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—— Abstract

The MultiQueue is a relaxed concurrent priority queue consisting of n internal priority queues,
where an insertion uses a random queue and a deletion considers two random queues and deletes the
minimum from the one with the smaller minimum. The rank error of the deletion is the number of
smaller elements in the MultiQueue.

Alistarh et al. [2] have demonstrated in a sophisticated potential argument that the expected
rank error remains bounded by O(n) over long sequences of deletions.

In this paper we present a simpler analysis by identifying the stable distribution of an underlying
Markov chain and with it the long-term distribution of the rank error exactly. Simple calculations
then reveal the expected long-term rank error to be %n -1+ 6% Our arguments generalize to
deletion schemes where the probability to delete from a given queue depends only on the rank of the
queue. Specifically, this includes deleting from the best of ¢ randomly selected queues for any ¢ > 1.
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1 Introduction

Priority queues maintain a set of elements from a totally ordered domain, with an insert
operation adding an element and a deleteMin operation extracting the smallest element. They
are a fundamental building block for a wide range of applications such as task scheduling,
graph algorithms, and discrete event simulation. The parallel nature of modern computing
hardware motivates the design of concurrent priority queues that allow multiple processing
elements to insert and delete elements concurrently. Strict' concurrent priority queues
(e.g., [19, 11, 7, 17]) suffer from poor scalability due to inherent contention on the smallest
element [4, 8]. To alleviate this contention, in relazed priority queues deletions should still
preferentially extract small elements but need not always extract the minimum. In other
words, the correctness requirement is turned into a quality measure: We speak of a rank
error of 7 — 1 if the extracted element has rank r among all elements currently in the priority
queue. In many scenarios, relaxed priority queues outperform strict priority queues, as the
higher scalability outweighs the additional work caused by the relaxation. They are an active
field of research and a vast range of designs has been proposed [10, 16, 22, 3, 18, 21, 15, 23].

1 in the sense of linearizability
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A Simple yet Exact Analysis of the MultiQueue

The MultiQueue. The MultiQueue, initially proposed by Rihani et al. [16] and improved
upon by Williams et al. [21], emerged as the state-of-the art relaxed priority queue. Due to
its high scalability and robust quality, the MultiQueue inspired a number of follow-up works
[15, 23]. Tts design uses the power-of-two-choices paradigm and is delightfully simple: We
use n (sequential) priority queues for some fixed n € N. Each insertion adds its element to a
queue chosen uniformly at random and each deletion picks two queues uniformly at random
and deletes from the one with the smaller minimum. Figure 1 illustrates the MultiQueue
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Figure 1 The MultiQueue with n = 6 queues and some elements already inserted. The shown
insertion picks queue 2 to insert the element 34 (green). The shown deletion picks queues 3 and 6
with minima 8 (red) and 12 (orange), and deletes the 8 since it is smaller. The deletion exhibits a
rank error of 3 due to the 3 smaller elements highlighted in blue.
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with n = 6 queues. We can generalize this design to pick any number ¢ > 1 of queues for
deletions where even non-integer choices of ¢ make sense: We would then pick |¢] + 1 queues
with probability ¢ — |¢] and |c¢] queues otherwise. In practice, the individual queues are
protected by mutual exclusion locks, and n is proportional to the number of processing
elements to find unlocked queues in (expected) constant time.

Existing theory on the MultiQueue. Our theoretical understanding of the MultiQueue is
still incomplete. One obstacle is that the order of operations matters: Intuitively, deletions
can cause the distribution of elements to drift apart and increase the expected rank error,
while insertions of small elements can mask accumulated differences. This suggests that the
worst-case setting is when following the insertion of sufficiently many elements, only deletions
occur. Like Alistarh et al. [2], we exclusively consider this setting. At first glance, this process
seems closely related to the classical balls-into-bins process, where balls are placed one after
the other into the least loaded of two randomly chosen bins. Famously, the difference between
the highest load and the average load for n bins is in O(loglogn) with high probability for
any number of balls. Numerous variants of the balls-into-bins process have been proposed
and studied [5, 12, 6, 14]. However, reducing the process to a balls-into-bins process imposes
multiple difficulties. The state of the MultiQueue is not fully described by the number
of elements in each queue but also involves information about the ranks of the elements.
Moreover, deleting an element from a queue can affect the ranks of elements in other queues.
Despite these challenges, Alistarh et al. [2] managed to transfer the potential argument from
the balls-into-bins analysis by Peres et al. [14] to a MultiQueue analysis via an intermediate
“exponential process” that avoids correlations between the elements in the queues. They
prove that the expected rank error is in O(n) and the expected worst-case rank error is
in O(nlogn) for any number of deletions and any ¢ € (1, 2], while the rank errors diverge
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with the number of deletions for ¢ = 1. In follow-up work, this technique is generalized to
other relaxed concurrent data structures [1] and a process where each processing element
has its own priority queue and “steals” elements from other processing elements with some
probability [15].

Contribution. In this paper, we present an analysis of the MultiQueue that, compared to
the potential argument by Alistarh et al. [2], is simultaneously simpler and more precise. We

characterise the exact long-term distribution of the rank error for any ¢ > 1 and any n € N.

From this distribution we can derive, for instance, that the expected rank error for ¢ = 2
is %n -1+ %. In addition to covering any ¢ > 1, our analysis generalizes to all deletion
schemes where the probability for a queue to be selected solely depends on the rank of the
queue (when ordering the queues according to their smallest element).

We achieve this by modelling the deletion process as a Markov chain and observing
that its stationary distribution can be described using a sequence of n — 1 independent
geometrically distributed random variables. In the full version of this paper [20] we also apply
our techniques to the elegant exponential process by Alistarh et al. [2], which we believe to
be of independent interest.

Outline. First, in Section 2, we introduce the formal model of a generalized MultiQueue and
the setting in which we analyze it. We then state our main results, including Theorem 1 that

characterizes the long-term distribution of the ranks of the top-elements in the MultiQueue.

In Section 3, we present our analysis of the generalized MultiQueue, leading to the proof
of Theorem 1. We apply Theorem 1 to compute the expected rank error for any ¢ > 1 and
any n € N in Section 4. Finally, in Section 5, we discuss implications and limitations of our
results and outline possible future work.

2 Formal Model and Results

Analogous to Alistarh et al. [2], we analyze the MultiQueue in a simplified setting where
only deletions occur.

The o-MultiQueue. A o-MultiQueue consists of n priority queues and a choice distribution
o on [n] that captures a generalised deletion strategy (as explained below). The n queues
are initially populated by randomly partitioning an infinite set {z; < 2 < x3 < ...} of
elements. 2 The queues, identified with the sets of elements they contain, are denoted by
Q1,...,Qn, indexed such that min Q; < min Qs < ... < min @Q,,. The minima are also called
top-elements. We then perform a sequence of deletions. Each time, we select an index i € [n]
according to o and delete the top-element of ;. 3 Then, we relabel the queues such that
their top-elements appear in ascending order again. Let (Qgs), ey 5,5)) be the sequence of
queues after s deletions and rgs) the rank of the top-element min Qgs) among Qgs) u...uQ¥,
for any s € N and ¢ € [n].

Intuitively, o should be biased towards smaller values of i, i.e., towards selecting queues
with smaller top-elements, to ensure that the rank error does not diverge over time. Using
the notation o; := Pry«.[i* = i] and o< := Prj=s[i* < 7], the formal requirement for o
turns out as:

2 Note that every queue receives an infinite number of elements with probability 1.
3 We write [n] as a shorthand for {1,...,n}.
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Vien—-1:0,5>1% (%)

If o does not satisfy (x), the MultiQueue deletes too frequently from “bad” queues (i.e., with
large top-elements) and the gap between “good” and “bad” queues increases over time. We
prove a corresponding formal claim in the full version of this paper [20].

Surprisingly independent random variables. One might think that the ranks r%s) <...<
h(f) are correlated in complex ways. While they are correlated, they effectively arise as the
prefix sum of n — 1 independent random variables. More precisely, our main theorem draws

attention to the differences between the ranks of consecutive top-elements.

» Theorem 1 (Proof in Section 3). Let (r\”),... r)) denote the ranks of the top-elements

of a o-MultiQueue with o satisfying (x) after s deletions. Then (r@, . ,rﬁls)) converges in

distribution to a sequence (r1,...,7y,) of random variables where

<7

i—1
=14+ 25]- for i € [n] with §; ~ Geomy (1 -

j=1

)forie[nfl},

where Geom (p) denotes the geometric distribution of the number of Bernoulli trials with
success probability p until (and including) the first success.

From the distribution of the ranks of the top-elements given by Theorem 1 it is straightforward
to derive the rank error distribution.

» Corollary 2 (Proof in Section 3). Let R(®) denote the rank error exhibited by the deletion
in step s in the o-MultiQueue with o satisfying (x). Then R®) converges in distribution to
the random variable R where

R=7r;4—1 withi* ~ o and r; as in Theorem 1.

The expected rank error is (in the long run)

n—1
o<i(l—0
B = 3 7,
i1 <t T

n

Application to the c-MultiQueue. For ¢ > 1 we define the c-MultiQueue to be the o-
MultiQueue where ¢ is the distribution that corresponds to picking the best out of ¢ randomly
selected queues as described in Section 1. For instance, the probability to select one of the
first i queues with ¢ =2is 0; =1 — (1 — £)2. Note that (x) is satisfied (see Lemma 8). We
can then derive several useful quantities from Theorem 1, including the expected rank error.

» Theorem 3. Consider the expectation E[R] of the rank error R = r;« —1 of the c-MultiQueue
in the long run (i.e., after convergence).

(i) For ¢ =2 we have E[R] = 3n —1+ &= = 3n—6(1).

(i) For c=1+c¢ withe € (0,1), we have E[R] = (1 = $)n -1+ & = (L - £)n—0O(1/e).

€ &€ €

~—

1 1
(iii) For any ¢ > 1 we have n - /0 fe(x)dr — 5 <E[R] <n- /0 fe(z) dx,
where f.:(0,1) = R is defined as follows using € := ¢ — |c] € [0,1)

1—zld(1 —e+ex)

(z) =zl = : :
fe(z) =@ (1—e+ez) 1—zled=1(1 —e+ex)

(iv) Cruder but simpler bounds for any ¢ > 2 are: % -5 <E[R] < |_cjn—1'
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Figure 2 For large n, the c-MultiQueue has an expected rank error of E[R] = n- f01 fe(z) dx+o(n)
where f.(z) is defined in Theorem 3. The solid line shows ¢ f 01 fe(x) dz and hence the constant
in front of the leading term. The dashed line ¢ — Ci—l is an asymptote for both ¢ — 1 and ¢ — oo.

Figure 2 plots the expected asymptotic rank error per queue depending on ¢, and an
approximation ﬁ We also give concentration bounds for the rank error in Theorem 9.

The Exponential-Jump Process. As an intermediate step in their analysis, Alistarh et al.

[2] introduce the “exponential process”, where new top-elements are not given by the current

state but generated by adding an exponential random variable to the current top-element.

We reformulate this process as the equivalent exponential-jump process (EJP) as follows. The
EJP involves n tokens on the real number line and a distribution o on [n]. In every step, we
sample * ~ o and X ~ Exp(1). We then identify the i*th token from the left and move it a
distance of X to the right. More formally, the state of the process is given by the sequence
ty <...<t, of positions of the tokens and the state transition can be described as

(t1,.. . tn) ~ sort(ty, ..., 6 + X, ..., t,) where i* ~ o and X ~ Exp(1). (EJP)

We provide an exact analysis, which we believe to be of independent interest, and explain the
connection between the EJP and the MultiQueue in the full version of this paper [20]. With
the same methods as before, we analyse the differences (dy,...,d,—1) with d; = t;41 — ;.

» Theorem 4. Let n € N and let o be a distribution on [n] that satisfies (x). The EJP
admits a stationary distribution w for the differences (dy,...,dn—1) with

n—1
7= X Exp(n-o —1).
i=1
In other words, the distances between neighbouring tokens are, in the long-run, mutually
independent and exponentially distributed with parameters as given.

3 A Direct Analysis of the o-MultiQueue

When analysing random processes, it is often a good idea to reveal information only when
needed, keeping the rest hidden behind a veil of probability. In our case, the idea is to
conceal the queue an element is in until the element becomes a top-element.

We discuss this idea using the example in Figure 3 where n = 4 queues are initially
populated with the set N.

In (a) we see an explicit representation of a possible state, where queues are labeled in
increasing order of their top-elements. We can tell, for instance, that when removing the
top-element 7 of queue 2 then the new top-element would be 9. In (b) we keep track of the
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Figure 3 Increasingly abstract ways for modeling the state of a MultiQueue system with 4 queues.
(a) contains all information. (b) assumes that the queues in which the elements reside has only
been partially revealed. (c) abstracts away from concrete elements. (d) represents the information
in (c) using numbers.

current and past top-elements of all queues but do not reveal ahead of time which queue
each element of N is assigned to. As far as we know, the elements 16,17,18,... are assigned
to each of the four queues with equal probability. It is unavoidable that we obtain partial
information, however: If an element is smaller than the top-element of some queue, it cannot
possibly be contained in that queue. The elements 8, 9 and 10 are in queue 1 and 2 with
probability 1/2 each, and the elements 12 and 14 are in queues 1, 2 and 3 with probability
1/3 each. Element 5 is surely contained in queue 1, but we can treat this as a degenerate
probability distribution rather than as a special case. Note what happens when element 7 is
deleted: First, 8 has a chance of 1/2 of being the new top-element of queue 2. If it turns out
that 8 is not the new top-element, then 9 gets the same chance, then 10. If all three elements
are rejected, then element 12 is considered, getting a chance of 1/3 (because it could still be
in three queues) and so on.

Since we are only interested in the ranks of top-elements over time, we can forget the
removed elements and the concrete element values and arrive at representation (c), showing
n balls “C)” representing top-elements and dots
in (d) we list the sequence of dot-counts in between the balls, omitting the infinite number
of dots to the right of the last ball.

We now represent the o-MultiQueue as a Markov chain with states in Ng_l as in (d),
borrowing language from (b) and (c) when useful. Since the state space is countably infinite,
the role of the transition matrix is filled by an infinite family P of transition probabilities
where P(dstart, dend) denotes the probability to transition from state dstart e NG~ L to state
dcnd e Ng~ 1 These probablhtles are implicitly described below. We write d for a state
(di,...,dp—1) € Ng7' and & = 071101 € {0,1}""! denotes the ith unit vector for
i € [n — 1]. We avoid special cases related to the last ball by defining d,, = oo and &, = 0.

“ ”

representing other elements. Equivalently,

A state Eistart transitions to another state Zlend via a sequence of transitional states
(d,i) € NI™! x [n] in which one ball i € [n] (numbered from left to right) is marked as the
active ball.

1. Given state dstart, we sample i* ~ o and obtain the transitional state (Estart, i*).

Interpretation: In terms of (c) we activate ball i* and in terms of (b) we delete the

top-element from queue Q);+ and look for a new one.



S. Walzer and M. Williams 85:7

2. As long as we are in a transitional state (Zj i), there are two cases:

2.1 If d; > 0, then with probability (i — 1)/i we continue with transitional state (d — & +
€;—1,1) and with probability 1/ the transition ends with state dend =d— €;.
Interpretation: In terms of (c) the active ball decides to skip past the dot to the right
of it, or consumes the dot and stops. In terms of (b), we reveal whether the next
top-element candidate for @; is contained in @);; if it is, the candidate becomes the
new top-element and we stop, otherwise we continue the search.

2.2 If d; = 0, then we continue with transitional state (d,i + 1).

Interpretation: In terms of (c) the active ball overtakes another ball, thereby becoming
ball i 4+ 1. In terms of (b), we update the ordering of the queues since the new top-
element of @Q; is now known to be larger than the top-element of queue Q;41.

For clarity, we illustrate the possible transitions for a concrete state c_istart S NZ}*I and
resulting transition probabilities in Figure 4. We remark that the following analysis does not
refer to the transition probabilities directly, but uses their implicit characterisation.

/( (3,0,2) 41 3—((3,0,3),4)7-5—((3,0,4),4)—5—((3,0,5) 4)7— -~

N +(3,0,2) i (3,0,3) 7(3,0,4) 47(3,0,5)
" 0((3,0,2)3) 72— ((3,11).3) 12— ((3.2.0),3)—1—((3.2.0) 4) 7
3.0,2) 156 ]1 53(3,0,1) TN3.L,0) 113.2,0)
152((3.0.2).2)
\((3,0,2),1)
~12.0.2)

Figure 4 Possible states and transitional states reachable from Zistart = (3,0,2) in a single state

transition. The probabilities = 169 136, 156, 1 on the outgoing edges of (3,0,2) assume the bpecial case

of the 2-MultiQueue. Taking the example dcnd = (3, 1, 0), the probablhty to transition from dstart to
dend arises from the two corresponding paths as P(dsmrt, dend) = 136 3 + 156 -1 % . %

We now state the main result of this section, which characterizes a stationary distribution
of P. With this lemma, we can finally prove Theorem 1 and Corollary 2.

» Theorem 5. Let n € N and let o be a distribution on [n] that satisfies (x). The transition
probabilities P admits the stationary distribution m given by

n—1

T= X Geom(l— n.io' ),

i=1 st

where Geom(p) denotes the geometric distribution of the number of failed Bernoulli trials with
success probability p before the first success, and X denotes the direct product of distributions.

In particular, the n — 1 components of d ~ 7 are independent random variables. We further
make the following useful observation.

1

» Observation 6. For any d € NI and any i € [n] we have 7(d + &) = = (d) - .
n- USi

Proof of Observation 6. If i = n then & = 0 and o-; = 1 so the claim is trivial. Now
assume ¢ < n. For any d € Ng_l we have

n—1

n(d) = [T (1= pi)%pi where p; = 1 -
i=1

n'o'gi

ESA 2025
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Hence, 7(d + &) = m(d) - (1 — p;) and the claim follows. <

The following auxiliary lemma captures the main insight required in the proof of Theorem 5.

» Lemma 7. Let v(d,i) € Rsq be the probability that a transitional state (d,i) € N2 ™1 x [n]
occurs when transitioning from state dsary ~ ™ according to P with o satisfying (x). Then,

—

v(d,i) = n(d) - 0.

Proof of Lemma 7. We prove V(Zl,i) = 7r(£i) - 0<; by induction. In the induction step
we may assume that v(d’,i’) = 7(d') - -y holds whenever i’ < i or when i = i’ and
di+...+d_; <dy+...4+di—1. In general, there are three ways in which a transitional
state (d,7) might be reached:

(i) The transition started with d= asm and ball 7 was activated.

(i) Ball i has skipped a dot and we thus reached (d,7) from (d — &_1 + &, ).

(iii) Ball i has just overtaken another ball and we thus reached (d, ) from (d,i — 1).

For i = 1, consider a transitional state (d, 1) where the first ball is active. Here, only (i)
is possible since the first ball never skips a dot (transition ends with probability 1 in rule 2.1)
and there is no ball to its left. The probability for (d, 1) to occur is thus

v(d,1) = n(d) -0y = 7(d) - 01 (recall that o; := Pr [i* =] and o; := Pr [i* <i]).
1*~Oo 1*¥~o

For i > 1, there are two cases depending on whether d;_; > 0, i.e., whether there is a dot in

between ball ¢ — 1 and ball 4. If d;_1 > 0, then only (i) and (ii) are possible, so

(3

v(d, ) =n(d)-o; +v(d—&_1+¢&,i)-(1—1)
d

=n(d) o +m(d—E_1+&) o (1- ) (Induction)
= n(d) - o5 + 7(d) - n%U_Si{l g .Zag o (1-1) (Observation 6)

= (d)(0i + 0<i—1) = 7(d) - 0.

If d;_1 = 0, then only (i) and (iii) are possible, so

—

v(d,i) = n(d) - o5 + v(d,i — 1) od- 7(d) - o; +7(d) - 0cimq = 7(d) - 0. <
With Lemma 7 in place, we can now prove Theorem 5.

Proof of Theorem 5. Given a state Estart ~ T, we transition to a new state Ziend according
to the transition probabilities P. To end in denq, we first need to reach the transitional state

—

(dena + €;,1) for some i € [n] and then decide to end the transition there. Note that we need

— —

(dend + €:,1) rather than (dend, ), since ending the transition (rule 2.1) reduces d; by one.

—

The probability to end in depq is therefore

Prlda = &) = S vld+ i) 0TS w0 o
i=1 i=1

0@6n~ 7 _1f*n17*

s gw(d).nlagi.ggl.?fﬂ(d)zlﬁfw(d).

It follows that ﬁend is again distributed according to m and 7 is a stationary distribution. <«
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Finally, we prove Theorem 1 and Corollary 2.

Proof of Theorem 1. Let d®) = (d{”,...,d\” ) with d'* = () —#{*) —1. Then, (d®)),en
is a Markov chain with transition probabilities P. Since we can reach (0,...,0) from any state
and vice versa, the Markov chain is irreducible. The Markov chain is aperiodic since (0, ..., 0)
can transition into itself (if ball n is activated and immediately stops). This implies that
the stationary distribution 7 that we found is unique and that de) converges in distribution
to d ~ 7 (see [13, Theorem 1.8.3]). Let §(*) = (553), 1 ) with 51(3) = dz(-s) + 1. Clearly,

1Y n—1

(5(5 )seN converges in the bame way, except that the geometric random variables are shifted.

By deﬁmtlon we have r =1+ ZJ 1 J ) 50 the claimed distributional limit (ri,...,mn) of
(r %s), ce rl ) follows. <

Proof of Corollary 2. Theorem 1 states the ranks of the top-elements converge in distribution
to (r1,...,7n). The distribution for R follows from the fact that we select the queue to delete
from according to o and deleting an element with rank r yields a rank error of r — 1. Using
the fact that Ex ceom, (p)[X] = 1/p, we have for the expected rank error

n i—1
E[R] =E[r- —1]=> o7y E[§ ZE Z 0; = ZE (1 -0)
1=1 j=1 i=j7+1
n—1 n—1 (1 )
S ST L :
j= s T j=1 %<5 " =%

4 Application to the c-MultiQueue

In this section we apply our results on the general o-MultiQueue to the c-MultiQueue with
¢ > 1. After checking in Lemma 8 that the corresponding o satisfies (x), we proceed to

compute expected rank errors (Theorem 3) and derive a concentration bound (Theorem 9).

This involves straightforward (though mildly tedious) calculations.
» Lemma 8. In the c-MultiQueue with ¢ = |c] + e > 1 we have

oi=1—(1- %)LCJ(l — el for alli € [n], and o satisfies (x).

Proof. Recall that we sample |¢| queues with probability 1 — e and |¢] + 1 queues otherwise.

We fail to select one of the first ¢ queues only if none of them were sampled. Hence for ¢ < n:

oi=1-(1-e)1-HHld @ -l =1 1 - Hlda -e+e1 - 1))
—1-(-Ha-c>1-0-H =4

n

The inequality uses that we have [¢| > 2, or £ > 0, or both. <

We now prove Theorem 3, restated here for easier reference.

» Theorem 3. Consider the expectation E[R] of the rank error R = 1y —1 of the c-MultiQueue
in the long run (i.e., after convergence).

(i) For c =2 we have E[R] = 3n — 14 & = 2n — O(1).

(i) For c=1+c¢ withe € (0,1), we have E[R] = (1 = S)n—1 + & = (L - £)n—0O(1/e).
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1 1

(iii) For any ¢ > 1 we have n - / fe(z) [R] <n- / fe(z) dx,
0 0

where f.:(0,1) — R is defined as follows using € := ¢ — |c] € [0,1)

1—zle(1 — e +ex)

— glel=1q = . .
Jex) =@ (1-e+ez) 1—xled=1(1 — ¢ +ex)

(iv) Cruder but simpler bounds for any ¢ > 2 are: % —

<E[R] <

n
le]—1"

c—1

Proof of Theorem 3. We have just checked in Lemma 8 that o satisfies (x) and computed
osi=1—(1—2)leJ(1 —eL). We can therefore specialise the formula for the expected rank
error from Corollary 2 by plugging in ¢ and simplifying, which yields

n—1 n—1 . .
O<; . . 17( ’L)LCJ( z)
E[R] = l—0)—— " = 1— iylelp — g4
[ ] ;( US)Ugi_% i:1( n) ( En)l—(l—f)l-cj(l—{;‘ ) %
n 1 . N .
, 1= (1= Yylel(1 =gl .
=> (-4l —ei) Ty n (cancel 1 — £)
p i 11— L)l (1 —el) n
n-l iylel(] —
_ iylel-1¢1 _ (D1 —e+el) . . .
_;(n) (1—e+¢et ) (%’)LH Nfp— (substitute i — n — 1.)
= Z fe(L). (using the definition of f.(x) given above.)
We are now ready to prove claim (i). Using that fo(x) =z - 11122 =z-(1+z)=1z+2? we
have
n—1 1 n—1 1 n—1
E[R]ZZfz =2 GG = it >
i=1 i=1 i=1
n—l (n—1)(2n—-1)
=—+ o =on—1+ 4.

Similarly, we can prove (ii). First, we simplify f.(z) for ¢ =1+ with € € (0, 1):

1—2(1 —e+ex) (1—2)(1+ex)
€—¢ex = (1—etea): e(l—ux)
1+ex

_ _ 1= 2
=(1—-e+ex)- . ==+ 2-¢)r+ex”.

froe(@) = (1= +ex) -

We then get (omitting a simple calculation):

E[R] = i:flJra(%) = i(% +(2-e)i +e(i)?)

=125 - 1)+ (2 - )M TR == (

6n2

o=

We now turn our attention to general ¢ > 1 again. Our goal is to approximate the sum
by an integral. To bound the approximation error effectively, we will first show that f. is
monotonic. For this let us examine the fractional term g.(x) occurring in f.(z):
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() 1—zled(1 — e ex) (zled =1 —zlel)(1 — e + ex)
o(z) = =
g 1—zld=1(1—-c+ex) 1—zld=1(1—-c+ex)
14 gl 1 —az)(1—e+ex) ) zle) =11 - 2)(1 — e + ex)
o lealdTtyerldT i1 —a) T 1 — )l el (1 — )
1—e+
=t = — (1)
o1 T +e
From (1) we can see that g.(z) does not have a singularity at = 1 and by setting

9e(1) = fe(1) =1+ c—% = cfl

[0,1]. We also see from

(1) that g.(z) is increasing in = and decreasing in ¢ (recall that ¢ determines € = ¢ — |¢]).

Because the other factor xl°)=1(1 — ¢ + ex) of f.(x) is also increasing in = and decreasing in
¢, we conclude that f.(z) as a whole is increasing in & and decreasing in ¢. This makes the
upper and lower sums bounding the integral of f. particularly simple:

n—1

i=1 =0 =1 =1 =1

By rearranging we obtain (iii). We now turn to the cruder bound (iv). We begin with
¢ € N\ {1}. In this case we have fc(z) = 2! go(x) where 1 < ge(z) < -5
This gives:

1 1 1 1
%:/ xc_ldxg/ fc(x)dxg/ mc_lcfl dx:Cfl/ xc_ldxzcil.
0 0 0 0
C

[R] < 27 when ¢ € N\ {1}. When ¢ ¢ N we can
use that f.(z) is decreasing in ¢ and round conservatively to obtain the claimed result. <«

Combining this with (iii) gives 2

» Theorem 9. In the 2-MultiQueue*, the highest rank error observed over a polynomial
number of deletions is in O(nlogn) with high probability.

Proof. We will use a tail bound by Janson [9, Theorem 2.1] on the sum of geometrically
distributed random variables from. It reads

Pr[X > k-pul < e Pxrlk—1=loghk) £, any k> 1,
where X is a sum of geometrically distributed random variables (with possibly differing
success probabilities), p, is the smallest success probability and p = E[X].

We apply this bound to X = rn — 1, which has the required form by Theorem 1. It is
easy to check that p, = §,_1 = T =0(L) and

n—1 —
1-1-= -4
=E[X] = n—p—1 1 -0l :
a X] ;1—(1—* _% z:: rlL - o 1::11 rlogn)
Since the rank error R clearly satisfies R < r, — 1 = X we have for k large enough

Pr[R > k-nlogn] < Pr[X > k-nlogn] = e_@(%mog(")k) =n~ O,

By a union bound, the probability that we observe a rank error exceeding k - nlogn at some
point during n¢ deletions is at most n¢-n~°®*). For large enough k, this probability is still
small. <

4 A similar analysis for ¢ = 1 + ¢ is also possible.

[0, 1].
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Figure 5 The convergence of the 2-MultiQueue with n = 2'° to its stable state. After s deletions,
let ris) be the rank of queue i. The plot shows the observed ranks i +— ris) for some values of s, as

well as the expected ranks i — ]E[rgo)] and ¢ — IE[TEOO)

] in the initial state and the converged state.

To give some intuition for how quickly the 2-MultiQueue converges to its stable state
and for how close the observed ranks of top-elements are to their expectation we provide
experimental data in Figure 5.

5 Future Work

While we have fully analyzed the long-term behavior of the MultiQueue in the deletion-only
setting, there are still open questions in the general setting. Specifically, our methods are
not directly applicable when insertions of arbitrary elements can happen after deletions.
We conjecture that the deletion-only setting represents the worst-case in the sense that the
expected rank error cannot be made worse even by adversarial insertions. On the flip side,
we conjecture that the expected rank error is never better than before the first deletion. Our
reasoning is as follows: Inserting sufficiently large elements does not affect deletions and
is equivalent to inserting before deleting. When inserting many small elements, the state
drifts towards the state where no deletions happened. In summary, we expect the state of
the MultiQueue always to be “between” the insertion-only and the deletion-only setting, and
that our analysis yields accurate predictions after sufficiently many deletions regardless of
previous operations.

Our analysis applies directly to applications that do insert new elements after the first
deletion, such as heap sort and simple batch job scheduling. A much broader range of
applications, including Dijkstra’s algorithm and discrete-event simulations, process elements
in monotonous fashion, meaning that the elements deleted from the priority queue are
monotonically increasing. When using a MultiQueue, newly inserted elements are unlikely
to become top-elements, and we expect the state of the MultiQueue to stay “close” to the
deletion-only setting.

Williams et al. [21] proposed the delay as an additional quality metric and stickiness as a
way to increase throughput. The delay of an element e measures how many elements worse
than e are deleted while e resides in the queue. Stickiness lets threads reuse the same queue
for multiple consecutive operations. We believe that the delay can be analyzed directly with
our approach and that the Markov chain can be adapted to handle stickiness as well.

In practice, it is relevant how fast the system stabilizes and converges to the postulated
distributions of ranks or what rank errors are to be expected until then. Thus, analyzing the
convergence speed is a natural next step.
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Alistarh et al. [1] analyze the MultiQueue in concurrent settings where comparisons can

become stale, meaning that after deciding which queue to delete from but before actually
deleting from it, its top-element might change. We find it interesting whether our analysis
can be adapted to this scenario as well.
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