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Abstract
We investigate the problem of constructing fault-tolerant bases in matroids. Given a matroid M and
a redundancy parameter k, a k-fault-tolerant basis is a minimum-size set of elements such that, even
after the removal of any k elements, the remaining subset still spans the entire ground set. Since
matroids generalize linear independence across structures such as vector spaces, graphs, and set
systems, this problem unifies and extends several fault-tolerant concepts appearing in prior research.

Our main contribution is a fixed-parameter tractable (FPT) algorithm for the k-fault-tolerant
basis problem, parameterized by both k and the rank r of the matroid. This two-variable parameter-
ization by k + r is shown to be tight in the following sense. On the one hand, the problem is already
NP-hard for k = 1. On the other hand, it is Para-NP-hard for r ≥ 3 and polynomial-time solvable
for r ≤ 2.
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1 Introduction

A basis in a d-dimensional vector space V is a set of exactly d linearly independent vectors
{v1, . . . , vd}. Any vector x ∈ V then has a unique representation x = α1v1 + · · · + αdvd.

However, if certain basis vectors are lost or corrupted – for instance, in a distributed storage
system where vectors are stored across multiple servers that can malfunction – it may be
challenging or impossible to accurately recover x. The algorithmic question we address in
this paper is: For an expected number k of failures, what is the minimum-size k-fault-tolerant
set of vectors that still guarantees data reconstructability?
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A natural way to capture the notions of basis and independence is through matroids,
which generalize linear independence to a variety of combinatorial settings (like graphs, set
systems, vector spaces). Let M = (E, I) be a matroid, and let k be a nonnegative integer.
We say that B ⊆ E is a k-fault-tolerant basis of M if B is a minimum-size set such that,
for every subset F ⊆ B of size at most k, we have rank(B \ F ) = rank(M). (All necessary
matroid definitions appear in the Preliminaries section.) Equivalently, this condition means
that cl(B \ F ) = E, where cl(·) denotes matroid closure. Note that this concept generalizes
the standard basis definition: a 0-fault-tolerant basis is simply a basis of M. However, while
every matroid has a basis, it may not admit a k-fault-tolerant basis for k ≥ 1. We investigate
the following problem.

Input: A matroid M = (E, I) and nonnegative integer k.
Task: Find a k-fault-tolerant basis B ⊆ E or correctly decide that none exists.

Fault-Tolerant Basis

Let us give some examples of Fault-Tolerant Basis.

Linear Matroids. A linear matroid over a field F can be represented by a set of vec-
tors {v1, . . . , vm} in a vector space V ⊆ Fd. The rank of the matroid corresponds to dim(V).
A basis here is simply a set of d linearly independent vectors. A set of vectors {u1, . . . , ur}
is k-fault-tolerant if, after removing up to k vectors, the remaining set still spans the entire
subspace V. Such concepts naturally arise in distributed storage – where vectors might be
stored on different servers [11] – and in coding theory, where losing some symbols or vectors
should not destroy the ability to recover the entire space [13].

Graphic Matroids. For a connected graph G, its graphic matroid M(G) has ground set E(G),
and a set I ⊆ E(G) is independent if it forms a forest. A basis is thus a spanning tree of G.
In this matroid, a set of edges B ⊆ E(G) is k-fault-tolerant if, upon removing any k edges,
the subgraph remains connected. Thus, a k-fault-tolerant basis is a (k + 1)-edge connected
spanning subgraph with minimum number of edges. This problem is known in the literature
as k-Edge-Connected Spanning Subgraph [8, 14, 17]. It is motivated by network
applications as its task is to compute a minimum-cost sub-network that is resilient against
up to k link failures (see also [5]).

Gammoids. A gammoid is derived from a directed (or undirected) graph D. Let X and Y

be two distinguished sets of vertices of V (D). Within the set X, define a subset U ⊆ X to be
independent if there exist |U | vertex-disjoint paths in G originating from vertices in Y and
ending in the vertices of U . The basis of the gammoid is the maximum set of vertices from X

that can be reached by vertex-disjoint paths from Y . In this case, a vertex set Z ⊆ X is a
k-fault-tolerant basis if upon removing any k vertices from Z, the remaining vertices are still
linkable from sources in Y without losing rank. This problem is related to the problem of
finding fault-tolerant disjoint paths studied by Adjiashvili et al. [1].

Transversal Matroids. A transversal matroid M(U, S) is described via a bipartite graph
between a ground set U and a set of “target positions” S. A set I ⊆ U is independent if it
can be matched injectively to distinct elements in S. The basis of the transversal matroid is a
maximum-size subset I ⊆ U that can be perfectly matched into S. Finding a k-fault-tolerant
basis for a transversal matroids is naturally related to robust matching problems, where
one wants to preserve a perfect (or maximum) matching under the loss of a few vertices or
edges [12, 18].
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1.1 Our Contribution
We investigate the parameterized complexity of Fault-Tolerant Basis under natural
parameterizations by k and the rank r of the input matroid. (We refer to the textbook by
Cygan et al. [10] for an introduction to parameterized complexity.) Our main result is that
the problem is FPT when parameterized by both k and r.

▶ Theorem 1. Fault-Tolerant Basis can be solved in (kr)O(kr4) ·nO(1) time on n-element
matroids of rank at most r given by independence oracles.

To prove Theorem 1, we design an algorithm that recursively decomposes the input
matroid and identifies a small core set containing any possible k-fault-tolerant basis, thereby
restricting the problem to a bounded search space. More precisely, the algorithm locates a
set W of important elements with bounded size such that, if the input matroid M admits a
k-fault-tolerant basis, then there is one contained entirely in W . The construction of W is
guided by the observation (see Observation 7) that if X is a rank-r set with r + k elements
such that every r-element subset of X is independent, then X is already a k-fault-tolerant
basis. Hence, finding such an X would immediately solve the problem. Otherwise, we
identify an inclusion-maximal rank-r set X (of bounded size) such that for every r-element
subset Y ⊆ X, the rank of Y is r. The crucial insight here is that the closure cl(X) of X can
be expressed as the union of cl(S) over all (r − 1)-element subsets S of X. We then proceed
recursively, selecting elements of W by searching for analogous sets in the closures of each S,
applying the same approach used to choose X. Once we have computed W , we determine
whether a k-fault-tolerant basis exists within W by enumerating all candidate subsets via
a brute-force algorithm. If such a basis is found, it is also a valid solution for the original
matroid.

We then show that the result of Theorem 1 is tight. First, by adapting the results of
Fomin et al. [15] for our purposes, we observe the following lower bound.

▶ Proposition 2. It is W[1]-hard for the parameterization by k to decide whether a given
linear matroid has a k-fault-tolerant basis.

For the parameterization of Fault-Tolerant Basis by k, we remind that Fault-
Tolerant Basis for graphic matroids is equivalent to finding a (k + 1)-edge connected
spanning subgraph with the minimum number of edges. As was shown by Fernandes [14],
an n-vertex graph G has a 2-edge connected spanning subgraph with at most n edges if and
only if G has a Hamiltonian cycle. Thus, Fault-Tolerant Basis is intractable already
for k = 1. Taking into account the inapproximability lower bounds for higher connectivities
established by Gabow et al. [17], we obtain the following observation.

▶ Observation 3. For every integer k ≥ 1, it is NP-hard to decide whether a graphic
matroid M given with an integer b ≥ 1 has a k-fault-tolerant basis of size at most b.

For the parameterization by the rank, we establish a dichotomy – for any fixed r ≥ 3,
Fault-Tolerant Basis is intractable, but for r ≤ 2, the problem can be solved in polynomial
time. In fact, for r ≤ 2, we solve the more general weighted variant of Fault-Tolerant
Basis. In Weighted Fault-Tolerant Basis, we are given a matroid M together with a
weight function w : E(M) → Z≥0, and the task is to find a set B ⊆ E(M) of minimum total
weight such that for any set F ⊆ B of size at most k, rank(B \ F ) = rank(M). Our result is
summarized in the following theorem.

ESA 2025
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▶ Theorem 4. For any integer r ≥ 3, it is NP-hard to decide whether a linear matroid M
of rank r over rationals given together with integers k and b has a k-fault-tolerant basis of
size at most b. For r ≤ 2, Weighted Fault-Tolerant Basis can be solved in O(n2) on
matroids given by an independence oracle.

In particular, one can find a k-fault-tolerant basis of vectors in R2 in polynomial time but
the problem becomes NP-hard in R3. To obtain the hardness for r ≥ 3, we use the result of
Froese et al. [16] stating that, given a set P of points on the plane and a positive integer k,
it is NP-hard to decide whether P contains at least k points in general position. To establish
the claim for r ≤ 2, it is convenient to show a more general result for partition matroids
which may be of independent interest.

▶ Proposition 5. Given an n-element partition matroid M with unit capacities together
with a weight function w : E(M) → Z≥0 and integers r, k ≥ 0, one can find in O(n2) time
either a set X ⊆ E(M) of minimum weight such that, for any set F ⊆ X of size at most k,
it holds that rank(X \ F ) ≥ r or correctly decide that such a set does not exist.

1.2 Related Work
Adjiashvili, Stiller, and Zenklusen [2] introduced a Bulk-Robustness model of combinatorial
optimization. They studied several instances of this framework, including the Bulk-Robust
Minimum Matroid Basis problem, which is most relevant to our work. In this setting, for
a matroid M = (E, I), we are given a collection of interdiction sets Ω = {F1, F2, . . . , Fm},

where Fi ⊆ E(M) for each i ∈ {1, . . . , m}. The goal is to find a cheapest subset X ⊆ E(M)
such that X \ Fi contains a basis of M for every i ∈ {1, . . . , m}. Adjiashvili, Stiller, and
Zenklusen provided an O(log m+log r)-approximation algorithm for Bulk-Robust Minimum
Matroid Basis, where r is the rank of the matroid. The problem Fault-Tolerant Basis
can be viewed as a special case of Bulk-Robust Minimum Matroid Basis when Ω consists
of all subsets of E of size k.

There are several prior works investigating fault-tolerance for classic optimization problems.
The model of s-t-Path and s-t-Flow problems with safe and vulnerable edges was introduced
by Adjiashvili et al. [1], who studied the approximability of these problems. Subsequently,
generalizations were also studied [3, 7, 9]. Bentert et al. [5] studied the parameterized
complexity of computing a fault-tolerant spanning tree. Approximation algorithms and
inapproximability lower bounds for k-Edge-Connected Spanning Subgraph have been
considered in [8, 14, 17, 19].

More generally, Fault-Tolerant Basis belongs to robust optimization, a branch of
optimization that adapts classic optimization-theoretic tools to settings with uncertainty.
For a comprehensive introduction, see the survey by Bertsimas et al. [6].

2 Preliminaries

We refer to the book of Oxley [21] for a detailed introduction to matroids. A pair M = (E, I),
where E is a finite ground set and I is a family of subsets of the ground set, called independent
sets of M, is a matroid if it satisfies the following conditions, called independence axioms:
(I1) ∅ ∈ I.
(I2) If A ⊆ B ⊆ E and B ∈ I then A ∈ I.
(I3) If A, B ∈ I and |A| < |B|, then there is e ∈ B \ A such that A ∪ {e} ∈ I.
We use E(M) and I(M) to denote the ground set and the set of independent sets, respectively.
An inclusion-maximal independent set B is called a basis of M. We use B(M) to denote
the set of bases of M. All the bases of M have the same size called the rank of M and
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denoted by rank(M). The rank of a subset A ⊆ E(M), denoted by rank(A), is the maximum
size of an independent set X ⊆ A; the function rank : 2E(M) → Z is the rank function of M .
A set A ⊆ E(M) spans an element x ∈ E(M) if rank(A ∪ {x}) = rank(A). The closure
(or span) of A is the set cl(A) = {x ∈ E(M) | A spans x}. Closures satisfy the following
properties, called closure axioms:
(CL1) For every A ⊆ E(M), A ⊆ cl(A).
(CL2) If A ⊆ B ⊆ E(M), then cl(A) ⊆ cl(B).
(CL3) For every A ⊆ E(M), cl(A) = cl(cl(A)).
(CL4) For every A ⊆ E(M), every x ∈ E(M) \ A, and every y ∈ cl(A ∪ {x}) \ cl(A),

x ∈ cl(A ∪ {y}).

For S ⊆ E(M), the matroid obtained by deleting S, denoted by M′ = M − S, is the
matroid such that E(M′) = E(M) \ S and I(M′) = {X ∈ I(M) | S ∩ X = ∅}. Let r ≥ 0
be an integer. The r-truncation of a matroid M is the matroid M′ with E(M′) = E(M)
such that X ∈ I(M′) if and only if X ∈ I(M) and |X| ≤ r. A matroid M is a partition
matroid if there is a partition (P1, . . . , Pd) of the ground set and a d-tuple (c1, . . . , cd) of
positive integers, called capacities, such that a set X ⊆ E(G) is independent if and only
if |X ∩ Pi| ≤ ci for every i ∈ {1, . . . , d}. A d × n-matrix A over a field F is a representation
of a matroid M over F if there is a one-to-one correspondence f between E(M) and the
columns of A such that for any X ⊆ E(M), it holds that X ∈ I(M) if and only if the
columns in {f(x) | x ∈ X} are linearly independent (as vectors of Fd). If M has such a
representation, then M has a representation over F. A matroid M admitting a representation
over F is said to be linear ; a matroid is binary if it has a representation over GF[2].

In our algorithms for general matroids, we assume that input matroids are given by
independence oracles. Such an oracle for a matroid M, takes as input a set X ⊆ E(M) and
correctly answers in a constant time whether X ∈ I(M). We note that some matroids could
be given explicitly, for example, by their representations.

3 Basic Observations

In this section, we prove a couple of simple results that will be helpful in the later discussion.
Recall that for an integer k ≥ 0, B ⊆ E(M) is a k-fault-tolerant basis of a matroid M if B

is a subset of minimum cardinality such that rank(B \ F ) = rank(M) for every subset F ⊆ B

of size at most k. We use the following bounds on the size of a k-fault-tolerant basis.

▶ Proposition 6. Let M be a matroid with rank(M) ≥ 1 and let k ≥ 0 be an integer. Then
for a k-fault-tolerant basis B of M, it holds that

rank(M) + k ≤ |B| ≤ (k + 1)rank(M).

Proof. The lower bound immediately follows from the definition of a k-fault-tolerant basis.
To show the upper bound, assume for the sake of contradiction that |B| > (k + 1)rank(M).
We iteratively construct sets X0, . . . , Xk where X0 ⊆ B is an inclusion-maximal inde-
pendent set in B, and for each i ∈ {1, . . . , k}, Xi is an inclusion-maximal independent set
in B \

( ⋃i−1
j=0 Xj

)
. Since rank(B) = rank(M) and |B| > (k+1)rank(M), such sets X0, . . . , Xk

exist. Set B′ =
⋃k

i=0 Xi. Consider an arbitrary F ⊆ B of size at most k. By the pigeonhole
principle, there is an index i ∈ {0, . . . , k} such that Xi ∩ F = ∅. By construction, it holds
that B \ B′ ⊆ B \

( ⋃i−1
j=0 Xj

)
⊆ cl(Xi). Hence, B \ F ⊆ (B′ \ F ) ∪ (B \ B′) ⊆ cl(B′ \ F ).

Because B is a k-fault-tolerant basis, cl(B \ F ) = E(M). Thus,

E(M) = cl(B \ F ) ⊆ cl(cl(B′ \ F )) = cl(B′ \ F ).

ESA 2025
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Since F was chosen arbitrarily, we obtain that B′ is a k-fault-tolerant basis of M. However,
since |B′| < |B|, this contradicts the choice of B. ◀

We next argue that the bounds in Proposition 6 are tight. First, note that the lower bound
is tight as the matroid I(M) = {X ⊆ E(M) : |X| ≤ k} proves. We next argue that the upper
bound is also tight. Let e1, . . . , er be a basis of Rr. Let k and n be integers such that 0 ≤ k < n.
Consider the linear matroid M with E(M) = {jei | 1 ≤ i ≤ r and 1 ≤ j ≤ n}. It is easy to
see that any k-fault-tolerant basis of M has to contain at least k+1 vectors of {jei | 1 ≤ j ≤ n}
for each i ∈ {1, . . . , r}. Thus, the size of a k-fault-tolerant basis is at least (k + 1)r. From the
other side, we have that, for B = {jei | 1 ≤ i ≤ r and 1 ≤ j ≤ k + 1}, rank(B \ F ) = r for
any F ⊆ E(M) of size at most k. Thus, B is a k-fault-tolerant basis of size (k + 1)r of M.

Let M be a matroid. For a positive integer h, we say that a set X ⊆ E(M) is h-uniform
if rank(X) = h and rank(Y ) = h for every subset Y ⊆ X of size h. The definition and
Proposition 6 yield the following.

▶ Observation 7. Let M be a matroid of rank r ≥ 1, k ≥ 0 be an integer, and B ⊆ E(M)
be a set of size k + r. Then, B is a k-fault-tolerant basis of M if and only if B is r-uniform.

Proof. If B is a k-fault-tolerant basis, then, for every set F ⊆ B of size at most k,
rank(B \ F ) = r. Since |B| = k + r, this implies that, for every set X ⊆ B of size r,
rank(X) = rank(B) = r, that is, B is r-uniform. For the opposite direction, if B is r-uniform,
then, for any X ⊆ B of size r, rank(X) = rank(B) = rank(M). Since |B| = k + r, it holds
for any F ⊆ B of size at most k that rank(B \ F ) = rank(M). This completes the proof. ◀

We conclude this section by proving Proposition 2 using the results of Fomin et al. [15].
In particular, they studied Rank h-Reduction. Here, the input is a binary matroid M
given by its representation over GF[2] and two positive integers h and k. The task is to decide
whether there is a set X ⊆ E(M) of size at most k such that rank(M) − rank(M − X) ≥ h.

▶ Proposition 2. It is W[1]-hard for the parameterization by k to decide whether a given
linear matroid has a k-fault-tolerant basis.

Proof. We reduce from Rank h-Reduction parameterized by k, which is known to be
W[1]-hard [15]. Let (M, h, k) be an instance of Rank h-Reduction where M is a binary
matroid of rank r. We define M′ to be the (r − h + 1)-truncation of M. Notice that M′ is a
linear matroid and its representation (over a different field) can be constructed in polynomial
time by the result of Lokshtanov et al. [20]. We claim that M′ has no k-fault-tolerant basis
if and only if (M, h, k) is a yes-instance of Rank h-Reduction.

To this end, note that M′ has no k-fault-tolerant basis if and only if there is a
set X ⊆ E(M′) of size at most k such that rank(M′ − X) < rank(M′) = rank(M) − h + 1.
Since rank(M′ − X) < rank(M) − h + 1 if and only if rank(M) − rank(M − X) ≥ h,
M′ has no k-fault-tolerant basis if and only if there is X ⊆ E(M′) of size at most k such
that rank(M) − rank(M − X) ≥ h. This concludes the proof. ◀

We remark that since the hardness for Rank h-Reduction was proven by Fomin et
al. [15] via a polynomial-time reduction from Clique, it is coNP-hard to decide whether a
linear matroid has a k-fault-tolerant basis. We also note that the problem is in XP since
we can decide in nO(k) time whether an n-element matroid M has a k-fault-tolerant basis –
simply check for each subset X ⊆ E(M) of size k whether rank(M − X) = rank(M).
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4 An FPT algorithm for the parameterization by rank and k

In this section, we prove Theorem 1. We construct a recursive branching algorithm that finds
a set W of important elements of bounded size with the property that, if the input matroid
M has a k-fault-tolerant basis, then there is a k-fault-tolerant basis B ⊆ W . Note that a
k-fault-tolerant basis has minimum size by definition. Then, we select a k-fault-tolerant basis
(if it exists) in W using brute force. The construction of W is inspired by Observation 7,
which indicates that h-uniform sets are preferable in the construction of k-fault-tolerant
bases. The following lemma is crucial for constructing W .

▶ Lemma 8. Let M be a matroid of rank r ≥ 1 and k ≥ 0 be an integer. Let X ⊆ E(M) be
an h-uniform set of size at least (h − 1)[(k + 1)r]r−1 + (k + 1)r for some 1 ≤ h ≤ r. Then,
for any k-fault-tolerant basis B of M, there is a k-fault-tolerant basis B′ such that

(i) B \ cl(X) = B′ \ cl(X) and
(ii) B′ ∩ cl(X) ⊆ X.

Proof. Let B be a k-fault-tolerant basis of M. If B ⊆ cl(X), then the claim is straightforward
because in this case, cl(X) = E(M) and r = h. We can therefore select B′ to be the set of k+r

arbitrary elements of X by Observation 7. We hence assume from now on that B \ cl(X) ̸= ∅.
Consider a k-fault-tolerant basis B′ satisfying (i), that is, B \ cl(X) = B′ \ cl(X), such

that the size of B′ ∩ (cl(X) \ X) is minimum. We claim that B′ satisfies (ii), that is,
B′ ∩ cl(X) ⊆ X. Assume towards a contradiction that B′ ∩ (cl(X) \ X) ̸= ∅ and there is
an element x ∈ B′ ∩ (cl(X) \ X). Let Y = B′ \ {x}. Note that Y is not a k-fault-tolerant
basis of M. Hence, there is a set F ⊆ Y of size at most k such that rank(Y \ F ) < r.
Notice that rank(B′ \ F ) = r implies rank(Y \ F ) = r − 1. Denote by F the family of all
sets F ⊆ Y of size at most k such that rank(Y \ F ) = r − 1. For each F ∈ F , let ZF ⊆ Y

be an inclusion-maximal independent set in Y \ F and let Z = {ZF | F ∈ F}. Note
that cl(ZF ) = cl(Y \ F ) and therefore rank(ZF ) = r − 1 for each F ∈ F . By Proposition 6,
it holds that |Y | ≤ (k + 1)r − 1. Hence, |Z| ≤

((k+1)r−1
r−1

)
≤ [(k + 1)r]r−1. We next show

that |cl(ZF ) ∩ X| ≤ h − 1 for each F ∈ F .
To this end, assume towards a contradiction that |cl(ZF ) ∩ X| ≥ h. Since X is h-uniform,

we obtain that X ⊆ cl(cl(ZF ) ∩ X). Then cl(X) ⊆ cl(cl(ZF ) ∩ X) ⊆ cl(ZF ) and, in particular,
x ∈ cl(ZF ) = cl(Y \ F ). However, in this case, B′ \ F = (Y ∪ {x}) \ F ⊆ cl(Y \ F ). Since B′

is a k-fault-tolerant basis, we have that rank(Y \ F ) = rank(B′ \ F ) = r contradicting F ∈ F .
Recall that |X| ≥ (h−1)[(k +1)r]r−1 +(k +1)r and B′ has at least one element outside X.

Then, |B′| ≤ (k + 1)r and therefore |X \ B′| ≥ (h − 1)[(k + 1)r]r−1 + 1 by Proposition 6.
Since |Z| < [(k + 1)r]r−1 and, for each F ∈ F , |cl(ZF ) ∩ X| ≤ h − 1, a simple counting
argument shows that there exists an element y ∈ X \ B′ such that y /∈ cl(ZF ) for all F ∈ F .
Let B∗ = Y ∪ {y} = (B′ \ {x}) ∪ {y}. Note that by definition, (i) B∗ \ cl(X) = B′ \ cl(X),
(ii) |B∗ ∩ (cl(X) \ X)| < |B′ ∩ (cl(X) \ X)|, and (iii) |B∗| = |B′|. We next show that B∗ is a
k-fault-tolerant basis. Afterwards, we will show that this contradicts our choice of B′.

Towards the former, let F ⊆ B∗ be of size at most k. We prove that rank(B∗ \ F ) = r.
If rank(Y \ F ) = r, then rank(B∗ \ F ) ≥ rank(Y \ F ) = r. So we assume from now on that
rank(Y \ F ) < r. Then, rank(Y \ F ) = r − 1 as shown above. Assume towards a contradiction
that y ∈ F . Since y /∈ B′, we have that F ′ = (F \ {y}) ∪ {x} is a subset of B′ of size at
most k. Since B′ is a k-fault-tolerant basis, rank(B′ \ F ′) = r. However, B′ \ F ′ = Y \ F

and rank(Y \ F ) = r, contradicting our assumption that rank(Y \ F ) < r. Hence, y /∈ F and
therefore F ⊆ Y . Recall that rank(Y \ F ) = r − 1. This implies that F ∈ F and ZF ∈ Z.
Since y /∈ cl(ZF ) by the choice of y, rank(B∗ \F ) = rank((Y \F )∪{y}) > rank(Y \F ) = r −1.
Thus, rank(B∗ \ F ) = r.
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Since rank(B∗ \ F ) = r for every F ⊆ B∗ of size at most k and |B∗| = |B′|, we have
that B∗ is a k-fault-tolerant basis. However, we also obtain that (i) B∗ \ cl(X) = B′ \ cl(X)
and (ii) |B∗ ∩ (cl(X) \ X)| < |B′ ∩ (cl(X) \ X)| contradicting the choice of B′. This shows
that B′ ∩ cl(X) ⊆ X and completes the proof. ◀

Now we show how to construct a set W of important elements of bounded size.

▶ Lemma 9. There is an algorithm that, given a matroid M of rank r ≥ 1 with {e} ∈ I(M)
for each e ∈ E(M) and an integer k ≥ 0, outputs a set W ⊆ E(M) of at most rr2 · [(k + 1)r]r3

elements in (rk)O(r2) · nO(1) time such that M has a k-fault-tolerant basis if and only if M
has a k-fault-tolerant basis B ⊆ W .

Proof. Let M be a matroid of rank r ≥ 1 such that {e} ∈ I(M) for any e ∈ E(M) and let k

be a non-negative integer. We construct a recursive branching algorithm Important(M, X)
that takes as input a matroid M and a non-empty independent set X ∈ I(M), and outputs
a set Y ⊆ cl(X) of size at most |X||X|2 · [(k + 1)r]r|X|2 with the property that for any
k-fault-tolerant basis B of M, there is a k-fault-tolerant basis B′ such that

(i) B \ cl(X) = B′ \ cl(X) and
(ii) B′ ∩ cl(X) ⊆ Y .

Let h = |X|. The base case is h = 1, where we do the following:
Compute cl(X).
If |cl(X)| < (k + 1)r, then set Y := cl(X) and output it.
Otherwise, define Y to be the set of (k + 1)r arbitrary elements of cl(X) and output it.

For h > 1, we do the following:
Compute cl(X).
If |cl(X)| ≤ (h − 1)[(k + 1)r]r−1 + (k + 1)r, then set Y := cl(X), output it, and stop.
Find a h-uniform set Z ⊆ cl(X) that either has size (h − 1)[(k + 1)r]r−1 + (k + 1)r or is
an inclusion-maximal h-uniform set of size at most (h − 1)[(k + 1)r]r−1 + (k + 1)r − 1.
If |Z| = (h − 1)[(k + 1)r]r−1 + (k + 1)r, then set Y := Z and output it.
If Z is an inclusion-maximal h-uniform set of size at most (h−1)[(k+1)r]r−1 +(k+1)r−1,
then output Y :=

⋃
S⊆Z s.t. |S|=h−1 YS , where YS is the output of Important(M, S).

To compute an h-uniform set Z, we apply the following greedy procedure:
Initially, set Z := X.
While Z ≤ (h − 1)[(k + 1)r]r−1 + (k + 1)r − 1, do the following:

For every x ∈ cl(X) \ Z, check whether Z ∪ {x} is h-uniform and set Z := Z ∪ {x} if
this holds.
If Z ∪ {x} is not h-uniform for all x ∈ cl(X) \ Z, then output Z and stop.

If Z = (h − 1)[(k + 1)r]r−1 + (k + 1)r, then output Z.

The crucial property of the algorithm is given in the following claim whose proof combines
Lemma 8 and induction on h. Here and further, the proofs of the statements labeled (⋆) are
omited in this extended abstract and can be found in the full version of the paper [4].

▷ Claim 10 (⋆). Important(M, X) outputs a set Y ⊆ cl(X) with the property that for
any k-fault-tolerant basis B of M, there is a k-fault-tolerant basis B′ such that

(i) B \ cl(X) = B′ \ cl(X) and
(ii) B′ ∩ cl(X) ⊆ Y .
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It remains to analyze the size of Y and the running time. We next show an upper bound
on the size of Y of |Y | ≤ hh2 · [(k + 1)r]rh2 . We prove this via induction on h.

For h = 1, note that |Y | ≤ (k + 1)r ≤ hh2 · [(k + 1)r]rh2 . For h ≥ 2, consider any
independent set S ⊆ E(M) of size h − 1. The algorithm outputs the set YS , which by the
induction hypothesis, has size at most Nh−1 = (h−1)(h−1)2 [(k +1)r]r(h−1)2 . By construction,
we have

|Y | ≤ max{(h − 1)[(k + 1)r]r−1 + (k + 1)r,

(
(h − 1)[(k + 1)r]r−1 + (k + 1)r − 1

h − 1

)
Nh−1}.

Observe first that

(h − 1)[(k + 1)r]r−1 + (k + 1)r ≤ h[(k + 1)r]r ≤ hh2
· [(k + 1)r]rh2

. (1)

For the second option, note that(
(h − 1)[(k + 1)r]r−1 + (k + 1)r − 1

h − 1

)
Nh−1 ≤ (h[(k + 1)r]r)h · Nh−1

≤ (h[(k + 1)r]r)h(h − 1)(h−1)2
[(k + 1)r]r(h−1)2

≤ hh[(k + 1)r]rh · hh2−h[(k + 1)r]r(h2−h)

≤ hh2
· [(k + 1)r]rh2

.

Combining this equation with Equation (1), we obtain the required upper bound for |Y |.
Finally, we evaluate the running time of Important and show that Important(M, X)

runs in (rk)O(rh2) · nO(1) time. To this end, notice that cl(X) can be constructed in
polynomial time in the oracle model. To construct the h-uniform set Z of size h(rk)O(r),
we use the greedy procedure where for each x ∈ cl(X) \ Z for the considered Z, we go
over all subsets S of Z of size h − 1 and check whether S ∪ {x} is independent using the
oracle. As h ≤ r, the construction of Z can be done in (kr)O(rh) · nO(1) time. The algorithm
makes (rk)O(rh) recursive calls and the depth of the search tree is at most h. Summarizing,
we obtain that the overall running time is (rk)O(rh2) · nO(1).

To complete the proof and construct W , we call Important(M, X) for an arbitrary
basis X of M and set W = Y for the output set of the algorithm. Note that a basis can
be found in polynomial time using the independence oracle. Then Claim 10 implies that
if M has a k-fault-tolerant basis, then it also has one in W . Note that the other direction is
trivial as W ⊆ E(M). This concludes the proof. ◀

We are now ready to prove Theorem 1, which we restate here for convenience.

▶ Theorem 1. Fault-Tolerant Basis can be solved in (kr)O(kr4) ·nO(1) time on n-element
matroids of rank at most r given by independence oracles.

Proof. Let M be a matroid of rank r and let k ≥ 0 be an integer. Fault-Tolerant Basis
is trivial for r = 0 and we can assume that r ≥ 1. Notice that loops of M, that is, elements e

such that {e} /∈ I(M) are irrelevant – a loop e is not included in any k-fault-tolerant basis
and e ∈ cl(X) for any set X ⊆ E(M). Hence, we can preprocess M and delete the loops.
From now on, we assume that {e} ∈ I(M) for every e ∈ E(M).

We apply the algorithm from Lemma 9, and in time (rk)O(r3) ·nO(1), find a set W ⊆ E(M)
of size at most rr2 · [(k + 1)r]r3 such that whenever M has a k-fault-tolerant basis, M has a
k-fault-tolerant basis B ⊆ W . We consider all candidate subsets B of W with |B| ≤ (k + 1)r
using the upper bound for the size of a k-fault-tolerant basis from Proposition 6. This
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can be done in (kr)O(kr4) time. For each candidate set B of size at most (k + 1)r, we
verify whether B is a k-fault-tolerant basis as follows. In O([(k + 1)r]k) time, we check
whether rank(B \ F ) = r for every subset F ⊆ B of size at most k. Among all candidate sets
satisfying the above property, we select a set of minimum size which is a k-fault-tolerant
basis of M. The overall running time is (kr)O(kr4) · nO(1). This concludes the proof. ◀

5 Partition matroids

In this section, we prove Proposition 5. The proof is based on the following structural lemma.

▶ Lemma 11. Let M be a partition matroid with unit capacities for a partition (P1, . . . , Pd)
of the ground set. Let X ⊆ E(M) and let k ≥ 0 and r ≥ 1 be integers. Then, the following
properties hold.

(i) If there is an integer s ≥ 1 such that |X| = s(r − 1) + k + 1 and |X ∩ Pi| ≤ s for every
i ∈ {1, . . . , d}, then for any set F ⊆ X of size at most k, rank(X \ F ) ≥ r.

(ii) If X is an inclusion-minimal set such that for any set F ⊆ X of size at most k,
rank(X \ F ) ≥ r, then there is an integer s ≥ 1 such that |X| = s(r − 1) + k + 1
and |X ∩ Pi| ≤ s for every i ∈ {1, . . . , d}.

Proof. To show (i), suppose that |X| = s(r−1)+k+1 and |X ∩Pi| ≤ s for each i ∈ {1, . . . , d}
for some integer s ≥ 1. Consider any subset F ⊆ X of size at most k. Since |X ∩ Pi| ≤ s

for every i ∈ {1, . . . , d}, it holds that |(X \ F ) ∩ Pi| ≤ s and hence |(X \ F ) ∩ Pi| > 0 for
at least

⌈
|X\F |

s

⌉
sets Pi. Since M is a partition matroid with unit capacities, this is also a

lower bound on rank(X \ F ) and therefore

rank(X \ F ) ≥
⌈ |X \ F |

s

⌉
≥

⌈s(r − 1) + 1
s

⌉
≥ r.

This proves that rank(X) ≥ r and rank(X \ F ) ≥ r for any set F ⊆ X of size at most k.
To prove (ii), suppose that X is an inclusion-minimal set with rank(X) ≥ r such that

for any set F ⊆ X of size at most k, rank(X \ F ) ≥ r holds. We assume without loss of
generality that |X ∩ P1| ≥ · · · ≥ |X ∩ Pd|.

If r = 1, then we set s = max{|X ∩Pi| | 1 ≤ i ≤ d}. Trivially, |X| ≥ k+1 and |X ∩Pi| ≤ s

for every i ∈ {1, . . . , d}. We next show that |X| = k + 1. Assume towards a contradiction
that |X| > k+1. Any subset X ′ ⊆ X of size k+1 satisfies |X ′∩Pi| ≤ s for every i ∈ {1, . . . , d}.
Hence, rank(X ′ \ F ) > 1 for any set F of size at most k by (i). This contradicts the the
minimality of X and shows |X| = k + 1.

If r ≥ 2, then |X ∩ Pr−1| ≥ 1 and we set s = |X ∩ Pr−1|. We will next show
that |X| = s(r − 1) + k + 1 and |X ∩Pi| ≤ s for every i ∈ {1, . . . , d}. Let Y =

⋃r−1
j=1(X ∩ Pj)

and Z =
⋃d

j=r(X ∩ Pj). By definition of s, |Y | ≥ s(r − 1).
If |Z| ≤ k, then rank(X \ Z) = r − 1 < r, contradicting the choice of X. Thus, |Z| ≥ k+1

and |X| = |Y | + |Z| ≥ s(r − 1) + k + 1. There exist Y ′ ⊆ Y such that |Y ′ ∩ Pj | = s for
each j ∈ {1, . . . , r − 1}, and Z ′ ⊆ Z such that |Z ′| = k + 1. Consider X ′ = Y ′ ∪ Z ′. By
definition, |X ′ ∩ Pi| ≤ s for every i ∈ {1, . . . , d}. Then, by (i), we have that rank(X ′) ≥ r

and for any set F ⊆ X ′ of size at most k, rank(X ′ \ F ) ≥ r. By the minimality of X, we
conclude that X = X ′. This proves (ii). ◀

We are now ready to prove Proposition 5, which we restate here.

▶ Proposition 5. Given an n-element partition matroid M with unit capacities together
with a weight function w : E(M) → Z≥0 and integers r, k ≥ 0, one can find in O(n2) time
either a set X ⊆ E(M) of minimum weight such that, for any set F ⊆ X of size at most k,
it holds that rank(X \ F ) ≥ r or correctly decide that such a set does not exist.
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Proof. Consider a weighted partition matroid M with unit capacities and a weight func-
tion w : E(M) → Z≥0. Let k ≥ 0 and r ≥ 0 be integers. Let also (P1, . . . , Pd) be the
partition of E(M) defining M. If r = 0, then the claim of the theorem is trivial as X = ∅ is
a solution. Thus, we can assume that r ≥ 1.

For an integer s ≥ 1, we say that s is feasible if there exists a set X ⊆ E(M)
with |X| = s(r − 1) + k + 1 such that |X ∩ Pi| ≤ s for every i ∈ {1, . . . , d}. For each
integer 1 ≤ s ≤ max{|Pi| | 1 ≤ i ≤ d}, we check whether s is feasible. This can be done by
checking whether

∑d
i=1 | min{|Pi|, s}| ≥ s(r − 1) + k + 1. If there is no feasible integer, then

we conclude that there is no X ⊆ E(M) with the property that rank(X \ F ) ≥ r for any
subset F ⊆ X of size at most k by Lemma 11. Otherwise, for every feasible s, we greedily
choose a set X of minimum weight such that |X| = s(r − 1) + k + 1 and |X ∩ Pi| ≤ s for
every i ∈ {1, . . . , d}. Notice that the selection of such a set is equivalent to finding a minimum
weight independent set of size s(r − 1) + k + 1 in the partition matroid for (P1, . . . , Pd)
with the capacities (c1, . . . , cd) where ci = min{s, |Pi|} for each i ∈ {1, . . . , d}. By the
well-known matroid properties [21], the greedy algorithm finds such a set X. By Lemma 11,
we conclude that X is a minimum weight set such that for any set F ⊆ X of size at most k,
rank(X \ F ) ≥ r. This concludes the description of our algorithm and its correctness proof.

To evaluate the running time, notice that the elements of M can be sorted by their weight
in O(n log n) time. Then we have at most n choices of s and for each s, the greedy algorithm
works in O(n) time. Thus, the overall running time is in O(n2), concluding the proof. ◀

As a corollary, we obtain the following for general matroids of rank at most two.

▶ Corollary 12 (⋆). Weighted Fault-Tolerant Basis can be solved in O(n2) on matroids
of rank at most two given by an independence oracle.

6 Complexity dichotomy for the parameterization by rank

In this section, we prove Theorem 4 which we restate here for convenience.

▶ Theorem 4. For any integer r ≥ 3, it is NP-hard to decide whether a linear matroid M
of rank r over rationals given together with integers k and b has a k-fault-tolerant basis of
size at most b. For r ≤ 2, Weighted Fault-Tolerant Basis can be solved in O(n2) on
matroids given by an independence oracle.

Proof. The claim for r ≤ 2 is proven in Corollary 12. Thus, it remains to show the
computational lower bound for r ≥ 3. We show the claim for r = 3 and then explain how to
extend it for any r ≥ 3. We reduce from General Position Subset Selection. Recall
that a set P of points on the Euclidean plane is said to be in general position if there are
no three points on the same line on the plane. General Position Subset Selection is
defined as follows. Given a set P of point on the plane and an integer p ≥ 1, decide whether
there is a subset Q ⊆ P of at least p points in general position. The problem was shown to
be NP-hard by Froese et al. [16] and the result holds for points with rational coordinates.

Let (P =
{ (

x1
y1

)
, . . . ,

(
xn

yn

) }
, p) be an instance of General Position Subset Selec-

tion. We assume without loss of generality that p ≥ 3 as any set of at most two points is in

general position. We set k = p − 3, construct the set E =
{ x1

y1
1

 , . . . ,

xn

yn

1

 }
of vectors,

and define M to be the linear matroid with the ground set E over rationals.
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Note that rank(M) ≤ 3 and that three distinct points
(

xh

yh

)
,

(
xi

yi

)
, and

(
xj

yj

)
of P are

not on the same line if and only if rank
({ xh

yh

1

 ,

xi

yi

1

 ,

xj

yj

1

 })
= 3. This implies that

for any I ⊆ {1, . . . , n}, the points of
{ (

xi

yi

)
| i ∈ I

}
⊆ P are in general position if and

only if
{ xi

yi

1

 | i ∈ I
}

⊆ E is a 3-uniform set for M. Hence, P has a subset of at least p

points in general position if and only if there is a 3-uniform subset of E of size at least p. By
Proposition 6, a k-fault-tolerant basis of M has size at least p = k + 3. By Observation 7,
M has a k-fault-tolerant basis of size p if and only if (P, p) is a yes-instance of General
Position Subset Selection. This concludes the proof for r = 3.

To see the claim for r > 3, we perform the same reduction but in r dimensions. The
constructed vectors have a 0 in all but the first three dimensions (where they have the entries
as constructed above). For each 4 ≤ i ≤ r, we then add k + 1 vectors with zero-entries
everywhere except for dimension i, where the entry is 1. Note that any k-fault-tolerant basis
of the linear matroid over the constructed vectors has to contain all (r − 3)(k + 1) newly
added vectors. Moreover, it has to contain a set P of vectors such that after removing any k

of them, the first three dimensions have to be spanned by the remaining vectors. This is
equivalent to the case r = 3 and concludes the proof. ◀

7 Conclusion

In this paper, we initiate the study of the parameterized complexity of Fault-Tolerant
Basis. Our main result is that the problem is fixed-parameter tractable when parameterized
by both k and rank r of the input matroid. This positive algorithmic result is complemented
by computational lower bounds showing NP-hardness for constant values for any one of the
two parameters alone. Our results lead to several open questions.

First, we do not know whether our FPT result from Theorem 1 could be extended for
Weighted Fault-Tolerant Basis. Our approach based on the choice of h-uniform sets
is tailored for the unweighted case, and one may need different techniques in the presence of
weights.

Second, is it possible to extend our result to the non-uniform model introduced by
Adjiashvili et al. [1]? Here, we assume that the set of elements of a matroid M is partitioned
into two subsets S and V of safe and vulnerable elements, respectively. Then, the task
is to either find a set B ⊆ E(M) of minimum size such that for any sets F ⊆ V ∩ B of
size at most k, rank(M − F ) = rank(M) or correctly report that such a set does not exist.
Fault-Tolerant Basis is the special case of this problem with S = ∅.

Third, can our results be extended to the model introduced by Adjiashvili et al. [2] where
not arbitrary sets of k elements can fail but possible failure scenarios are part of the input?

Finally, observe that our computational lower bounds from Proposition 2, Observation 3,
and Theorem 4 do not exclude efficient algorithms for Fault-Tolerant Basis on special
classes of matroids. In particular, we proved in Proposition 5 that Weighted Fault-
Tolerant Basis can be solved in polynomial time on truncations of partition matroids
with unit capacities. While it is straightforward to see that Weighted Fault-Tolerant



M. Bentert, F. V. Fomin, P. A. Golovach, and L. Morelle 83:13

Basis can be solved in polynomial time for partition matroids with arbitrary capacities,1 it
is not clear whether the problem can be solved in polynomial time on their truncations. The
problem complexity for other fundamental classes of matroids, like transversal matroids and
gammoids, is another interesting open question.
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