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Abstract
Given two points in the plane, and a set of “obstacles” given as curves through the plane with
assigned weights, we consider the point-separation problem, which asks for a minimum-weight
subset of the obstacles separating the two points. A few computational models for this problem have
been previously studied. We give a unified approach to this problem in all models via a reduction to
a particular shortest-path problem, and obtain improved running times in essentially all cases. In
addition, we also give fine-grained lower bounds for many cases.
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1 Introduction

Given points s and t in the plane, and a weighted set of obstacles C defined by simple closed
curves (possibly also including their interiors), the (s, t) point-separation problem asks
for a minimum-weight subset C of C such that any path from s to t intersects some obstacle
in C. Equivalently, s and t are in different connected components of R2 \ (∪γ∈Cγ). We say
such a subset separates s and t. An example of this problem can be found in Figure 1.

This is a natural problem that arises in various scenarios. As a toy application of this
problem: Suppose every night your dog runs from his doghouse to your backpack to eat
your homework, taking an unpredictable route (making use of windows and doors). You
have noticed that your dog will forget about your homework if it smells a treat. You have a
number of candidate locations to place treats, and you’d like to ensure your dog is distracted
from your homework every day using the fewest treats possible. See Figure 2 for this example.
Similar applications also arise when considering security (e.g., replacing the batteries in the
fewest number of your dead security cameras to cover all possible paths from the entrance to
your bank vault). Additionally, (s, t) point-separation has found an application as a tool for
constant-factor approximation of the well-studied APX-hard problem “barrier-resilience” [13].
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90:2 Separating Two Points with Obstacles in the Plane
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Figure 1 An instance of the (s, t) point-separation problem.
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Figure 2 An example of the point-separation problem applied to placing distracting doggy treats
around a house, with the minimum-weight solution on the right.

For brevity, we will henceforth say “curve” to mean a simple closed curve in R2 \ {s, t}.
The algorithmic complexity of the (s, t) point-separation problem depends on the chosen
computational model of the obstacles. Previous works use a few different models. We
categorize and name the different classes of models used as follows:

Specific Obstacle-Type Models: Assume the set of curves C takes on a special form
with a standard representation, such as a set of disks, circles, or line segments.
The Oracle-based Intersection Graph Model: Assume the existence of several
O(1)-time oracles that would allow the computation of the intersection graph G of
C (the graph whose vertices are exactly the curves C and whose edges correspond to
pairwise intersections of these curves), as well as some additional information for each
edge related to s and t (detailed in Section 2).
The Arrangement Model: Assume the arrangement of C is provided as input, in the
form of a plane (multi-)graph, with the faces corresponding to s and t labelled. This is a
more graph-theoretic formulation. See Figure 3 for an example of such an arrangement.

Prior works discussing this problem each focused on only one of these paradigms, and the
names for each paradigm are our own. We will not assume general position, so no paradigm
is strictly more general than the others, since there are arrangements of n obstacles with
Θ(n2) pairwise intersections, but only O(n) unique intersection points.
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Figure 3 An arrangement representation of the instance in Figure 1, as well as an arrangement
of a smaller instance.

In our work, our key method is to frame all models of this problem in terms of a “homology
cover”. Homology is a very broad topic in algebraic topology, which we will not attempt to
summarize in this paper. We aim our paper at a typical computational geometry audience,
and we will not assume prior knowledge of homology. We will present the necessary aspects
in Section 2.

1.1 Prior Work (Brief)

In this subsection, we very briefly outline some key aspects of prior work. A significantly
extended form of this section is in the appendix of the full version.

Most importantly for our methods, Kumar, Lokshtanov, Saurabh and Suri [13, Section 6]
describe an algorithm that runs in polynomial time in the arrangement model. Their algorithm
implicitly makes use of the homology cover (perhaps unintentionally), in the same sense that
we will use it. In fact, their algorithm is in some ways analogous to an algorithm of Chambers,
Erickson, Fox, and Nayyeri [5] for minimum-cuts (and maximum-flow) in surface graphs.
These two algorithms are the main inspiration for our approach to the (s, t) point-separation
at a high-level, in all models.

1.2 Results and Organization

We obtain improved algorithms for the (s, t)-point separation problem in several cases, which
we outline in Table 1. As mentioned earlier, all of our positive results make use of a reduction
to a shortest-path problem in the so-called “homology cover”. We discuss this formulation in
Section 2, and then again more rigorously in the appendix of the full version. Using this
reduction, the upper bounds are then given in Section 3.

We also obtain several fine-grained lower bounds in Section 4. Our lower bounds also all
have a shared foundation, which will be stated in Theorem 13. The resulting lower bounds
are based on a few different hypotheses, and we give their details in the appendix of the full
version.

ESA 2025



90:4 Separating Two Points with Obstacles in the Plane

Table 1 The time complexities of our algorithms for various obstacle models. In all cases, n := |C|.
For the arrangement model, k denotes the vertex count of the arrangement, and m is the number
of obstacle-vertex incidences (so m ≥ k). The notation Ω∗(·) hides sub-polynomial factors. The
notation † denotes that this is only true for one particular mutual dependence of k, m, and n (and
is a slight abuse of notation). ω is the matrix-multiplication exponent (ω < 2.371339 [2]). The lower
bound results are given in the full version.

Model Weights Old New Cond. L.B.

Oracle Yes O(n3) [3] Õ(n(3+ω)/2) (Thm. 4) Ω∗ (
n2)

Oracle No O(n3) [3] O(nω log n) (Thm. 5) Ω∗(n3/2)

Arrangement Yes O(km2 lg k) [13] O(km + k2 lg k) (Thm. 6) Ω∗ (km)†

Segments No O(n3) [3] O(n7/3 log1/3 n) (Cor. 9) Ω∗(n3/2)
Axis-aligned
segments No O(n3) [3] O(n2 log log n) (Cor. 9) None

Unit Disks No O(n2 log3 n) [4] O(n2 log n) (Cor. 9) None

Disks No O(n3) [3] O(n2 log n) (Cor. 9) None
O(1)-length
polylines No O(n3) [3] O(n7/3 log1/3 n) (Cor. 9) Ω∗ (

n3/2)
O(1)-length
rectilinear
polylines

No O(n3) [3] O(n2 log log n) (Cor. 9) Ω∗(n3/2)

Segments Yes O(n3) [3] Õ(n7/3) (Cor. 12) Ω∗ (
n2)

Axis-aligned
segments Yes O(n3) [3] Õ(n2) (Cor. 12) None

O(1)-length
polylines Yes O(n3) [3] Õ(n7/3) (Cor. 12) Ω∗ (

n2)
O(1)-length
rectilinear
polylines

Yes O(n3) [3] Õ(n2) (Cor. 12) Ω∗(n2)

2 Homology and Obstacles [Informal]

In this section, we will explain the main topological tools we will use to approach the (s, t)
point-separation problem. However, this will be an information section, not requiring prior
knowledge of any aspect of topology. Rather, we will give an equivalent formulation of the
important pieces using simpler tools from computational geometry. We give a more formal
treatment in the appendix of the full version. Throughout this section, we will make (implicit)
assumptions of general position and such, but the deferred formal treatment does not need
these.

At a high-level, there are two main steps to the constructions of our approach. First, we
will discuss what it means for a simple curve to separate s and t, and what tools exist to
classify such curves. Second, we will discuss what it means for a set of obstacles to separate
s and t. That is, when does the union of the obstacles contain a simple curve separating s

and t?
The simplest possible case of asking whether a simple curve separates s and t is char-

acterized by the point-in-polygon problem, which asks: Given a point p and a (simple)
polygon P , is p inside P? In fact, this is equivalent to asking if P separates p and the point
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Figure 4 A demonstration of the algorithm for the point-in-polygon problem (left), as well as the
problem of testing whether or not a polygon separates two points (middle). On the right, alternative
paths for the separation problem are given.

Figure 5 Examples of point-pairs separated or not separated by a given closed path between the
pair, and the corresponding intersections of those curves.

at infinity. There is a folklore algorithm for this problem that takes any ray r starting at p,
and counts the number of intersections between r and P . Then, P contains p if and only
if the number of intersections is odd. In fact, essentially the same algorithm can be used
to test whether or not P separates two points p1 and p2. Rather than using a ray, take the
segment p1p2. Count the number of intersections between p1p2 and P . The count is odd if
and only if P separates p1 and p2. Moreover, there is in fact nothing special about rays or
line segments in this problem. Any (closed) path between p1 and p2 would cross P the same
number of times, modulo 2. See Figure 4 for examples for these algorithms.

All three of these algorithms are equivalent in a sense. In fact, there is a further
generalization: Given two points s and t on the sphere, a simple and closed curve C (not
covering s or t), and any s − t path π, C separates s and t if and only if π crosses C an odd
number of times (regardless of the choice of π). Since the extended plane is homeomorphic
to the sphere, a ray in the plane corresponds to a (simple) path in the sphere. See Figure 5
for an example.

The problems we have discussed so far are all completely static, and the methods do not
provide much structure for solving more difficult problems. One of the most common ways to
extend the point-in-polygon problem is to fix the polygon (or curve) P , and aim to support
fast queries of points. This problem is known as “point-location”, and it is well-studied in
computational geometry [12]. However, we want a different sort of structure: We have a
fixed pair of points s and t, and we wish to classify the curves that separate them. Since we
have fixed s and t, we can also fix the path π between them – in most cases, we will use the
line segment st. Then, the problem of classifying curves that separate s and t becomes the
problem of classifying curves that cross st an odd number of times.

ESA 2025
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s tπ

(a) s and t are punctures, π
is a path between them.

ts π

(b) s and t are enlarged to
become holes, and the space
is an annulus.

(c) The two sides of π can be
coloured to aid later notation.

Figure 6 A demonstration of how the (extended) plane with two punctures is homeomorphic to
the annulus.

(a) An annulus with a spe-
cified path π.

(b) The annulus is sliced open
along the specified path π.

(c) Two copies of the sliced
annulus are glued together.

Figure 7 The “cut and glue” construction of the homology cover, as well as how it maps a closed
curve that separates the two boundaries (blue) and one that does not (red).

It will be helpful for demonstration to make some transformations to the space we work
in. That is, we will perform a sequence of homeomorphisms. We start with the extended
plane with the two marked points s and t, and the line segment st (see Figure 6a). No curves
we will be classifying cross s or t, so we may assume there are punctures at s and t. We can
enlarge these punctures into holes with a homeomorphism. Next, since we have the extended
plane, we can make one of the punctures the outer face, obtaining an annulus (see Figure 6b
and Figure 6c). In performing these steps, the line segment st becomes a path between the
inner and outer boundaries of the annulus.

We now present a method for constructing an important space called the homology
cover1. Take the specified path π between the two boundaries (see Figure 7a) and slice
it open (see Figure 7b). Then, create a second copy of the sliced annulus, and glue them
together in a way that matches up the orientations of the sliced ends (see Figure 7c).

Alternatively, an equivalent construction is to create two copies of the original space
(whether that be the extended plane or the annulus), and use each side of the path from s

to t as a (separate) “portal” between the two copies. A more general form of this “portal”
idea has been studied in the form of “portalgons” [14, 15], of which the homology cover is
essentially a special case. See Figure 8 for an example of this construction.

One important aspect of this construction is that it involves the connection of two identical
copies of the annulus (i.e., the extended plane with punctures s and t). In Figure 7, we also
show how this construction transforms two curves – one separating the two boundaries, and
one not separating them. The structure we will make use of to study curves separating s

and t in the plane ultimately stems from an important set of facts:

1 We use the term “homology cover” to refer to the one-dimensional Z2-homology cover of the annulus.
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Figure 8 The “portal” construction of the homology cover. Each colour (or dot/dash pattern) is
a single closed curve in the homology cover. The two solid lines are the portals.

▶ Fact 1. For a simple curve C in the annulus (or the plane) that gets mapped to the set C ′

in the homology cover, and a point p along C that gets mapped to corresponding points p1
and p2 in the homology cover, the following are all equivalent:

C separates s and t.
C ′ separates the two boundaries in the homology cover.
C ′ has one connected component (i.e., it is one closed curve instead of two).
The points p1 and p2 are connected by a path through C ′.

It is this last characterization that will be the most critical for obstacles. In particular,
a consequence of this characterization is that if two corresponding points p1 and p2 in the
homology cover (corresponding in the sense that they are identical points in different copies
of the annulus/plane) have a simple path π between them, then that path can be mapped to
a closed curve separating s and t.

2.1 Obstacles and the Homology Cover
We now have tools for characterizing closed curves that separate s and t. We’d now like to
characterize sets of obstacles that separate s and t. In other words, we’d like to characterize
unions of closed curves (obstacles) that contain a closed curve separating s and t. We’ll give
two different tools for this, first for the arrangement model, then for the oracle model. For
simplicity, we will work exclusively with obstacles that do not individually separate s and t

(that is, obstacles that get mapped to two separate closed curves in the homology cover).
We will reduce to this case algorithmically at the start of Section 3.

In the arrangement model of the (s, t) point-separation problem, we are given a plane
graph D (the arrangement) with specified faces s and t (can be obtained from points via
point-location), and a set of obstacles σ, each given as a connected subgraph. The homology
cover has a simple graph-theoretic interpretation in this framework: Take any (simple)
dual-path π of faces from s to t – this is will serve as the “portal”. Next, create two copies
D1, D2 of D, each with the faces s and t removed. We will create a combined graph D

starting from the union of D1 and D2. For each edge e = uv used in the dual-path π, delete
e from both D1 and D2 (inside D). Denote the corresponding vertices of u and v in each
of D1 and D2 as u1, v1 and u2, v2, respectively. Then create new edges u1v2 and u2v1 in D.
This form of the homology cover is visualized in Figure 9.

With this particular arrangement structure Kumar, Lokshtanov, Saurabh and Suri [13,
Section 6] built a graph using one vertex per obstacle-vertex incidence (in each copy of the
plane graph). We will build a smaller graph of similar form to theirs. First, for each obstacle

ESA 2025
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s t

(a) The arrangement with a spe-
cified path π.

s t

(b) A simple separating cycle in
the arrangement.

s t

(c) The edges of the arrange-
ment crossing π are deleted.

s t

s t

(d) Two copies of are created, and the deleted
edges are added as “crossing” edges (in purple).

s t

s t

(e) A path between two copies of the same original
vertex that would project onto the simple separat-
ing cycle in the original space from Figure 9b.

Figure 9 The construction of the homology cover for the second arrangement given in Figure 3.

C ∈ σ (which induces a subgraph of D), pick some arbitrary canonical point x ∈ C. Since
this choice is arbitrary, it will sometimes be useful to assume it is a specific point – this will
primarily be useful for specific obstacle types. Assume that x is also a vertex in the subgraph
of D induced by C (and if it is not, modify D so that it is, with either a subdivision or a
new degree-1 vertex). Note that since C is connected in D, every other vertex x′ ∈ C is
connected to x by only edges in C. Given a plane graph D with faces s and t, a dual-path π,
obstacles σ, and canonical points for each obstacle, the auxiliary graph H is a bipartite
graph constructed as follows:

The first set of vertices are the copies of arrangement vertices in the homology cover. For
a vertex v ∈ V (D), we denote these two copies v+ and v−.
The second set of vertices are the copies of the obstacles/canonical points in the homology
cover. For an obstacle γ ∈ σ, we denote these two copies as (γ, −) and (γ, +).
The values − and + in each of the above are indicator bits, and can be stored as 0 and
1, respectively.
A vertex copy vb1 has an edge connecting it to a canonical point copy (γ, b2) when:

v ∈ γ (that is, the point v belongs to the obstacle γ in the arrangement), and. . .
The canonical point x of γ has a path through the edges of γ to v whose intersection
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s t

s t

(a) A canonical point is added along each obstacle,
and edges are created from the canonical point
to each arrangement vertex along the obstacle,
subject to the parity conditions.

s t

s t

(b) A shortest-path between the two copies of an
obstacle’s canonical point. The obstacles whose
canonical points lie in this path form a set of
obstacles separating s and t.

s t

(c) The set of obstacles induced by the shortest path in Figure 10b.

Figure 10 The construction of the auxiliary graph for the homology cover given in Figure 9.

with the edges of π has size b1 + b2 modulo 2 (i.e., if b1 = b2, the size must be even, and
if b1 ̸= b2, the size must be odd). Equivalently, the projected connected component of
γ containing the canonical point copy (γ, b2) also contains vb1 .

We visualize an example of the auxiliary graph in Figure 10.
The auxiliary graph is useful because the shortest path between any two corresponding

vertex copies or (separately) any two corresponding canonical point copies both correspond
exactly to the solution to the (s, t) point-separation problem. The high-level construction to
prove this fact is as follows:

Suppose there is a set of obstacles C. We’d like to determine when C separates s and t.
Denote the set of copies of the obstacles in C in the homology cover as C ′, so that every
element of C ′ is a closed curve representing one of the two connected components of an
element of C projected into the homology cover.
By Fact 1, we deduce that C separates s and t if and only if there is a path from v+ to
v− along the union of obstacle copies in C ′, for some arrangement vertex v among pairs
of elements in C only.

ESA 2025
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Moreover, since each obstacle is connected, we may further assume that any such path
visits each obstacle copy at most once, and moreover that it only visits each obstacle at
most once.
We may further assume that any such path visits the canonical point copy of each such
obstacle copy, by inserting a path to and then from the canonical point copy while the
obstacle copy is visited. Note that the resulting path may not be simple in the plane.
Such paths also directly correspond to paths in the auxiliary graph, using only “obstacle
vertices” corresponding to elements of C and the “arrangement vertices” incident to pairs
of elements in C.
With appropriate weights, the problem of finding the minimum-weight set C with this
property then reduces to the problem of finding the pair v+, v− with the shortest distance
in the auxiliary graph, so this is a shortest-path problem!
A similar argument can show that an alternative algorithmic formulation is to find the
pair (γ, −), (γ, +) with the shortest-distance in the auxiliary graph.

This essentially completes the set of tools necessary for the arrangement model. These
arguments are given in more detail in the appendix of the full version.

s ts t

(a) The intersection graph with the path π.

s ts t

(b) The intersection graph after deleting the edges
whose underlying paths cross π an odd number of
times.

s t

s t

(c) Two copies of the intersection graph are con-
nected with “crossing” edges (in purple).

s t

s t

(d) A shortest-path in the homology cover between
two copies of an obstacle.

Figure 11 How the intersection graph can be transformed into the intersection graph in the
homology cover.
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For the oracle model, the purpose of the oracles will be to construct the geometric
intersection graph of the obstacle copies in the homology cover (which we will denote as
G). We will call G the intersection graph in the homology cover. See Figure 11 for
an example. We will present two different constructions of this graph. They are equivalent,
and each of them is quite simple, but they will serve two different purposes: The first will
clarify which types of oracle queries are necessary, and provide an algorithmic construction.
The second will instead build on the tools we have for the arrangement model, proving the
correctness of another shortest-paths approach.

Let C denote the set of obstacles in the plane. We assume the canonical points for each
obstacle are given (or implied) – they will be used by the oracle. We also assume some simple
s − t path π is fixed – this will also be used by the oracle. In most cases, π will be st. The
first construction of the graph is as follows:

For each obstacle γ ∈ C, create two vertices (γ, −) and (γ, +).
For each pair of obstacles γ1, γ2 with canonical points x1, x2, and values b1, b2 ∈ {−, +},
we connect vertices (γ1, b1) and (γ2, b2) by an edge if there is a path from x1 to x2 in
γ1 ∪ γ2 crossing π exactly k times, for some k where k ≡ b1 + b2 (mod 2).

Testing for this condition is actually the only type of oracle query needed (although we will
also require support for the case when γ1 = γ2 later). Cabello and Giannopoulos [3] used a
larger set of query types, but together they can be used to perform this type by carefully
choosing the canonical points and fixing π to st, so our variant of the oracle model is slightly
more general (although practically equivalent).

We’d like a similar algorithmic property for the intersection graph in the homology cover
G that we have for the auxiliary graph H. The second construction will be what gives us
that property, by constructing G from H:

For each arrangement vertex vb in H, let its adjacent vertices be denoted x1, . . . , xk.
Delete vb and create a clique over {x1, . . . , xk}.
After performing this for every arrangement vertex vb, the result is exactly the intersection
graph in the homology cover G.
Therefore, the set of vertices visited by the shortest path from some (γ, −) to (γ, +) (over
all possible γ ∈ C, breaking ties arbitrarily) corresponds to a minimum-weight set of
obstacles separating s and t.

For specific obstacle types, we will usually work with G, although we will do it implicitly.
Hence, with the tools from this section, we can now discuss algorithms in all three model
types as solutions to a certain form of shortest-path problem.

3 Algorithmic Results

In this section, we will devise algorithms for the (s, t) point-separation problem based on
our homology cover structures. We will devise algorithms for all three model types: Some
that work with the arrangements of curves, some that work with the “oracle model” (the
intersection graph in the homology cover), and some that work with specific types of obstacles.
Most of our algorithms are fairly simple reductions to various known shortest-path algorithms,
greatly simplifying some of the previous approaches to the (s, t) point-separation problem.
However, some of them are more involved.

In the previous section, we assumed no obstacle individually separated s and t. Before
moving on, we quickly show this is enough:

▶ Observation 2. Let C be a set of obstacles, and let s and t be points. Suppose an oracle
exists that, for an obstacle γ ∈ C, determines whether γ itself separates s and t, all in
O(1) time. Let C0 be the set of all obstacles that do. Then an instance of the weighted

ESA 2025
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(unweighted) (s, t) point-separation problem over C can be reduced to an instance of the
weighted (unweighted) (s, t) point-separation problem over C \C0 in O(|C|) time. In particular,
such a reduction returns the best solution out of the solved subproblem (if any), and each of
the individual obstacles forming solutions (if any).

3.1 General Weighted Obstacles in Oracle Model
With no significant further work, we already obtain some naïve algorithms by using a result
in the appendix of the full version (or the constructions in Section 2):

▶ Theorem 3. For points s and t, and a weighted set of obstacles C that have k pairwise
intersections, the (s, t) point-separation problem can be solved in O(|C| · k + |C|2 log |C|) time.

Proof. Compute the intersection graph in the homology cover G of C. For each γ ∈ C,
compute the shortest path from (γ, −) to (γ, +) in G. The smallest such path induces the
solution by a result in the appendix of the full version. Each shortest path can be computed
in O(k + |C| log |C|) time by Dijkstra’s algorithm with a Fibonacci heap [11], and there are
O(|C|) total such paths. ◀

Note that Theorem 3 matches the result of [3], although the algorithm is much simpler.
When k ∈ Θ(|C|2) (i.e., dense intersection graphs), this algorithm runs in O(|C|3) time, which
could also be obtained by running Floyd-Warshall for APSP instead of Dijkstra. It is not
known if the general form of weighted APSP can be solved in “truly” subcubic time (see the
appendix of the full version). However, since the weights are applied to vertices, not edges,
there is a known faster algorithm (also discussed in the appendix of the full version):

▶ Theorem 4. For points s and t, and a weighted set of obstacles C, the (s, t) point-separation
problem can be solved in Õ(|C|(3+ω)/2) time in the oracle model, where 2 ≤ ω < 2.371339 is
the matrix multiplication exponent.

Proof. Apply the same reduction to APSP as before, but use the algorithm of Abboud,
Fischer, Jin, Williams, and Xi [1] for APSP with real vertex weights. ◀

3.2 General Unweighted Obstacles in Oracle Model
We are also interested in the (s, t) point-separation problem for unit weights, which corres-
ponds to shortest paths for unit weights. In this case, we can obtain faster algorithms:

▶ Theorem 5. For points s and t, and an unweighted set of obstacles C, the (s, t) point-
separation problem can be solved in O(|C|ω log |C|) time, where 2 ≤ ω < 2.371339 is the
matrix multiplication exponent.

Proof. Compute the intersection graph in some homology cover G of C, and then run
unweighted undirected APSP [16] on G, for O(|C|ω log |C|) total time. ◀

3.3 General Weighted Obstacles in Arrangement Model
We can also obtain results using the arrangement instead of the intersection graph. The
simplest of these is a slight modification of Theorem 3:

▶ Theorem 6. For points s and t, a weighted set of obstacles C, and an arrangement
D, σ of C, where σ is given as lists of vertices, let m =

∑
c∈σ |c| be the total number

of obstacle-vertex incidences. Then, the (s, t) point-separation problem can be solved in
O(min(|C|, |V (D)|) · m + min(|C|, |V (D)|)2 log min(|C|, |V (D)|)) time.
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Proof. Let H be the auxiliary graph in the homology cover, which has O(m) vertices and
edges. By a result in the appendix of the full version, it suffices to do one of the following:

Compute the single-source shortest-path (SSSP) tree from each obstacle in H.
Compute the SSSP tree from each arrangement vertex in H.

Let k = min(|C|, |V (D)|). Each SSSP computation can be performed in O(m + k log k) time,
and k such computations suffice to solve the problem. ◀

This theorem in particular is of note because as we will see later, it is essentially optimal
assuming the APSP conjecture, at least in the case when |C| = Θ(|V (D)|2) and m = Θ(|C|),
as we will see in Section 4.

3.4 Restricted Obstacle Classes without Weights

As we will discuss in the appendix of the full version, Chan and Skrepetos [6, 7] studied APSP
for several forms of unweighted/undirected geometric intersection graphs. Their intersection
graphs are in the plane, but with some extra work it is possible to study intersection graphs
in the homology cover, and consequently the unweighted (s, t) point-separation problem.

▶ Theorem 7. For points s and t, and an unweighted set of obstacles C. Let C be the set of
2|C| “mapped” obstacles in the homology cover. Let SI(n, m) (“static intersection”) be the time
complexity for checking if each of n different objects in C intersects any object in some subset
C ⊂ C of size m = |C|. Assume SI(n, m) is super-additive, so that SI(n1, m1) + SI(n2, m2) ≤
SI(n1 + n2, m1 + m2). Then (s, t) point-separation over C can be solved in O(nSI(n, n)) time.

Proof. Run APSP for the intersection graph in the homology cover via the algorithm of
Chan [10, Theorem 2] (see further discussion in the appendix of the full version). ◀

To use this result, we need efficient algorithms for static intersection in the homology
cover:

▶ Lemma 8. For points s and t, the following values of SI(n, n) hold for restricted obstacle
types in the homology cover:

Obstacle Class SI(n, n)
General Disks O(n log n)
Axis-Aligned Line Segments O(n log log n)
Arbitrary Line Segments O(n4/3 log1/3 n)

The proof of the lemma is left to the appendix of the full version. At a high-level, all cases
are first reduced to the planar static intersection problem. In the case of line segments, this
becomes the standard planar static intersection problem for line segments. For disks, this is
not the case, and the algorithm is more involved.

The combination of these two results give an important corollary:

▶ Corollary 9. For points s and t, the unweighted (s, t) point-separation problem can be solved
in O(n2 log log n) time for axis-aligned line segments (or O(1)-length rectilinear polylines),
O(n7/3 log1/3 n) time for line segments (or O(1)-length polylines), and O(n2 log n) time for
general disks or circles that do not contain both s and t.
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3.5 Restricted Obstacle Classes with Weights
We will now present a method for solving the weighted (s, t) point-separation problem using
a tool called “biclique covers”, which are essentially a tool for a type of graph sparsification.

For a graph G = (V, E), a biclique in G is a complete bipartite subgraph (A × B ⊂ E,
where A, B ⊂ V are disjoint). The size of a biclique is the number of vertices it contains
(|A| + |B|). A biclique cover is a collection of bicliques in G covering the edges E, and
its size is the the sum of all sizes in its bicliques. Biclique covers of geometric intersection
graphs in two-dimensions are well-studied. We summarize known results in Table 2.

Table 2 Known results for biclique covers of 2D geometric intersection graphs. All of these
results are stated and proven by Chan [8], although essentially all of the steps have appeared in a
number of prior works. The notation Õ hides logarithmic factors. The notation Õk further assumes
that k is constant. Note that axis-aligned line segment intersection graphs are K3-free.

Graph Type Cover Size Construction Time
line segment intersection Õ(n4/3) Õ(n4/3)
Axis-aligned line seg. intersection Õ(n) Õ(n)
k-clique-free line seg. intersection Õk(n) Õk(n)

Biclique covers are useful in our case because they can be used for faster vertex-weighted
shortest paths. In particular:

▶ Lemma 10. Let G = (V, E) be an n-vertex (undirected) graph with vertex-weights admitting
a biclique cover of size S(n) that can be constructed in T (n) time. Then APSP over G can
be solved in O(T (n) + n · S(n) log(n)) time.

We leave the proof to the appendix of the full version.
These results aren’t quite enough for the (s, t) point-separation problem, since what we

need is actually a biclique cover in the homology cover. Fortunately, we can construct this:

▶ Lemma 11. Let s and t be designated points in the plane, and let C be a set of line
segments with n = |C|. Let G be the intersection graph in the homology cover, and let G be
the intersection graph in the plane. Then G has a homology cover of size Õ(n4/3) that can
be found in Õ(n4/3) time. Moreover, if G contains no k-clique (including if C is a set of
rectilinear segments, in which case G contains no 3-clique), then G has a homology cover of
size Õk(n) that can be found in Õk(n) time.

We leave the proof of this to the appendix of the full version as well. The proof is similar
to that of Theorem 7.

The combination of these results gives the following theorem:

▶ Theorem 12. For a weighted set of obstacles C, and points s, t, the (s, t) point-separation
can be solved in Õ(n7/3) time if C is a set of line segments, Õ(n2) time if C is a set of
axis-aligned line segments, and Õk(n2) time if C is a set of line segments whose intersection
graph has no k-clique. The same bounds hold if each obstacle is an O(1)-length polyline
among lines of the same properties.

Note that a biclique cover for O(1)-length polylines can be recovered from biclique covers
over the individual line segments (adjusted slightly so that the line segments in the same
polyline do not overlap).
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Figure 12 A demonstration of the sub-cubic reduction from min-weight k-walk to the (s, t)
point-separation problem with line segments. Empty circles are used to annotate the ends segments.

4 Lower Bounds

In this section, we present several related fine-grained lower bounds for specific cases of
the (s, t) point-separation problem. The main intermediate tool is the problem of finding a
minimum-weight walk of length k in a directed graph, for a given k (or detecting if any walk
of length k exists). All of our lower bounds are based on the following unified theorem:

▶ Theorem 13. For a positively edge-weighted directed graph G = (V, E) with n vertices and
m edges with maximum edge-weight W , and an integer k, there exists three sets C1, C2, C3 of
2km + 6m obstacles, each with a weight equal to that of some edge in G, so that each of the
following properties holds for one set:

All obstacles are line segments.
All obstacles are length-2 polylines, and the total number of unique intersection points of
the obstacles is k + 2(k + 1)m + 4m = Θ(km).
All obstacles are length-3 rectilinear polylines.

Moreover, there are points s and t in the plane so that G has a walk of length k with weight
at most w if and only if there is some subset of Ci (for any i ∈ {1, 2, 3}) that separates s and
t and has weight at most w + (k + 6)W , so long as w ≤ kW . Furthermore, each of C1, C2, C3
can be constructed in time proportional to their sizes.

Proof. For each property, we will construct a reduction from min-weight k-walk (for fixed
k) in a directed edge-weighted graph to point separation, with the stated guarantees. The
constructions for each property are essentially the same. We will focus on the line segment
case, and explain the modifications afterwards.

The construction is visualized in Figure 12. For each vertex vi (i ∈ {1, . . . , n}), assign
the column x = i. For each value r ∈ [k + 1], assign the row y = r. For each directed edge
(vi, vj) ∈ E, with weight wvi,vj create k line segments, each also with weight wvi,vj . Each
should go from the ith column to the jth column, and the rth row to the (r + 1)th row (for
each r ∈ [k + 1]). We call these the edge segments. Pick s to be some point to the left
of the columns, and t to be some point to the right. For the ith column, create a set of
k + 6 rectilinear line segments connecting the top point of the ith column to the bottom, so
that the path formed by these line segments lies to the left of s at its x coordinate, ensuring
that these line segments do not intersect the corresponding line segments generated for
other columns, nor do they cross the minimal orthogonal rectangle containing the previous
set of line segments. We call these the vertex segments. These two segment types form
the entirety of the obstacles, so the stated time complexity follows. We need only prove
correctness of the reduction.
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v1 v2 v3 v4 v5 vn
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Figure 13 The finite set of (s, t) paths that need to be considered for the reduction of min-weight
k-walk to the (s, t) point-separation problem with line segments.

A k-walk through G starting and ending at a vertex vi ∈ V corresponds exactly to a
connected set of edge segments from the point (i, 0) to (i, k), and both also have the same
weight. The forward direction of the reduction follows: Given such a set of edge segments, a
set of vertex segments of weight exactly (k + 6)W exists (those for the ith column) so that
the union of the two separates s and t, and has the specified weight. For the backwards
direction of the reduction: For a set C ⊂ C with weight at most w + (k + 6)W , if w ≤ kW ,
then it is only possible to have one maximal connected set of vertex segments in C. Each
of the sets of (potential) obstacles crossed by paths in Figure 13 must have at least one
obstacle chosen from them for the whole set to separate s and t, so at least one such maximal
connected set of vertex segments must be in C. Hence, the total weight of the remaining
obstacles in C is w, and some subset of these obstacles must themselves be a connected set
of edge segments (one per row) corresponding exactly to a k-walk in G.

The two modified constructions with polylines are obtained by replacing the edge segments
with polylines that have the desired properties. These cases are visualized in Figure 14. ◀

There are a number of fine-grained lower bounds for min-weight k-walk and k-walk
detection. In particular, all such bounds hold for fixed k and graphs where k-walks and
k-cycles coincide (which is itself always true for k = 3 in graphs with no self-loops, and is
otherwise implied by a property called “k-circle-layered”). In the appendix of the full version,
we discuss the following results that follow from known fine-grained bounds and Theorem 13:

If (s, t) point-separation
can be solved in time. . . for n obstacles that are. . .

then it would
imply a new state-of-the-art
algorithm for. . .

O(n3/2−o(1)) weighted line segments edge-weighted APSP
O(n2−o(1)) weighted line segments minimum-weight k-clique
O(n2−o(1)) weighted length-3 rectilinear polylines minimum-weight k-clique
O(n3/2−o(1)) unweighted line segments max-3-SAT
O(n3/2−o(1)) unweighted length-3 rectilinear polylines max-3-SAT

O(n3/2−o(1))
weighted length-2 polylines with O(

√
n)

unique intersection points and 3
intersection points per obstacle

edge-weighted APSP
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Figure 14 A demonstration of the reduction from min-weight k-walk to the (s, t) point-separation
problem for length-2 polylines with few total intersection points, or length-3-rectilinear polylines.

5 Conclusion

We have discussed several upper and lower bounds for the (s, t) point-separation problem in
various cases, and we conclude by briefly listing some of the most interesting open problems:

Is there a near-quadratic algorithm for general weighted obstacles? Can a conditional
lower bound (based on any popular hypotheses) excluding this possibility be formulated?
Can a (truly) sub-quadratic algorithm be devised for disks, unit disks, or axis-aligned
segments? Is there a non-trivial fine-grained lower bound in any of these cases?
Are there faster algorithms or stronger lower bounds for the unweighted versions of the
problem?

We note that it seems very likely that unit disks would admit a slightly sub-quadratic
algorithm, since APSP is known to be solvable for unit disk graphs in (essentially) slightly
sub-quadratic time [9], and the methods seem as though this method could plausibly be
extended to the homology cover.
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