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Abstract
Many differentially private and classical non-private graph algorithms rely crucially on determining
whether some property of each vertex meets a threshold. For example, for the k-core decomposition
problem, the classic peeling algorithm iteratively removes a vertex if its induced degree falls below a
threshold. The sparse vector technique (SVT) is generally used to transform non-private threshold
queries into private ones with only a small additive loss in accuracy. However, a naive application of
SVT in the graph setting leads to an amplification of the error by a factor of n due to composition,
as SVT is applied to every vertex. In this paper, we resolve this problem by formulating a novel
generalized sparse vector technique which we call the Multidimensional AboveThreshold (MAT)
Mechanism which generalizes SVT (applied to vectors with one dimension) to vectors with multiple
dimensions. When applied to vectors with n dimensions, we solve a number of important graph
problems with better bounds than previous work.

Specifically, we apply our MAT mechanism to obtain a set of improved bounds for a variety of
problems including k-core decomposition, densest subgraph, low out-degree ordering, and vertex
coloring. We give a tight local edge differentially private (LEDP) algorithm for k-core decomposition
that results in an approximation with O(ε−1 log n) additive error and no multiplicative error
in O(n) rounds. We also give a new (2 + η)-factor multiplicative, O(ε−1 log n) additive error
algorithm in O(log2 n) rounds for any constant η > 0. Both of these results are asymptotically tight
against our new lower bound of Ω(log n) for any constant-factor approximation algorithm for k-core
decomposition. Our new algorithms for k-core decomposition also directly lead to new algorithms
for the related problems of densest subgraph and low out-degree ordering. Finally, we give novel
LEDP differentially private defective coloring algorithms that use number of colors given in terms of
the arboricity of the graph.
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1 Introduction

Designing and analyzing algorithms that satisfy differential privacy [23], the de facto standard
for protecting user data, is a tricky task, with few general techniques. Among them, the
sparse vector technique (SVT) is a well-known approach to make certain threshold-based
computations privacy-preserving. This typically involves showing that the computation can
be reduced to a sequence of black-box invocations of private AboveThreshold mechanisms,
followed by some post-processing. Each such mechanism allows one to iteratively (and
adaptively) query whether some real-valued property of the data is above some threshold,
until the first “yes” response, at which point no further queries are possible.

While SVT was originally presented as a technique for sequential computations, recent
work on concurrent composition [54] show that it is possible to interleave queries to different
(AboveThreshold) mechanisms with (worst-case) privacy loss proportional to the number of
concurrently queried mechanisms. However, this can be prohibitively large for applications
(e.g., in parallel and distributed settings) where there is a large amount of concurrency and, in
this case, one must exploit structural properties of the instance to obtain better guarantees.

To analyze these situations, we introduce a new mechanism, called Multidimensional
AboveThreshold (MAT), which allows one to query, in parallel, whether a number of different
real-valued properties of the data are above some specified thresholds. We identify a condition
on the sensitivity of the submitted queries that allows one to use MAT with far less privacy
loss versus concurrent composition. By analyzing various non-private algorithms through the
lens of our mechanism, we obtain private algorithms with substantially improved accuracy
guarantees for a variety of important, recently studied graph problems.

All of our algorithms apply in the stringent, local model of (edge) differential privacy
(LEDP), where each user (here, a vertex in the graph) interactively discloses information
about its data (here, its incident edges) in multiple rounds of communication with an
untrusted1 curator (or server), which produces the output. The transcript of messages sent
throughout the interaction must be differentially private.

We now describe our contributions and the main related work in more detail (see Table 1
for a summary of our results). In the following, all graphs are simple (no self-loops),
undirected, and contain n vertices. Furthermore, all mentioned additive error upper bounds
hold with high probability, i.e., 1− 1/nc, for any constant c > 0.

k-Core Decomposition. At a high level, core numbers measure the relative importance of
vertices in a graph. Formally, given a graph G, the core number (or, coreness) of a vertex v

in G is the largest kG(v) ∈ N (or k(v) if G is clear from context) for which there exists a
subgraph H of G containing v such that every vertex in H has induced degree ≥ kG(v). In
the k-core decomposition problem, the goal is to output core numbers of all vertices in G.2

1 The curator may accidentally leak their messages, e.g., due to security breaches. However, it is not
malicious. This is referred to as “honest but curious” in the literature.

2 We note that the k-core decomposition problem in the literature is sometimes used to refer to the
problem of computing a hierarchy of k-cores, which are subgraphs of G induced by vertices with core
number at least k [49]; note that it is not possible to emit such a hierarchy privately, so we (and prior
work) focus on privately emitting core numbers for every vertex.

https://www.doi.org/10.55776/Z422
https://www.doi.org/10.55776/Z422
https://www.doi.org/10.55776/I5982
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This problem has recently received much attention from the database and systems
communities due its applications in community detection [1, 28, 31], clustering and data
mining [16, 51], and other machine learning and graph analytic applications [37, 18, 19]; for a
more comprehensive survey, see [43]. Due to the rapid increase of applications using sensitive
user data, designing private algorithms for this problem is becoming increasingly important.

An algorithm is a (ϕ, ζ)-approximation for the k-core decomposition problem if, for
every vertex v in the given graph, the estimate of the core number of v, as returned by
the algorithm, lies between k(v) − ζ and ϕ · k(v) + ζ. Dhulipala et al. [20] gave the first
differentially private (2 + η, O(ε−1 log3 n))-approximation algorithm for k-core decomposition
in the ε-LEDP model, which runs in O(log n) rounds. They left it as an open question
whether their multiplicative and additive approximation factors can be improved.

Our contributions. We answer their question in the affirmative. In particular, we give
an exact (i.e., 1-approximate) algorithm and a (2 + η)-approximate algorithm, both with
O(ε−1 log n) additive error, which run in O(n) and O(log2 n) rounds, respectively.

▶ Theorem 1. For ε > 0, there is an exact, O(n)-round ε-LEDP algorithm for the k-core
decomposition problem, which has O(ε−1 log n) additive error, with high probability.

▶ Theorem 2. For ε > 0 and constant η > 0, there is a (2+η)-approximate, O(log2 n)-round
ε-LEDP algorithm for the k-core decomposition problem, which has O(ε−1 log n) additive
error, with high probability.

Furthermore, we show that the additive errors of our algorithms are tight, by proving a
matching lower bound of Ω(ε−1 log n) on the additive error of any constant-approximation
algorithm in the centralized model (EDP), where the algorithm has full access to user data
(here, the input graph). Since the centralized model is less restricted than the local model,
the same bound holds in the LEDP model, regardless of round complexity. We also show that
interactivity is needed if one wants an exact algorithm with polylogarithmic additive error,
by proving a lower bound of Ω(

√
n) on the additive error of any exact, 1-round algorithm,

when ε is a constant.

▶ Theorem 3. For ε > 0 and ϕ ≥ 1, any ϕ-approximate ε-EDP algorithm for the k-core
decomposition problem in the centralized model has Ω((εϕ)−1 log n) additive error, with
constant probability.

▶ Theorem 4. For constant ε > 0, any 1-round, exact ε-LEDP algorithm for the k-core
decomposition problem has Ω(

√
n) additive error, with constant probability.

Densest Subgraph. Another measure of importance, defined on subsets of vertices in a
graph, is density. Formally, the density of a set of vertices S in a graph G, denoted ρG(S)
(or simply ρ(S)), is the ratio of the number of edges in the subgraph induced by S and the
number of vertices in S, i.e., |E(S)|/|S|. In the densest subgraph problem, the goal is to
output a set of vertices with the maximum density in a given graph.

This problem has been studied in the (centralized) private [29, 48], LEDP [21, 20],
dynamic [13, 50], streaming [3, 12, 27, 46], and distributed [4, 53] settings; for a recent survey
on densest subgraph and its variants, see [39].

An algorithm is a (ϕ, ζ)-approximation to the densest subgraph problem if the set
of vertices S returned by the algorithm has density ρ(S) ≥ ρ∗/ϕ − ζ, where ρ∗ is the
maximum density. In the ε-LEDP setting, Dhulipala et al. [20] gave a (4 + η, O(ε−1 log3 n))-
approximation for the densest subgraph problem. More recently, and concurrently with
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this work, Dinitz et al. [21] gave a (2 + η, O((εη)−1 log2 n))-approximation algorithm, which
runs in O(log n) rounds, in the ε-LEDP setting, and as well as an (1, O(ε−1

√
log δ−1 log n))-

approximation, which runs in O(n2 log n) rounds in the (ε, δ)-LEDP setting. On the other
hand, there is a lower bound of Ω(ϕ−1

√
ε−1 log n) on the additive error of any ϕ-approximate

algorithm for densest subgraph that satisfies (ε, δ)-edge differential privacy in the centralized
model [29, 48] (when δ ≤ n−O(1)).

Our contributions. We give a condition on when a (private) (ϕ, ζ)-approximation algorithm
for k-core decomposition can be transformed into a (private) (2ϕ, ζ)-approximation algorithm
for densest subgraph. We show that our algorithms for k-core decomposition satisfy the
condition, obtaining the following improved bounds for densest subgraph.

▶ Theorem 5. For ε > 0, there is a 2-approximate, O(n)-round ε-LEDP algorithm for the
densest subgraph problem, which has O(ε−1 log n) additive error, with high probability.

▶ Theorem 6. For ε > 0 and constant η > 0, there is a (4+η)-approximate, O(log2 n)-round
ε-LEDP algorithm for the densest subgraph problem, which has O(ε−1 log n) additive error,
with high probability.

We also give a simple 1-round algorithm using the randomized response technique together
with brute-force, exponential time search. We believe this algorithm serves as an interesting
example of what a lower bound for 1-round algorithms must be able to reason about.

▶ Theorem 7. For ε > 0, there is an exact, 1-round ε-LEDP algorithm for the densest
subgraph problem, which has O((1 + ε−1)

√
n) additive error, with high probability.

Low Out-Degree Ordering. A low out-degree orientation of a (undirected) graph is an
orientation of the edges of the graph such that the out-degree of any vertex is minimized.
A low out-degree ordering is a permutation of the vertices, which implicitly encodes a low
out-degree orientation, i.e., each edge is oriented from its earlier endpoint to its later endpoint
(with respect to the permutation). In the low out-degree ordering problem, the goal is to
output a low out-degree ordering of a given graph.

Differentially private low out-degree ordering was introduced by [20] as a way to release
an implicit solution to the low out-degree orientation problem. The latter has attracted a lot
of attention in the non-private setting (see, e.g., [9, 13, 38, 53] and references therein) and
has been used to improve the running time of algorithms for matching [47, 33], coloring [34],
and subgraph counting [7, 8, 42].

The degeneracy of a graph is the maximum core number of any vertex in the graph. It
is known that degeneracy is equal to the minimum out-degree that is achievable through
any ordering. Hence, we state the out-degree obtained through our algorithms in terms of
α, the degeneracy of the input graph. An algorithm is a (ϕ, ζ)-approximation for the low
out-degree ordering problem if the algorithm’s output encodes an orientation where each
vertex has out-degree at most ≤ ϕ · α + ζ. In the ε-LEDP model, Dhulipala et al. [20] gave a
(2 + η, O(ε−1 log3 n))-approximation to the low out-degree ordering problem, which runs in
O(log n) rounds.

Our contributions. We improve the multiplicative factor and the additive error by giving
an exact algorithm and a (2+η)-approximate algorithm, both with additive error O(ε−1 log n),
which run in O(n) and O(log n) rounds, respectively.

▶ Theorem 8. For ε > 0, there is an exact, O(n)-round ε-LEDP algorithm algorithm for the
low out-degree ordering problem, which has O(ε−1 log n) additive error, with high probability.
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▶ Theorem 9. For ε > 0 and constant η > 0, there is a (2+η)-approximate, O(log2 n)-round
ε-LEDP algorithm for the low out-degree ordering problem, which has O(ε−1 log n) additive
error, with high probability.

Defective Coloring. A (vertex) coloring of a graph G is an assignment of labels (or, colors)
from the set {1, . . . , n} to the vertices of G. A coloring is (c, d)-defective if it uses at most
c different colors, and each vertex has at most d neighbors with the same color; d is the
defectiveness of the coloring. In the defective coloring problem, the goal is to output a
(c, d)-defective coloring of a given graph with small c and d.

This problem (especially the case d = 0) has been widely studied in a variety of settings
including the (centralized) private [15], dynamic [11, 34, 35, 52], distributed [30, 32, 45], and
streaming [2, 10, 6] settings. In the ε-edge differential privacy setting, [15] recently gave the
first (c, d)-defective coloring algorithm with c = O(∆/ log n+ε−1) and d = O(log n), where ∆
is the maximum degree of the input graph. They also showed that d = Ω(log n/(log c+log ∆))
defectiveness is necessary if ≤ c colors are used. Although not explicitly stated, we believe
their coloring algorithm can be also adapted to the ε-LEDP setting with the same bounds.

Our contributions. Using the approximate low out-degree ordering results and MAT,
we give new algorithms for defective coloring under LEDP. In particular, the number of
colors used by our algorithms scales with the arboricity α instead of the maximum degree.
In small-arboricity graphs, the number of colors used by our algorithm can be significantly
smaller than that of [15].

▶ Theorem 10. For ε > 0, there is an O(n)-round ε-LEDP algorithm for the defective
coloring problem that uses O(1 + αε/ log n) colors, where α is the arborocity of the input
graph, and has O(ε−1 log n)) defectiveness, with high probability.

▶ Theorem 11. For ε > 0, there is an O(log2 n)-round ε-LEDP algorithm for the defective
coloring problem that uses O(αε log n + log2 n) colors, where α is the arborocity of the input
graph, and has O(ε−1 log n)) defectiveness, with high probability.

Efficient centralized algorithms. All of the bounds in the above theorems are stated
for ε-LEDP algorithms but also are algorithms in the centralized model with the same
approximation and additive error guarantees. All of our algorithms based on MAT can be
implemented in the centralized model in near-linear time if we lose an additional multiplicative
factor of 1 + η for any given constant η > 0. This nearly matches the best running times for
sequential non-private k-core decomposition algorithms, while maintaining a near-optimal
utility for private algorithms.

Concurrent, Independent Work. The recent concurrent, independent work of Dinitz et
al. [21] provides a large set of novel results on (ε, δ)-DP, ε-LEDP, and (ε, δ)-LEDP densest
subgraph, improving on the approximation guarantees of previous results. Their work is based
on a recent result of Chekuri, Quanrud, and Torres [14] and the parallel densest subgraph
algorithm of Bahmani, Kumar, and Vassilvitskii [4]. They offer improvements in the bounds
in the central DP setting via the private selection mechanism of Liu and Talwar [41]. Note
that their techniques are different from those presented here; furthermore, any c-approximate
algorithm for densest subgraph translates to a 2c-approximate algorithm for finding the
degeneracy of the input graph (which is the value of the maximum k-core). Thus, no densest
subgraph algorithm can obtain a better than 2-approximation of the maximum k-core value.

ESA 2025
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Subsequent Work. Using the MAT framework of this work, Dinitz et al. [22] gave new
algorithms for node-differentially private bipartite matching, improving upon the results
of [36]. They also gave the first algorithms for maximum matchings in general graphs under
local edge-differential privacy, also crucially using the MAT framework. Complementing their
algorithms, they show a matching lower bound for edge-private maximum matchings. This
follow up work highlights the wide applicability of the MAT framework, giving nearly tight
algorithms for various combinatorial problems under differential privacy.

Table 1 Summary of error bounds in the local model. Each upper bound is for a mechanism
satisfying (ε, δ)-edge differential privacy and holds with high probability. An asterisk in the citation
indicates that an algorithm is (ε, δ)-LEDP instead of ε-LEDP. Lower bounds are for ε-differential
privacy and hold with constant probability.

Problem Apx. Factor Additive Error Rounds Citation

Core
Decomposition

1 O(ε−1 log n) O(n) Theorem 1
1 Ω(

√
n) (constant ε) 1 Theorem 4

2 + η O(ε−1 log n) O(log2 n) Theorem 2
2 + η O(ε−1 log3 n) O(log n) [20]

ϕ Ω((εϕ)−1 log n) any Theorem 3

Densest
Subgraph

1 O(ε−1
√

log(δ−1) log n) O(n2 log n) [21]∗
1 O((1 + ε−1)

√
n) 1 Theorem 7

ϕ Ω(ϕ−1
√

ε−1 log n) any [29, 48]
2 O(ε−1 log n) O(n) Theorem 5

2 + η O(ε−1η−1 log2 n) O(η−1 log n) [21]
4 + η O(ε−1 log3 n) O(log n) [20]
4 + η O(ε−1 log n) O(log2 n) Theorem 6

Low
Out-degree
Ordering

1 O(ε−1 log n) O(n) Theorem 8
2 + η O(ε−1 log n) O(log2 n) Theorem 9
2 + η O(ε−1 log3 n) O(log n) [20]

# Colors Defectiveness

Defective
Coloring

O(1 + εα/ log n) O(ε−1 log n) O(n) Theorem 10
O(εα log n + log2 n) O(ε−1 log n) O(log2 n) Theorem 11
O(ε−1 + ∆/ log n) O(log n) 2 [15]

c Ω( log(n)
log c+log ∆ ) any [15]

2 Technical Overview

MAT. Our new Multidimensional AboveThreshold (MAT) mechanism generalizes the
AboveThreshold mechanism [24] to support a d-dimensional vector of queries. Conceptually,
one may think of MAT as running d copies of AboveThreshold in parallel, one per dimension.
More precisely, suppose that the input dataset for (single-dimensional) AboveThreshold was
from some domain X , then the input for our mechanism is X = (x1, . . . , xd) ∈ X d, a d-tuple
of elements from X . Our mechanism takes as input an adaptively chosen sequence f⃗1, f⃗2, . . .

of query vectors and a threshold vector T⃗ = (T1, . . . , Td). Each query vector specifies d queries,
one for each dimension of the dataset, i.e., f⃗i = (fi,1, . . . , fi,d) and query fi,j : X → R is on
element xj . The goal is to (privately) return, after each query vector f⃗i, a response vector
a⃗i ∈ {⊥,⊤}d indicating whether each query fi,j in the vector has crossed corresponding
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threshold Tj , i.e., a⃗i = (ai,1, . . . , ai,d) and ai,j indicates whether fi,j(xj) ≥ Tj (⊥ for “no”,
⊤ for “yes”). After some query fi,j has crossed its threshold, then all future queries fi′,j ,
for i′ > i, on element xj are ignored (e.g., the response is always ⊥). It is assumed that
new query vectors are submitted until each element has had a query that has crossed its
corresponding threshold. In a nutshell, MAT allows one to infer, for each element xj , an
estimate r̃(j) of the index r(j) of the first query fr(j),j on xj that crosses the threshold Tj .

Sensitivity condition. We define a fairly technical condition on the sensitivity of the queries,
generalizing the ℓ1 sensitivity in the 1-dimensional case, such that the error of MAT can
be bounded in terms of the sensitivity. For intuition, we first describe a simple case of our
sensitivity condition.

Suppose that two datasets X = (x1, . . . , xd) and X ′ = (x′
1, . . . , x′

d) are neighboring only
if they differ on at most k ≪ d coordinates, i.e., there exists a set S ⊆ [d] of at most k indices
such that xi = x′

i for all i /∈ S and xi ∼ x′
i for all i ∈ S. Furthermore, suppose that the

absolute difference of each query (on the appropriate element in X and X ′) is bounded by 1,
i.e., for any query vector f⃗ = (f1, . . . , fd), each query fj satisfies |fj(xj)− fj(x′

j)| ≤ 1. Since
MAT runs d copies of AboveThreshold in parallel and the queries are adaptive, applying
concurrent composition [54] in this case would predict that the privacy loss is proportional
to d. However, by coupling the outputs of the queries on the indices not in S (where X and
X ′ are identical), it seems fairly intuitive that the actual privacy loss should be proportional
to k. Hence, as the error of AboveThreshold is inversely proportional to the privacy loss
parameter, to obtain ε-differential privacy, we should have at most k ≪ d times the original
error of AboveThreshold in this setting, i.e., O(kε−1 log n) with high probability.

More generally, for an arbitrary neighboring relation and arbitrary queries, roughly
speaking, we define the sensitivity D as the worst-case (over pairs of neighboring datasets
X and X ′) sum of the maximum absolute difference in the outputs of the queries (on X

and X ′); see Section 4 for a formal definition. In particular, for the simple case described
above, D = k. Using this definition, we formalize the above intuition and prove that MAT
guarantees an error of O(Dε−1 log n) in our applications, with high probability.

Applications of MAT. We apply MAT to get new private algorithms for the k-core decom-
position, densest subgraph, low out-degree ordering, and defective coloring problems. In each
case, given a graph G = (V, E) with n vertices, we show that some non-private algorithm
can be simulated via MAT, for suitable definitions of “dataset” and “queries”.

As a simple example, for the core decomposition problem, a dataset X = (xu : u ∈ V ) is
an n-tuple containing the set of neighbors xu of each vertex u in G. (Hence, the domain X
is the set of all subsets of V .) A query fS : X → R counts the number of neighbors of the
vertex that are not among some fixed set of vertices S ⊆ V , shifted by some fixed amount
i, and “mirrored” by n, i.e., fS(x) = n− (|x \ S| − i). (Notice that fS(xu) ≥ n means that
vertex u has at most i neighbors that are not among S.) In this case, the absolute difference
of each query on two neighboring datasets (i.e., graphs that differ by at most an edge) is at
most 1 and there are at most two elements that differ for two neighboring datasets (namely,
at the endpoints of the differing edge). Hence, the simple case mentioned above applies and
MAT guarantees an error of O(ε−1 log n), with high probability.

For core decomposition, we apply MAT to analyze a variant of the classic peeling algorithm
of Matula and Beck [44], which iteratively peels (removes) the lowest degree vertex in the
graph. In our variant of the classical algorithm, we view the algorithm as running n iterations
of a peeling process. In the ith iteration, the algorithm repeatedly peels all vertices with
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(induced) degree less than i until none are left. It is known that, at the end of the ith iteration,
a vertex is alive (has not been peeled) if and only if it is in the i-core. It can be shown that the
peeling process can be simulated by MAT via the queries mentioned above. Hence, with some
post-processing, we can obtain core numbers with no multiplicative factor and the optimal
(up to a constant factor against our lower bound) additive error of O(ε−1 log n), with high
probability. Similarly, we apply MAT to analyze the more round-efficient (2+η)-approximate
core decomposition algorithm of [20], obtaining optimal error, with high probability.

Using our new core decomposition algorithms, we achieve improved additive error bounds
for both the densest subgraph and low out-degree ordering problems. In particular, we show
that the 2-approximate densest subgraph with additive error O(ε−1 log n) is contained in the
subgraph consisting of all vertices with the maximum estimated core numbers (as we run the
peeling algorithm, it can be shown that these vertices necessarily induce a subgraph with
sufficiently high minimum degree). Furthermore, all of our core decomposition algorithms
directly return a low out-degree ordering with the same multiplicative and additive errors as
the original core decomposition algorithms by taking the order in which the nodes are peeled.

We also apply MAT to defective coloring by using MAT to greedily pick colors for each
vertex from the available colors that have not yet been occupied by too many neighbors.
In particular, each dimension represents a vertex and color pair consisting of all vertices in
the graph and all available colors. For dimension j representing pair (v, c), the queries ask
whether the number of neighbors of v colored with c exceeded our defectiveness threshold
O(ε−1 log n). If it has, we will remove c from v’s available set of colors. Our low round
coloring algorithm follows a similar structure, and is inspired by the non-private algorithm
of [34] and uses our low out-degree ordering algorithm to implement a separate set of available
colors for each of O(log2 n) groups of vertices of similar core numbers.

Local lower bound. Our lower bound for 1-round, exact core decomposition in the local
model is obtained by reduction to a problem in the centralized model, for which there is a
strong lower bound. Specifically, it is known that, to privately answer Θ(n) random inner
product queries on a secret {0, 1}n vector, most responses need to have Ω(

√
n) additive

error [17]. Recently, [26] gave an elegant lower bound on the additive error of 1-round triangle
counting algorithms in the local model using similar techniques.

In our case, we define a class of “query graphs”, one per inner product query, in which
the core number of a fixed vertex x is (roughly) the answer to the query. In addition to x,
there are some secret vertices (and other vertices). For each secret vertex v, the existence
of the edge {v, x} is private information (which depends on the secret vector). Crucially,
all neighborhoods of x and the secret vertices in any possible query graph appear in two
specific query graphs, namely, ones corresponding to the all-ones and all-zeros query vectors,
respectively. The neighborhoods of the remaining vertices do not depend on the secret vector.

Our approach to solving the inner product problem is now as follows. The centralized
algorithm first simulates the 1-round local core decomposition algorithm on the two fixed
graphs to determine the messages that x and the secret vertices would send in any query
graph and saves these messages. Subsequently, when answering a query, the centralized
algorithm reuses the saved messages for x and the secret vertices (without further privacy
loss) when it simulates the core decomposition algorithm on the corresponding query graph.
This allows it to answer many queries correctly.

Originally, we had a more complex, direct argument. We briefly mention it here to give
an idea of what is going on “under the hood” of the reduction. Specifically, we showed that,
on a class of random graphs (similar to the query graphs instantiated in our reduction), most
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transcripts of a 1-round core decomposition algorithm have the property that, conditioned on
seeing the transcript, the coreness of some (fixed) vertex still has high variance, Ω(n). This
implies that the standard deviation of the additive error is Ω(

√
n). We prefer the reduction

argument, as it is simpler and gives a stronger result.

One-round algorithm for densest subgraph. In our single-round exact densest subgraph
algorithm, the vertices send the server a noisy version of the incidence matrix of the graph by
using randomized response. In particular, each vertex sends its row of the incidence matrix
and, for each bit, it sends the actual bit with probability p = eε/1 + eε; the flipped bit is
sent with probability 1− p. Using this, the server can create an unbiased estimator Ẽ(S)
for the number of edges E(S) inside any fixed subset of vertices S. The key observation is
that the standard deviation σ of the estimated density, i.e., Ẽ(S)/|S|, is O(1 + ε−1) and
the estimated density is distributed binomially. Hence, by a Chernoff bound, the estimated
density is Ω(

√
log t) standard deviations away from the actual density with probability at

most 1/t. By taking a union bound over all S, we can upper bound the total error over all
(exponentially many) subsets by α = O(σ

√
n) with high probability. Hence, a brute-force,

exponential-time search, which computes the maximum Ẽ(S)/|S| over all subsets S, finds a
subset whose density is at most α from the maximum density, with high probability. The
union bound appears to be necessary, but it is conceivable that there are more clever search
strategies that do not require looking at exponentially many subsets S.

3 Differential Privacy Background

We give some basic definitions and background on differential privacy in this section, see [25]
for more details. Since we will only be working with graphs, we will state these results in
terms of edge differential privacy for graph algorithms; we will also use the terms differential
privacy and edge differential privacy interchangeably. Edge-neighboring graphs is a well-
studied model for differential privacy (see e.g. [40] for a survey of such results) and protects
the privacy of edges with highly sensitive information like disease transmission graphs.

▶ Definition 12. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are edge-neighboring, denoted
by G1 ∼ G2, if V1 = V2 and |E1⊕E2| = 1 (i.e., they have the same vertex set and they differ
by exactly one edge).

▶ Definition 13. We use G to denote the set of undirected graphs. An algorithm M : G → Y
is (ε, δ)-edge differentially private ((ε, δ)-edge dp) if for all edge-neighboring graphs G ∼ G′

and every S ⊆ Y, we have

Pr[M(G) ∈ S] ≤ exp(ε) · Pr[M(G′) ∈ S] + δ.

If δ = 0, we say M is ε-edge differentially private (ε-edge DP). When M is defined over N
or R instead, it is called ε-differentially private (ε-DP).

Next, we define two important properties of DP: composition and post-processing.

▶ Lemma 14. Let M1 : G → Y1 and M2 : G → Y2 be ε1- and ε2-edge differentially private
mechanisms, respectively. ThenM : G → Y1×Y2 defined byM = (M1,M2) is (ε1 +ε2)-edge
differentially private.

▶ Lemma 15. Let M : G → Y be an ε-edge differentially private mechanism. and f : Y → Z
be an arbitrary randomized mapping. Then f ◦M : G → Z is ε-edge differentially private.
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The ℓ1-sensitivity of a function f : G → Rd, denoted ∆1(f), is the supremum of the
quantity ∥f(x) − f(x′)∥1 =

∑d
i=1 |f(x)i − f(x′)i|, over all neighboring G, G′ ∈ G. The

Laplace distribution (centered at 0) with scale b > 0 has probability density function
f(x) = 1

2b exp(−|x|/b). We write X ∼ Lap(b) or just Lap(b) to denote a random variable X

that is distributed according to the Laplace distribution with scale b.

▶ Fact 3.1. If random variable X ∼ Lap(b), then, for any β > 0, Pr[|X| > b log(1/β)] ≤ β.

▶ Fact 3.2 (Theorem 3.6 in [25]). Let f : G → Rd be any function, let ϵ > 0, and let, for
each i ∈ [d], Xi ∼ Lap(∆1(f)/ϵ). Then the Laplace mechanism A(x) = f(x) + (X1, . . . , Xd)
is ϵ-differentially private.

3.1 Local Edge Differential Privacy (LEDP)
The local model of differential privacy studies the setting where all private information is
kept private by the individual parties, i.e. there exists no trusted curator. For graphs, the
local model is called local edge differential privacy [20]. We now define this formally.

▶ Definition 16. Let G be a graph. An ε-local randomizer R : a→ Y for vertex v is an
ε-edge differentially private algorithm that takes as input the set of its neighbors N(v) in G,
represented by an adjacency list a = (b1, . . . , b|N(v)|).

Note that the information released via local randomizers is public to all nodes and the
curator. The curator performs some computation on the released information and makes the
result public via sending a message to all vertices. The overall computation is formalized via
the notion of the transcript.

▶ Definition 17. Let G be a graph. A transcript π is a vector consisting of 4-tuples
(St

U , St
R, St

ε, St
Y ) – encoding the set of vertices chosen, the set of local randomizers assigned,

the set of privacy parameters of the randomizers, and the set of randomized outputs produced
– for each round t. Let Sπ be the collection of all transcripts and SR be the collection of all
randomizers. Let STOP denote a special character indicating that the local randomizer’s
computation halts. A protocol is an algorithm A : Sπ → (2[n]×2SR×2R≥0×2R≥0) ∪{STOP}
mapping transcripts to sets of vertices, randomizers, and randomizer privacy parameters. The
length of the transcript, as indexed by t, is its round complexity. Given ε > 0, a randomized
protocol A on graph G is ε-local edge differentially private if the algorithm that outputs the
entire transcript generated by A is ε-edge differentially private on graph G.

The definition is difficult to parse, but it naturally corresponds to the intuition of vertices
with private information communicating with an untrusted curator (represented by the
protocol) so that the curator can compute some output that depends on the private data
of the vertices (see also the discussion in [21]). At the beginning, the curator only knows
the vertex set V and each vertex knows its incident edges, i.e., its neighborhood. In each
round, a chosen subset of the vertices performs some computation using local randomizers
on (a) their local edge information, (b) the outputs from previous rounds, and (c) the public
information, so basically the whole transcript so far. The vertices then output a message
which can be seen by all other vertices and the curator. The released information of each
vertex is ε-dp since it computed based on the output of its local randomizer. In each round
the curator can choose whom to query, what local randomizer they use, and what privacy
parameters the randomizer uses. Since the curator’s choice only depends on the transcripts
from the previous rounds, this is exactly the definition of a protocol in the above definition.
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Algorithm 1 Multidimensional AboveThreshold (MAT).

1 Input: Private graph G, adaptive queries {f⃗1, . . . , f⃗n}, threshold vector T⃗ , privacy ε,
sensitivity D.

2 Output: A sequence of responses {a⃗1, . . . , a⃗n} where ai,j indicates if fi,j(G) ≥ T⃗j

1: for j = 1, . . . , d do
2: T̂j ← T⃗j + Lap(2D/ε)
3: end for
4:
5: for each query f⃗i ∈ {f⃗1, . . . , f⃗n} do
6: for j = 1, . . . , d do
7: Let νi,j ← Lap(4D/ε)
8: if fi,j(G) + νi,j ≥ T̂j then
9: Output ai,j = ⊤

10: Stop answering queries for coordinate j

11: else
12: Output ai,j = ⊥
13: end if
14: end for
15: end for

We end the discussion with a short remark on stateless/stateful vertices. As defined
above, a local randomizer is only allowed to look at the past (public) transcript and its
(private) neighborhood list to compute its output for the current round. This formal definition
disallows the use of private states that persist across rounds in the local memory of a vertex.
Private stateful behaviour is nonetheless crucial for implementing MAT locally, since we
require each vertex to store its noisy threshold privately. This is not a problem, since one can
implement a protocol as in [5, Lemma 8] to simulate private states using local randomizers.

4 Generalized Sparse Vector Technique

We introduce a simple, novel multidimensional generalization of the AboveThreshold mech-
anism, which is the basis of the algorithms in this paper. In the standard AboveThreshold
mechanism from Section 3.6 in [25], we are given as input a threshold T and an adaptive
stream of sensitivity 1 queries f1, f2, . . ., and the goal is to output the first query which
exceeds the threshold. In the multidimensional version, we have a d-dimensional vector of
thresholds T⃗ = (T1, . . . , Td) and an adaptive stream of ℓ1-sensitivity D vector-valued queries
f⃗1, f⃗2, . . .. The goal is to output, for each coordinate j ∈ [d], the first query ij for which the
jth coordinate exceeds the threshold Tj . The pseudo-code is given in Algorithm 1.

Here D is defined as the sensitivity for all dimensions, i.e., for edge-neighboring G ∼ G′,

D := max
G∼G′

 ∑
j∈[d]

(
max
i∈[Ij ]

(|fi,j(G)− fi,j(G′)|)
) , (1)

where Ij is the number of queries in dimension j.

▶ Theorem 18. Algorithm 1 is ε-differentially private.
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Proof. Fix G ∼ G′ to be arbitrary edge-neighboring graphs. Let A(G) and A(G′) denote the
random variable representing the output of Algorithm 1 when run on G and G′, respectively.
For each coordinate j ∈ [d], there is some r(j) ∈ {1, . . . , n + 1} such that the output satisfies
a·j ∈ {⊤,⊥}r(j) and has the form that for all i < r(j), ai,j = ⊥. We can assume without
loss of generality that ar(j),j = ⊤; if r(j) < n + 1, this must be the case and if r(j) = n + 1,
we can simply ask an additional query which evaluates to ∞, independent of the dataset.
Our goal is to show that for any output a, we have

Pr[A(G) = a] ≤ exp(ε) · Pr[A(G′) = a].

Observe that there are two sources of randomness in the algorithm: the noisy thresholds
T̂j for each j ∈ [d] and the perturbations of the queries νi,j for each j ∈ [d], i ∈ [r(j)]. We
fix the random variables νi,j for each j ∈ [d] and i < r(j) by simply conditioning on their
randomness; for neighboring graphs, we have a coupling between corresponding variables.
For simplicity, we omit this from notation. The remaining random variables are T̂j and νr(j),j

for each j ∈ [d]; we will be taking probabilities over their randomness. The main observation
needed is that the output of A is uniquely determined by the values of r(j) for each j ∈ [d].
Thus, we can define the (deterministic, due to conditioning on the probabilities) quantity

gj(G) := max{fi,j(G) + νi,j : i < r(j)}

for each j ∈ [d] so that the event that A(G) = a is equivalent to the event where

T̂j > gj(G) and fr(j),j(G) + νr(j),j ≥ T̂j for each j ∈ [d]. (2)

Let p(·) and q(·) denote the density functions of the random vectors consisting of T̂ (j) and
νr(j),j for each j ∈ [d]. Thus,

Pr[A(G) = a] = Pr[T̂j ∈ (fr(j),j(G) + νr(j),j , gj(G)) ∀j ∈ [d]]

Using v′
j to denote the value of νr(j),j and t′

j to denote the value of T̂j ,

Pr[A(G) = a] =
∫
Rd

∫
Rd

p(t⃗′)q(v⃗′) · 1{t′
j ∈ (fr(j),j(G) + v′

j , gj(G)) ∀j ∈ [d]} dv⃗′ dt⃗′ (3)

Now, we make a change of variables from v⃗′ to v⃗ and t⃗′ to t⃗, with the change given by

v′
j = vj + gj(G)− gj(G′) + fr(j),j(G′)− fr(j),j(G)

t′
j = tj + gj(G)− gj(G′)

for each j ∈ [d]. We have that dt⃗′
j = dt⃗j , and dv⃗′

j = dv⃗j since the new variables differ from
the old ones by a constant that is independent of v⃗ and t⃗. The term inside the indicator
function in the integral now becomes

tj +gj(G)−gj(G′) ∈ (fr(j),j(G)+vj +gj(G)−gj(G′)+fr(j),j(G′)−fr(j),j(G), gj(G))∀j ∈ [d]

which on subtracting gj(G)− gj(G′) gives

tj ∈ (fr(j),j(G′) + vj , gj(G′))∀j ∈ [d]

Thus, we can apply the change of variables to rewrite (3) as∫
Rd

∫
Rd

p(t⃗′)q(v⃗′)1{tj ∈ (fr(j),j(G′) + vj , gj(G′)) ∀j ∈ [d]} dv⃗ dt⃗.



L. Dhulipala, M. Henzinger, G. Z. Li, Q. C. Liu, A. R. Sricharan, and L. Zhu 91:13

Since we have conditioned on the randomness of νi,j for each j ∈ [d] and i < r(j), we
have ∥v⃗′ − v⃗∥1 ≤ 2D and ∥t⃗′ − t⃗∥1 ≤ D since the vectors fi·(G) have sensitivity D, implying
that the vectors g·(G) also have sensitivity D. This implies that p(⃗t′) ≤ exp(ε/2) · p(⃗t) and
q(v⃗′) ≤ exp(ε/2) · q(v⃗) by the properties of the Laplace distribution. We can thus upper
bound the above integral by

exp(ε) ·
∫
Rd

∫
Rd

p(⃗t)q(v⃗)1{tj ∈ (fr(j),j(G′) + vj , gj(G′)) ∀j ∈ [d]} dv⃗ dt⃗

Rewriting the integral as the probability of an event, we get

exp(ε) · Pr[T̂j ∈ (fr(j),j(G′) + νr(j),j , gj(G′)) ∀j ∈ [d]].

Finally, by our observation in (2), this is equal to

exp(ε) · Pr[A(G′) = a].

Putting the inequalities together, we get

Pr[A(G) = a] ≤ exp(ε) · Pr[A(G′) = a].

Since G, G′ were arbitrary edge-neighboring graphs, this completes the proof. ◀

4.1 LEDP Multidimensional AboveThreshold (MAT) Mechanism
In our algorithms, we apply the multidimensional AboveThreshold mechanism in the special
case where the queries f⃗i have d = n coordinates, and each coordinate of the query corresponds
to a node u in the graph G and only depends on the edges e = (u, v) for v ∈ V − {u}. In
other words, we have an instance of the AboveThreshold on each node u ∈ V , where the
data used for the AboveThreshold instance is only the local (edge) data of u. We will show
that in this setting, the multidimensional AboveThreshold mechanism can be implemented
locally to satisfy local edge-differential privacy.

For clarity of notation, we index the coordinates of the queries and threshold vector by
nodes v ∈ V instead of indices j ∈ [n]. That is, each query consists of f⃗i,v for v ∈ V and
the threshold vector consists of T⃗v for v ∈ V . We will now present the changes needed for
the local implementation. In Lines 1–3, let each node u ∈ V compute and store its noisy
threshold T̂u using the public threshold T⃗u. Then for each query f⃗i in lines 5–15, each node
u ∈ V can sample its own noise νi,u and check the condition fi,u(G) + νi,u ≥ T̂u. The
pseudocode is given in Algorithm 2, where actions performed by node v in the algorithm
are performed their corresponding local randomizers, and we now show that this is locally
edge-differentially private.

▶ Theorem 19. Algorithm 2 is ε-locally edge differentially private.

Proof. First, we need to show that the local randomizers are in fact edge-differentially
private. This can be seen because each randomizers’ output is a subset of the output of
Algorithm 1 and it is only computed based on the incident edges of each vertex. In other
words, the output is a post-processing of Algorithm 1, so the privacy guarantees follow from
Theorem 18 and Lemma 15. Next, we argue that the transcript is also ε-edge differentially
private. Recall that the transcript consists of the set of vertices chosen, the set of local
randomizers assigned, the set of privacy parameters assigned, and the set of outputs. In the
algorithm, the set of vertices chosen, the set of local randomizers assigned, and the set of
privacy parameters assigned are all functions of the outputs from the previous rounds and
the public information. Thus, it suffices to prove that the outputs are differentially private
by post-processing (Lemma 15). But this was proven in Theorem 18, so we are done. ◀
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Algorithm 2 Local Multidimensional AboveThreshold.

1 Input: Private graph G, adaptive queries {f⃗i}, threshold vector T⃗ , privacy ε,
sensitivity D.

2 Output: A sequence of responses {a⃗i} where ai,j indicates if fi,j(G) ≥ T⃗j

1: for v ∈ V do
2: Node v computes T̂v ← T⃗v + Lap(2D/ε) and stores it
3: end for
4:
5: for each query f⃗i do
6: for v ∈ V do
7: Node v samples νi,v ← Lap(4D/ε)
8: if fi,v(G) + νi,v ≥ T̂v then
9: Node v outputs ai,j = ⊤

10: Node v outputs STOP, and stops answering queries
11: else
12: Node v outputs ai,v = ⊥
13: end if
14: end for
15: end for

5 LEDP k-Core Decomposition

In this section, we present one application of MAT by giving an improved algorithm for
differentially private k-core decomposition. We first present a variant of the classical (non-
private) algorithm for k-core decomposition in Section 5.1, and then show how to make it
private in Section 5.2. We defer our other proofs to the full version.

5.1 A Variation of the Classical Algorithm
The classical peeling algorithm begins with the full vertex set V , which is the 0-core of the
graph. Given the (k − 1)-core, the algorithm computes the k-core via an iterative peeling
process: the algorithm repeatedly removes all nodes v for which the induced degree is less
than k, and labels the nodes which remain as being part of the k-core. Running this for k

from 1 up to n gives the full algorithm, the pseudocode of which is given in Algorithm 3.

▶ Theorem 20. For all v ∈ V , the output k̂(v) given by Algorithm 3 is the core number of v.

Proof. We will inductively show that the algorithm recovers the k-core of the graph. The
base case of k = 0 is easy. Now, assume that the algorithm finds the true (k − 1)-core. Let
V (k) denote the subset of nodes which aren’t removed in the iterative process for k − 1 in
Line 2. We have that each node v ∈ V (k) has induced degree at least k in V (k), or else
it would have been removed. Thus, we know that the core numbers k(v) is at least k for
each v ∈ V (k), so we have that V (k) is a subset of the true k-core. Now, let K denote the
true k-core. Since the k-core is always a subset of the (k − 1)-core by definition, each node
v ∈ K is in Vt at the beginning of the iterations. Furthermore, we know that v ∈ K is never
removed from Vt since the induced degree is always at least k since K ⊆ Vt. Thus, we have
that V (k) is a superset of the true k-core as well. Thus, V (k) is the true k-core for each k,
so all nodes are labelled correctly. ◀
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Algorithm 3 Threshold-Based k-core Decomposition Algorithm.

1 Input: Graph G = (V, E).
2 Output: k-core value of each node v ∈ V

1: Initialize V0 ← V , t← 0, k̂(v)← 0 for all v ∈ V

2: for k = 1, . . . , n do
3: repeat
4: t← t + 1, Vt ← Vt−1
5: for v ∈ Vt−1 do
6: if dVt−1(v) < k then
7: Vt ← Vt − {v}
8: end if
9: end for

10: until Vt−1 − Vt = ∅
11:
12: Update the core numbers k̂(v)← k for all nodes v ∈ Vt

13: end for

5.2 Private Implementation of the Algorithm
It is difficult to turn the classical algorithm into a differentially private one because it has
Ω(n) iterations, which causes us to incur Ω̃(n) additive error when using basic composition
(Lemma 14). In fact, this was cited in [20] as the motivation for basing their algorithms
on parallel/distributed algorithms for k-core decomposition, since those algorithms often
have poly log(n) round-complexity. Our main observation is that the private version of
Algorithm 3 can be analyzed as a special case of the Multidimensional AboveThreshold
mechanism, so it doesn’t need to incur the Ω(n) additive error due to composition.

▶ Theorem 21. Algorithm 4 is ε-edge differentially private.

Proof. We will show that Algorithm 4 is an instance of the multidimensional AboveThreshold
mechanism, implying that it is ε-edge differentially private. Specifically, we will show that its
output can be obtained by post-processing the output of an instance of Algorithm 1. Indeed,
consider the instance of the multidimensional AboveThreshold mechanism where the input
graph is G, the privacy parameter is ε, and the threshold vector T⃗ = 0⃗ is the zero vector.
We will now inductively (and adaptively) define the queries.

For each iteration t, the tth query consists of the vector of k − dVt−1(v) for each v ∈ V ,
where V0 = V as in the algorithm; note that this matches with the queries on Line 2 of
the algorithm. First, observe that the sensitivity of the vector queries of k − dVt−1(v) for
each v ∈ V is D = 2 since one edge change will only affect two coordinates of the query
(each by 1), as needed in the privacy analysis. Next, observe that we can construct Vt from
Vt−1 using only the outputs at(v) of the queries at the current iteration: given v ∈ Vt−1, we
include v in Vt as well if and only if at(v) = ⊥, which is equivalent to the condition in Line 2
of dVt−1(v) + νt,v ≤ k + ℓ̃(v)3. Thus, this is a feasible sequence of adaptive queries for the
AboveThreshold mechanism.

3 Here, we implicitly assume that the randomness used by the algorithm and the AboveThreshold
mechanism are the same. This is justified by a coupling of the random variables in the two algorithms.
Specifically, we couple the noise added in Line 4 of the algorithm with the noise added in Line 2 of the
AboveThreshold mechanism and couple the noise νt,v with νi,j in the AboveThreshold mechanism. It
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Algorithm 4 ε-Differentially Private k-Core Decomposition.

1 Input: Graph G = (V, E), privacy parameter ε > 0.
2 Output: An (1, 120 log(n)/ε)-approximate k-core value of each node v ∈ V

1: V0 ← V , t← 0, k = 60 log n/ε.
2: Initialize k̂(v)← 0 for all v ∈ V

3: for v ∈ V do
4: ℓ̃(v)← Lap(4/ε)
5: end for
6:
7: while k ≤ n do
8: repeat
9: t← t + 1, Vt ← Vt−1

10: for v ∈ Vt−1 do
11: νt,v ← Lap(8/ε)
12: if dVt−1(v) + νt,v ≤ k + ℓ̃(v) then
13: Vt ← Vt − {v}
14: end if
15: end for
16: until Vt−1 − Vt = ∅
17:
18: Update the core numbers k̂(v)← k for all nodes v ∈ Vt

19: k ← k + 60 log n/ε

20: end while

Since the sequence of subsets {Vt} are obtained by post-processing the outputs at(v)
of the AboveThreshold mechanism, they are ε-differentially private by Theorem 18 and
Lemma 15. By applying post-processing again, the sequence of pairs (Vt, kt) for each iteration
t is also ε-differentially private since the sequence kt is public. Given the pairs (Vt, kt) for
each iteration t, we can now recover the approximate core numbers which the algorithm
outputs by setting the core numbers as k̂(v) = kt for each node in Vt − Vt−1. It is easily
verified that this gives the exact same output as Algorithm 4, so we have ε-differential privacy
for the algorithm by applying post-processing (Lemma 15) once again. ◀

▶ Theorem 22. Algorithm 4 outputs (1, 120 log n
ε )-approximate core numbers k̂(v) with prob-

ability 1−O( 1
n2 ).

Proof. By the density function of the Laplace distribution, we know that we have |νt,u| ≤
40 log n

ε and |ℓ̃(u)| ≤ 20 log n
ε each with probability ≥ 1− 1

n5 . Since there are at most O(n3)
such random variables, taking a union bound over all nodes u ∈ V and all iterations of the
loops gives the above guarantee with probability ≥ 1−O

( 1
n2

)
. We condition on the event

that the above inequalities hold true for all t ∈ [T ] and u ∈ V for the remainder of the proof.
Fix an arbitrary iteration k of the while loop starting on Line 7. Let H be the set of

nodes remaining in Vt at the end of the while loop in Lines 8–16. We claim that (i) all nodes
u ∈ H have core number at least k − 60 log n

ε and (ii) all nodes u ̸∈ H have core number at
most k + 60 log n

ε . To see (i), consider the subgraph H; we claim that each node u ∈ H has

is easy to see that for ∆ = 2, the random variables are exactly the same so the privacy guarantees of
multidimensional AboveThreshold translates to privacy guarantees for our algorithm.
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induced degree at least k− 60 log n
ε in H. Indeed, since each node in H was not removed in the

final iteration of the while loop in Lines 8–16, we have that dHt
(u) + νt,u ≥ k + ℓ̃(u) for each

u ∈ H. But since we have assumed |νt,u| ≤ 40 log n
ε and |ℓ̃(u)| ≤ 20 log n

ε , our desired bounds
follow directly by the triangle inequality. To see (ii), let’s suppose for contradiction that
the k-core value of u is k(u) > ℓ + 60 log n

ε′ . Then there exists a subgraph u ∈ K ⊆ V where
the induced degree of each node v ∈ K is dK(v) ≥ k(u). But for such a subgraph K, the
condition in Line 12 will always be true (again, because |νt,u| ≤ 40 log n

ε and |ℓ̃(u)| ≤ 20 log n
ε )

so K ⊆ H. But since u ∈ K, this contradicts the fact that u ̸∈ H.
Using the above bounds, we can now prove our desired results. First, consider an arbitrary

node u ∈ V labeled k̂(u) within the while loop in Lines 7–20 and not relabeled later. Since u

was labeled k̂(u) in the current iteration, we have that k(u) ≥ k̂(u)− 60 log n
ε′ . Since u was not

relabelled in the next iteration where the threshold was k = k̂(u) + 60 log n
ε , the node u was

removed from Vt at that iteration. Consequently, we have k(u) ≤ k + 60 log n
ε = k̂(u)+ 120 log n

ε

by what we just proved above. Since the output of our algorithm is k̂(u), the desired bounds
follow directly. Now, let’s consider an arbitrary node u ∈ V labeled 0 at Line 2 at the
beginning of the algorithm and not relabeled later. Since the node u was not relabelled at
the first iteration where k = 60 log n

ε , it was removed from Vt at that iteration, implying that
k(u) ≤ 120 log n

ε . Hence, we have the desired approximation guarantees for all nodes. ◀
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