witnesses reported by BIT-Subroutine.

Algorithm 1 SSSP-for-Geometric-Intersection-Graphs(D, Dsrc).

1: Construct a clique-based contraction H = (C, EH) of G×[D]
2: L0 ← {Dsrc}; C0 ← {the clique C ∈ C that contains Dsrc} � Dsrc is the source
3: Label Dsrc as ready; ℓ← 0; done ← false.
4: while not done do
5: Dcand ← {D ∈ D : D ∈ C for a clique C ∈ NH[Cℓ] and D is not ready}
6: Lℓ+1 ← BIT-Subroutine(Dcand, Lℓ)
7: if Lℓ+1 = ∅ then
8: L∞ ← D \ L⩽ℓ; done ← true � nodes in L∞ are unreachable from Dsrc
9: else

10: Cℓ+1 ← {C ∈ C : C contains an object D ∈ Lℓ+1}
11: Label all objects in Lℓ+1 as ready; ℓ← ℓ + 1

We obtain the following theorem.

▶ Theorem 1. Let D be a set of n constant-complexity objects in the plane. Suppose that
(i) we can compute a clique-based contraction for G×[D] in Tccg(n) time,
(ii) for any two subsets B, R ⊂ D we can solve Bichromatic Intersection Testing in

Tbit(nB , nR) time, where nB := |B| and nR := |R|.
Then we can compute a shortest-path tree in G×[D] for a given source node Dsrc ∈ D in
O(Tccg(n) + Tbit(n, n)) time.

Proof. It is straightforward to prove by induction on ℓ that our algorithm correctly computes
the levels Lℓ of the shortest-path tree. To prove the bound on the running time, observe
that Steps 1–3 take O(Tccg(n)) time. It remains to bound the runtime of the while-loop.

For a clique C ∈ C, let dist[C] := minD∈C dist[D]. Note that for objects D, D′ in
cliques C, C ′ ∈ C that are neighbors in H, we have |dist[D] − dist[D′] | ⩽ 3. Hence, D

can only be in the candidate set Dcand in iterations of the while-loop where dist[D]− 3 ⩽
ℓ ⩽ dist[C] − 1. Thus, if we denote the size of Dcand in iteration ℓ by nℓ, then the
total time needed for Step 6 over all iterations is

∑
ℓ Tbit(nℓ, |Lℓ|), where

∑
ℓ nℓ ⩽ 3n and∑

ℓ |Lℓ| ⩽ n. Since Tbit(nB , nR) is at least linear in nB and nR (and at most quadratic), we
have

∑
ℓ Tbit(nℓ, |Lℓ|) = O(Tbit(n, n)). This also bounds the total runtime of Steps 7–11 over

all iterations.
To bound the total time for Step 5, note that a clique C is only considered in iterations

where dist[C]−2 ⩽ ℓ ⩽ dist[C]+2. This implies that the total time to find the relevant cliques
in Step 5 is O(|EH|). The total time to inspect those cliques in order to find the candidate sets,
is O(

∑
C∈C |C|). Thus, the total time for Step 5 over all iterations is O(|EH|+

∑
C∈C |C|),

which can be bounded by O(Tccg(n)). ◀

▶ Remark (relation to the framework of Klost). The framework presented above is an in-
stantiation of the framework of Klost [21]: she also computes the shortest-path tree level
by level as described above – this natural approach was also taken by earlier papers on
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the SSSP problem on (unit-)disk graphs [4, 8, 9, 21] – and she also keeps the size of the
candidate sets under control using an auxiliary graph. Klost uses a so-called shortcut graph
Gsc as auxiliary graph. The nodes in Gsc correspond to the objects in D, and the edge set
Esc is a superset of the edge set of G×[D] such that for any edge (D, D′) ∈ Esc we have
that the distance between D and D′ in G×[D] is O(1). As Esc is a superset of the edge set
of G×[D], the size of Esc can be quadratic, so Gsc needs to be constructed implicitly. Our
clique-based contraction H = (C, EH) provides such an implicit shortcut graph, by defining
Esc := { (D, D′) : D and D′ are part of the same clique in C or of neighboring cliques }.

3 The algorithm for disks

In this section we implement the framework presented above for the case where the input D
is a set of n disks in the plane. We first explain how to create the cliques in our clique-based
contraction H of G×[D], and how to compute the edge set of H. Using known results on
Bichromatic Intersection Testing for disks we then obtain our final result.

Finding the cliques. Our algorithm to create the set of cliques is related to a recent
construction by Chan and Huang [7, Section 3] of 3-hop spanners for disk graphs; we
comment more on the similarities and differences later. The construction is based on so-called
shifted quadtrees, introduced by Chan [5], which we describe next.

We start by defining hierarchical grids, a concept closely related to quadtrees; the
connection will be made clear below. Let o = (ox, oy) be any point in the plane. A cell in
the hierarchical grid centered at o is any square of the form

σ(o, ℓ, i, j) :=
[
ox + i · 2ℓ, ox + (i + 1) · 2ℓ

)
×

[
oy + j · 2ℓ, oy + (j + 1) · 2ℓ

)
for integers i, j, ℓ ∈ Z. Note that σ(o, ℓ, i, j) is a translation of the square [0, 2ℓ) × [0, 2ℓ)
by the vector o + (i · 2ℓ, j · 2ℓ), and that the set Σ(o, ℓ) := {σ(o, ℓ, i, j) : i, j ∈ Z} forms a
regular grid. Moreover, the grid Σ(o, ℓ− 1) is a refinement of the grid Σ(o, ℓ), obtained by
partitioning each cell of Σ(o, ℓ) into four quadrants. We define the hierarchical grid centered
at o, denoted by Γ(o), to be the (infinite) collection {Σ(o, ℓ) : ℓ ∈ Z} of nested grids.

Define the size of any object D, denoted by size(D), to be the side length of a smallest
enclosing (axis-parallel) square of D. Thus size(σ) = 2ℓ for any cell σ ∈ Σ(o, ℓ). We say
that an object D is c-aligned with a hierarchical grid Γ, for a given constant c > 0, if there
exists a cell σ in Γ such that D ⊂ σ and size(σ) ⩽ c · size(D). Note that whether or not D

is c-aligned with Γ only depends on the choice of the center o of the hierarchical grid. The
definition of being c-aligned trivially implies the following.

▶ Observation 2. Let D be an object that is c-aligned with a hierarchical grid Γ, and let σ

be a cell of Γ such that D intersects the boundary ∂σ of σ. Then size(D) ⩾ (1/c) · size(σ).

Let D be a finite set of objects. In general, it is impossible to choose the center of a
hierarchical grid Γ such that each object D ∈ D is c-aligned with Γ. However, Chan [5] has
shown that, surprisingly, it is possible to pick a small number of different centers such that
each object D ∈ D is c-aligned with at least one of the resulting hierarchical grids, for a
suitable constant c. Even more surprisingly, we can select these centers independently of D.
The following lemma follows directly from Lemma 3.2 in Chan’s paper.3

3 Chan uses the term shifted quadtree in his lemma. To stress the fact that the shifts are independent of
any input set on which one might build a quadtree, we prefer to use the term hierarchical grid.
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Figure 2 (i) A quadtree subdivision for a set P of points. (ii) The compressed-quadtree subdivision
for P , with its donut cells marked. (iii) The ordering of the points to construct a skip quadtree.

▶ Lemma 3 ([5]). There is a collection Ξ of three hierarchical grids, each centered at
a different point, with the following property: for any object D contained in the square
[0, 1)× [0, 1) there is a hierarchical grid Γ ∈ Ξ such that D is 6-aligned with Γ.

Let P be a set of points, let Γ be a hierarchical grid centered at a given center o, and let σ0
be a cell of Γ that contains P . Then we can construct a quadtree on P – see Figure 2(i) –
whose root node corresponds to σ0. Any node in this quadtree corresponds to a cell of Γ.
Let Q = Q(σ0, P ) be the corresponding compressed quadtree [19]. Each internal node ν of Q
corresponds to a cell σν of Γ and each leaf node µ corresponds to a region σµ that is either a
cell of Γ or a donut cell; see Figure 2(ii). (A donut cell is the difference σ1 \ σ2 of two cells σ1
and σ2 of Γ with σ2 ⊂ σ1.) The subdivision defined by the compressed quadtree Q is the
set of regions corresponding to the leaves of Q; this subdivision is a decomposition of σ0.
Our algorithm to efficiently compute the cliques in the clique-based contraction combines
the hierarchical grids of Lemma 3 with skip quadtrees [15], as explained next.

Skip quadtrees, defined by Eppstein, Goodrich, and Sun [15] are defined as follows. Let P

be a set of n points inside a given starting cell σ0 of a hierarchical grid Γ. We start by sorting
the points in P in Z-order, as follows. First, order the points according to the quadrants
from σ0 they fall in: put the points in the nw-quadrant first, then those in the ne-quadrant,
then those in the sw-quadrant, and finally those in the se-quadrant. Next, recursively
sort the points in each quadrant. Let p1, . . . , pn be the resulting sorted list of points; see
Figure 2(iii). We now create a sequence P = P0 ⊃ P1 ⊃ · · · ⊃ Pt, where Pi is obtained from
Pi−1 by deleting every other element (starting with the first element) and |Pt| = 1. From the
sequence P0 ⊃ P1 ⊃ · · · ⊃ Pt we construct a sequence of compressed-quadtree subdivisions
Q0,Q1, . . . ,Qt, each based on the same starting cell σ0. The sequence Q0,Q1, . . . ,Qt has
the following properties, as illustrated in Figure 3:
Qt is equal to the square σ0.
Qi is a refinement of Qi+1 for all 0 ⩽ i < t, that is, each region in Qi is contained in a
unique region in Qi+1. Moreover, each region in Qi+1 contains O(1) regions from Qi.
Each region in Q0 contains at most one point from P .

We can view Qt, . . . ,Q1,Q0 as the levels of a tree T , where a node ν at level i corresponds
to a region Rν of the subdivision Qi. In particular, the root of T corresponds to the starting
square σ0 and the leaves of T correspond to the regions in Q0 (which is the compressed-
quadtree subdivision for the whole point set P with root σ0). We call this tree structure4 a
skip quadtree for P with root σ0. It can be constructed in O(n log n) time [15].

4 The skip quadtree defined by Eppstein, Goodrich, and Sun is slightly more complicated, as it stores
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Q0 Q1 Q2

σ0

Figure 3 Example of the three compressed-quadtree subdivisions for a set of five points, and the
resulting skip quadtree. Colors indicate the correspondence between regions and nodes.

Without loss of generality, we will assume henceforth that all the disks of D are fully
contained in the unit square [0, 1)× [0, 1). Let Ξ be the collection of three hierarchical grids
given by Lemma 3. Each disk D of D is 6-aligned with some hierarchical grid Γ ∈ Ξ, and we
can find such a hierarchical grid for D in constant time.

Now consider a hierarchical grid Γ from the collection Ξ. Let D(Γ) ⊂ D be the set of
disks that are 6-aligned with Γ, where we put a disk that is 6-aligned with multiple grids into
an arbitrary one of the corresponding sets D(Γ). We create a set C(Γ) of cliques, as follows.
1. Construct a skip quadtree T (Γ) on the set P (Γ) of centers of the disks in D(Γ), where the

starting square σ0 of the skip quadtree is a cell of Γ that contains all the disks in D(Γ).
2. For each disk D ∈ D(Γ), follow a path in T (Γ) consisting of nodes µ whose region Rµ

contains the center of D, until a node ν is reached such that D intersects ∂Rν or a leaf is
reached. Assign D to that node or leaf.

3. Let Dν ⊂ D(Γ) be the set of disks assigned to an (internal or leaf) node ν in T (Γ). For
each node ν, partition Dν into a set Cν of O(1) cliques, as follows. If ν is a leaf and Rν

contains a disk – note that a leaf can contain at most one disk – then we create a singleton
clique for that disk. Now suppose ν is an internal node. First, suppose Rν is a square
region. Because the disks in Dν are 6-aligned with Γ, we know that size(D) ⩾ 1

6 · size(Rν)
for all D ∈ Dν intersecting ∂Rν . Hence, we can create a set of O(1) points such that each
disk D is stabbed by at least one of them, which we use to create Cν . If Rν is a donut we
proceed similarly, where we treat the disks intersecting the boundary of the hole of the
donut – this hole can be much smaller than the donut – separately from the disks that
only intersect the outer boundary of the donut. Finally, set C(Γ) :=

⋃
ν∈T (Γ) Cν .

Each clique that is generated by our algorithm is a so-called stabbed clique, that is, for each
clique C ∈ C(Γ) there is a point stabbing all disks in C. We refer to the union of all the
disks in C as a flower, which we denote by F (C), and we let F(Γ) := {F (C) : C ∈ C(Γ)}
be the set of flowers corresponding to the cliques in C(Γ). Define ply(S), the ply of a set
S of objects in the plane, to be the maximum, over all points q ∈ R2, of the number of
objects in S containing q. The following lemma states a property of our algorithm that will
be crucial to efficiently compute the edges in the clique-based contraction.

▶ Lemma 4. The algorithm above constructs in O(n log n) time a partition of D(Γ) into a
set C(Γ) of stabbed cliques such that ply(F(Γ)) = O(log n).

more information than just the compressed-quadtree subdivisions. Since we do not need our structure
to be dynamic, the simple hierarchy described above suffices.

ESA 2025
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Proof. Step 1 of the algorithm, constructing the skip quadtree T (Γ) on the set P (Γ) of the
centers of the at most n disks in D(Γ), can be done in O(n log n) time [15]. The depth of the
skip quadtree is O(log n), and so Step 2 takes O(log n) time per disk and O(n log n) time in
total. Step 3 takes

∑
v∈T (Γ) O(1 + |Dv|) time, which is O(n) because each disk is assigned to

exactly one node. Hence, the total time for the algorithm is O(n log n).
To bound ply(F(Γ)), consider an arbitrary point q ∈ R2. Recall that for each node ν in

T (Γ) we created O(1) stabbed cliques and, hence, O(1) flowers. Thus, it suffices to prove the
following claim: at each level of the skip quadtree T (Γ) there are only O(1) nodes ν such
that q ∈ D for some disk D assigned to ν. To prove this claim, follow the search path of q in
T (Γ), that is, the path consisting of nodes µ such that q ∈ Rµ. Let D ∈ D be a disk that
contains q, let ν be the node to which D is assigned, and let µ be the parent of ν. Then µ

must lie on the search path of q. Indeed, D is fully contained in Rµ – otherwise D would
have been assigned to µ – and so q ∈ D ⊂ Rµ. Since any node in a skip quadtree has O(1)
children, this implies the claim. ◀

▶ Remark (relation to the spanner construction of Chan and Huang). In their algorithm for
constructing a 3-hop spanner for G×[D], Chan and Huang [7] create a collection of cliques
in a similar way as we create our cliques. As they are only concerned with the size of the
spanner, however, they do not analyze the time needed to construct it. The differences
between our approach and theirs mainly stem from the necessity to construct the clique-based
contraction H in O(n log n) time, as discussed next.

A first difference is that Chan and Huang use a centroid decomposition of a compressed
quadtree instead of a skip quadtree. This is not a crucial difference – possibly we could
have used a centroid decomposition as well, although working with a skip quadtree is more
convenient. Another difference is that they work with a collection Ξ of hierarchical grids –
they call them shifted quadtrees – such that, for each pair D, D′ ∈ D, there is at least one
hierarchical grid Γ ∈ Ξ such that both D and D′ are aligned with Γ. This allows them to
construct their spanner by applying the following procedure to each quadtree Q defined by
the hierarchical grid Γ: (i) take a centroid node ν in a compressed quadtree Q and partition
the set Dν of disks intersecting ∂σν into O(1) cliques, (ii) for each clique C, add a star graph
on that clique to the spanner, (iii) for each disk D and each clique C intersected by D, add
an edge (D, D′) to the spanner, where D′ ∈ C is an arbitrary disk intersected by D, and
(iv) recursively construct 3-hop spanners for the disks inside and outside σν . The crucial
difference lies in step (iii), where they add an edge from every disk D to a neighboring disk
in each clique (if such a neighboring disk exists). It seems difficult to do this in O(n log n)
time in total over all recursive calls. We therefore proceed differently: we first recursively
construct cliques on the disks not intersecting ∂σν , and then we only add a single edge
between two cliques if the corresponding flowers intersect. Such an approach would increase
the spanning ratio if we were to use it to construct a spanner, but this is of no concern
to us. The advantage of being more conservative is that we can compute the edges in our
clique-based contraction in O(n log n) time, as explained next.

Computing the edges in the clique-based contraction. Let C :=
⋃

Γ∈Ξ C(Γ) be the set
of cliques generated by applying the procedure above to each hierarchical grid Γ in the
collection Ξ given by Lemma 3. Let F :=

⋃
Γ∈Ξ F(Γ) be the corresponding flower set. Note

that ply(F) = O(log n) by Lemma 4. To construct the edge set EH of the clique-based
contraction H = (C, EH), we must find all pairs F, F ′ ∈ F that intersect. Next we show how
to do this in O(n log n) time.
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(i) (ii)

c

c′

p

p′

x

∂D′∂D

(iii)

Figure 4 (i) The set ZF of circular sectors defined by the boundary arcs of a flower F . Some
boundary arcs have been cut into sub-arcs to ensure they span an angle of at most π/2. (ii) If
|px| < |p′x| then p ∈ D′; otherwise p′ ∈ D. (iii) The modified sectors.

Consider a flower F defined by some clique C. The boundary ∂F of F is comprised of
maximal pieces of the boundaries of the disks in C that show up on ∂F . We call these pieces
boundary arcs and we denote the set of boundary arcs of a flower F by B(F ). For a set F of
flowers, we define B(F) :=

⋃
F ∈F B(F ) to be the set of boundary arcs of the flowers in F .

▶ Lemma 5. Let F be a set of flowers that consist of n disks in total. Then the number of
intersections between the boundary arcs in B(F) is O(n · ply(F)).

Proof. First, observe that |B(F )| = O(nF ), where nF is the number of disks defining a
flower F ∈ F , since the union of a set of disks has linear complexity. Hence, |B(F)| = O(n).

Now consider a boundary arc β ∈ B(F ) of some flower F ∈ F . We assume for simplicity
that the angle spanned by the circular arc β is at most π/2; if this is not the case we can
split β into at most four sub-arcs, and work with the sub-arcs instead. Let D be the disk
that contributes the arc β, let c be the center of D, and let s1 and s2 be the segments that
connect c to the endpoints of β. Together with β, these two segments bound a (convex)
circular sector. Let ZF be the set of such circular sectors created for the arcs in B(F ); see
Figure 4(i). We say that two sectors z, z′ are non-overlapping if their interiors are disjoint.

▷ Claim. The sectors in the set ZF are pairwise non-overlapping.

Proof. Consider two sectors z, z′ ∈ ZF . Let D, D′ be the disks whose boundaries define z

and z′, respectively, and let c and c′ be their centers. If D = D′ then obviously z and z′

do not overlap, so assume that D ̸= D′. Since a sector in ZF cannot be fully contained in
another sector in ZF by construction, the sectors z, z′ can only overlap if there is a proper
intersection between their boundaries. Such an intersection can only happen between a
segment s connecting c to an endpoint p of some boundary arc β ⊂ ∂D and a segment s′

connecting c′ to an endpoint p′ of some boundary arc β′ ⊂ ∂D′. But then, by the triangular
inequality, either p ∈ D′ or p′ ∈ D – see Figure 4(ii) for an illustration – contradicting that p

and p′ are both points on ∂F . ◁

Now consider a circular sector z, defined by some arc β. Let x be the apex of z (which
coincides with the center of the disk D contributing β). If the angle at apex x is large enough
then z is fat, but if the angle is very small then this is not the case. We therefore proceed as
follows: we move the apex x towards the midpoint of β until the angle at x is slightly larger
than π/2; see Figure 4(iii). It is easy to see that the modified region (which is no longer a
circular sector) is fat and convex. Moreover, no two modified regions share an apex anymore.
With a slight abuse of notation, from now on we use ZF to denote the set of modified regions
created for a flower F ∈ F .
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Let Z(F) :=
⋃

F ∈F ZF . Note that |Z(F)| ⩽ 4 · |B(F)| = O(n) and that ply(Z(F)) ⩽
2 · ply(F) = O(log n); the latter is true since the regions created for a single flower R are
pairwise disjoint except at shared endpoints of boundary arcs. For each arc β ∈ B(F), there
is a region z ∈ Z(F) such that β ⊂ ∂z. Hence, the number of intersections between the arcs
in B(F) is upper bounded by the number of intersections between the regions in Z(F).

▷ Claim. The number of intersections between the regions in Z(F) is O(|Z(F)| ·ply(Z(F))).

Proof. The proof is standard, but we sketch it for completeness. We charge the intersection
between two regions z, z′ to the smaller of the two regions, and claim that each region
is charged O(ply(Z(F))) times. To see this, consider a region z ∈ Z(F) and let b be
the smallest enclosing disk of Z. Let b′ be the disk with the same center as b such that
radius(b′) = 2 · radius(b). Due to the fatness of the regions in Z(F), any region z′ that
intersects z and is at least as large as z, will cover a constant fraction of the area of b′. Hence,
there can be at most O(ply(Z(F))) such regions z′. ◁

This finishes the proof. ◀

Observe that two flowers F, F ′ intersect iff the following holds: a boundary arc of F intersects
a boundary arc of F ′, or F ⊂ F ′, or F ′ ⊂ F . Thus we can find all intersecting pairs of
flowers – and, hence, all edges of the clique-based contraction H – as follows. (The algorithm
below may report a pair of intersecting flowers multiple times, but this is not a problem.)

First, we construct the arrangement A(F) induced by the flower set F . Next, for each
vertex of A(F) that is the intersection of the boundaries of some pair of flowers F, F , we
report that pair. Finally, we need to find the pairs of flowers F, F ′ such that F ⊂ F ′. To
this end, we traverse the dual graph of A(F), maintaining a list L of flowers containing the
face we are currently in. Whenever we enter a flower F for the first time, we report the pairs
(F, F ′) for the faces F ′ that are currently in the list L.

We obtain the following lemma.

▶ Lemma 6. Let D be a set of n disks in the plane. Then we can compute a clique-based
contraction for G×[D] in O(n log n) expected time.

Proof. Computing the collection C of cliques takes O(n log n) time by Lemma 4. It remains
to analyze the time needed to compute the edge set EH of the clique-based contraction.

For each clique C ∈ C, we can compute the corresponding flower F (C) in O(|C| log |C|)
time using a simple divide-and-conquer algorithm. Since each disk is part of only clique, this
implies that the flower set F can be computed in O(n log n) time. Moreover, the total number
of boundary arcs of the flowers is O(n) because the complexity of a single flower is linear.
Hence, we can construct the arrangement A(F) in O(n log n + k) expected5 time, where k

is the number of intersections between the boundary arcs, using a randomized incremental
algorithm by Mulmuley [23]. Since k = O(n log n) by Lemmas 4 and 5, constructing the
arrangement thus takes O(n log n) expected time. The traversal of the dual graph, including
the maintenance of L takes O(n log n) time. Since the size of the list L is O(log n) at any
time – this is because the ply of the flower set is O(log n) – we report at most O(n log n)
pairs in total during the traversal. Thus, the total time to compute EH is O(n log n). ◀

5 We cannot use the deterministic algorithm for line-segment intersection by Chazelle and Edelsbrunner [10]
because it does not work for curves. The deterministic algorithm for line-segment intersection by
Balaban [3] also works for curves, but that algorithm does not seem to give enough information to
construct the arrangement.
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Putting it all together. Lemma 6 gives us the first ingredient we need to apply Theorem 1.
The second ingredient is an algorithm that solves Bichromatic Intersection Testing
for disks. As observed in previous papers [9, 21] this can be done in O((nB + nR) log nR)
time, as follows. First, compute the additively weighted Voronoi diagram Vor(R) on the
centers of the set R of red disks, where the weight of a center is equal to the radius of its
corresponding disk. Next, query with the center of each blue disk D in Vor(R) to find the red
disk D′ closest to D. Now D intersects

⋃
R, the union of the red disks, iff D intersects D′.

Since Vor(R) can be computed in O(nR log nR) time [17], after which it can be preprocessed
for logarithmic-time point location in O(nR log nR) time [13], we can solve Bichromatic
Intersection Testing in O((nB + nR) log nR) time. We thus obtain our main result.

▶ Theorem 7. Let D be a set of n disks in the plane. Then we can compute a shortest-path
tree in G×[D] for a given source disk Dsrc ∈ D in expected O(n log n) time.

In the full version [11] we present a (slightly more complicated) deterministic algorithm
to compute the edges of the clique-based contraction for G×[D] in O(n log n) time. Using
that algorithm instead of Lemma 6, we obtain an algorithm to compute shortest-path trees
on disks graphs deterministically in O(n log n) time.

4 Extension to fat triangles

A triangle ∆ is called α-fat if its minimum angle is at least α. Let D = {∆1, . . . , ∆n} be a
set of α-fat triangles, where α > 0 is some fixed absolute constant. From now on, we simply
refer to the triangles in D as fat triangles and we refer to α as the fatness constant.

Constructing the clique-based contraction. Our approach to construct a clique-based
contraction for fat triangles is similar to the algorithm for disks. We now go over the various
ingredients and explain how to adapt them, if necessary.

We first observe that Lemma 3.2 from Chan’s paper [5] actually holds for any type of
objects. Hence, our Lemma 3 also holds for any type of objects. To construct the skip
quadtree, the set P (Γ) of disk centers is replaced by a set P (Γ) that contains an arbitrary
point in each object. Constructing the cliques can therefore be done in exactly the same
way as before. Indeed, the crucial property was as follows: any set of disks intersecting the
boundary of a region Rν and whose size is at least 1

6 · size(Rν), can be stabbed by O(1)
points. This property also holds for fat objects.

Now let C be a stabbed clique of fat triangles. We refer to the union of the triangles in C

as a spiky flower, and we denote it by F (C). As before, we let C(Γ) denote the set of cliques
created by our algorithm, and we define F(Γ) := {F (C) : C ∈ C(Γ)} to be the corresponding
set of spiky flowers. Then Lemma 4 also holds for fat triangles – we can follow the proof
verbatim, only replacing occurrences of “disk” by “fat triangle.”

It remains to prove the equivalent of Lemma 5 for fat triangles. To keep the terminology
similar to the case of disks, we will refer to the edges of a spiky flower F as boundary segments,
and we denote the set of boundary segments of a flower F by B(F ). Furthermore, we let
F :=

⋃
Γ∈Ξ F(Γ) denote the set of spiky flowers created by our algorithm, and we define

B(F) :=
⋃

F ∈F B(F ).

▶ Lemma 8. Let F be a set of spiky flowers that consist of n fat triangles in total. Then the
number of intersections between the boundary segments in B(F) is O(n · ply(F)).
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(i)
angle = α/3

(ii)

e e′

x p

Figure 5 (i) The set ZF of sectors defined by the boundary segments of a spiky flower F . (ii) The
point p lies in D, which in turn lies inside the expanded sector.

Proof. We apply the same proof technique as in the proof of Lemma 5: we cover the boundary
segments of each spiky flower F by a set ZF of non-overlapping fat “sectors” contained in
the flower, as explained below, from which the lemma follows.

The number of boundary segments of a spiky flower is O(nF ), where nF is the number of
triangles defining F [1, Section 3.2]. We create the set ZF for a spiky flower F as follows.
For each boundary segment β of F , we create an isosceles triangle z ⊂ F whose angles at
the endpoints of β are α/3, where α is the fatness constant of the triangles; see Figure 5.
With a slight abuse of terminology, we refer to these isosceles triangles as sectors.

▷ Claim. The sectors in the set ZF are pairwise non-overlapping.

Proof. Each sector z has one edge that corresponds to a boundary segment of F ; we call this
the external edge of z. The two other edges, which make an angle α/3 with the external
edge, are called internal edges.

Now assume for a contradiction that two sectors z, z′ overlap. Since the external edge
of any sector cannot properly intersect an (external or internal) edge of any other sector,
there must be a crossing between an internal edge of z and an internal edge of z′. Let x be
this crossing, and let e and e′ be the external edges of z and z′, respectively; see Figure 5(ii).
Assume without loss of generality that the distance from x to e is at least the distance from
x to e′. Let p be the point on e′ nearest to x, and let D be the disk centered at x and
touching e. Then p is contained in D. Moreover, D is contained in the triangle ∆ ∈ D
contributing e to the boundary of the spiky flower F . Indeed, if we were to expand the
sector z by making the angles at the endpoints of e equal to 2α/3 then D ⊂ z, and this
expanded sector is contained in ∆. Thus, p ∈ ∆, which contradicts that p lies on an external
edge. ◁

As in the proof of Lemma 5, it now follows that the number of intersections between the
sectors in Z(F) is O(|Z(F)| · ply(Z(F))), which proves the lemma. ◀

As before, we have the following corollary. Its proof is the same as the proof of Lemma 6;
the only difference is that we can now use the algorithm by Chazelle and Edelsbrunner [10]
to construct the arrangement defined by the flowers, thus avoiding the use of randomization.

▶ Corollary 9. Let D be a set of n fat triangles in the plane. Then we can compute a
clique-based contraction for G×[D] in O(n log n) time.

Bichromatic Intersection Testing for fat triangles. The final ingredient that we need is
an efficient algorithm for Bichromatic Intersection Testing for a set B of nB blue
triangles and a set R of nR red triangles, where all triangles in B ∪ R are fat. Such an
algorithm can be developed using standard machinery, as described next.
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α/2

(i) (ii) (iii)
s

v

∆ ∆′
∆′

Figure 6 (i) The set A of canonical directions and the canonical chords of a triangle. (ii) Chord s

intersects two sides of ∆′ so it intersects a canonical chord of ∆′. (iii) All canonical chords of ∆
miss ∆′, so ∆′ must have a vertex inside ∆.

Let A := {i · (α/2) : 0 ⩽ i ⩽ ⌊4π/α⌋} be a set of O(1/α) = O(1) canonical directions,
where α is the fatness constant of the triangles. Define a canonical segment to be a segment
whose direction is canonical, and define a canonical chord of a fat triangle ∆ to be a canonical
segment that connects a vertex of ∆ to its opposite side; see Figure 6(i). Note that each
vertex of ∆ admits a canonical chord. Let S(∆) be a set of three canonical chords of ∆, one
per vertex of ∆, and let P (∆) be the endpoints of these chords (including the vertices of ∆).

▶ Observation 10. If a fat triangle ∆ intersects a fat triangle ∆′ then at least one of the
following conditions holds:

(i) ∆ contains a vertex of ∆′;
(ii) a point from P (∆) lies inside ∆′;
(iii) a canonical chord from S(∆) intersects a canonical chord from S(∆′).

Proof. Suppose that condition (ii) does not hold. Then there is a canonical chord s ∈ S(∆)
that intersects two edges of ∆′, or all canonical chords in S(∆) are disjoint from ∆′. In
the former case, s separates a vertex v of ∆′ from its opposite side, which implies that s

intersects the canonical chord of v; see Figure 6(ii). Thus, condition (iii) holds in this case. In
the latter case, ∆′ must have a vertex inside ∆ and condition (i) holds; see Figure 6(iii). ◀

Observation 10 implies the following lemma.

▶ Lemma 11. Let R be a set of n fat triangles. There exists a data structure of O(n log2 n)
size such that we can decide in O(log3 n) time if a fat query triangle ∆ intersects any triangle
in R and, if so, report a witness triangle. The data structure can be built in O(n log3 n) time.

Proof. The data structure consists of three separate data structures, each handling one of
the conditions in Observation 10.

For condition (i) we need a data structure for range searching with fat triangles in a set V

of 3n points, namely the vertices of the triangles in R. As observed by Gray [18, page 14],
such queries can be answered in O(log3 n) time with a structure of size O(n log2 n) that can
be built in O(n log3 n) time.

For condition (ii) we use a union tree on the triangles in R. This is a binary tree T whose
leaves correspond to the triangles in R, and whose internal nodes store the union of the
triangles in their subtree, preprocessed for point-location queries. Checking if a query point q

is contained in any triangle in R can be done in O(log n) by performing a point location
at the root of T . If this is the case, then we can find a witness triangle in O(log2 n) time
by walking down T , always proceeding to a child whose union contains q. Since the union
complexity of n fat triangles is O(n log∗n) [2], the total amount of storage is O(n log∗n log n).
Note that the union at a node ν can be computed in O(nν log∗nν log nν) time from the
unions of its two children by a simple plane-sweep algorithm, where nν is the number of
triangles in the subtree of ν. Hence, the total preprocessing time is O(n log∗n log2 n).
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To handle condition (iii) we proceed as follows. Let SR : {s ∈ S(∆) : ∆ ∈ R} be the set
of canonical chords of the triangles in R. We will build O(1/α) different data structures
on SR, one for each of the O(1/α) possible directions of the query chord. To construct a
data structure for a fixed direction of the query chord, we partition SR into O(1/α) classes,
one for each canonical direction in A, and we build a separate substructure for each class Ai.
Assume wlog that the query chord is vertical and that the chords in Ai are horizontal.
Then we can use an interval tree [12, Section 10.1] to answer queries in O(log n), using
O(n) space and O(n log n) preprocessing. (Using a point-location structure on the vertical
decomposition of the chords in Ai is another option.) Thus the total amount of storage is
O(n/α) = O(n), the total preprocessing is O((n/α) log n) = O(n log n), and the total query
time is O((1/α) log n) = O(log n).

Since all data structure work within the claimed bounds, the lemma follows. ◀

We can now solve Bichromatic Intersection Testing for fat triangles in O((nB +
nR) log3(nB + nR)) time, by querying with each triangle ∆ ∈ B in the data structure
provided by Lemma 11. This leads to the following theorem.

▶ Theorem 12. Let D be a set of n fat triangles in the plane. Then we can compute a
shortest-path tree in G×[D] for a given source triangle ∆src ∈ D in O(n log3 n) time.

In the full version [11] we provide a better data structure for the range-query problem
considered in Lemma 11: its construction time is O(n log2 n) and each query is then answered
in O(log2 n) time. Using this data structure, we obtain an O(n log2 n) algorithm to compute
shortest-path trees on the intersection graph of fat triangles.

5 Concluding remarks

We presented the first algorithm for the SSSP problem in disk graphs that runs in O(n log n)
(expected) time. We extended the algorithm to intersection graphs of fat triangles, where
we obtain a worst-case running time of O(n log3 n). In the full version [11] we provide a
deterministic O(n log n) algorithm for the SSSP problem in disk graphs and improve the
running time for intersection graphs of fat triangles to O(n log2 n).

A natural question is whether the algorithm for fat triangles can be further improved.
Another natural question is whether an O(n polylog n) algorithm is possible for intersection
graphs of non-fat objects such as line segments. This is unlikely, however, because Hopcroft’s
problem – given a set L of n lines and a set P of n points, decide if any of the points lies on
any of the lines – can be reduced to the SSSP problem for segments, and Hopcroft’s problem
has an Ω(n4/3) lower bound [16] in a somewhat restricted model of computation.
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