
Recognizing and Realizing Temporal Reachability
Graphs
Thomas Erlebach #

Department of Computer Science, Durham University, UK

Othon Michail #

Department of Computer Science, University of Liverpool, UK

Nils Morawietz #

LaBRI, Université de Bordeaux, Talence, France
Institute of Computer Science, Friedrich Schiller University Jena, Germany

Abstract
A temporal graph G = (G, λ) can be represented by an underlying graph G = (V, E) together with
a function λ that assigns to each edge e ∈ E the set of time steps during which e is present. The
reachability graph of G is the directed graph D = (V, A) with (u, v) ∈ A if and only if there is a
temporal path from u to v. We study the Reachability Graph Realizability (RGR) problem that
asks whether a given directed graph D = (V, A) is the reachability graph of some temporal graph.
The question can be asked for undirected or directed temporal graphs, for reachability defined via
strict or non-strict temporal paths, and with or without restrictions on λ (simple, proper, or both).
Answering an open question posed by Casteigts et al. (TCS 2024), we show that all variants of the
problem are NP-complete, except for two variants that become trivial in the directed case. For
undirected temporal graphs, we consider the complexity of the problem with respect to the solid
graph, that is, the graph containing all edges that could potentially receive a label in any realization.
We show that the RGR problem is fixed-parameter tractable for the feedback edge set number
of the solid graph. As we show, the latter parameter can presumably not be replaced by smaller
parameters like feedback vertex set number or treedepth, since the problem is W[2]-hard for them.
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1 Introduction

Temporal graphs are graphs that change over time. The vertex set is often assumed to be
fixed, and the edge set can differ from one time step to the next. The study of temporal
graphs has attracted significant attention in recent years [5, 22, 23]. One way to represent
a temporal graph G with vertex set V is as a sequence (Gi)i∈[L], where Gi = (V, Ei) is the
graph containing the edges that are present in time step i. If an edge e is present in time
step i, we refer to (e, i) as a time edge, and call i a time label of edge e. A strict temporal
path from vertex u to vertex v in G is a sequence of time edges forming a u-v-path whose
time steps are strictly increasing. A non-strict temporal path is defined analogously, except
that the time steps only need to be non-decreasing.
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In this work, we initiate the study of designing temporal graphs whose dynamics guarantee
certain reachability requirements while preventing others, a problem naturally arising in areas
like epidemic control, transportation, and logistics. For example, in epidemic control, a
central goal is to maintain a minimal degree of societal connectivity for critical services while
preventing broader or specific temporal connections that could facilitate disease spread.

Given a temporal graph G, its temporal reachability relation can be represented as a
directed graph D = (V, A), called the reachability graph of G, with (u, v) ∈ A for u ̸= v if
and only if there exists a (strict or non-strict, respectively) temporal path from u to v in G.
We can now state our problem as that of realizing a given reachability graph D by finding
a temporal graph G whose temporal connectivity is specified by D: each arc or non-arc of
D represents a temporal reachability that must or must not be realized in G, respectively.
In particular, we want to know which directed graphs can arise as reachability graphs of
temporal graphs, and how difficult it is to determine for a given directed graph D whether
there exists a temporal graph G with reachability graph D. Interestingly, this formulation
turns out to have been posed twice recently as an open question, by Casteigts et al. [3, Open
question 5] and Döring [11]. In contrast to our work, those papers aim to understand the
expressivity of various temporal graph models, using reachability graphs as a tool.

Part of our contribution is to resolve this open question, by showing that the associated
decision problem is NP-complete. Actually, there are a number of variations of the question,
as we may ask for an undirected or a directed temporal graph G, for a temporal graph with
a restricted kind of labeling (simple, proper, happy)1, and may consider reachability with
respect to strict or non-strict temporal paths. We show that all these variations are NP-hard
if we ask for an undirected temporal graph, and also if we ask for a directed temporal graph
except for two variations (strict temporal paths with arbitrary or simple labelings) that are
known to become trivial in the directed case [11]. See Table 1 for an overview of these results.

On the positive side, we present the following algorithmic results. For a given digraph D =
(V, A), we refer to {u, v} for u, v ∈ V as a solid edge if both (u, v) and (v, u) are in A.
Let G = (V, E) be the undirected graph on V whose edge set is the set of solid edges. We
refer to G as the solid graph of D. The structural properties of solid graphs turn out to
be crucial for our problem. We show that all undirected problem variants can be solved in
polynomial time if the solid graph is a tree. Furthermore, we give an FPT algorithm for
the feedback edge set number of the solid graph. This parameter can presumably not be
replaced by smaller parameters like feedback vertex set, treedepth, or pathwidth, since two
undirected versions of our problem turn out to be W[2]-hard for these parameters.

We believe that reachability graphs of temporal graphs form an interesting class of
directed graphs whose study has only recently begun. Our results on their structure and
on recognizing such graphs could be of independent interest in the context of algorithmic
problems in directed graphs.

Related work. As mentioned, our work falls into the area of temporal graph realization
problems. In these problems, one is given some data about the behavior of a temporal graph,
and the goal is to detect whether there actually is a temporal graph with this behavior (and
to compute such a temporal graph if one exists). Klobas et al. [17] introduced the problem
of deciding for a given matrix of fastest travel durations and a period ∆ whether there exists
a simple temporal graph G with period ∆ with the property that the duration of the fastest

1 simple =̂ one label per edge, proper =̂ no two adjacent edges share a label, happy =̂ both proper and
simple



T. Erlebach, O. Michail, and N. Morawietz 93:3

Table 1 The complexity results for all variants of RGR. Red cells indicate NP-hard cases and
green cells indicate cases that are trivial (and thus polynomial-time solvable).

undirected Strict Non-strict directed Strict Non-strict
Any Theorem 14 Theorem 14 Lemma 21, [11] Theorem 22
Simple Theorem 14 Theorem 14 Lemma 21, [11] Theorem 22
Proper Theorem 14 Theorem 22
Happy Theorem 14 Theorem 22

temporal path between any pair of nodes in G is equal to the value specified in the input
matrix. Erlebach et al. [13] extended the problem to a multi-label version, where each edge
is allowed up to ℓ time labels. Motivated by the design of transportation networks, a related
problem with respect to upper-bounded travel durations was considered [19, 20, 21].

In an early example of a temporal network design problem studied by Kempe et al. [15],
the goal was to reconstruct a temporal labeling restricted to a single label per edge, so that
a designated root reaches via temporal paths all vertices in a set P while avoiding those
in a set N . For multi-labeled temporal graphs, Mertzios et al. [18] studied the problem
of designing a temporal graph that preserves the reachability relation or all paths of an
underlying static graph while minimizing either the temporality (maximum number of labels
per edge) or the temporal cost (total number of labels used). Göbel et al. [14] showed that
it is NP-complete to decide whether the edges of a given undirected graph can be labeled
with a single label per edge in such a way that each vertex can reach every other vertex
via a strict temporal path. Notably, this problem becomes solvable in linear time when
only the degree sequence of the underlying graph is given [4]. Other studies have focused
on variants of minimizing edge deletions [12], vertex deletions [25], or edge delays [9] to
restrict reachability, motivated, for instance, by epidemic containment strategies that limit
interactions. Temporal network design is an active area of research, with further related
questions explored for example in [1, 16, 7].

Casteigts et al. [3] studied the relationships between the classes of reachability graphs
that arise from undirected temporal graphs if different restrictions are placed on the graph
(simple, proper, happy [3]) and depending on whether strict or non-strict temporal paths are
considered. They showed that reachability with respect to strict temporal paths in arbitrary
temporal graphs yields the widest class of reachability graphs while reachability in happy
temporal graphs yields the narrowest class. The class of reachability graphs that arise from
proper temporal graphs is the same as for non-strict paths in arbitrary temporal graphs, and
this class is larger than the class of reachability graphs arising from non-strict reachability in
simple temporal graphs. Strict reachability in simple temporal graphs was also shown to
lie between the happy case and the general strict case. Döring [11] completed the picture
of a two-stranded hierarchy for undirected temporal graphs and also extended the study to
directed temporal graphs. As noted earlier, Casteigts et al. [3] also posed the open question
of whether there is a characterization of directed graphs that arise as reachability graphs
of temporal graphs (or of some restricted subclass of temporal graphs), and how hard it is
to decide whether a given directed graph is the reachability graph of some temporal graph.
These questions were posed again by Döring [11]. This is in particular of interest because
Casteigts et al. [6] showed that several temporal graph problems can be solved in FPT time
with respect to temporal parameters defined over the reachability graph. In this paper, we
resolve these open questions regarding the complexity of all directed and undirected variants.

ESA 2025
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Organization of the paper. In Section 2, we provide a formal problem definition and define
the notions used in this work. In Section 3, we show upper and lower bounds for the required
number of labels per edge in any realization and provide a single exponential algorithm for
all problem variants. Afterwards, in Section 4, we analyze properties and define splitting
operations based on bridge edges in the solid graph of the undirected versions of our problem.
These structural insights will be mainly used in our FPT algorithm in Section 6, but also
immediately let us describe a polynomial-time algorithm for instances where the solid graph
is a tree in Section 4.2. In Section 5, we then provide NP-hardness results for all undirected
problem versions as well as parameterized intractability results for two of them with respect
to feedback vertex set number and treedepth. Afterwards, in Section 6, we provide our main
algorithmic result: an FPT algorithm with respect to the feedback edge set number fes of
the solid graph. This algorithm is achieved in three steps: Firstly, we apply our splitting
operations of Section 4 and provide a polynomial-time reduction rule to simplify the instance
at hand, such that all we need to deal with is a subset X∗ of vertices of size O(fes) for which
the remainder of the graph decomposes into edge-disjoint trees that only interact with X∗

via two leaves each. We call such trees connector trees. Secondly, we show that we can
efficiently extend the set X∗ to a set W ∗ of size O(fes) such that each resulting connector
tree for the set W ∗ is more or less independent from the remainder of the graph with respect
to the interactions of temporal paths in any realization. All these preprocessing steps run in
polynomial time. Afterwards, our algorithm enumerates all reasonable labelings on the edges
incident with vertices of W ∗ and tries to extend each such labeling to a realization for D.
As we show, there are only FPT many such reasonable labelings and for each such labeling,
there are only FPT many possible extensions that need to be checked. Finally, in Section 7,
we briefly discuss the directed version of the problem and provide NP-hardness results for all
but the two trivial cases. Proofs of statements with (⋆) are deferred to the full version.

2 Preliminaries

For definitions on parameterized complexity, the Exponential Time Hypothesis (ETH), or
parameters like treedepth, we refer to the textbooks [10, 8].

For natural numbers i, j with i ≤ j we write [i] for the set {1, . . . , i} and [i, j] for the
set {i, . . . , j}. For an undirected graph G = (V, E), we denote an edge between vertices u

and v as {u, v} or uv. By N(v) = {u ∈ V | vu ∈ E} we denote the set of neighbors of u. The
degree of v is the size of N(v). An edge e ∈ E is a bridge or bridge edge in a graph G = (V, E)
if deleting e increases the number of connected components. A vertex of degree 1 is a pendant
vertex, and an edge incident with a pendant vertex is called a pendant edge.

We assume directed graphs have no parallel arcs and no self-loops, and we denote an arc
from u to v by (u, v). A directed graph D is a directed acyclic graph (DAG) if it does not
contain a directed cycle. The degree of a vertex v is the number of arcs containing v. For an
undirected graph G, the feedback edge set number (feedback vertex set number) denotes the
minimum number of edges (vertices) to remove from G to obtain an acyclic graph.

A temporal graph G with vertex set V and lifetime L is given by a sequence (Gt)t∈[L] of L

static graphs Gt = (V, Et) referred to as snapshots or layers. The graph G↓ = (V, E↓) with
E↓ =

⋃
i∈[L] Ei is called the underlying graph of G. Alternatively, G can be represented by

an undirected graph G = (V, E) with E ⊇
⋃

t∈[1,L] Et and a labeling function λ : E → 2[1,L]

that assigns to each edge e the (possibly empty) set of time steps during which e is present,
that is, λ(e) = {t ∈ [1, L] | e ∈ Et}. We write G = (G, λ) in this case. In this representation
we allow G to contain extra edges in addition to the edges of the underlying graph; such
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edges e satisfy λ(e) = ∅. This is useful because in the problems we consider in this paper,
there is a natural choice of a graph G = (V, E), the solid graph defined below, that contains
all edges of the underlying graph of every realization but may contain additional edges.

We assume that each layer of a temporal graph is an undirected graph unless we explicitly
refer to directed temporal graphs. If t ∈ λ(e), we refer to (e, t) as a time edge. A temporal path
from u to v in G is a sequence of time edges ((ej , tj))j∈[ℓ] for some ℓ such that (e1, e2, . . . , eℓ)
is a u-v path in G and t1 ≤ t2 ≤ · · · ≤ tℓ holds in the non-strict case and t1 < t2 < · · · < tℓ

holds in the strict case.
A temporal graph is proper if no two adjacent edges share a label, simple if every edge

has a single label, and happy if it is both proper and simple [3]. The reachability graph R(G)
of a temporal graph G with vertex set V is the directed graph (V, A) with the same vertex
set V and (u, v) ∈ A if and only if u ≠ v and G contains a temporal path from u to v. Note
that R(G) depends on whether we consider strict or non-strict temporal paths and can be
computed in polynomial time in both cases [2]. We are interested in the following problem:

Reachability Graph Realizability (RGR)
Input: A simple directed graph D = (V, A).
Question: Does there exist a temporal graph G with R(G) = D?

For yes-instances of RGR, we are also interested in computing a temporal graph G
with R(G) = D. We refer to such a temporal graph as a solution or a realization for D, and
we typically represent it by a labeling function. With the adjacency matrix representation
of D in mind, we also write Duv = 1 for (u, v) ∈ A and Duv = 0 for (u, v) /∈ A.

We can consider RGR with respect to reachability via strict temporal paths or with
respect to non-strict temporal paths. Furthermore, we can require the realization of D to
be simple, proper, or happy. For proper and happy temporal graphs, strict and non-strict
reachability coincide. Therefore, the distinct problem variants that we can consider are Any
Strict RGR, Any Non-strict RGR, Simple Strict RGR, Simple Non-strict RGR,
Proper RGR, and Happy RGR. Finally, we write DRGR instead of RGR if we are asking
for a directed temporal graph that realizes D. We sometimes write URGR if we want to
make it explicit that we are asking for an undirected realization.

The solid graph. If Duv = 1 and Dvu = 1 for some u ̸= v, we say that there is a solid edge
between u and v. If Duv = 1 and Dvu = 0, we say that there is a dashed arc from u to v.
We use G = (V, E) to denote the graph on V whose edge set is the set of solid edges, and we
refer to this graph as the solid graph (of D). For URGR it is clear that only solid edges can
receive labels in a realization of D, as the two endpoints of an edge that is present in at least
one time step can reach each other. Bridges of the solid graph must receive labels, but a
solid edge e that is not a bridge may not receive labels, as the endpoints of e could reach
each other via temporal paths of length greater than one.

▶ Observation 1. Let D be an instance of Any Strict URGR or Simple Strict URGR.
Let λ be a realization of D and let {u, v} and {v, w} be solid edges that both receive at least
one label under λ. If D contains neither the arc (u, w) nor the arc (w, u), then there is a
label α such that λ({u, v}) = λ({v, w}) = {α}.

Note that for Proper URGR, Happy URGR, and all versions of Non-strict URGR,
no realization for D can assign labels to both of two adjacent edges {u, v} and {v, w} if D

contains neither (u, w) nor (w, u).

ESA 2025
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A path P = (u0 = u, . . . , uℓ = v) from u to v in G is a dense u-v-path if there exist arcs
(ui, uj) ∈ A for all 0 ≤ i < j ≤ ℓ. In each undirected realization of D, each temporal path is
a dense path in G.

We say that a realization λ is frugal if there is no edge e such that the set of labels
assigned to e can be replaced by a smaller set while maintaining the property that λ is a
realization. We say that a realization λ is minimal on edge e if it is impossible to obtain
another realization by replacing λ(e) with a proper subset. A realization is minimal if it is
minimal on every edge e. Note that every frugal realization is also minimal.

3 Basic Observations and an Exponential Algorithm

We first provide upper and lower bounds for the number of labels per edge in realizations.

▶ Lemma 2 (⋆). Let D be an instance of URGR, and let e be a solid edge of G that is not
part of a triangle.

For Any Strict URGR, in each minimal realization of D, e receives at most two labels.
For all other versions of URGR, in each minimal realization of D, e receives at most
one label.

For general edges, we show a linear upper bound with respect to the number of vertices.

▶ Lemma 3 (⋆). If a graph D = (V, A) is realizable, then each minimal realization for D

assigns at most n = |V | labels per edge.

Lemma 3 implies that all versions of URGR and DRGR under consideration are in NP.
Next, we show that the bound of Lemma 3 is essentially tight for Any Strict URGR.

▶ Theorem 4 (⋆). For Any Strict URGR, there is an infinite family of directed graphs B,
such that for every D = (V, A) ∈ B, where G = (V, E) is the solid graph of D, (i) D is
realizable and some edge e ∈ E receives Ω(n) labels in every realization of D, where n = |V |,
and (ii) G has a feedback vertex set of size 2 and a feedback edge set of size Θ(n).

The proof of Theorem 4 is based on the construction of an instance with a solid graph that
consists of a number of subgraphs, called pages, that all share a common edge, called the
spine. The instance is such that all edges of each page (except the spine) must receive the
same single label, and the labels increase from one page to the next. Furthermore, for every i

the reachability matrix specifies that the top of the i-th page can reach the bottom of the
(i + 2)-th page and of all later pages. This requirement can then only be realized by adding
a label whose value lies between the labels of page i and i + 2 to the spine, thus forcing the
spine to have a linear number of labels.

Based on the upper bounds on labels per edge/arc from Lemma 3, one can solve all
problems under consideration via dynamic programming over subsets of already labeled
edges/arcs. Roughly speaking, we design a dynamic program that stores entries for each
subset A′ of A and each time step i, on whether there is a temporal graph with lifetime i

that has reachability graph D′ := (V, A′). If Simple RGR or Happy RGR is considered,
the table also needs to store the already labeled edges/arcs in the first i time steps, to ensure
that none of these edges/arcs receive another label.

▶ Theorem 5 (⋆). Each version of URGR and DRGR under consideration can be solved in
2O(|A|) · nO(1) time, where A denotes the arc set of the input graph.
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4 Solid Bridge Edges: Properties and Splitting Operations

In this section, we show several structural results as well as three splitting operations for
graphs with bridge edges in the solid graph. These insights will be important for our FPT
algorithm and will also simplify instances of URGR where the solid graph is a tree.

Consider a bridge edge e = {u, v} whose deletion splits the solid graph G into connected
components Gu and Gv, where Gu contains u and Gv contains v. A dashed arc (a, b) spans e

if a ∈ V (Gu) and b ∈ V (Gv) or vice versa. Two arcs (a, b) and (c, d) span e in the same
direction if they span e and either a, c ∈ V (Gu) or a, c ∈ V (Gv). If e has a single label in a
realization, then it must be the case that the dashed arcs spanning e are “transitive” in the
following sense: If dashed arcs (a, b) and (c, d) both span e in the same direction, then (a, d)
and (c, b) must also be dashed arcs. This is because for any two temporal paths that pass
through e in the same direction, the part of one path up to edge e can be combined with the
part of the other path after e.

▶ Definition 6. Consider a bridge edge e = {u, v} whose deletion splits the solid graph G into
connected components Gu and Gv. The edge e is a special bridge edge if there exist vertices a

in Gu and b in Gv such that Dav = 1, Dub = 1 and Dab = 0 (or if the same condition holds
with u and v exchanged). A bridge edge that is not special is called non-special.

Intuitively, a special bridge edge is a bridge edge e such that there are dashed arcs
spanning e in the same direction for which transitivity (as outlined above) is violated.

▶ Lemma 7 (⋆). In each frugal realization of D, every special bridge edge is assigned two
labels and every non-special bridge edge is assigned a single label.

▶ Corollary 8. Let D be an instance of any version of URGR under consideration besides Any
Strict URGR. If the solid graph of D contains a special bridge edge, then D is a no-instance.

4.1 Splitting Into Subinstances
We now define splitting operations on bridges. First, consider non-special bridges.

▶ Lemma 9 (Splitting at a non-special bridge). Consider any variant of URGR. Let e = {u, v}
be a non-special bridge edge, and let Gu and Gv be the connected components of G resulting
from the deletion of e. Then the instance D is realizable if and only if the subinstances
induced by V (Gu) ∪ {v} and V (Gv) ∪ {u} are realizable.

Proof. Let Du and Dv denote the subinstances induced by V (Gu) ∪ {v} and V (Gv) ∪ {u},
respectively. If D is realizable, then the realization λ induces realizations of the two
subinstances Du and Dv. If Du and Dv are realizable, their realizations assign a single
label to e, and these realizations can be chosen so that e receives the same label in both
realizations. Hence, the union of the two realizations is a realization of D. ◀

By applying Lemma 9 repeatedly to a non-pendant non-special bridge edge until no such
edge exists, we obtain subinstances in which all non-special bridge edges are pendant.

Now consider special bridges. Special bridge edges cannot occur in yes-instances of any
variant of URGR except Any Strict URGR (see Corollary 8), so we only consider Any
Strict URGR in the following. Let edge e = {u, v} be a special bridge with Gu and Gv

defined as above. If the instance is realizable, for every vertex in V (Gu) there are at most
three possibilities for which vertices in V (Gv) it can reach, depending on whether it cannot
reach v, can reach v at time α, or can reach v only at time β, where α and β with α < β are

ESA 2025
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uinvin

vout uout

u

u u

v

v v

Figure 1 Illustration of the splitting operation at a special bridge {u, v} (Lemma 11).

the labels assigned to e in the realization. The same holds with Gu and Gv exchanged. If this
condition is violated, then the instance cannot be realized. The following definition captures
this condition. For each vertex w ∈ V (Gu), let Ru→v(w) = {x ∈ V (Gv) | (w, x) ∈ A}, and
define Rv→u(x) for x ∈ V (Gv) analogously.

▶ Definition 10. Let e = {u, v} be a special bridge with Gu and Gv defined as above. We
say that e is a special bridge edge with plausible reachability if the following conditions hold:

If there exist vertices a ∈ V (Gu) and b ∈ V (Gv) such that Dav = Dub = 1 and Dab = 0,
then every vertex w ∈ V (Gu) satisfies Ru→v(w) ∈ {∅, Ru→v(a), Ru→v(u)} with ∅ ⊂
Ru→v(a) ⊂ Ru→v(u). Otherwise, every vertex satisfies Ru→v(w) ∈ {∅, Ru→v(u)}.
The same condition holds with the roles of Gu and Gv exchanged.

If there is a special bridge edge {u, v} with plausible reachability, we can split the
instance into two subinstances that can be solved separately, as illustrated in Figure 1. Each
subinstance consists of the edge {u, v} together with either Gu or Gv. For the subinstance
containing {u, v} and Gu, up to two new leaf vertices are attached to v, named vin and vout

in the figure. Here, vin represents the vertices in Gv that can reach u only by traversing
{u, v} using the larger of its two time labels, and vout represents the vertices in Gv that can
be reached from Gu only by traversing {u, v} using the larger of its two time labels. The
other subinstance is handled analogously.

▶ Lemma 11 ((⋆), Splitting at a special bridge). Consider Any Strict URGR. Let e = {u, v}
be a special bridge edge with plausible reachability, and let Gu and Gv be the connected
components of G resulting from the deletion of e. Then the instance D is realizable if and
only if the two subinstances constructed as follows are realizable:

To construct subinstance Du, take the subgraph D′ of D induced by V (Gu) ∪ {v} and
attach one or two leaves to v as follows:

If there are vertices a ∈ V (Gu) and b ∈ V (Gv) with Dav = Dub = 1 and Dab = 0, then
attach a leaf (called out-leaf) z to v with D′

zv = 1 and D′
az = 1 for all a ∈ {v} ∪ {w ∈

V (Gu) | Ru→v(w) = Ru→v(u)}, and all other entries of D′ involving z equal to 0.
If there are vertices c ∈ V (Gv) and d ∈ V (Gu) with Dcu = Dvd = 1 and Dcd = 0, then
attach a leaf (called in-leaf) z′ to v with D′

vz′ = 1 and D′
z′a = 1 for all a ∈ {v}∪Rv→u(c)

and D′
z′z = 1 if an out-leaf z has been added, and all other entries of D′ involving z′

equal to 0.
Note that at least one of the two conditions above must be satisfied because e is a special
bridge edge. The resulting instance D′ is the desired subinstance Du.
Subinstance Dv is constructed analogously, with the roles of u and v exchanged.

Note that we cannot exhaustively apply the operation behind Lemma 11, since each
application on a special bridge {u, v} results into two new instances in which edge {u, v} is
again a special bridge. However, by recursively applying this operation on special bridges on
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which the operation has not yet been applied, we eventually obtain instances, where each
special bridge has at least one endpoint that has at most two other neighbors and both of
them have a degree of 1.

Finally, we consider the case of two pendant edges that have a common neighbor and
must receive the same single label in every realization. We argue that we can remove one
of them from the instance provided their reachability requirements from/to the rest of the
graph are the same. This is because a realization of the instance with one of the two pendant
edges removed gives a realization of the original instance simply by labeling the pendant
edge that was removed with the same label as the other pendant edge.

▶ Lemma 12 ((⋆), Removal of redundant pendant vertices). Let D be an instance of URGR
and let v and w be two degree-1 vertices with the same common neighbor u in G that satisfy
Dvw = Dwv = 0. Then,

for all variants of Non-strict URGR (including Proper URGR and Happy URGR),
D is not realizable, and
for Any Strict URGR and Simple Strict URGR, D is realizable if and only if (i) the
subinstance D′ resulting from D by deleting v is realizable and (ii) for each x ∈ V \{v, w},
Dvx = Dwx and Dxv = Dxw.

4.2 Algorithms for Instances with a Tree as Solid Graph

Since all edges of trees are bridges, we now describe, based on our insights about labels
in frugal realizations, an algorithm for instances of URGR where the solid graph is a tree.

▶ Theorem 13. There is a polynomial-time algorithm for solving instances of Any Strict
URGR for which the solid edges form a tree.

Proof Sketch. Let T = (V, E) denote the tree of solid edges. We first check that D satisfies
several conditions that must hold if D is realizable. For example, if (u, v) is an arc, then
(u, w) and (w, v) must also be arcs for every internal node w of the unique u-v-path in T .
If one of these conditions is violated, D is not realizable. Otherwise, we construct a linear
program (LP) that has two non-negative variables ℓe and he for each e ∈ E that represent the
lower and higher label of e, respectively, in a realization. Constraints ℓe = he for non-special
edges and ℓe + 1 ≤ he for special edges ensure that each edge receives the correct number
of labels. For edges uv and vw such that (u, w) ∈ A, the constraints ℓuv + 1 ≤ hvw and
huv ≤ ℓvw ensure that there is a temporal u-w-path but no temporal w-u-path. Call a
non-arc (u, v) minimal if it is the only arc missing in the direction from u to v on the path
from u to v. For every minimal non-arc (u, v), we add constraints hei

= ℓei+1 for every pair
of consecutive edges ei and ei+1 on the u-v path (which we show to consist of special edges
except for the first and last edge, which are both non-special). For arcs (u, v) such that the
first and last edge of the u-v-path are non-special and all other edges are special, we add the
constraint

∑
i(ℓei+1 − hei

) ≥ 1, where the sum is over all pairs of consecutive edges ei, ei+1 of
the u-v-path. We can show that the LP is feasible if and only if D is realizable. Furthermore,
any feasible solution of the LP corresponds to a frugal realization with fractional labels,
which can be made integral in a straightforward post-processing step. ◀

By testing additional conditions (such as the absence of special edges) before constructing
the linear program, we can also use the approach to solve all other variants of URGR.
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5 Hardness for Undirected Reachability Graph Realizability

In this section, we show that all considered versions of Undirected Reachability Graph
Realizability are NP-hard, even on instances with a constant maximum degree. We obtain
these hardness results by reductions from SAT, where we have a source si and a terminal
vertex ti for each clause ci, such that D contains the dashed arc (si, ti). The only way to
realize such an arc is to follow a dense path that crosses through some variable gadget. We
design a variable gadget for each variable x, for which the only way to realize it is to ensure
that (i) only clauses that contain x positively can reach their terminal via this variable gadget,
or (ii) only clauses that contain x negatively can reach their terminal over this variable
gadget.

▶ Theorem 14 (⋆). Each version of URGR under consideration is NP-hard on directed
graphs of constant maximum degree. Moreover, no version of URGR under consideration
can be solved in 2o(|V |+|A|) · nO(1) time, unless the ETH fails.

Hence, the running time of Theorem 5 can presumably not be improved significantly.
We now strengthen our hardness result for Any Strict URGR and Simple Strict

URGR, which will highly motivate the analysis of parameterized algorithms for the parameter
“feedback edge set number” of the solid graph, which we consider in Section 6.

▶ Theorem 15 (⋆). Any Strict URGR and Simple Strict URGR are W[2]-hard when
parameterized by the feedback vertex set number and treedepth of the solid graph.

Proof. We reduce from Set Cover which is W[2]-hard when parameterized by k [10].
Let I := (U, F , k) be an instance of Set Cover with F = {F1, . . . , Fr}. Assume without

loss of generality that each element of U is contained in at least one hyperedge and that F has
size at least k, as otherwise I could be solved trivially. We obtain a directed graph D = (V, A)
with solid graph G = (V, E) as follows: The graphs contain the vertices {⊤, a, a′, b, b′, ⊥},
each element u ∈ U as a vertex, and for each i ∈ [1, k] the vertex ci. Additionally, for
each F ∈ F and each u ∈ F , G contain the vertices wF

u , vF
u , and qF

u .
Next, we describe the solid edges of G, that is, the bidirectional arcs of D. See Figure 2

for the solid edges and dashed arcs of the main connection gadget of the instance.
The graph G contains the edges {a, a′}, {b, b′}, and for each i ∈ [1, k], the edges {a′, ci},

{ci, b′}, and {ci, ⊤}. Moreover, for each F ∈ F and each u ∈ F , G contains the edges {u, wF
u },

{wF
u , a}, {wF

u , b}, {{wF
u , ci} | i ∈ [1, k]}, {wF

u , vF
u }, {wF

u , qF
u }, {vF

u , ⊥}, and {qF
u , ⊤}.

Finally, we describe the dashed arcs: D contains the dashed arcs (a′, b), (b, a), (a′, ⊤),
(b, ⊤), and (⊤, b′). For each i ∈ [1, k], D also contains the dashed arcs (b, ci) and (ci, a).
Let u ∈ U . Then, D contains the arc (u, ⊤). Moreover, D contains the arcs (u, a), (u, b),
(u, b′), and (u, ci) for each i ∈ [1, k]. Additionally, for each hyperedge F ∈ F with u ∈ F , D

contains the arcs (u, vF
u ), (vF

u , a), (b, vF
u ), (wF

u , ⊤), (wF
u , b′), (a′, wF

u ), (qF
u , vF

u ), (qF
u , a), (qF

u , b),
(qF

u , b′), and (qF
u , ci) for each i ∈ [1, k]. The only other dashed arcs in D are between vF

u -
vertices. Let Fx, Fy ∈ F with x < y and let ux ∈ Fx and uy ∈ Fy. Then, D contains the
arc (vFx

ux
, v

Fy
uy ).

This completes the construction of D. First, we show the parameter bounds.

▷ Claim 16 (⋆). G has a feedback vertex set of size k + 6 and treedepth O(k).

We show that I is a yes-instance of Set Cover if and only if D is realizable via strict
temporal paths. More precisely, we show that if I is a yes-instance of Set Cover, then there
is a simple undirected temporal graph with strict reachability graph D. This then implies
the correctness of the reduction for both Any Strict URGR and Simple Strict URGR.
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⊤

⊥

u wFℓ
u

vFℓ
u

qFℓ
u

u′w
Fj

u′

v
Fj

u′

q
Fj

u′

r + 5

r + 4

2

r + 4

1

r + 5

2

αFℓ

1

r + 3

αFℓ

1

r + 5

2

αFj

1

r + 3

αFj

r + 3

αFℓ
αFj

u ⊤ vF
u wF

u qF
u a a′ b b′ ci, i ∈ [1, k] ⊥

u 1 1 1 0 1 0 1 1 1 0
⊤ 0 0 0 1 0 0 0 1 1 0
vF

u 0 0 1 0 1 0 0 0 0 1
wF

u 1 1 1 1 1 0 1 1 1 0
qF

u 0 1 1 1 1 0 1 1 1 0
a 0 0 0 1 0 1 0 0 0 0
a′ 0 1 0 1 0 1 0 1 1 0
b 0 1 1 1 0 1 0 1 1 0
b′ 0 0 0 0 0 0 0 1 1 0

ci, i ∈ [1, k] 0 1 0 1 0 1 1 0 1 0
⊥ 0 0 1 0 0 0 0 0 0 0

Figure 2 Illustration of a part of the adjacency matrix of the W[2]-hardness reduction. The
highlighted cells of the matrix indicate the dashed arcs. As we show, the labels αFℓ and αFj need
to be distinct if the hyperedges Fℓ and Fj are distinct. Thus, for each i ∈ [1, k], labeling both
edges {w

Fℓ
u , ci} and {w

Fj

u′ , ci} is not possible, as otherwise, there would be a temporal path from w
Fℓ
u

to w
Fj

u′ (or vice versa), which is not allowed.
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We defer this proof to the full version and only provide an informal idea for the correctness.
Intuitively, in each realization for D, for each i ∈ [1, k], there can be at most one hyperedge F ∈
F for which edges between ci and vertices of WF := {wF

u | u ∈ F} can receive labels. This
can be seen as follows: For each wF ′

u′ ∈ V , (i) there is no dashed arc between wF ′

u′ and ⊥ and
(ii) there is no dashed arc between vF ′

u′ and ci. Hence, Observation 1 implies that, if {wF ′

u′ , ci}
receives at least one label, then there is some αF ′ ∈ N, such that the edges {wF ′

u′ , ci}
and {vF ′

u′ , ⊥} receive the label set {αF ′} under λ. Based on the dashed arcs between
the vF ′

u′ -vertices, the label αF ′ and the label αF ′′ are distinct for distinct hyperedges F ′

and F ′′. This then implies that there can be at most one hyperedge F ∈ F for which edges
between ci and vertices of WF can receive labels, as otherwise, a strict temporal path between
distinct wF ′

u′ -vertices would be realized.
The edges with at least one label between ci and wF

u -vertices thus resemble a selection of
at most one hyperedge of F for each i ∈ [1, k]. Since the only dense paths from a vertex u ∈ U

to ⊤ are of the form (u, wF
u , ci, ⊤) for i ∈ [1, k] and F ∈ F with u ∈ F , this selection of k

hyperedges encodes a set cover, as the arcs (u, ⊤) are realized over such dense paths. ◀

6 Parameterizing by the Feedback Edge Set Number

In this section we generalize our algorithm on tree instances of URGR to tree-like graphs.
Recall that a feedback edge set of a graph G is a set F of edges of G, such that G − F is
acyclic. We denote by fes the feedback edge set number of the solid graph G of D, that is,
the size of the smallest feedback edge set of G.

▶ Theorem 17. Each version of URGR can be solved in fesO(fes2) · nO(1) time.

Recall that the parameter can presumably not be replaced by a smaller parameter like
feedback vertex set number or treedepth (see Theorem 15). In the remainder of this section,
we present the main idea for the proof of Theorem 17. We will only describe the algorithm
for the most general version Any Strict URGR, but for all more restrictive versions, all
arguments work analogously.

Definitions and Notations. Let G = (V, E) be the solid graph and let F be a minimum size
feedback edge set of G. We assume without loss of generality that G is connected, as otherwise,
we can solve each connected component independently, or detect in polynomial time that D

is not realizable if there are dashed arcs between different connected components of the solid
graph. Moreover, let X denote the endpoints of the edges of F . Note that |X| ≤ 2 · |F |.
We define the set V ∗ as the (unique) largest subset S of vertices of V that each have at
least two neighbors in G[S], that is, V ∗ is the 2-core [24] of G. This set can be computed
in polynomial time. Moreover, we define V ′ := V \ V ∗. Note that X ⊆ V ∗, since F is a
minimum-size feedback edge set. Since G is connected, for each vertex v′ ∈ V ′, there is
a unique vertex v ∈ V ∗ which has closest distance to v′ among all vertices of V ∗. For a
vertex v ∈ V ∗, denote by Vv the set of all vertices of V ′ for which v is the closest neighbor
in V ∗. Note that Vv might be empty. Since v′ is in no cycle, removing v from G would result
in v′ ending up in a component that has no vertex of V ∗. Hence, Tv := G[{v} ∪ Vv] is a tree
for which we call v the root. Moreover, we call Tv the pendant tree of v.

Recall that each vertex of V ∗ has degree at least 2 in G[V ∗]. Furthermore, G − F is
acyclic and thus G[V ∗] − F is a tree. Let Y3 denote the set of all vertices of degree at
least 3 in G[V ∗] − F , and let Y2 be the neighbors of X ∪ Y3 in V ∗ \ (X ∪ Y3). Observe
that each leaf of G[V ∗] − F is a vertex of X. Moreover, in each tree with ℓ leaves, there
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X vertex

Y3 vertex

Y2 vertex

feedback edge set edge
V ∗

X∗-connector

X∗-connector tree

u

Tu

v

Tv

X∗ := X ∪ Y2 ∪ Y3

Figure 3 An illustration of the main definitions used by the FPT algorithm for parameter fes.
The grey area contains the vertices of V ∗, that is, the 2-core of G.

are O(ℓ) vertices having (i) degree at least 3 or (ii) a neighbor of degree at least 3. This
implies that |Y2 ∪ Y3| ∈ O(|X|). Let X∗ := X ∪ Y2 ∪ Y3. See Figure 3 for an illustration
of these sets of vertices and some of the main definitions used in this section. By the
above, |X∗| ∈ O(|X|) ⊆ O(fes). Recall that each vertex of Y2 has degree exactly 2 in G[V ∗].
Moreover, note that each vertex of V ∗ \ X∗ is part of a unique path P where each internal
vertex of P is from V ∗ \ X∗ and the endpoints of P are from Y2. For each such path, each
internal vertex has degree exactly 2 in G[V ∗] and there are at most |X∗| − 1 such paths,
since G[V ∗] − F is acyclic. Note that X∗ contains all vertices that are part of triangles
in G[V ∗] and thus in G. This implies that in each minimal realization of D, each edge
incident with at least one vertex of V \ X∗ receives at most two labels (see Lemma 2). We
now define the above mentioned paths between the vertices of Y2 is a more general way.

▶ Definition 18. Let W with X∗ ⊆ W ⊆ V ∗ and let P be a path of length at least 2
in G[V ∗] with endpoints a and b in W and all internal vertices from V ∗ \ W . We call P

a W -connector. Moreover, let C := G[V (P ) ∪
⋃

q∈V (P )\{a,b} Vq]. We call C a W -connector
tree and the extension of P .

Note that the endpoints of each X∗-connector are from Y2 and thus have degree 2 in G[V ∗].
Moreover, each internal vertex v of a W -connector P has degree exactly 2 in G[V ∗], that is,
the only two neighbors of v in G[V ∗] are the predecessor and the successor of v in P . This
also implies that each endpoint of a W -connector has degree exactly 2 in G[V ∗]. Since each
edge of P is incident with at least one vertex of V \ W ⊆ V \ X∗, in each minimal realization
of D, each edge of each W -connector receives at most two labels (see Lemma 2). The latter
also holds for each W -connector tree.

▶ Observation 19. Let W with X∗ ⊆ W ⊆ V ∗. Then, there are O(|W | + fes) edges
between vertices of W in G and there are O(|W | + fes) W -connectors. Moreover, for each
vertex q ∈ V \ (W ∪

⋃
w∈W Vw), there is exactly one W -connector tree that contains q.

Note that this is a general property of graphs with a feedback edge set of size fes.

ESA 2025



93:14 Recognizing and Realizing Temporal Reachability Graphs

Abstract Description of the Algorithm. Our algorithm uses two preprocessing steps.
In the first step, we will present a polynomial-time reduction rule based on the splitting

operations presented in Section 4. With this reduction rule, we will be able to remove vertices
from large pendant trees. After exhaustive application, for each vertex x ∈ V ∗, the pendant
tree Tx will have O(dx) vertices, where dx denotes the degree of x in G[V ∗].

In the second step, we extend the set X∗ to a set W ∗ ⊆ V ∗ such that each W ∗-connector
has some useful properties (we will define connectors with these properties as nice connectors).
Intuitively, a connector P with extension C is nice if (i) in a realization for D, the arcs
in D[V (C)] can only be realized by temporal paths that are contained in the connector
tree C, and (ii) for each arc between a vertex outside of C and a vertex inside of C, we can
in polynomial time detect over which (unique) edge of the connector incident with one of its
endpoints this arc is realized. As we will show, we can compute such a set W ∗ of size O(fes)
in polynomial time, or correctly detect that the input graph is not realizable. By the first
part, we additionally get that the total number of vertices in pendant trees that have their
root in W ∗ is O(|W ∗| + fes) = O(fes).

The algorithm then works as follows: We iterate over all possible partial labelings λ on
the O(fes) edges incident with vertices of W ∗ or vertices of pendant trees that have their
root in W ∗. As we will show, we can assume that each of these edges will only receive
O(fes) labels in each minimal realization. For each such labeling λ, we need to check whether
we can extend the labeling to the so far unlabeled edges, that is, the edges that are part of
any W ∗-connector tree. As we will show, we can compute for each such connector P with
extension C in polynomial time a set LP of O(1) labelings for the edges of C, such that
if λ can be extended to a realization for D, then we can extend λ (independently from the
other connectors) by one of the labelings in LP . Since W ∗ has size O(fes), there are only
O(fes) many W ∗-connectors (see Observation 19) and for each such connector P , the set LP of
labelings has constant size. Our algorithm thus iterates over all possible O(1)O(fes) = 2O(fes)

labeling combinations for the connectors and checks whether one of these combinations
extends λ to a realization for D. Summarizing, we will show the following.

▶ Proposition 20. In polynomial time, we can detect that D is not realizable, or compute
a set W ∗ with X∗ ⊆ W ∗ ⊆ V ∗, such that the set of edges E∗ that are (i) incident with at
least one vertex of W ∗ or (ii) part of some pendant tree with root in W ∗, has size O(fes)
and where for each labeling λ of the edges of E∗, we can in 2O(fes) · nO(1) time (a) compute a
labeling that realizes D, or (b) detect that there no frugal realization for D that agrees with λ

on the labels of all edges of E∗.

The running time of this algorithm is then fesO(fes2) · nO(1), since (i) all preprocessing
steps run in polynomial time, (ii) we only have to consider fesO(fes2) labelings λ (since we
prelabel O(fes) edges with O(fes) labels each), and (iii) for each labeling λ, we only have to
check for 2O(fes) possible ways to extend λ to a realization for D. To see the second part, we
show that it is sufficient to assign only labels of {i · 2 · n | i ∈ O(fes2)} in λ.

6.1 Technical Highlights and Difficulties of the Algorithm
We now describe in more detail the intuition about the two preprocessing steps, as well as
the algorithm to compute a constant number of labelings for each nice connector.

Dealing with pendant trees. Recall that dx denotes the degree of a vertex x ∈ V ∗ in G[V ∗].
To reduce each pendant tree Tx with x ∈ V ∗ to a size of O(dx), we first apply the three
splitting operations of Section 4 to each edge of Tx incident with x. Since each of these edges
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is a bridge and part of a tree, one of the two resulting instances produced by the splitting
operations is then a tree and can be solved in polynomial time. We thus stick with the one
resulting instance which is not a tree. As we show, by applying the splitting operations, we
get that (i) for each special bridge {b, x} of Tx incident with x, b has at most two neighbors
besides x (namely, the possible in-leaf and the possible out-leaf) and (ii) for each non-special
bridge {b, x} of Tx incident with x, b is a leaf. This directly implies that Tx has depth 2 and
the number of leaves of Tx is O(|Bx|), where Bx denotes the neighbors of x in Tx.

Thus, to reduce the size of Tx it suffices to reduce the number of vertices in Bx to O(dx).
To do so, we show that for each external edge e (that is, an edge that is incident with x but
not contained in Tx), we can detect in polynomial time a set of at most 5 internal edges (that
is, edges between x and vertices of Bx) that “surround” or “block” the edge e. Intuitively, in
each realization for D, no other internal edge can share a label with e. This defines a total
of O(dx) internal edges that are surrounding or blocking. Let Sx denote these edges. Based
on this set of edges, we then show that we can efficiently (i) detect that D is not realizable,
or (ii) find a vertex b of Bx that (together with its possible leaf-neighbors) can safely be
removed from D, if Bx has size ω(|Sx|). Hence, after exhaustive application of this operation,
only O(|Sx|) ⊆ O(dx) vertices of Bx remain. Since each of these vertices only has at most
two neighbors besides x, and these neighbors are leaves, the total size of Tx is then O(dx).

Ensuring connectors with nice properties. We now give a more formal idea behind the
definition of nice connectors. Let P be a connector with endpoints a and b, and let C be
the extension of P . Then, P is nice, if (i) there is no dense path between a and b outside
of D[V (C)] and (ii) for each arc (u, v) ∈ D between a vertex of C and a vertex outside of C,
there is no dense (u, v)-path that goes over a or there is no dense (u, v)-path that goes over b.

Since the definition of nice connectors relies on the non-existence of dense paths between
specific vertex pairs, detecting whether a connector is nice can presumably not be done in
polynomial time.2 To still achieve the goal of finding a desired set W ∗ where each connector
is nice, we show the following: Whenever we have a set W ⊇ X∗ and a W -connector P ,
then we can in polynomial time (i) detect that D is not realizable or (ii) compute a constant
number of vertices UP of P , such that each subpath of P that is a (W ∪ UP )-connector is
nice. That is, even though we cannot check efficiently whether the nice property is fulfilled
for a given connector, we can ensure it by adding few vertices to our set. To compute the
set W ∗, we start with W ∗ = X∗ and iteratively add for each X∗-connector P the set UP

to W ∗. Since |X∗| ∈ O(fes) and there are O(fes) X∗-connectors, the resulting set W ∗ also
has size O(fes). As we show, the update of W ∗ preserves the nice property of the connector
before and after the update. In this way, we ensure that each W ∗-connector is nice.

Dealing with nice connectors. Recall the definition of nice connectors. The first property
essentially ensures that arcs in D[V (C)] can only be realized via dense paths in D[V (C)],
which makes the local realization of D[V (C)] in some sense independent from the remainder
of D. The second property ensures that we only have one choice (with respect to dense paths
inside of D[V (C)]) to realize an arc (u, v) between an internal and an external vertex.

We make use of these properties, since a nice connector P and its extension C only
interact with the remainder of D via exactly two edges ea and eb. Moreover, both these
edges receive at most two labels in every frugal realization. Assuming we are given the

2 This is due to the fact that finding a dense path between two specific vertices can be shown to be
NP-hard by reducing from Multicolored Clique.
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labeling for ea and eb, we show that we can compute a constant number of labelings LP

for the edges of C, such that if there is a realization λ for D agreeing with the prelabeling
of ea and eb, then we can replace the labels of λ on the edges of C by the labels of some
labeling in LP . The essential idea behind this algorithm is to build a constant number of
tree instances in which we simulate how the connector interacts with the remainder of D

in any possible labeling. As we show, we only have to (i) consider the cases for each of the
edges ea and eb, whether there are temporal paths in λ that enter or exit C via ea (eb) via
the smallest or largest label of ea (eb), and (ii) consider the cases whether some temporal
paths under λ enter C via ea and leave via eb and whether they traverse the respective edges
at their smallest or largest label. These are in total only a constant number of options. For
each such option, we construct a tree instance of the problem obtained from D[V (C)] by
adding a constant number of vertices each to simulate the specific option. In some sense,
these instances are generalizations of the instances built in the splitting rule for special
bridges. Afterwards, we check for which of these instances we can find a labeling that agrees
with the prelabeling on ea and eb and add such a labeling to LP if it exists. The latter task
can be performed in polynomial time, by using our linear program for tree instances.

7 The Complexity of Directed Reachability Graph Realizability

Finally, we consider the complexity of versions of Directed Reachability Graph Real-
izability. As already discussed by Döring [11], each directed graph D can be the strict
reachability graph of a simple directed temporal graph. Hence, Any Strict DRGR and
Simple Strict DRGR are always yes-instances and can thus be solved in polynomial time.

We now show that all DAGs and all transitive graphs are trivial yes-instances for each
version of the problem.

▶ Lemma 21 (⋆). An instance D = (V, A) of DRGR is a yes-instance, if (i) we consider
Any Strict DRGR or Simple Strict DRGR, or (ii) D is a DAG or a transitive graph.

Here, a directed graph D = (V, A) is transitive, if for every distinct vertices u, v, w ∈ V

with (u, v) ∈ A and (v, w) ∈ A, the arc (u, w) is also in A.
All other versions of DRGR are NP-hard even on graphs that are close to DAGs. More

precisely, on graphs where a DAG can be obtained by removing a constant number of arcs.

▶ Theorem 22 (⋆). Proper DRGR, Happy DRGR, and all considered versions of Non-
strict DRGR are NP-hard on graphs with a constant size feedback arc set. Moreover, none
of these versions of DRGR can be solved in 2o(|V |+|A|) · nO(1) time, unless the ETH fails.

8 Conclusion

We studied Reachability Graph Realizability and gave for both directed and undirected
temporal graphs the complete picture for the classical complexity of all settings, answering
this open problem posed by Casteigts et al. [3] and Döring [11]. For URGR, we additionally
showed that the problem can be solved in FPT-time for the feedback edge set number fes of
the solid graph. As we showed, this parameter cannot be replaced by smaller parameters like
feedback vertex set number or treedepth of the solid graph, unless FPT = W[2].

There are several directions for future work: First, it would be interesting to see whether
(some) versions of URGR admit a polynomial kernel for fes. Another interesting task is to
determine whether Proper URGR, Happy URGR, or Non-strict URGR admits an FPT
algorithm for feedback vertex set or treedepth. This is not excluded by our W[2]-hardness
result, since that reduction only worked for Any Strict URGR and Simple Strict URGR.
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Finally, one could analyze the parameterized complexity of Directed Reachability
Graph Realizability with respect to directed graph parameters.
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