
Multicut Problems in Almost-Planar Graphs:
the Dependency of Complexity on the Demand
Pattern
Florian Hörsch #

CISPA Helmholtz Center for Information Security, Saarbrucken, Germany

Dániel Marx #

CISPA Helmholtz Center for Information Security, Saarbrückem, Germany

Abstract
Given a graph G, a set T of terminal vertices, and a demand graph H on T , the Multicut problem
asks for a set of edges of minimum weight that separates the pairs of terminals specified by the
edges of H. The Multicut problem can be solved in polynomial time if the number of terminals
and the genus of the graph is bounded (Colin de Verdière [Algorithmica, 2017]). Restricting the
possible demand graphs in the input leads to special cases of Multicut whose complexity might be
different from the general problem.

Focke et al. [SoCG 2024] systematically characterized which special cases of Multicut are
fixed-parameter tractable parameterized by the number of terminals on planar graphs. Moreover,
extending these results beyond planar graphs, they precisely determined how the parameter genus
influences the complexity and presented partial results of this form for graphs that can be made
planar by the deletion of π edges. Continuing this line of work, we complete the picture on how
this parameter π influences the complexity of different special cases and precisely determine the
influence of the crossing number, another parameter measuring closeness to planarity.

Formally, let H be any class of graphs (satisfying a mild closure property) and let Multicut(H)
be the special case when the demand graph H is in H. Our first main result is showing that if H
has the combinatorial property of having bounded distance to extended bicliques, then Multicut(H)
on unweighted graphs is FPT parameterized by the number t of terminals and π. For the case
when H does not have this combinatorial property, Focke et al. [SoCG 2024] showed that O(

√
t)

is essentially the best possible exponent of the running time; together with our result, this gives a
complete understanding of how the parameter π influences complexity on unweighted graphs. Our
second main result is giving an algorithm whose existence shows that the parameter crossing number
behaves analogously if we consider Multicut(H) on weighted graphs.

2012 ACM Subject Classification Mathematics of computing → Graphs and surfaces; Mathematics
of computing → Graph algorithms; Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases MultiCut, Multiway Cut, Parameterized Complexity, Tight Bounds, Embed-
ded Graph, Planar Graph, Crossing Number

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.87

Related Version Full Version: https://arxiv.org/abs/2504.21624 [9]

Acknowledgements We want to thank Jacob Focke and Shaohua Li for the helpful discussions.

1 Introduction

Most NP-hard problems remain NP-hard when restricted to planar graphs, unless they
become trivial or irrelevant on planar graphs. There are very few NP-hard problems that
are polynomial-time solvable on planar graphs for some nontrivial and interesting reason.
One such case is the Multiway Cut problem: given a graph G and a set T ⊆ V (G) of
terminals, the task is to find a multiway cut S of minimum weight, that is, a set S ⊆ E(G)

© Florian Hörsch and Dániel Marx;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 87; pp. 87:1–87:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florian.hoersch@cispa.de
https://orcid.org/0000-0002-5410-613X
mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
https://doi.org/10.4230/LIPIcs.ESA.2025.87
https://arxiv.org/abs/2504.21624
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

87:2 Multicut Problems in Almost-Planar Graphs

such that every component of G \ S contains at most one terminal. Dahlhaus et al. [3]
showed that Multiway Cut in general graphs is NP-hard even for three terminals, while it
is polynomial-time solvable on planar graphs for every fixed number |T | of terminals. The
exponent of n in the algorithm of Dahlhaus et al. [3] is O(|T |). Later, the dependence was
improved to O(

√
|T |) [2, 10], which was shown to be optimal under the Exponential-Time

Hypothesis (ETH) [1,11]. The results were extended to bounded-genus graphs, again with
an essentially best possible form of the exponent [1, 2].

Multicut is a generalization of Multiway Cut where not all terminals need to be
separated from each other, but the input specifies which pairs of terminals need to be
separated (and we do not care whether other pairs are separated or not).

Multicut
Input: A weighted graph G together with a set T ⊆ V (G) of terminals;

and a demand graph H with V (H) = T .
Output: A minimum-weight set S ⊆ E(G) such that u and v are in distinct components

of G \ S whenever uv is an edge of H.

Let us observe that Multiway Cut is the special case of Multicut when H is a complete
graph on T . Colin de Verdière [2] presented an algorithm for Multicut where the exponent
of the running time is O(

√
|T |), similarly to Multiway Cut. However, it is no longer clear

anymore that this algorithm is a tight, optimal result and cannot be improved in some cases:
it could be that there are special cases, special type of demand graphs where significantly
better algorithms are possible. For example, if H is a biclique (complete bipartite graph),
then Multicut can be solved in polynomial time by a reduction to a minimum weight s − t

cut problem. A very natural question to consider is the case when H is a complete 3-partite
graph. This special case is the Group 3-Terminal Cut problem: given a graph G with
three sets of terminals T1, T2, T3, the task is to find a set S of edges of minimum total weight
such that G \ S has no path between any vertex of Ti and any vertex of Tj for all distinct
i, j ∈ [3]. While a general Multicut algorithm solves Group 3-Terminal Cut with the
exponent of the running time being the square root of the number of terminals, the lower
bounds for Multiway Cut do not imply that this dependence is optimal.

Focke et al. [5] systematically analyzed which types of demand graphs make the problem
more tractable. The question was explored in the following setting. Let H be a class of graphs
(i.e., a set of graphs closed under isomorphism). Then we denote by Multicut(H) the
special case of Multicut that contains only instances (G, H) where H ∈ H. For example, if
H is the class of cliques, then Multicut(H) is exactly Multiway Cut.

Ideally, for every class H of graphs, we would like to understand the best possible running
time of Multicut(H) on planar graphs. In order to make the question more robust, Focke
et al. [5] considered only classes H satisfying a mild closure property. We say that H ′ is a
projection of H if H ′ can be obtained from H by deleting vertices and identifying pairs of
independent vertices. Moreover, a class of graphs H is projection-closed if, whenever H ∈ H
and H ′ is a projection of H, then H ′ ∈ H also holds. The intuition is that an instance having
demand graph H ′ can be easily simulated by an instance having demand graph H, thus it is
reasonable to assume we only consider classes of demand graphs closed under this operation.

Let us consider some easy cases first. As we mentioned before, the Multicut problem
can be solved in polynomial time by a reduction to s − t minimum cut if the demand graph
is a biclique. Furthermore, if H has only two edges, then a similar reduction is known [8, 12].
Isolated vertices of H clearly do not play any role in the problem. We say that H is a trivial
pattern if, after removing isolated vertices, it is either a biclique or has at most two edges.

F. Hörsch and D. Marx 87:3

An extended biclique is a graph that consists of a complete bipartite graph together with a
set of isolated vertices. Let µ be the minimum number of vertices that need to be deleted
to make a graph H an extended biclique. Then we say that H has distance µ to extended
bicliques. Moreover, we say that a graph class H has bounded distance to extended bicliques
if there is a constant µ such that every H ∈ H has distance at most µ to extended bicliques.

For planar graphs, Focke et al. [5] give the following characterization:

▶ Theorem 1.1 ([5]). Let H be a computable projection-closed class of graphs. Then the
following holds for Multicut(H)on planar graphs.
1. If H has bounded distance to extended bicliques, then there is an f(t)nO(1) time algorithm.
2. Otherwise,

a. There is an f(t)nO(
√

t) time algorithm.
b. Assuming ETH, there is a universal constant α > 0 such that for any fixed choice of

t ≥ 3, there is no O(nα
√

t) algorithm, even when restricted to unweighted instances
with at most t terminals.

That is, depending on whether H has bounded distance to extended bicliques, the number
t of terminals has to appear in the exponent. Focke et al. [5] precisely characterized how the
complexity changes if we move from planar graphs to bounded-genus graphs. As we can see,
the parameter genus can appear in the exponent in different ways, depending on H.

▶ Theorem 1.2 ([5]). Let H be a computable projection-closed class of graphs. Then the
following holds for Multicut(H).
1. If every graph in H is a trivial pattern, then there is a polynomial time algorithm.
2. Otherwise, if H has bounded distance to extended bicliques, then

a. There is an f(g, t)nO(g) time algorithm.
b. Assuming ETH, there is a universal constant α > 0 such that for any fixed choice of

g⃗ ≥ 0, there is no O(nα(g⃗+1)/ log(g⃗+2)) algorithm, even when restricted to unweighted
instances with orientable genus at most g⃗ and t = 3 terminals.

3. Otherwise,
a. There is an f(g, t)nO(

√
g2+gt+t) time algorithm.

b. Assuming ETH, there is a universal constant α > 0 such that for any fixed choice of
g⃗ ≥ 0 and t ≥ 3, there is no O(nα

√
g⃗2+g⃗t+t/ log(g⃗+t)) algorithm, even when restricted

to unweighted instances with orientable genus at most g⃗ and at most t terminals.

Focke et al. [5] also considered a much more restricted extension of planar graphs than
bounded-genus graphs: graphs that can be made planar by deleting a few edges. We use
planar + πe for the class of graphs that can be made planar by removing at most π edges.
Given an instance (G, H), we use π for the smallest integer such that G is in planar + πe.

Observe that in Theorem 1.2, the algorithmic results are stated for the edge-weighted
version, while the lower bounds are stated for the unweighted version. In fact, edge-weights
do not make much difference in Theorem 1.2, as polynomial edge weights can be simulated by
parallel edges without changing the genus of the graphs. However, this simulation can easily
change the number π of edges that needs to be deleted to make the graph planar. This means
that if we consider the influence of the parameter π on the running time, the edge-weighted
and the unweighted problem may behave differently. Focke et al. [5] characterized the
influence of this parameter in the edge-weighted case:

ESA 2025

87:4 Multicut Problems in Almost-Planar Graphs

▶ Theorem 1.3 ([5]). Let H be a computable projection-closed class of graphs. Then the
following holds for edge-weighted Multicut(H).
1. If every graph in H is a trivial pattern, then there is a polynomial-time algorithm.
2. Otherwise, if H has bounded distance to extended bicliques, then

a. There is an f(π, t)nO(
√

π) time algorithm.
b. Assuming ETH, there is a universal constant α > 0 such that for any fixed choice of

π ≥ 0, there is no O(nα
√

π) algorithm, even when restricted to instances in planar + πe

with t = 3 terminals.
3. Otherwise,

a. There is an f(π, t)nO(
√

π+t) algorithm.
b. Assuming ETH, there is a universal constant α > 0 such that for any fixed choice of

π ≥ 0 and t ≥ 3, there is no O(nα
√

π+t) algorithm, even when restricted to planar + πe

instances with at most t terminals.

Observe that π has a different form of influence on the exponent compared to genus: it is
O(

√
π) instead of O(g) in the case of bounded distance to extended bicliques, and O(

√
π + t)

instead of O(
√

g2 + gt + t) in the unbounded distance case. Intuitively, having π extra edges
is a much more restricted extension of planar graphs than having genus g, and consequently,
the parameter π has a much weaker influence on the exponent than genus has.

For unweighted graphs, Focke et al. [5] showed that the problem is easier than the
edge-weighted version and the parameter π can be removed from the exponent.

▶ Theorem 1.4 ([5]). Unweighted Multicut can be solved in time f(π, t)nO(
√

t).

However, this result leaves open the question what happens in unweighted Multicut(H) if
H has bounded distance to extended bicliques. Based on Theorems 1.2 and 1.3, one would
expect that it is possible to remove the number t of terminals from the exponent as well.

Our contributions

First, we resolve the remaining question about unweighted Multicut(H) and show that if
H has bounded distance to extended bicliques, then both t and π can be removed from the
exponent. Recall that µ is the number of vertices needed to be deleted to make the demand
graph an extended biclique. Our first main result is the following algorithm.

▶ Theorem 1.5. Unweighted Multicut can be solved in time f(π, t)nO(√
µ).

Observe that, in contrast to Theorem 1.4, only µ is in the exponent of the running time
of the algorithm of Theorem 1.5. As µ ≤ t, this algorithm gives an independent proof of
Theorem 1.4 with a very different proof technique. With Theorem 1.5 at hand, we can
complete the picture for the complexity of unweighted Multicut(H):

▶ Theorem 1.6. Let H be a computable projection-closed class of graphs. Then the following
holds for unweighted Multicut(H).
1. If H has bounded distance to extended bicliques, then there is an f(π, t)nO(1)-time al-

gorithm.
2. Otherwise,

a. There is an f(π, t)nO(
√

t) algorithm.
b. Assuming ETH, there is a universal constant α > 0 such that for any fixed choice of

t ≥ 3, there is no O(nα
√

t)-time algorithm, even when restricted to planar instances
with at most t terminals.

F. Hörsch and D. Marx 87:5

We consider yet another, even more restricted parameter measuring the distance from
planar graphs: the crossing number, the minimum number of crossings needed when drawing
the graph in the plane. Clearly, if a graph has a drawing with cr crossings, then we can
remove a set of at most cr edges to make the graph planar. Thus the crossing number cr is
always at least π, that is, an algorithm parameterized by π immediately gives an algorithm
parameterized by cr.

Again, there is no straightforward reduction from the edge-weighted version to the
unweighted version without increasing the crossing number. Thus both versions of the
problem when parameterizing by crossing number are interesting. Clearly, the unweighted
version is no harder than the edge-weighted one. Moreover, both versions parameterized by
crossing number are no harder than their respective versions parameterized by π. But which
of these versions are strictly harder than the others?

It turns out that, when parameterizing by crossing number, the edge weights do not
change the hardness of the problem and both the edge-weighted and the unweighted versions
parameterized by cr have the same complexity as the unweighted version parameterized by
π. The following algorithm is our main result on the crossing number parameterization.

▶ Theorem 1.7. Edge-weighted Multicut can be solved in time f(cr, t)nO(√
µ).

Together with Theorem 1.1, it implies the following complete classification for the
complexity of Multicut(H) when parameterizing by cr:

▶ Theorem 1.8. Let H be a computable projection-closed class of graphs. Then the following
holds for edge-weighted Multicut(H).
1. If H has bounded distance to extended bicliques, then there is an f(cr, t)nO(1)-time

algorithm.
2. Otherwise,

a. There is an f(cr, t)nO(
√

t) algorithm.
b. Assuming ETH, there is a universal constant α > 0 such that for any fixed choice of

t ≥ 3, there is no O(nα
√

t)-time algorithm, even when restricted to unweighted planar
instances with at most t terminals.

Note that the algorithmic results of Theorems 1.6 and 1.8 are incomparable: Theorem 1.6
considers only unweighted graphs, while Theorem 1.8 considers edge-weighted graphs, but
under parameterization by a potentially much larger parameter.

Theorems 1.2–1.8 complete the picture of how different parameters measuring closeness to
planarity influence the running time of Multicut(H) for different classes H (see Figure 1).
Let us observe that the exact form of the influence is very different for the different parameters.
As we explain below, the treewidth of the so-called multicut dual of the optimum solution is
the main factor determining the exponent of the running time [2,5]. The exponent O(

√
t)

for planar graphs comes from the fact that a planar graph with O(t) vertices (or faces) has
treewidth O(

√
t). Intuitively, for nonplanar graphs, the situation changes as follows:

Genus. If the genus is large, then a graph with t vertices can have treewidth lar-
ger than O(

√
t). The maximum possible treewidth is given by the (nonobvious) for-

mula O(
√

g2 + gt + t). Therefore, the maximum treewidth of the multicut dual is
O(

√
g2 + gt + t), giving a bound on the exponent of the running time.

Edge-weighted planar + πe. With extra edges having infinite (or very large) weight, we
can simulate multiple terminals at different parts of a planar graph. More precisely, a
planar instance of Group 3-Terminal Cut with t terminals in each of the three groups
can be reduced to an instance of Multiway Cut with three terminals if we connect

ESA 2025

87:6 Multicut Problems in Almost-Planar Graphs

weighted unweighted crossing
genus planar + πe planar + πe number

H with
bounded distance f(g, t)nO(g) f(π, t)nO(

√
π) f(π, t)nO(1) (*) f(cr, t)nO(1) (*)

to extended bicliques

H with
unbounded distance f(g, t)nO(

√
g2+gt+t) f(π, t)nO(

√
π+t) f(π, t)nO(

√
t) f(cr, t)nO(

√
t) (*)

to extended bicliques

Figure 1 The running time of the algorithms for Multicut(H) with the different parameteriza-
tions. The new results of the paper are marked by (*). Note that, for every fixed projection-closed
class H, the exponents of the running time are tight (up to logarithmic factors).

the terminals in each group with a total of π = 3(t − 1) infinite-weight edges, creating a
planar + πe instance. Thus these extra edges influence the running time exactly as extra
terminals would do.
Unweighted planar + πe. We can always try to solve the problem by putting the π extra
edges into the solution, removing them from G, and then solving the resulting planar
instance. Of course, this might not always lead to an optimum solution, but can be up to
π edges larger. However, this argument allows us to say that if the solution contains a
cut that is “inefficient” in the sense that it is larger then the minimum cut by more than
π, then the cut can be replaced by a minimum cut and the π extra edges, resulting in a
srictly smaller solution. Using these type of arguments, the problem can be reduced to a
planar setting where the number of faces of the multicut dual does not depend on π.
Crossing number. Each crossing can increase the number of vertices of the multicut
dual by one, thus the number of vertices and the treewidth of the multicut dual can be
O(t + cr) and O(

√
t + cr), respectively. However, all these extra vertices of the multicut

dual are at fixed places determined by the crossing. As pointed out by Focke et al. [6] it
is sufficient to consider the treewidth of the multicut dual after removing all the vertices
whose locations are fixed (see Theorem 2.3). Indeed, after removing these vertices, the
treewidth of the multicut dual does not depend on the crossing number.

Some remarks on two further notion of almost-planar graphs can be found in the full
version.

2 Preliminaries

Some basic notation on sets, graphs, and multicuts can be found in the full version. We now
give some less well-known, problem-specific definitions.

An extended biclique decomposition of a graph H is a partition (B1, B2, I, X) of V (H)
such that all vertices of I are isolated in H − X, E(H) contains the edge t1t2 for all t1 ∈ B1
and t2 ∈ B2, and H[Bi] is an edgeless graph for i ∈ [2]. We use Hµ for the set of graphs H

that admit an extended biclique decomposition (B1, B2, I, X) with |X| ≤ µ.
We now review the concept of so-called multicut duals, which will play a crucial role

throughout the article. Recall that an instance (G, H) of Multicut is planar if G is given
in the form of a graph cellularly embedded in the plane. Given a graph C that is embedded
in the plane and in general position with G, we denote by eG(C) those edges of G that
are crossed by at least one edge of C. The weight w(C) of C is defined to be w(eG(C))

F. Hörsch and D. Marx 87:7

where w is the weight function associated with G. A multicut dual for (G, H) is a graph C

embedded in the plane that is in general position with G and has the property that, for every
t1, t2 ∈ V (H) with t1t2 ∈ E(H), the terminals t1 and t2 are contained in different faces of C.

The following result is an immediate consequence of Lemmas 2.3 and 2.4 in [6].

▶ Lemma 2.1. Let (G, H) be a planar instance of Multicut and C a minimum weight
multicut dual for (G, H). Then eG(C) is a minimum weight multicut for (G, H).

In order to make use of the topology of certain multicut duals, we need two results related
to treewidth. The first one of the following two results provides a sufficient criterion for the
treewidth of certain graphs being bounded and the second one allows to exploit bounded
treewidth algorithmically.

The following result can be obtained from Theorem 3.2 in [4] and the fact that the
treewidth of any graph can only be larger than its branchwidth by a constant factor.

▶ Proposition 2.2. Let C be a planar graph that admits a 5-dominating set of size k for
some positive integer k. Then tw(C) = O(

√
k).

An extended planar instance (G, H, F ∗) of Multicut is a planar instance (G, H) of
Multicut together with a set F ∗ of faces of G which is given with the input. Given a set
F ∗ of faces of G and a multicut dual C for (G, H), let C − F ∗ be the graph obtained from
C by removing every vertex that is in a face of F ∗ and removing every edge that intersects a
face of F ∗. The following result is the restriction of Theorem 1.11 in [6] to the planar setting.

▶ Theorem 2.3. Let (G, H, F ∗) be an extended planar instance of Multicut such that every
subcubic inclusionwise minimal minimum-weight multicut dual C satisfies tw(C − F ∗) ≤ β.
Then an optimum solution of (G, H) can be found in time f(|F ∗|, t)nO(β).

3 Edge-deletion distance to planarity

In this section, we give an overview of the proof of the following result, whose complete proof
can be found in the full version.

▶ Theorem 1.5. Unweighted Multicut can be solved in time f(π, t)nO(√
µ).

Throughout this section, we say that an instance (G, H) of Multicut is planar + πe if a set
Eπ ⊆ E(G) is given with the instance such that |Eπ| = π and G \ Eπ is planar. We further
use T for V (H), W for V (Eπ), and G0 for G \ Eπ. Also, for some S ⊆ E(G), we use S0 for
S \ Eπ. We say that (G, H) is connected if G is connected.

The overall algorithmic strategy for Theorem 1.5 is to run an algorithm on the given
instance that either produces a minimum multicut for the instance or computes a collection
of instances for which the parameters in consideration are smaller and such that from
minimum multicuts of all those instances, a minimum multicut for the original instance can
be computed. We need the following definitions.

Given instances (G, H) and (G′, H ′) of Multicut, (G′, H ′) is a subinstance of (G, H)
if G′ is a labelled subgraph of G and H ′ is a labelled induced sungraph of H. Next, an
extended subinstance of (G, H) consists of a set S′ ⊆ E(G) and a subinstance (G′, H ′) of
(G, H) with E(G′) ∩ S′ = ∅. When we say that an extended subinstance (S′, (G′, H ′)) has
certain properties which can only be associated to an instance of Multicut, we refer to
(G′, H ′). Next, we say that an extended subinstance (S′, (G′, H ′)) of (G, H) is optimumbound
for (G, H) if S′ ∪ S′′ is a minimum multicut for (G, H) for every minimum multicut S′′ for
(G′, H ′).

ESA 2025

87:8 Multicut Problems in Almost-Planar Graphs

The main technical difficulty is to prove the following result, which shows that the above
described reduction to smaller instances exists for connected instances. With this result at
hand, Theorem 1.5 follows readily. In particular, if disconnected instances are created, they
can easily be reduced to instances corresponding to the components of the graph. Further
observe that µ cannot increase when moving to a subinstance as the new demand graph is
an induced subgraph of the previous one.

▶ Lemma 3.1. Let (G, H) be a connected planar + πe instance of Multicut. Then, in
f(π, t)nO(√

µ), we can run an algorithm that returns a set S ⊆ E(G) and a collection
(Si, (Gi, Hi))i∈[k] of extended subinstances of (G, H) for some k = f(π, t) such that for all
i ∈ [k], we have that π(Gi) + |V (Hi)| < π(G) + |V (H)| holds and either S is a minimum
multicut for (G, H) or there exists some i ∈ [k] such that (Si, (Gi, Hi)) is optimumbound for
(G, H).

We now give an overview of the proof of Lemma 3.1. Let (G, H) be a planar + πe instance
of Multicut. The idea is to have a branching algorithm that gradually guesses more
and more crucial information about a minimum multicut for (G′, H ′) while the number of
directions it branches into remains bounded. The current status of this procedure is displayed
by a subpartition of the vertices of V (G) with some extra properties. More formally, a state
is a subpartition P of V (G) with W ∪ T ⊆

⋃
P and Y ∩ (W ∪ T) ̸= ∅ for all Y ∈ P. Given

a certain state, the objective is to understand whether there exists a minimum multicut S

for (G, H) such that the structure of the components of G0 \ S reflects the structure of P.
In order to make this more formal, we need the following definitions: Given a set V and
two subpartitions P1 and P2 of V , we say that P2 extends P1 if |P1| = |P2| and for every
Y ∈ P1, there exists some Y ∈ P2 with Y ⊆ Y such that for any distinct Y1, Y2 ∈ P1, we
have Y1 ̸= Y2. Given a set S ⊆ E(G), we use S0 for S ∩ E(G0) and K(G0 \ S0) for the unique
partition of V (G) in which two vertices are in the same partition class if and only if they
are in the same component of G0 \ S0. For a state P, we say that a multicut S for (G, H)
respects P if K(G0 \ S0) extends P and we say that a state is valid if there exists a minimum
multicut for (G, H) respecting it. Further, P is maximum valid if |P| is maximum among all
valid states.

The idea of our algorithm now consists of considering a valid state, choosing a vertex
that is not contained in any class of the state and making the classes larger by adding this
vertex to one of them. As we do not know which class this vertex should be added to, we
try all classes of the state and branch in these directions. The difficulty is now to carefully
choose the vertex in consideration and make some additional modifications on the states so
that this procedure terminates sufficiently fast.

In order to be able to explain how this works, we first need some more definitions. Given
disjoint sets Y1, Y2 ⊆ V (G), we use λG0(Y1, Y2) to denote the size of the smallest set of edges
in E(G0) whose deletion from G0 results in a graph in which there exists no component
containing both a vertex of Y1 and a vertex of Y2. Next, for a state P and some Y ∈ P, we
define αG,P(Y) = λG0(Y,

⋃
P \ Y) − λG0(Y ∩ (W ∪ T), W ∪ T \ Y). Intuitively speaking, this

measure describes how much more costly it is to separate the class from the other classes
of the state in comparison to only separating the corresponding elements of W ∪ T . Given
a state P, we now classify its classes according to their value of α and the value of α of
their neighboring classes. More formally, given a state P and some Y ∈ P, we say that Y

is fat in P if αG0,P(Y) ≥ π(t + 1) + 1. For some Y ∈ P that is not fat, we say that Y is
fat-neighboring in P if there exists some fat Y ′ ∈ P , some u ∈ Y , and some v ∈ Y ′ such that
uv ∈ E(G0). Finally, for some Y ∈ P which is neither fat nor fat-neighboring in P, we say
that Y is thin in P. We refer by Pfat, Pf-n, and Pthin to the fat, fat-neighboring, and thin
classes of P, respectively.

F. Hörsch and D. Marx 87:9

In order to make use of this distinction, we crucially need a structural property of
minimum multicuts for (G, H). Namely, the following result shows that, for any minimum
multicut S for (G, H) and any vertex set of a component of G0 \ S0, one of two things holds:
either the value of α is not too large or a terminal of X is close to this vertex set in a certain
sense, where (B1, B2, I, X) is an extended biclique decomposition of H. In order to measure
this proximity of certain vertex sets with respect to a multicut, we introduce the following
notion: Let S ⊆ E(G), and Y1, Y2 ⊆ V (G). Then we denote by distG0,S0(Y1, Y2) the smallest
integer q such that G0 contains a Y1Y2-path P with |E(P) ∩ S0| = q. We are now ready to
state the following structural result for minimum multicuts.

▶ Lemma 3.2. Let (G, H) be a planar + πe instance of Multicut, let S be a minimum
multicut for (G, H) and let Y ∈ Pfat for P = K(G0 \ S0). Then distG0,S0(Y, X) ≤ 1.

We now explain the strategy of our algorithm. Given a state with an extra property
that will be explained later, we choose a vertex that is not contained in any class of the
state and has a neighbor in a thin class of the state in G0. We then guess a partition class
which this vertex will be added to and modify the state accordingly. In order to show the
functionality of this algorithm, there are two points that need further explanation. First, we
need to explain how to conclude when the described modification is no longer possible and
second, we need to explain why this procedure terminates sufficiently fast.

We first explain the scenario that we can no longer execute the described modification,
so there does not exist any vertex in the graph that is not contained in any class of the state
P in consideration and that has a neighbor in a thin class of P in G0. We call such a state
complete, all other states are called incomplete. For complete states, we need to consider two
different cases, depending on whether P contains a thin class.

The case that there exists a thin class Y can be handled with elementary means. Observe
that for this thin class, all its neighbors in G0 are contained in a different class of P . Hence, if
P is valid, then all edges in δG0(Y) are contained in a minimum multicut for (G, H). We can
hence delete these edges and solve the remaining instance, which turns out to be significatly
smaller in a certain sense. This is subsumed in the following result.

▶ Lemma 3.3. Let (G, H) be a connected planar+πe instance of Multicut and let a complete
valid state P of (G, H) with Pthin ̸= ∅ be given. Then in polynomial time, we can compute
an optimumbound extended subinstance (S′, (G′, H ′)) of (G, H) such that π(G′) + |V (H ′)| <

π(G) + |V (H)|.

We now turn to the case that P does not contain a thin set. In order to handle this case,
geometrical arguments on multicut duals will be needed. Namely, we show that if P is valid
and does not contain a thin set, then the problem of finding a minimum multicut for (G, H)
can be reduced to solving a planar instance of multicut, which can be solved sufficiently
fast due to Theorem 2.3 and an argument on the treewidth of the multicut duals for this
instance. Formally, we prove the following result, where τ(P) denotes the sum of the number
of components of G0[Y] over all Y ∈ P.

▶ Lemma 3.4. Let (G, H) be a connected planar + πe instance of Multicut and let a
complete maximum valid state P of (G, H) with Pthin = ∅ be given. Then a minimum
multicut for (G, H) can be computed in f(π, τ(P))nO(√

µ).

It remains to show that we can design our procedure so that we reach a complete state
sufficiently fast. In order to keep track of the progress of our algorithm, we need a measure
of how far advanced a given state is. To this end, given a state P, we first define an integer
κ(P, Y) for every Y ∈ P by

ESA 2025

87:10 Multicut Problems in Almost-Planar Graphs

κ(P, Y) =


2(π(t + 1) + 1), for Y ∈ Pfat,

π(t + 1) + 1 + αG0,P(Y), for Y ∈ Pf-n,

αG0,P(Y), for Y ∈ Pthin.


Now, we define κ(P) =

∑
Y ∈P κ(P, Y).

Our objective is to make the value of κ increase in each iteration of the algorithm. In
order to make this possible, we need that the addition of a vertex to a given set in the state
makes the value of α of this set increase. In order for that to hold, we need the classes
in the state to be as large as possible in a certain sense. More precisely, given a graph G

and two disjoint sets Y1, Y2 ⊆ V (G), we say that a set Y3 is relevant for (Y1, Y2) in G if
Y1 ⊆ Y3, Y2 ∩ Y3 = ∅, dG(Y3) = λG(Y1, Y2) and Y3 is maximum among all sets with these
properties. Further, we say that a state P is relevant if for all Y ∈ P, we have that Y is a
relevant set for (Y,

⋃
P \ Y). Luckily, the following result whose proof needs some careful

reconfiguration arguments, allows us to turn arbitrary states in consideration into relevant
ones without dropping any important properties.

▶ Lemma 3.5. Let a connected planar + πe instance (G, H) of Multicut and a state P of
(G, H) be given. Then, in polynomial time, we can compute a relevant state P ′ of (G, H)
such that |P ′| = |P|, τ(P ′) ≤ τ(P), κ(P ′) ≥ κ(P) and, if P is maximum valid, then so is P ′.

With this result at hand, we can handle incomplete states. As pointed out before, given
an incomplete relevant state P, we choose a vertex u0 ∈ V (G) \

⋃
P that has a neighbor in

a thin class Y of P. We now consider all states that are obtained by adding u0 to one of
these partition classes. If u0 is added to a thin or a fat-neighboring partition class, then, as
P is relevant, the value of α increases for this class and hence κ increases. If u0 is added to
a fat class, then Y becomes fat-neighboring and hence κ also increases. This shows that a
complete state can be reached sufficiently fast. In order to apply Lemma 3.4, we also need to
make sure that τ(P) does not increase too fast. However, this follows readily by construction.
Our handling of relevant incomplete states is subsumed in the following result.

▶ Lemma 3.6. Let (G, H) be a connected planar + πe instance of Multicut and let a
relevant incomplete state P of (G, H) be given. Then, in polynomial time, we can compute a
collection (Pi)i∈[q] of q states of (G, H) for some q ≤ π + t such that τ(Pi) ≤ τ(P) + 1 and
κ(Pi) > κ(P) hold for all i ∈ [q] and if P is maximum valid, then there exists some i ∈ [q]
such that Pi is maximum valid.

The overall strategy for handling Lemma 3.1 is now to apply Lemma 3.5 and Lemma 3.6
until we are left with a collection of complete states. These can then be handled by Lemma 3.3
and Lemma 3.4.

4 Crossing number

In this section, a drawing of a graph G consists of a mapping of the vertices of G to points in
the plane and a mapping of the edges of G to curves in the plane connecting their endpoints
such that all vertices and edges of G are in general position except the required adjacencies
and such that in any point not corresponding to a vertex, at most two edges intersect. An
edge crossing refers to a point that does not correspond to a vertex and in which two edges
intersect. Given an instance (G, H) of Multicut we use cr for the crossing number of a
graph G, which is defined to be the smallest integer k such that there exists a drawing of G

with exactly k edge crossings. The following is the main result of this section.

F. Hörsch and D. Marx 87:11

▶ Theorem 1.7. Edge-weighted Multicut can be solved in time f(cr, t)nO(√
µ).

In order to make our algorithm work, rather than just the crossing number of a graph, we
also need to have an optimal drawing available. This can be achieved through the following
result due to Grohe [7].

▶ Proposition 4.1. Given a graph G, there exists an algorithm that computes a drawing of
G in the plane minimizing the number of crossings and that runs in time f(cr)nO(1).

Formally, an instance (G, H) of Multicut is called crossing-planar if G is given as a
drawing of a graph. Given a crossing-planar instance, we denote by Ecr the set of edges in
E(G) crossing at least one other edge of E(G) and we set cr = |Ecr|. Observe that cr can be
arbitrarily large in comparison to cr as cr refers to the given drawing and cr to an optimal
drawing of the abstract graph G. However, when considering an optimal drawing of G, we
have cr ≤ 2cr as every crossing involves 2 edges.

For our algorithm, it will be convenient to assume that the instances in consideration
satisfy a technical extra condition. Namely, a crossing-planar instance (G, H) of Multicut
is called normalized if every e ∈ Ecr is of infinite weight. Observe that for any normalized
crossing-planar instance (G, H) of Multicut, any finite multicut S of (G, H) and any
e ∈ Ecr, we have that V (e) is contained in one component of G \ S. Our main technical
contribution is proving the restriction of Theorem 1.7 to normalized instances.

▶ Theorem 4.2. There exists an algorithm that solves every normalized crossing-planar
instance of Multicut and runs in f(cr, t)nO(√

µ).

The simple proof that Theorem 4.2 implies Theorem 1.7 is postponed to the full version.
It remains to prove Theorem 4.2.

Given a normalized crossing-planar instance (G, H) of Multicut, we denote by H the
set of graphs H ′ on V (H) ∪ V (Ecr) and we use G′ for G \ Ecr. Further, we let F ∗ denote
the faces of G′ which contain a pair of crossing edges in G. The main technical difficulty for
the proof of Theorem 4.2 is contained in the following result.

▶ Lemma 4.3. Let (G, H) be a normalized crossing-planar instance of Multicut admitting a
multicut of finite weight. Then there exists H ′ ∈ H such that every minimum weight multicut
for (G′, H ′) is a minimum weight multicut for (G, H) and for every subcubic, inclusion-wise
minimal minimum weight multicut dual C for (G′, H ′), we have tw(C − F ∗) = O(√µ).

Due to space restrictions, the full proof of Lemma 4.3 is postponed to the full version. We
now give an overview of the proof of Lemma 4.3.

Let (B1, B2, I, X) be an extended biclique decomposition of H with |X| = µ. Further,
let S∗ be a minimum weight multicut for (G, H) such that S∗ minimizes the number of
elements of V (H) ∪ V (Ecr) that are in a component of G \ S∗ that also contains a terminal
of X. In the following, we use X for the set of elements of V (H) ∪ V (Ecr) that are in a
component of G \ S∗ that also contains a terminal of X, we use B1 for the set of elements of
(V (H) ∪ V (Ecr)) \ X that are in a component of G \ S∗ that also contains a terminal of B1,
and we use B2 for (V (H) ∪ V (Ecr)) \ (X ∪ B1). Observe that (B1, B2, X) is a partition of
V (H) ∪ V (Ecr). We now define H ′ to be the complete multipartite graph on V (H) ∪ V (Ecr)
such that B1 and B2 are partition classes and such that for every component of G \ S∗ that
contains at least one terminal of X, all the elements of X contained in this component form
a partition class.

ESA 2025

87:12 Multicut Problems in Almost-Planar Graphs

This finishes the description of H ′. Observe that H ′ ∈ H. Further observe that H is a
subgraph of H ′.The following two claims directly imply that every minimum weight multicut
for (G′, H ′) is also a minimum weight multicut for (G, H ′). Claim 4.4 will be reused for the
proof of the treewidth bound. These claims mainly follow from the construction of (G′, H ′).

▷ Claim 4.4. Let S′ be a multicut for (G′, H ′). Then S′ is also a multicut for (G, H ′).

▷ Claim 4.5. S∗ is a multicut for (G′, H ′).

We are now ready to conclude that any minimum weight multicut S for (G′, H ′) is a
minimum weight multicut for (G, H). First observe that S is a multicut for (G, H) by Claim
4.4 and as H is a subgraph of H ′. Further, by Claim 4.5 and the minimality of S, we obtain
w(S) ≤ w(S∗) where w is the weight function associated to G. By the minimality of S∗, the
statement follows.

In the following, let C be a subcubic, inclusion-wise minimal, minimum weight multicut
dual for (G′, H ′). We will give the desired treewidth bound on C. Let S′ = EG(C) and
observe that S′ is a minimum weight multicut for (G′, H ′) by Lemma 2.1. It hence follows
from the first part of the lemma that S′ is also a minimum weight multicut for (G, H).
Further, we use C ′ for C − F ∗.

Our strategy for proving the second part of the lemma is to show that the faces of C ′

containing a terminal of X form a small set of faces that is close to every face of C ′ in a
certain sense. We first give the following result showing that the number of such faces is
small indeed. Its proof uses the fact that S∗ is chosen so that the size of X is minimized and
the fact that S′ is a minimum weight multicut for (G, H).

▷ Claim 4.6. Let f be a face of C ′ that contains a terminal of X. Then f also contains a
terminal of X.

The next result uses the structure of H.

▷ Claim 4.7. Let v ∈ V (C ′) with dC′(v) = 3. Then v is incident to a face of C ′ that contains
a terminal of X.

We are now ready to conclude the desired treewidth bound on C ′. Let C ′′ be a component
of C ′. For every face f of C ′′, we now introduce a vertex zf that shares an edge with every
vertex that is incident to f . Let C ′′

0 be the resulting graph. It turns out that C ′′
0 is a planar

graph and the vertices corresponding to faces containing terminals of X form a 3-dominating
set in C ′′

0 . By Proposition 2.2 and |A| ≤ |X| ≤ µ, we obtain that tw(C ′′
0) = O(√µ) and

hence tw(C ′) = O(√µ). This allows to conclude Lemma 4.3.
With Lemma 4.3 at hand, it is easy to conclude Theorem 4.2. The proof can be found in

the full version.

References

1 Vincent Cohen-Addad, Éric Colin de Verdière, Dániel Marx, and Arnaud de Mesmay. Almost
tight lower bounds for hard cutting problems in embedded graphs. J. ACM, 68(4):30:1–30:26,
2021. doi:10.1145/3450704.

2 Éric Colin de Verdière. Multicuts in planar and bounded-genus graphs with bounded number
of terminals. Algorithmica, 78:1206–1224, 2017. doi:10.1007/S00453-016-0258-0.

3 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and Mihalis
Yannakakis. The complexity of multiterminal cuts. SIAM J. Comput., 23(4):864–894, 1994.
doi:10.1137/S0097539792225297.

https://doi.org/10.1145/3450704
https://doi.org/10.1007/S00453-016-0258-0
https://doi.org/10.1137/S0097539792225297

F. Hörsch and D. Marx 87:13

4 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs. ACM Trans.
Algorithms, 1(1):33–47, July 2005. doi:10.1145/1077464.1077468.

5 Jacob Focke, Florian Hörsch, Shaohua Li, and Dániel Marx. Multicut Problems in Embedded
Graphs: The Dependency of Complexity on the Demand Pattern. In Wolfgang Mulzer
and Jeff M. Phillips, editors, 40th International Symposium on Computational Geometry
(SoCG 2024), volume 293 of Leibniz International Proceedings in Informatics (LIPIcs), pages
57:1–57:15, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.SoCG.2024.57.

6 Jacob Focke, Florian Hörsch, Shaohua Li, and Dániel Marx. Multicut problems in embedded
graphs: The dependency of complexity on the demand pattern, 2025. arXiv:2312.11086.

7 Martin Grohe. Computing crossing numbers in quadratic time. Journal of Computer and
System Sciences, 68(2):285–302, 2004. Special Issue on STOC 2001. doi:10.1016/j.jcss.
2003.07.008.

8 T. C. Hu. Multi-commodity network flows. Operations Research, 11(3):344–360, 1963.
9 Florian Hörsch and Dániel Marx. Multicut problems in almost-planar graphs: The dependency

of complexity on the demand pattern, 2025. doi:10.48550/arXiv.2504.21624.
10 Philip N. Klein and Dániel Marx. Solving planar k-terminal cut in O(nc

√
k) time. In Artur

Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata,
Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK,
July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages
569–580. Springer, 2012. doi:10.1007/978-3-642-31594-7_48.

11 Dániel Marx. A tight lower bound for planar multiway cut with fixed number of terminals. In
Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer, editors, Automata,
Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK,
July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes in Computer Science, pages
677–688. Springer, 2012. doi:10.1007/978-3-642-31594-7_57.

12 Paul D. Seymour. A short proof of the two-commodity flow theorem. J. Comb. Theory, Ser.
B, 26(3):370–371, 1979. doi:10.1016/0095-8956(79)90012-1.

ESA 2025

https://doi.org/10.1145/1077464.1077468
https://doi.org/10.4230/LIPIcs.SoCG.2024.57
https://arxiv.org/abs/2312.11086
https://doi.org/10.1016/j.jcss.2003.07.008
https://doi.org/10.1016/j.jcss.2003.07.008
https://doi.org/10.48550/arXiv.2504.21624
https://doi.org/10.1007/978-3-642-31594-7_48
https://doi.org/10.1007/978-3-642-31594-7_57
https://doi.org/10.1016/0095-8956(79)90012-1

	1 Introduction
	2 Preliminaries
	3 Edge-deletion distance to planarity
	4 Crossing number

