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—— Abstract

A minimal perfect hash function (MPHF) maps a set of n keys to unique positions {1,...,n}.
Representing an MPHF requires at least log,(e) = 1.443 bits per key. ShockHash is a technique to
construct an MPHF and requires just slightly more space. It gives each key two random candidate
positions. If each key can be mapped to one of its two candidate positions such that there is exactly
one key mapped to each position, then an MPHF is found. If not, ShockHash repeats the process
with a new set of random candidate positions. ShockHash has to store how many repetitions were
required and for each key to which of the two candidate positions it is mapped. However, when
a given set of candidate positions can be used as MPHF then there is not only one but multiple
ways of mapping the keys to one of their candidate positions such that the mapping results in an
MPHEF. This redundancy makes up for the majority of the remaining space overhead in ShockHash.
In this paper, we present MorphisHash which almost completely eliminates this redundancy. Our
theoretical result is that MorphisHash saves ©(In(n)) bits in expectation compared to ShockHash.
This corresponds to a factor of 20 less space overhead in practice. Just like ShockHash, MorphisHash
can be used as a building block within RecSplit to obtain MorphisHash-RS. When compared for same
space consumption, MorphisHash-RS can be constructed up to 21 times faster than ShockHash-RS.
The technique to accomplish this might be of a more general interest to compress data structures.
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1 Introduction

Given a set S of n keys, a minimal perfect hash function (MPHF) maps each key to a unique
position in [n] := {1,...,n}. MPHFs have a wide range of applications including compressed
full-text indexes [2], computer networks [18], databases [6], prefix-search data structures [1],
language models [24], bioinformatics [7, 23], and Bloom filters [5]. Different techniques exist
for constructing an MPHF. They offer a variety of trade-offs between construction time,
space consumption and query time. The space lower bound of an MPHF is log,(e) &~ 1.443
bits per key [19].
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ShockHash. Our technique builds on ShockHash [15, 16]. Similar to Cuckoo hashing [22],
each key is given two candidate positions using respective hash functions hs : S — [n] and
hs1 : S — [n] with seed s. ShockHash finds a seed s such that all keys can be mapped
to one of their candidate positions and there is exactly one key mapped to each position.
ShockHash needs to store the seed s, once found. Additionally, it needs to store for each
key k € S if the candidate position hs o(k) or hs1(k) is used. This can be represented using
a function f: S — {0,1}. Such a mapping can be stored efficiently using a retrieval data
structure [8] which requires about 1 bit per key. A key k € S is queried using hg ¢z (k).

A different perspective on ShockHash is that with each seed s it samples a random graph.
The [n] possible output positions are the nodes of that graph. The keys are the edges,
connecting the nodes of their respective candidate positions. A seed is accepted if the graph
can be oriented, i.e. each edge is given a direction, such that the indegree of each node is 1.
This is possible if and only if the graph is a pseudoforest — a graph where each component is
a cycle with trees branching from it. The edges of the cycle of each component are oriented
either all “clockwise” or “counterclockwise”. The edges in the trees are uniquely oriented
away from their cycle. Hence, the indegree of each node is 1. ShockHash arbitrarily chooses
one of two possible orientations of each cycle and stores the according orientation of each
edge in a retrieval structure. Hence, for each cycle there is one bit of redundancy.

Contribution. In this paper we introduce MorphisHash which exhausts this remaining
redundancy. MorphisHash is a recursive acronym: MorphisHash is an overloaded retrieval
structure for perfect hashing using ShockHash. Our key observation is that the possible
orientations of a pseudoforest can be described as the solution of a linear equation system. A
retrieval structure that stores the edge orientations can also be described as the solution of a
linear equation system. This allows us to concatenate the equation systems using matrix
multiplication. We achieve compression by reducing the dimensionality of the solution space
of the combined equation system. Our theoretical insight is that a random pseudoforest
has ©(In(n)) components in expectation and MorphisHash can convert this into O(In(n))
bits of expected space savings compared to ShockHash by utilizing the freedom of choosing
the orientation of each component’s cycle. Our experiments show that MorphisHash has
about a factor of 20 less space overhead than ShockHash at the cost of roughly 4 times more
construction time.

Partitioning. Note that within this paper, n denotes the input size for one instance of
MorphisHash. In Section 5, an MPHF is obtained by splitting a large input key set into a
linear number of MorphisHash instances, each of size n, and concatenating them afterwards.
Partitioning is required mainly for keeping construction times feasible. Furthermore, our per
instance space savings translate to linear space savings in terms of the large input.

QOutline. We begin in Section 2 with related space efficient PHF construction techniques.
We present MorphisHash in Section 3 and analyze it in Section 4. We explain implementation
details in Section 5. Finally, Section 6 discusses experiments and the paper is concluded
with Section 7. Our compression technique might be of a more general interest and we give
further examples in the full version of this paper [11].

2 Related Work

We provide a brief overview of other space efficient PHF techniques. For a detailed survey of
state-of-the-art techniques we refer to [14].
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RecSplit. RecSplit [9, 3] first hashes the keys into partitions of about 2000 keys. RecSplit
then finds a seed of a hash function that splits the partition into smaller subsets of equal
size. This is applied recursively resulting in a tree-like structure. Once sufficiently small

subsets are obtained, RecSplit uses brute-force search to find an MPHF within each leaf.

Very recently a significant improvement to RecSplit has been made with the introduction
of CONSENSUS [17]. Instead of allowing arbitrarily large seeds, CONSENSUS-RecSplit uses a
fixed number of bits for each seed and backtracks in the splitting tree if a seed cannot be
found within the allowed space. CONSENSUS-RecSplit is currently the most space efficient
technique with just 0.001 bits per key overhead.

PHOBIC. Another PHF construction technique is PHOBIC [12]. Again, the keys are
hashed into partitions of about 2000 keys. Within each partition the keys are hashed to
buckets which have an average size of about 10. For each bucket, PHOBIC uses brute force
search to find a seed of a hash function such that all keys of that bucket are hashed to
positions in [n] to which no keys of previous buckets are hashed to. The buckets are inserted
in non-increasing order of size because it is much easier to insert the larger buckets when the
output domain is almost empty. This effect is utilized further by intentionally making some
of the buckets larger. PHOBIC has fast queries at the cost of more space overhead.

3 MorphisHash

ShockHash samples random graphs until stumbling on a pseudoforest. The only remaining
degree of freedom when orienting the pseudoforest is that each component contains a cycle
and there are two ways to orient each cycle. We address this remaining redundancy with
MorphisHash.

The first ingredient of MorphisHash is the insight that all allowed orientations of a graph
can be expressed as an affine subspace of 5, where S is the set of n keys. To show this,
we define y € FS as the vector representing the orientation of each edge such that an edge
J € S is oriented to node hsy,(j). We now consider a given pseudoforest and one possible
orientation y. We can flip the orientation of a cycle by adding a vector v € F5 to y where

v; = 1 if and only if j is part of that cycle. This can be done for each cycle independently.

Clearly, the dimension of this subspace is equal to the number of components. Part of this
section is to describe the linear equation system of which the solution space is our desired
affine subspace.

The second ingredient is a 1-bit retrieval data structure. The retrieval structure works

by storing a bit vector z € F}, where the parameter b € Ny is discussed in detail later.

The orientation of an edge j € S is described using h’,(j)z, where b/, : S — FA*? is a hash

function and s is the ShockHash seed. Using linear equations that involve hash functions is
a common technique for retrieval data structures [8].

The beauty of MorphisHash is that we can concatenate both linear equation systems
using a simple matrix multiplication to find a retrieval structure which directly orients the
edges correctly. We can then decrease the number of bits b that the retrieval structure is
allowed to use which reduces the dimension of the solution space and therefore extracts the
remaining redundancy.

We now show the equation system that describes the allowed edge orientations. As a first
step we show that the constraints of an MPHF can be weakened in the following sense:

» Lemma 1. A function f:S — [n] with |S| =n is an MPHF (i.e. a bijection) if and only
if for all i € [n] we have that |{f~*(i)}| is uneven.
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keyset S J hso(d) hs1(d) Jj = b

John 3 4 John — 0

ShockHash Lisa 2 1 Lisa — 1

continue pseudoforest Dave 2 3 Dave —# 0

seed search for seed s Mary 5 3 Mary — 0

Anna 2 4 Anna —% 1

[no solution] ﬂ«

[has solution] 01000 1111 0

01 1 01 01 1 0 0 1

101 10 101 0)l-2=|0f =>z=

store 5 and & 1000 1 100 0 1 9
00010 0 0 01 0
A H d

Figure 1 Left: MorphisHash uses ShockHash as a black box. Right: An example. ShockHash
has found a pseudoforest using the candidate positions hso and hs;1 as shown in the table and
also illustrated as a graph. The description 1Lisag indicates that hs,1 is the left candidate and hs o
the right. This can be used to find d. For example, ds = P2V 4 gMary 4 pJohn 4 qoffset — g Tpe
incidence matrix A and some random matrix H is shown. A solution z is found resulting in the
orientations as shown both in the right table and using arrows in the graph. The solution x describes
the orientation of 5 edges but only requires 4 bits to store. The figure is derived from [16, Fig. 1].

Proof. Clearly, if f is bijective then |[{f~1(7)}| = 1 is uneven. If f is not bijective then there
is at least one i such that |[{f~1(i)}| = 0 which is even. <

Linear Equations in Graphs. This allows us to count the indegree of each node using Fs:
If the indegree of all nodes is 1y, then the orientations result in a valid MPHF. Recall the
definition of y € F5 as the vector representing the orientation of each edge such that an
edge j € S is oriented to node hs (7). A different perspective is that an edge j is oriented
towards a node ¢ if and only if (hs1(j) =i Ay; = 1)V (hso(j) =i Ay; +1 = 1), which will be
useful in the following equation. We define A € ]F;XS as the incidence matrix of the graph.
We also define d € F} where d; = [{j | hs,0(j) = i}| + 1 counts the number of edges (+1)
that are mapped to position ¢ using the h; o candidate function. Finally, this allows us to
count the indegree of a node i as

Yoowit > Uy =( D w)tdi+tl=Ay+di+1
hs,1(d)=i hs,o0(j)=t hs,0(d)=1
Dhs,1(j)=1
The @ operator is logical XOR. According to Lemma 1 setting A;y + d; +1 = 1 such that
the indegree of each node 7 is uneven results in a valid orientation of all edges. The complete
equation system therefore simplifies to Ay = d, which has a solution if and only if the graph
is a pseudoforest. Note that in case of a loop, the respective column in the incidence matrix
is a zero column.

The Retrieval Data Structure. To store the orientation of the edges we cannot use y
directly because we do not know the index of a key during query time. We therefore employ
the idea of a retrieval structure. Our retrieval structure consists of a bit vector z € F5,
where b is a tuning parameter. The orientation of edge j is then described using a scalar
product y; = h,(j)x where h’, : S — F3*" is a hash function and s is the ShockHash seed.
MorphisHash needs to find = such that all edges are properly oriented. The above linear
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equation is given for each key and can therefore be written using a matrix H. Each row H;
is the hash h’(j) of the respective key j. We have y = Hz and substitute it into Ay = d
resulting in AHx = d. If a solution = for AHx = d exists then the graph is a pseudoforest,
y = Hz is a valid orientation and x requires exactly b bits to store using a bit string. We
discuss the selection of b both in theory (Section 4) and practice (Section 6). Querying our
MPHF for a key j is now straightforward hg /()2 (5)-

If the system AHx = d does not have a solution for a sampled graph this can have two
reasons. (1) The graph is no pseudoforest (2) A possible orientation of the pseudoforest is
not within the solution space of the retrieval structure. If there is no solution we reject the
seed and ShockHash continues with searching for a new seed.

The already existing step in ShockHash of checking whether a seed is a pseudoforest is
therefore redundant. However, solving an equation system is computationally more expensive
than using the original ShockHash pseudoforest check. We therefore leave the original

pseudoforest check as a filter and only need to solve AHz = d a few times in practice.

MorphisHash is illustrated using an example in Figure 1.

Bipartite MorphisHash. A variant of ShockHash is bipartite ShockHash. Assume that n is
even, the extension for uneven numbers can be found in the original paper [15]. In bipartite
ShockHash, the ranges of the two hash functions are made disjoint using hsy0 : S — {1,..., 5}
and hg, 1 : S — {% + 1,...,n}. The seed is also split in two independent parts sy and
s1. Seeds where not all positions are hit by at least one candidate position are filtered
out. Bipartite ShockHash only checks if pairs of sy and s; that passed the filter result in
a pseudoforest. MorphisHash uses ShockHash as a black box and can be applied on the
bipartite case just as well as on the non-bipartite case. In an obvious manner, we refer to
bipartite MorphisHash if bipartite ShockHash is used.

4  Analysis

In this section we analyze non-bipartite MorphisHash for large n. Our analysis is split in two
parts. First, we analyze the number of components of a random pseudoforest. We use this in
the second part, to show the space efficiency of MorphisHash compared to ShockHash. Note
that we employ the common simple uniform hashing assumption [21], which assumes that
hash functions behave like truly random functions.

4.1 The Number of Components in a Random Pseudoforest

In a pseudoforest each component is a tree with one additional edge. An equivalent view is
that each component of the pseudoforest is a cycle with trees branching from it.
Our first result uses the following graph model. Let R = [n]l"l be the set of all functions

from [n] to [n]. Every r € R corresponds to a directed graph G, = ([n], {(v,7(v)) | v € [n]}).

All G, are pseudoforests, because if we start from any node and follow its edges we will
eventually end up in a cycle. Furthermore, there can only be one cycle in each component
because each node has an out-degree of one. In the following we refer to all G, as maximal
directed pseudoforests. All edges of the pseudoforest which are not part of the cycle are

pointed towards the cycle and all edges in the cycle are all directed in the same direction.

We will first need the following results.

» Lemma 2 ([25]). Let T'(n,i) be the number of undirected forests having node set [n] with i

components where nodes 1,2, .. .,i belong to different trees. We have T(n,i) = in™ ¢~ L.
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» Lemma 3. |{r € R | all components in G, are cycles}| = n!

Proof. If each node in G, is part of a cycle then the indegree of each node is 1. Hence, r is
a bijection and there are n! possible bijections. <

We can now combine the previous results to analyze how the number of nodes in cycles is
distributed in maximal directed pseudoforests.

» Lemma 4. |{r € R | G, is pseudoforest and has i nodes in cycles}| = m(%l;),"'

Proof. There are (:‘) ways of partitioning the nodes into (1) cycles with a total of ¢ nodes
and (2) trees that are attached to the cycles. According to Lemma 3 there are i! ways to
create cycles with ¢ nodes. The i nodes in the cycles are the roots of trees. According to
Lemma 2 the number of labeled rooted trees with n nodes and i roots is in®~¢~! . This
number holds for graphs where each node has one outgoing edge, because all edges are
uniquely oriented towards their parent node. We therefore have

s —1—1,1
N .. i n! e i in" n!
()!m"ll:, lint i l=— <

) i(n —1)! (n—1)!

The previous result is based on maximal directed pseudoforests. However, in MorphisHash
we sample graphs in a different manner. Let Q = [n]® x{0.1} he the set of functions from
S x {0,1} to [n]. Each g € @ corresponds to a graph G, = ([n], {{¢(z,0),¢(z,1)} | x € S}).
We refer to the set of all G as the hashed graph model. Graphs in this model may have
multiple edges and loops. MorphisHash uniformly samples functions g € Q). We are interested
in the distribution of G, conditioned on the event that G, is a pseudoforest. In the following,
we transfer our result of maximal directed pseudoforests to the hashed graph model.

» Lemma 5. Let ¢(G) be the number of components of G, C,, an appropriate normalization
constant, ¢ ~U(Q) and r ~U(R) then

pn(3) :=P[Gy has i nodes in cycles | G, is pseudoforest]

=C,E[27¢%) | G, has i nodes in cycles]%

nt(n —1)!
Proof. We begin with a relation between maximal directed pseudoforests GG, and hashed
pseudoforests G4. A hashed pseudoforest G is related to a maximal directed pseudoforest
G, if we can obtain G, by orienting the edges of G. Let a4, be the number of maximal
directed pseudoforests and by 4,; the number of hashed pseudoforest with ¢ nodes in cycles, k&
components, d double edges and [ loops. Within this subset, each cycle of the hashed graph
can be oriented in two possible ways to obtain a maximal directed pseudoforest. However,
changing the orientation of cycles that are a loop or double edge does not result in different
maximal directed pseudoforests. Hence, we have % = Qk—d-l
different maximal directed pseudoforest.

Let ¢y 4,1 be the number of elements ¢ € @) such that G is a pseudoforest with ¢ nodes in
cycles, k components, d double edges and [ loops. We show that % = nl2"~9=! We have
to consider the number of functions in @) that result in the same hashed pseudoforest. The
order of the edges can be permuted in n! ways without changing the underlying pseudoforest,
except for double edges. The number of possible permutations decreases by a factor of two
for each double edge (27¢). Analogously, the nodes within the n edges can be switched
without changing the underlying graph in 2" ways, except for loops (27).

orientations which result in
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By definition we have |Q;| = >, 4, ¢ra; and |R;| = >, 4, ak,d,1, where Q; C Q and
R; C R are the pseudoforests with 7 nodes in cycles. For brevity let

Dh,d,l 1= a{gf"l = P[G, has k components, d double edges and [ loops | G has ¢ nodes cycles]
We have
(i) = Qi _ |Ri| 2k, Ch.dl _ | R;| Ak,d,iCh,d,l
! 2 1Qs1 225151 R 225195 7 ak.alBil

Rl Zpkdl Rl Rl Zpkd Ck,d,l br,d,l
Z|Qg\kdl Akl Zﬂ@ﬂkdl bt ardi

R d—lo—ktdti _ [Rin!2"
Dk, n!2" 27 Prdi2 "
A |QJ\ kzdl 2 kzdl

Zj |Qg|

= C,E[27¢%") | G, has i nodes in cycles]

]E[2’C(GT) | G, has i nodes in cycles]

nit(n —1)!

Where we used Lemma 4 for [R;|. >, |Q;| is the number of all hashed pseudoforests and
thus only depends on n. C, is chosen such that the probabilities add up to 1. |

The next step is to analyze E[27°(C") | G, has i nodes in cycles]. To this end, we first require
some definitions and more general results.

» Lemma 6. The number of components of a pseudoforest with n nodes and i nodes in cycles
follows the same distribution as the number of components of a graph of i nodes where each
component is a cycle.

Note that this refers to both graph models G, and G,,.

Proof. The order in which the edges of a graph are sampled does not change the distribution
of the graph. Given a graph of n nodes and ¢ edges such that all edges are part of cycles, the
probability that the remaining n — ¢ edges form trees with the root being part of the existing
cycles is independent of how the nodes of the cycles are connected to form any number of
components. <

Configuration Model. The configuration model [20] can be used to describe distributions
of random graphs. In the model, each node is given a fixed number of half-edges. The graph
is obtained by repeatedly connecting half-edges by uniformly sampling from the set of all
remaining half-edges.

» Lemma 7. The distribution of the hashed graph G, with ¢ ~ U(Q) s equal to the
distribution of the following graph.

The graph is obtained in two steps. First, the degree of each node is revealed by distributing
2n half-edges. In a second step, the edges of the graph are obtained in a sequence of n rounds.
In each round an unmatched half-edge i € [2n] is chosen arbitrarily and matched to a distinct
unmatched half-edge j € [2n], chosen uniformly at random. The choice of i may depend on
the set of half-edges matched previously.

We refer to ShockHash [15, Lemma 5] for a proof. We require an analogous result for G,

9:7
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» Lemma 8. The distribution of the maxzimal directed pseudoforest G, with r ~ U(R) is
equal to the distribution of the following directed graph.

The number of outgoing edges of each node is fized to 1. The graph is obtained in two
steps. First, the indegree of each node is revealed by distributing n incoming half-edges. In a
second step, the edges of the graph are obtained in a sequence of n rounds. In each round an
unmatched outgoing half-edge at node i € [n] is chosen arbitrarily and matched to a distinct
unmatched incoming half-edge j € [n], chosen uniformly at random. The choice of i may
depend on the set of half-edges matched previously.

Again, the proof is analogous to ShockHash [15, Lemma 5].

» Lemma 9. ForieN: HZ:z(l — %) =1

(2

Proof. By induction [[;_,(1 — ) =1 and

i+1
H(l_%):(l_i—il—l)H(l_%):(l_i—&l-l)%:i—&l-l <

k=2 k=2

We now have the available tools to analyze the number of components conditioned on the
number of nodes in cycles.

» Lemma 10. %i’l/z < E[Z’C(G’“) | G, has i nodes in cycles] < imY/2 where r ~ U(R) and
¢(G,.) is the number of components of G,..

Note that the following proof has similarities to ShockHash [15, Lemma 6].

Proof. We consider the number of components of a maximal directed pseudoforest G with
i nodes, R = [i]ll, » ~ U(R), conditioned on the event that each component of G is a cycle.
According to Lemma 6 the number of components of G% follows the same distribution as
the number of components of a maximal directed pseudoforest with n nodes and i nodes
in cycles. We proceed as described in Lemma 8 by revealing the graph in a sequence of
rounds. First, the indegree of each node is revealed. Each component is a circle and therefore
each node has indegree one. We choose the outgoing half-edge at an arbitrary node x. The
outgoing half-edge is matched with one of the ¢ incoming half-edges. Let y be the node at
the incoming half-edge. There are two cases.
1. With probability % we have x = y. In this case, a loop is created, a cycle is closed and
the next outgoing half-edge to match is chosen arbitrarily.
2. Otherwise we merge the nodes to a single one which does not change the number of
components. The outgoing half-edge at node y is matched next.
In both cases, the distribution of the remaining graph is that of Gi1. Because of this
independence, we can multiply the expectation values to obtain the recurrence

i 1 1 i— ]_ i—1 ]_ i—1
E[2-¢(C)] = igE[TC(GT Rt (1 _ z) E[2~¢(G )] = <1 _ 22) E[27¢(C )]

With the base case E[27%] = 1 the recurrence is solved and upper bounded by

VI ) =I5 (0 at)

E[Q*C(Gi)] —
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Where we used Lemma 9. Analogously, a lower bound is

e = (1= 3) T (-50) =3 1T (- 32)

k=2

L0 ) (0 at) =5y (- )

k=2

1 /11
_ Lt LS Ly
oV 2 =1 «

A similar result for hashed pseudoforests instead of maximal directed pseudoforests is the
following.

\%

» Lemma 11. Plc(G,) > 11n(i) | G, is pseudoforest with i nodes in cycles| € Q;_,00(1),
where ¢ ~U(Q) and c(Gy) is the number of components of G,,.

Proof. The proof is analogous to the previous one. We use Lemma 7 to match a half-edge
to one of the remaining 2¢ — 1 half-edges. In each round the number of components increases
by one with probability ﬁ Resolving the respective recurrence results in

E[e(Gy) | Gy is pseudoforest with ¢ nodes in cycles]

SRS L U U
2% -1 2-3 2-5 2-7 3
YN NI NI S SN R

221" 2i—-1 2 -3 2 -3

>1( ! + ! + ! + ! +...+1+1)
220 2i-1 2—2 2 —3 2

1

1
Where Hy, is the k-th harmonic number. We are interested in a lower bound for the probability
that the number of components is at least %ln(i). We can use the variance to find such
a bound. The probability distribution of the number of components can be described in
terms of a Poisson binomial distribution. The variance of a Poisson binomial distribution
can be bounded above by the expected value. Clearly, Hs,. < In(3¢) is an upper bound
2
for the variance. Using Cantelli’s inequality (P[X > E[X] + 2] > %) we find with
NV
z = —11n(i) that with probability (ll(ni;r;% € (1) the pseudoforest has at least  In(7)
components. ! |

The previous result shows that the number of components increases logarithmically in the
number of nodes in cycles. The next step is therefore to show that the cycles are sufficiently
large.

» Lemma 12. P[G, has at least \/n nodes in cycles | G4 is pseudoforest] € Q00 (1), where

qg~UQ).

Proof. Let p,(i) be the probability of sampling a hashed pseudoforest with ¢ nodes in
cycles as determined in Lemma 5. We need to show that the probability of sampling a
pseudoforest with at least v/n nodes in cycles is at least a constant factor larger than sampling

a pseudoforest with less than \/n nodes in cycles, i.e. (Z:‘:\/ﬁpn(z)) / (ZLQ pn(z)) € Q(1).

9:9
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A stronger statement is (ZQ\f (7 )) / (Zz " (i )) € Q(1). In the following we show

JnPnll
% € Q1) for all 0 < z < y/n. This pointwise comparison is an even stronger

statement. For brevity, we omit rounding of y/n. Using the bounds of Lemma 10 and
Stirling’s approximation we have:

po(Vita) 1 <\/ﬁ—:c)1/2_\F+x,nﬁ*f_(n—\/ﬁ+x)!
pn(vVrn—xz) T 4(yn+a)'/?2 n—ax nVrter (n—/n—uz)!
:1<\/ﬁ+l‘ 1/2 n— + n—w.(n_\/ﬁ_f_x)n—ﬁ-l-w
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Combining the results gives us the following.

» Theorem 13. P[c(G,) > §In(n) | G is pseudoforest] € Q_yo0(1), where ¢(Gy) is the
number of components of G4 and ¢ ~U(Q).

Proof. According to Lemma 12 at least y/n nodes are in cycles with constant probability.
Using Lemma 11 this results in 1 In(y/n) = £ In(n) components with constant probability. <

» Corollary 14. E[c(G,) | G4 is pseudoforest] € O, 00 (In(n)), where c¢(Gy) is the number
of components of G4 and ¢ ~U(Q).

Proof. Use Theorem 13 for the lower bound. There can be at most all n nodes in cycles of
the pseudoforest and we can apply Lemma 11 for the upper bound. |

4.2 Space Savings of MorphisHash

We now show that MorphisHash can convert each component into space savings compared
to ShockHash. As a first step we transition the previous graph results into the world of
matrices.

» Lemma 15. The defect of the incidence matrixz A of a pseudoforest is at least the number
of the pseudoforests components.

Proof. For each component C, summing up the rows A; of the respective nodes j € C results
in zero rows because for each component, the two endpoints of each edge are included in
the summed up rows. The rows summed up for each zero row are disjoint and therefore in
particular linearly independent combinations. <

» Lemma 16 ([4]). The probability that a random square matriz (of any field) with n rows
and columns has full rank approaches 1 for large n.



S. Hermann

» Lemma 17. The probability that a random rectangular matriz (of any field) with n rows
and m € o(n) columns has full rank approaches 1 for large n.

Proof. A necessary condition that a square matrix with n rows has full rank is that the first
m columns have full rank. The probability that this rectangular submatrix has full rank is
therefore bounded below by Lemma 16. |

We now show our main result.

» Theorem 18. P[3z : AHx = d | G4 is pseudoforest] € Qp_00(1), where ¢ ~ U(Q),
incidence matriz A and vector d of G4 are as described in the algorithm, b = n — %ln(n) and
H ~ U(F5*b).

Proof. In Theorem 13 we showed that a hashed pseudoforest has at least % In(n) components
with constant probability. According to Lemma 15 a direct consequence is that the incidence

matrix A of a random pseudoforest has a defect of at least %ln(n) with constant probability.

According to Lemma 17, the probability that H has full rank is at least constant. The
system AHx = d has a solution if there is a vector y which solves Ay = d and simultaneously
Hzx =vy. Such a vector y exists if the two solution spaces have to intersect, which happens
once def(A) 4+ rank(H) —n > 0. Since A and H are uncorrelated we have with constant

probability that both H has full rank b and simultaneously A has at least a defect of % In(n).

With b=n — { In(n) we have def(A) + rank(H) —n > £ In(n) + (n — § In(n)) — n > 0 with
constant probability. |
We use the above result to measure the space savings compared to ShockHash.

» Corollary 19. Compared to ShockHash, MorphisHash is at least §In(n) — O(1) bits more
space efficient in expectation while requiring a constant factor more time.

Proof. ShockHash requires at least n bits to store the orientation of all keys in a retrieval

structure. MorphisHash has to store the solution vector z instead, requiring exactly b bits.
According to Theorem 18 we can choose b =n — éln(n) to obtain the desired space savings.

However, there is a constant probability that a seed pair has to be rejected because there
is no solution for z. MorphisHash therefore has to check a constant factor more seeds in
expectation, consequently increasing the expected space required to store the seed by a
constant number of bits. Analogously, the construction time grows by a constant factor in
expectation. The time required to solve an expected constant number of equation systems is
dominated by the seed search. |

5 Partitioning

The time required to find a seed in MorphisHash and ShockHash grows exponentially with n.

To keep construction feasible for a large number of keys, we first partition the input into
equally sized subsets of manageable size. For consistency, we use n for the size of those
subsets, and refer to them as base cases in the following. MorphisHash is then applied
on those base cases. Note that the following two partitioning schemes are also applied on
ShockHash and we refer to their paper for more details [15, Section 7].

MorphisHash-RS. We use RecSplit [9] to recursively split the input into smaller subsets.

Once sufficiently small subsets are obtained we apply MorphisHash on those subsets as a base
case. RecSplit is space efficient but has significant query time overheads caused by traversing
the tree. In MorphisHash-RS we store the solution vector = of the retrieval structure directly
next to the corresponding seed to improve locality.

9:11
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log,(n™/n!). For an average successful seed s we  ShockHash and Bip. MorphisHash without the
charge log,(s) bits plus the bits required for re-  quad split technique (see [15, Section 8.3]).
trieval i.e. n for ShockHash and b for MorphisHash.

Figure 2 Space and avg. successful seed for ShockHash, MorphisHash and brute force search.

MorphisHash-Flat. The input keys are first hashed into buckets. Using thresholds, some
keys are bumped such that the bucket does not exceed the desired base case size n. The
bumped keys are then used to fill up buckets which did not reach the desired size. We apply
MorphisHash on each bucket.

6 Experiments

In this section we experimentally evaluate MorphisHash. We show the effect of the new para-
meter b introduced by MorphisHash. We then compare MorphisHash-Flat and MorphisHash-
RS with state-of-the-art competitors. Our source code is public under the General Public
License [10]. We integrate MorphisHash into an existing benchmark framework [13], which
was used for the comparison with competitors. The benchmark framework is described in
detail in [14]. We perform all experiments on a Core i7-11700 CPU which has 48 KiB L1 and
512 KiB L2 data cache per core. The CPU has a total of 16 MiB L3 cache. The machine has
64 GiB of dual-channel DDR4-3200 RAM. Note that our experiments are at a scale where
variances are relatively small, we therefore omit them for better readability.

6.1 MorphisHash vs ShockHash without partitioning

In the following we compare Bipartite MorphisHash with Bip. ShockHash. MorphisHash
has the additional parameter b, which determines the size of the retrieval structure. Smaller
b values result in less space overhead at the cost of more seed tests. Note that in theory
we choose b =n — %hl(n) but in practice where n is small it is more intuitive to work with
n minus a small constant. Figure 2 shows that Bip. MorphisHash has to check roughly a
constant factor more seeds than Bip. ShockHash when b is fixed to n minus a constant. For
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Figure 3 Comparing ShockHash with the Figure 4 Experimentally measured aver-

MorphisHash trade-off between time and age number of components when sampling
space for fixed n = 50 and b = {n—6,...,n}. bipartite pseudoforests.

b =mn — 6 this factor is ~ 4. At the same time, MorphisHash almost completely eliminates
the remaining space overhead. MorphisHash comes below 0.1 bits of space overhead when
using b = n — 6 while ShockHash has about 2 bits of space overhead. Thus, MorphisHash
has roughly 20 times less space overhead. For n = 54, MorphisHash has % ~ 0.002 bits
per key space overhead.

Figure 3 gives another perspective. In this plot, we fix n and vary b. Interestingly,
ShockHash even outperforms MorphisHash for b = n . This is because MorphisHash requires
n bits for the retrieval structure in this case just like ShockHash. However, there is still the
chance that the equation system of MorphisHash has no solution resulting in more retries
and therefore in a higher space consumption of the seed and a higher construction time. For
smaller b the space overhead approaches 0. In the extreme case of b = 0 and respective zero
dimensional retrieval vector, MorphisHash is equivalent to simple brute force search because
all keys can only use the hy candidate function. The average successful seed grows rapidly
with smaller b as it is increasingly less likely to stumble upon a pseudoforest which has at
least n — b many components. A pseudoforest with less than n — b components may still
result in a solvable (overdetermined) equation system, but this becomes exponentially less
likely with every component below n — b. Figure 3 uses n = 50. The expected number of
components for n = 50 is 1.56 as shown in Figure 4.

6.2 Choosing b in MorphisHash-RS and MorphisHash-Flat

Space improvements in MorphisHash-RS and MorphisHash-Flat can be made either by (1)
increasing the base case size n which reduces the space overhead of the partitioning technique
or (2) decreasing b which reduces the space overhead of MorphisHash. In both cases the
construction time increases. We experimented with different values of b to identify the
configurations which dominate the construction time and space trade-off. We determined
that b =n — 4 is a good choice for MorphisHash-RS and b = n — 2 for MorphisHash-Flat.
MorphisHash-Flat is a less space efficient partitioning technique compared to MorphisHash-RS.
Space savings can be made more easily by increasing n instead of decreasing b.

ESA 2025
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Figure 5 Dominance maps indicating the approach with the fastest queries, given a specific
trade-off between space and construction time with (right) and without (left) MorphisHash on 100 M
keys. Space overhead in bits per key over the lower bound of 1.44.

Table 1 Performance of various methods on 100 M keys. In the first part, configurations are
chosen such that the construction times are about equal (sorted by space efficiency). In the second
part, configurations are chosen such that space consumption is almost equal.

Method Space Query Construction

(bits/key) (ns/query) (ns/key)
Consensus-RS, k=32768, 0=0.0025 1.447 222 6733
Bip. MorphisHash-RS, base case size n=52, b=n-4 1.501 137 6 669
Bip. ShockHash-RS, base case size n=66 1.523 147 7186
Bip. MorphisHash-Flat, base case size n=88, b=n-2 1.541 75 6330
Bip. ShockHash-Flat, base case size n=96 1.554 76 6676
PHOBIC, A\=8.85, IC-R 1.749 49 6426
Bip. ShockHash-RS, base case size n=128 1.489 131 172738
Bip. MorphisHash-RS, base case size n=64, b=n-4 1.489 139 8085

6.3 Comparison to Competitors

We compare MorphisHash-RS and MorphisHash-Flat with state-of-the-art competitors. We se-
lect the following space efficient competitors based on a recent survey [14]: CONSENSUS-RS[17],
ShockHash-Flat, ShockHash-RS and PHOBIC [12]. We test a wide range of configurations
for each competitor and compare them in Figure 5. A selection of configurations is shown
in Table 1. As can be seen in the plot and the table, MorphisHash-RS is about 0.02 bits
per key more space efficient than ShockHash-RS when compared for equal construction
time. This corresponds to a reduction of 27% in space overhead. When compared for equal
space consumption of 1.489 bits per key, MorphisHash-RS is % ~ 21 times faster to
construct (see Table 1). For MorphisHash-Flat we select b less aggressively compared to
MorphisHash-RS (Section 6.2) and obtain a space improvement of about 0.01 bits per key.
According to Figure 5 MorphisHash dominates ShockHash in the overall space, construction
and query time trade-off. The next best competitor in terms of space efficiency is PHOBIC
which is a clear winner in terms of query throughput. In the other direction, we have the
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recently published CONSENSUS-RS, which can reach space overheads as low as 0.001 bits per
key at the cost of additional query time. A negative result regarding non-minimal PHFs can
be found in the full version of this paper [11].

7 Conclusion and Future Work

MorphisHash almost completely eliminates the remaining redundancy in ShockHash. This
is particularly effective when combined with a space efficient partitioning technique. Our
compression scheme might be of a more general interest, further examples can be found in
the full version of this paper [11].

In future work we plan to improve the space efficiency of partitioning techniques as those
are a major source of space overhead. We are hopeful that a partitioning technique that
involves the novel CONSENSUS technique puts further trade-offs for MorphisHash into reach.
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