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Abstract
We consider incremental maximization problems, where the solution has to be built up gradually by
adding elements one after the other. In every step, the incremental solution must be competitive,
compared against the optimum solution of the current cardinality. We prove that a competitive
solution always exists when the objective function is monotone and β-accountable, by providing a
scaling algorithm that guarantees a constant competitive ratio. This generalizes known results and,
importantly, yields the first competitive algorithm for the natural class of monotone and subadditive
objective functions.
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1 Introduction

Large infrastructure projects are typically implemented sequentially over longer periods of
time. In such settings, it makes sense to prioritize completion of parts of the project that
already yield some benefit on their own. This raises the general question of how to compute
incremental solutions with a good partial benefit throughout the course of the project. We
model such settings mathematically by using the abstract framework of the incremental
maximization (IncMax) problem.

In the IncMax problem, we are given a countable set of elements U , along with an
objective function f : 2U → R≥0. We generally require f to be monotone, i.e., that f(A) ≤
f(B) for all A ⊆ B ⊆ U . An incremental solution π is a permutation (e1, e2, . . . ) of the
elements in U that specifies the order in which the elements are to be included in the solution.
The solution after step C ∈ N is then given by π(C) := {e1, . . . , eC}, and we denote the
optimum solution value of cardinality C by

Opt(C) := sup{f(A) | A ⊆ U, |A| = C}.

We say that the incremental solution π is ρ-competitive if Opt(C) ≤ ρ · π(C) for all C ∈ N.
The competitive ratio of π is ρ(π) := inf{ρ ≥ 1 | π is ρ-competitive}, the competitive ratio of
a problem instance given by U and f is ρ(U, f) := infπ ρ(π), and the competitive ratio of a
set of instances C is ρ(C) := sup{ρ(U, f) | (U, f) ∈ C}.

Clearly, we cannot hope for good incremental solutions in full generality: For example, if
f(E) is given by the value of a maximum flow using an edge set E in some underlying graph
that consists of a short path of low capacity and a long path of high capacity, then we have
to decide whether to invest in the short path to obtain some value early, or in the long path
to achieve a high value as quickly as possible, but cannot ensure both simultaneously. More
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generally, we must demand that the objective function has some form of a diminishing-returns
property that requires the value of solutions to be explainable by the value of their parts,
i.e., value cannot suddenly emerge upon completion of certain structures (such as paths in
the flow example).

Diminishing returns are typically captured by submodular objective functions, i.e., func-
tions f : 2U → R≥0 with f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for all A, B ⊆ U . In a classical
result, Nemhauser et al. [25] showed that the obvious greedy algorithm, that adds to the
current solution S the element e of largest marginal value f(S ∪ {e}) − f(S) in each step,
produces a e

e−1 -competitive solution for submodular objectives. The most natural relaxation
of submodularity that still intuitively captures diminishing returns is subadditivity, i.e.,
f(A) + f(B) ≥ f(A ∪ B) for all A, B ⊆ U . While subadditivity is a classical and natural
property that intuitively seems promising for incremental maximization, no bounds on the
compatitive ratio were known to date.

Unable to bound the competitive ratio for subadditive objectives, Bernstein et al. [1]
considered accountable functions f instead (see Figure 1 along with the following). A function
f : 2U → R≥0 is called accountable if, for every finite and non-empty set S ⊆ U , there exists
e ∈ S with f(S \ {e}) ≥

(
1 − 1

|S|
)
f(S). Intuitively, this property directly requires that the

value of a set cannot suddenly emerge when adding its last element. Bernstein et al. [1] gave
a (φ + 1)-competitive scaling algorithm for accountable objectives, where φ := (

√
5 + 1)/2

denotes the golden ratio.
Note that submodular functions are accountable, and many combinatorial maximization

problems, such as weighted (multidimensional) matching, set packing, coverage, knapsack,
and many more, give rise to accountable objective functions (see [1]). On the other hand, not
all subadditive functions are accountable. For a simple example, assume that the elements
of U represent identical unit squares, and f(S) is the diameter of the largest square that can
be tiled with the elements in S ⊆ U . Then, f(S) = ⌊

√
|S|⌋ grows strictly sublinearly in |S|

and is thus subadditive, but it is not accountable, as can be seen by considering |S| = 4,
which yields f(S \ {e}) = 1 < 3

2 =
(
1 − 1

4 )f(S) for all e ∈ S. More generally, functions of
the form f(A) = ⌊g(|A|)⌋ with g ∈ o(|A|) are subadditive, but not accountable.

Disser and Weckbecker [11] considered γ-α-augmentability as an alternative relaxation
of submodularity that additionally maintains competitiveness of the greedy algorithm. A
function is called γ-α-augmentable if, for all finite A, B ⊆ U , there exists b ∈ B with
f(A ∪ {b}) − f(A) ≥ γf(A∪B)−αf(A)

|B| . In this setting, the greedy algorithm has competitive
ratio exactly α

γ · eα

eα−1 .
In this paper, we provide a scaling algorithm that is competitive for an abstract class

of functions that relaxes all above classes and includes, for the first time, all subadditive
functions.

Our results

We introduce a class of functions based on an equivalent characterization of accountability
given by Disser et al. [10]. They showed that a function f : 2U → R≥0 is accountable
if and only if, for every finite S ⊆ U , there exists an ordering (e1, . . . , e|S|) of S with
f({e1, . . . , ei}) ≥ i

|S| f(S) for all i ∈ {1, . . . , |S|}. We relax this characterization as follows.

▶ Definition 1. For β ∈ (0, 1], a function f : 2U → R≥0 is called β-accountable if, for
every S ⊆ U , there exists an ordering (e1, . . . , e|S|) of the elements in S such that, for
all i ∈ {1, . . . , |S|},

f({e1, . . . , ei}) ≥ β
i

|S|
f(S).
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Figure 1 Relation of different function properties, including fractionally subadditivity (FSA),
weighted rank functions (WRF), and functions of bounded submodularity ratio (BSR). For the
depicted inclusions to hold simultaneously, we can set β = min{ 1

2 , γ
α

}.

This definition generalizes multiple other function properties (see Figure 1). In particular,
accountable functions [10] correspond exactly to 1-accountable functions (by definition
and [10]), every (monotone) γ-α-augmentable function [11] is γ

α -accountable (Proposition 12),
and every (monotone) subadditive function is 1

2 -accountable (Proposition 8).
We establish a general upper bound on the competitive ratio of incremental maximization

with β-accountable objective via a scaling algorithm parameterized in β, and complement
this result by a lower bound that is tight in the limit β → 0 (see Figure 2).

▶ Theorem 2. IncMax with a β-accountable objective has competitive ratio

ρ ∈

[
1
β

·
(

1 + 1⌈ 1
β

⌉
+ 1

)
,

1
2β

+ 1 +
√

1
4β2 + 1

]
.

Note that, for β = 1, the upper bound recovers the bound of φ + 1 ≈ 2.618 of [1].
Importantly, Theorem 2 yields the first constant upper bound for the natural class of

subadditive objective functions (β = 1
2 ).

▶ Theorem 3. IncMax with a subadditive objective has competitive ratio at most 2 +
√

2.

Furthermore, Theorem 2 also yields the following bound, which improves on the best
known upper bound for γ-α-augmentable functions of [11] when γ < α eα

eα−1 .

ESA 2025
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Figure 2 Plot of the bounds of Theorem 2, and their difference (red).

▶ Theorem 4. IncMax with a γ-α-augmentable objective has competitive ratio at most

α

2γ
+ 1 +

√
α2

4γ2 + 1.

Related work

The general framework of incremental maximization was first proposed by Bernstein et al. [1].
They assumed that the objective is accountable and showed that in this case the competitive
ratio of this problem is at most φ + 1 ≈ 2.618. Utilizing a continuization technique, Disser
et al. [10] showed a lower bound of 2.246 in this setting and provided evidence that the
upper bound of φ + 1 is tight. Before the general framework was introduced, Zhu et al. [30]
considered a special case of the problem where edges have to be added over time in order to
maximize the number of internal nodes. They proved an upper bound of 12/7.

The performance of a simple greedy algorithm for this problem was investigated separately.
Rado [27] showed that the greedy algorithm performs optimally if the objective function is
modular. For submodular objectives, Nemhauser et al. [25] showed that the greedy algorithm
has a competitive ratio of at most e

e−1 . This is known to be tight due to Feige [12]. More
recently, other classes of objectives were considered. Das and Kempe [6] introduced the
submodularity ratio as a relaxation of submodularity and showed that the greedy algorithm
has a competitive ratio of at most eγ

eγ −1 for objectives with submodularity ratio γ ∈ [0, 1].
This was later shown to be tight by Bian et al. [2] who also parametrized the bound by the
curvature. A different relaxation of submodularity is α-augmentability. Here, the competitive
ratio of the greedy algorithm is known to be at most eα

eα−1 due to Bernstein et al. [1]. Disser
and Weckbecker [11] showed that this upper bound is tight and generalized this result by
showing that the greedy algorithm has a competitive ratio of exactly α

γ · eα

eα−1 if the objective
is γ-α-augmentable.

A generalization of the incremental maximization is the problem where, instead of an
increasing cardinality constraint, one is faced with an increasing knapsack constraint. Under
the assumption that the objective is modular, Megow and Mestre [22] provide an instance-
sensitive near-optimal solution. Disser et al. [9] additionally assume that items that do not
fit into the knapsack can be discarded and show that the competitive ratio in this setting
is exactly 2. This result was later generalized to submodular objectives with a bounded
curvature by Klimm and Knaack [20]. Kawase et al. [19] gave an upper bound of 2e

e−1 on the
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randomized competitive ratio of the incremental maximization problem under a knapsack
constraint with submodular objective under the assumption that items that do not fit can
be discarded. Instead of discarding items that do not fit, Navarra and Pinotti [24] assumed
that every item fits into the knapsack and provided a 2-competitive algorithm for modular
objectives. Disser et al. [8] assumed that the ratio between the largest and smallest value
of a single element is bounded by some constant M and showed that the competitive ratio
of the incremental maximization problem under a knapsack constraint with a fractionally
subadditive objective lies between max{2.618, M} and max{3.293

√
M, 2M}.

Disser et al. [7] considered an incremental budget constraint for the prize-collecting
Steiner tree problem, where the objective does not obey a diminishing returns property
and the authors had to resort to bicriterial approximation guarantees. Other variants of
the incremental maximization problem include a variation where the goal is to maximize a
sum-objective [18, 14, 29], or incremental solutions in a changing environment [16, 17, 28].
Incremental minimization considered, among others, for the k-center problem [15], the
minimum latency problem [3, 13, 4], the k-median problem [23, 5, 21], and the facility
location problem [26, 21].

2 Competitive Bounds

The best known algorithm to solve the IncMax problem with an accountable objective
was presented in [1]. It follows the idea of calculating cardinalities c0, c1, . . . and adding
the optimum solution sets for these cardinalities one after the other, where the order of the
elements within each set follows Definition 1. The cardinalities c0, c1, . . . are calculated by
setting c0 = 1 and iteratively scaling via ci+1 = ⌈δci⌉ for some δ > 1.

Since β-accountability is closely related to accountability, we introduce a modified version
of this algorithm to find an incremental solution for the IncMax problem with a β-accountable
objective.

The algorithm Scalingβ uses the scaling parameter

δ = 1
2β

+ 1 +
√

1
4β2 + 1

and chooses

c1 ∈ arg maxC∈N
Opt(C)

C

in an arbitrary, but fixed way. Then, for i ∈ N, it chooses

ci+1 ∈ arg maxC∈N,C≥δci

Opt(C)
C

,

also in an arbitrary, but fixed way. Scalingβ operates in phases, and in phase i ∈ N, it adds
the optimum solution of cardinality ci in the order given by Definition 1.

We state the following observation.

▶ Observation 5. For all i ∈ N, we have
(i) ci+1 ≥ δci,
(ii)

∑i
j=1 cj ≤ δ

δ−1 ci,
(iii) Opt(ci)

ci
≥ Opt(c)

c for all c ∈ N≥δci
.

Proof. (i) and (iii) follow immediately from the definition of ci for all i ∈ N.
Furthermore, we have

i∑
j=1

cj

(i)
≤

i∑
j=1

(1
δ

)i−j

ci ≤
∞∑

j=1

(1
δ

)i−j

ci = δ

δ − 1ci.
◀

ESA 2025
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We are now ready to prove an upper bound on the competitive ratio of Scalingβ .

▶ Theorem 6. The algorithm Scalingβ is δ-competitive for IncMax with a β-accountable
objective function.

Proof. Let π denote the incremental solution of Scalingβ . Let C ∈ N and i ∈ N such that
C ∈

(∑i−1
j=1 cj ,

∑i
j=1 cj

]
. If i = 1, we let x = 0, otherwise, let

x = 1
β

· Opt(ci−1)
Opt(ci)

ci +
i−1∑
j=1

cj , (1)

i.e., we have

Opt(ci−1) = β
x −

∑i−1
j=1 cj

ci
Opt(ci).

The value x is chosen such that, if C ≥ x, then the value of the partially added optimum
solution of cardinality ci in the solution π(C) is at least as large as the value of the completely
contained optimum solution of cardinality ci−1.

Case 1: C < ⌈δci−1⌉.
As π(C) contains the optimum solution of cardinality ci−1, by monotonicity, we have

Opt(C)
f(π(C)) ≤ Opt(C)

Opt(ci−1) ≤ Opt(⌈δci−1⌉ − 1)
Opt(ci−1)

Obs. 5 (iii)
≤ ⌈δci−1⌉ − 1

ci−1
≤ δ.

Case 2: ⌈δci−1⌉ ≤ C < x.
Note that C < x implies that x > 0, i.e., (1) holds. The solution π(C) contains the optimum
solution of cardinality ci−1. Thus,

Opt(C)
f(π(C)) ≤ Opt(C)

Opt(ci−1)
Obs. 5 (iii)

≤ Opt(ci)
Opt(ci−1) · C

ci

≤ Opt(ci)
Opt(ci−1) · x

ci

(1)= 1
β

+ Opt(ci)
Opt(ci−1) · 1

ci

i−1∑
j=1

cj

Obs. 5 (iii)
≤ 1

β
+ ci

ci−1
· 1

ci

i−1∑
j=1

cj

Obs. 5 (ii)
≤ 1

β
+ δ

δ − 1 = δ,

where the last equality follows from the definition of δ.

Case 3: C ≥ ⌈δci−1⌉, C ≥ x.
If i = 1, by definition of c1, we have

Opt(C)
f(π(C)) ≤ Opt(C)

β C
c1

Opt(c1)
≤ 1

β
< δ.
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Now, assume that i ≥ 2, i.e., (1) holds. The solution π(C) contains C −
∑i−1

j=1 cj elements
from the optimum solution of cardinality ci. Thus,

Opt(C)
f(π(C)) ≤ Opt(C)

β
C−
∑i−1

j=1
cj

ci
Opt(ci)

Obs. 5 (iii)
≤ 1

β
· C

C −
∑i−1

j=1 cj

C≥x

≤ 1
β

· x

x −
∑i−1

j=1 cj

(1)= 1
β

(
1 +

∑i−1
j=1 cj

1
β · Opt(ci−1)

Opt(ci) ci

)

= 1
β

+ Opt(ci)
Opt(ci−1) · 1

ci

i−1∑
j=1

cj

Obs. 5 (iii)
≤ 1

β
+ ci

ci−1
· 1

ci

i−1∑
j=1

cj

Obs. 5 (ii)
≤ 1

β
+ δ

δ − 1
= δ. ◀

We complement this upper bound with a lower bound, that, in particular, shows that for
β → 0, we cannot be better than 1

β -competitive.

▶ Theorem 7. For all β ∈ (0, 1], the competitive ratio of IncMax with a β-accountable
objective function is at least

1
β

·
(

1 + 1⌈ 1
β

⌉
+ 1

)
.

Proof. Let k := ⌈ 1
β ⌉+2 and d := k−1

k β. We define an instance where no incremental solution
can have a competitive ratio better than 1

d . Let U = {e1, . . . , ek+1} be the groundset and
f : 2U → R≥0 be the objective such that, for S ⊆ U ,

f(S) =
{

kd
β = k − 1, if {e2, . . . , ek+1} ⊆ S,

max
{

|{e1} ∩ S|, |{e2, . . . , ek+1} ∩ S| · d
}

, else.

This objective is monotone because of the maximum in the definition and because kd
β ≥ kd.

We show that f is β-accountable. For this, let S ⊆ U . We have to show that there is an
ordering

(
ei1 , . . . , ei|S|

)
of the elements in S such that f({ei1 , . . . , eij

}) ≥ β j
|S| f(S) for all

j ∈ {1, . . . , |S|}. If we have e1 ∈ S and f(S) = 1, we can simply choose e1 to be the first
element in the ordering and obtain

f({ei1 , . . . , eij
}) = 1 = f(S) ≥ β

j

|S|
f(S)

for all j ∈ {1, . . . , |S|}. Otherwise, if e1 /∈ S or f(S) > 1, then, with S′ := S ∩ {e2, . . . , ek+1},
either f(S) = kd

β = |S′|d
β , or f(S) = |S′|d ≤ |S′|d

β . In our ordering, we can put the elements
from S′ in the beginning and, for j ∈ {1, . . . , |S′|}, obtain

f({ei1 , . . . , eij
}) ≥ j · d = β

j

|S′|
|S′|d

β
≥ β

j

|S′|
f(S) ≥ β

j

|S|
f(S).

ESA 2025
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If S′ = S, we are done. Otherwise, |S| = |S′| + 1 holds and, for j = |S|, we have
f({ei1 , . . . , eij

}) = f(S) ≥ β j
|S| f(S).

Let π be an incremental solution for this instance. We consider two cases. First, assume
that e1 is not the last element in the ordering π. We have

(k − 1)d =
(⌈ 1

β

⌉
+ 1
)2⌈ 1

β

⌉
+ 2

β >

⌈ 1
β

⌉2 + 2
⌈ 1

β

⌉⌈ 1
β

⌉
+ 2

β =
⌈

1
β

⌉
β ≥ 1.

The solution π(k) contains e1 and k − 1 elements from {e2, . . . , ek+1}. Thus,

f(π(k)) = max{1, (k − 1)d} = (k − 1)d.

The optimum solution of cardinality k is the set {e2, . . . , ek+1} with a value of k − 1. Thus,
in this case, the competitive ratio of π is at least 1

d .
Now, consider the other case, i.e., e1 is the last element in the ordering π. Then the

solution π(1) contains exactly one element from the set {e2, . . . , ek+1} and has therefore
value f(π(1)) = d. The optimum solution of cardinality 1 is {e1} with a value of 1. Thus,
also in this case, the competitive ratio of π is at least 1

d . ◀

In Figure 2, we plot the upper bound from Theorem 6 and the lower bound from Theorem 7
in black, as well as a plot of their difference in red. On the one hand, one can see that both
bounds are unbounded for β → 0. This seems plausible because for β → 0, we have (almost)
no guarantee that the value of large sets is bounded by the value of smaller sets. On the
other hand, one can see in Figure 2 that the difference between upper and lower bound is
almost 0 for β → 0. Thus, in the limit β → 0, Scalingβ performs optimally.

3 Incremental Maximization for Subclasses

We employ the previous result to obtain new and improved bounds on the competitive ratio
of IncMax with subadditive and γ-α-augmentable objectives.

3.1 Subadditivity
In order to derive results for IncMax with subadditive objectives, we compare β-accountabili-
ty and subadditivity.

▶ Proposition 8. Every monotone, subadditive function is 1
2 -accountable.

Proof. Let f : 2U → R≥0 be monotone and subadditive, S ⊆ U be finite, and k := |S|.
We define ℓ := ⌈log2 k⌉, i.e., we have 2ℓ−1 < k ≤ 2ℓ. Furthermore, we define Sℓ := S and
iteratively, for j ∈ {ℓ − 1, . . . , 0}, Sj ⊆ Sj+1 with |Sj | =

⌈
k

2ℓ−j

⌉
and f(Sj) ≥ 1

2 f(Sj+1).
This is possible as we will see now. We have 2

⌈
k

2ℓ−j

⌉
=
⌈
2
⌈

k
2ℓ−j

⌉⌉
≥
⌈

k
2ℓ−j−1

⌉
, i.e., we can

choose A, B ⊆ Sj with |A| = |B| =
⌈

k
2ℓ−j

⌉
and A ∪ B = Sj+1. By subadditivity, we have

f(A) ≥ 1
2 f(Sj+1) or f(B) ≥ 1

2 f(Sj+1). Thus, we can choose Sj ∈ {A, B} with the desired
properties.

Now, consider any order (e1, . . . , ek) of S with {e1, . . . , e|Sj |} = Sj for all j ∈ {0, . . . , ℓ}.
Let i ∈ {1, . . . , k} and j ∈ {0, . . . , ℓ} such that

⌈
k

2ℓ−j

⌉
≤ i <

⌈
k

2ℓ−j−1

⌉
. This implies that

Sj ⊆ {e1, . . . , ei} and, because i ∈ N, that i < k
2ℓ−j−1 . Together with monotonicity of f , we

obtain

f({e1, . . . , ei}) ≥ f(Sj) ≥
(

1
2

)ℓ−j

f(Sℓ) = 1
2ℓ−j

f(S) ≥ 1
2

i

k
f(S),

which yields 1
2 -accountability. ◀
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We combine Theorem 6 and Proposition 8 to obtain an upper bound on the competitive
ratio of IncMax with a subadditive objective. This immediately proves Theorem 3.

▶ Theorem 3. IncMax with a subadditive objective has competitive ratio at most 2 +
√

2.

We complement this upper bound on the competitive ratio of IncMax with subadditive
objective functions by a lower bound. To this end, we employ separability of problem
instances of incremental maximization, a property introduced in [10].

▶ Definition 9. An instance of IncMax with objective f : 2U → R≥0 is called separable if
there exist a partition U = U1 ∪ U2 ∪ . . . of U and densities di > 0 such that, for all S ⊆ U ,

f(S) = max
i∈N

{|S ∩ Ui| · di}.

▶ Proposition 10. The objective function of every separable problem instance is subadditive.

Proof. Let a separable instance with objective function f : 2U → R≥0 be given. Furthermore,
let U = U1 ∪ U2 ∪ . . . be a partition of U , and let d1, d2, · · · > 0 be the densities such that,
for all S ⊆ U ,

f(S) = max
i∈N

|S ∩ Ui| · di.

In order to show subadditivity, we fix two sets A, B ⊆ U . Let i∗ ∈ N be the index such that
f(A ∪ B) = |(A ∪ B) ∩ Ui∗ | · di∗ . Then

f(A ∪ B) = |(A ∪ B) ∩ Ui∗ | · di∗

= |A ∩ Ui∗ | · di∗ + |(B \ A) ∩ Ui∗ | · di∗

≤ |A ∩ Ui∗ | · di∗ + |B ∩ Ui∗ | · di∗

≤
(
max
i∈N

|A ∩ Ui| · di

)
+
(
max
i∈N

|B ∩ Ui| · di

)
= f(A) + f(B). ◀

This result yields that the (non-strict) competitive ratio of IncMax with subadditive
objectives is at least that for separable instances. In [10], the authors show a lower bound of
2.246 on the competitive ratio in the separable setting. Thus, we obtain the following.

▶ Corollary 11. The competitive ratio of IncMax with a subadditive objective function is at
least 2.246.

This bound is weaker than the lower bound of 8
3 from Theorem 7 for IncMax with

a 1
2 -accountable objective. Yet, note that the lower bound construction in the proof of

Theorem 7 is not subadditive.

3.2 γ-α-Augmentability
We now turn to comparing β-accountability and γ-α-augmentability.

▶ Proposition 12. For all γ ∈ (0, 1] and α ≥ 1, every monotone, γ-α-augmentable function
is γ

α -accountable.

Proof. For γ ∈ (0, 1] and α ≥ 1, let f : 2U → R≥0 be monotone and γ-α-augmentable. Let
S ⊆ U be finite and k := |S|. By γ-α-augmentability, there exists an ordering (e1, . . . , ek) of
the elements in S such that, for all i ∈ {0, . . . , k − 1},

f({e1, . . . , ei+1}) − f({e1, . . . , ei}) ≥ γf(S) − αf({e1, . . . , ei})
k − i

.
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For i ∈ {0, . . . , k}, let Si := {e1, . . . , ei}. Then, for i ∈ {0, . . . , k − 1}, this yields

f(Si+1) − f(Si) ≥ α
γ
α f(S) − f(Si)

k − i

α≥1
≥

γ
α f(S) − f(Si)

k − i
. (2)

To show γ
α -accountability of f , we prove by induction that, for i ∈ {1, . . . , k}, we have

f(Si) ≥ γ

α

i

k
f(S). (3)

For i = 0, (2) yields

f(S1) ≥ 1
k

(
γ

α
f(S) − f(∅)

)
+ f(∅) = γ

α

1
k

f(S) +
(

1 − 1
k

)
f(∅) ≥ γ

α

1
k

f(S),

where the last inequality follows from non-negativity of f .
Now, suppose that (3) holds for some i ∈ {0, . . . , k − 1}. Then

f(Si+1)
(2)
≥ f(Si) +

γ
α f(S) − f(Si)

k − i

= γ

α

1
k − i

f(S) +
(

1 − 1
k − i

)
f(Si)

(3)
≥ γ

α

1
k − i

f(S) +
(

k − i − 1
k − i

)
γ

α

i

k
f(S)

= γ

α

ki + k − i2 − i

(k − i)k f(S)

= γ

α

(k − i)(i + 1)
(k − i)k f(S)

= γ

α

i + 1
k

f(S),

which concludes the induction. ◀

We combine the results from Proposition 12 and Theorem 6 to obtain an upper bound
on the competitive ratio of IncMax with a monotone and γ-α-augmentable objective. This
immediately proves Theorem 4.

▶ Theorem 13. For γ ∈ (0, 1] and α ≥ 1, Scalingγ/α has a competitive ratio of at most

α

2γ
+ 1 +

√
α2

4γ2 + 1

for IncMax with a γ-α-augmentable objective.

We compare this upper bound on the competitive ratio of IncMax with a γ-α-augmentable
objective to

α

γ
· eα

eα − 1 ,

the competitive ratio of the greedy algorithm for IncMax with γ-α-augmentable objec-
tives [11]. Let the ratio between the two upper bounds be denoted by

r(γ, α) :=
α
2γ + 1 +

√
α2

4γ2 + 1
α
γ · eα

eα−1
= eα − 1

eα
·

(
1
2 + γ

α
+
√

1
4 + γ2

α2

)
.



Y. Disser and D. Weckbecker 92:11

2 4 6 8 10

0.01

0.1

1

α

γ

Figure 3 Plot of the value of γ depending on α for which Scalingγ/α and the greedy algorithm
achieve the same competitive ratio. For values of γ below this line, Scalingγ/α performs better,
and vice versa.

We have limγ→0 r(γ, α) = eα−1
eα < 1, i.e., for small values of γ, Scalingγ/α performs better

than the greedy algorithm. Since γ ∈ (0, 1] and α ≥ 1, we have r(γ, α) = 1 if and only
if γ = α eα

e2α−1 . This value lies in the interval
(
0, e

e2−1
]

⊆ (0, 0.426), and for α → ∞,
approaches 0 (cf. Figure 3). Thus, for large α ≥ 1, the greedy algorithm performs better
than Scalingγ/α for almost all values of γ ∈ (0, 1]. This is probably due to the fact that
γ-α-augmentability is a property that relaxes an inequality that is a core estimate in the
analysis of the the greedy algorithm for monotone and submodular functions.
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