
Faster Algorithm for Bounded Tree Edit Distance
in the Low-Distance Regime
Tomasz Kociumaka #

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Ali Shahali #

Sharif University of Technology, Tehran, Iran

Abstract
The tree edit distance is a natural dissimilarity measure between rooted ordered trees whose nodes
are labeled over an alphabet Σ. It is defined as the minimum number of node edits – insertions,
deletions, and relabelings – required to transform one tree into the other. The weighted variant
assigns costs ≥ 1 to edits (based on node labels), minimizing total cost rather than edit count.

The unweighted tree edit distance between two trees of total size n can be computed in O(n2.6857)
time; in contrast, determining the weighted tree edit distance is fine-grained equivalent to the All-Pairs
Shortest Paths (APSP) problem and requires n3/2Ω(

√
log n) time [Nogler, Polak, Saha, Vassilevska

Williams, Xu, Ye; STOC’25]. These impractical super-quadratic times for large, similar trees
motivate the bounded version, parameterizing runtime by the distance k to enable faster algorithms
for k ≪ n.

Prior algorithms for bounded unweighted edit distance achieve O(nk2 log n) [Akmal & Jin;
ICALP’21] and O(n + k7 log k) [Das, Gilbert, Hajiaghayi, Kociumaka, Saha; STOC’23]. For
weighted, only O(n + k15) is known [Das, Gilbert, Hajiaghayi, Kociumaka, Saha; STOC’23].

We present an O(n + k6 log k)-time algorithm for bounded tree edit distance in both weight-
ed/unweighted settings. First, we devise a simpler weighted O(nk2 log n)-time algorithm. Next,
we exploit periodic structures in input trees via an optimized universal kernel: modifying prior
O(n)-time O(k5)-size kernels to generate such structured instances, enabling efficient analysis.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases tree edit distance, edit distance, kernelization, dynamic programming

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.94

Related Version Full Version: https://arxiv.org/abs/2507.02701 [27]

Funding Ali Shahali: The work of was carried out mostly during a summer internship at the Max
Planck Institute for Informatics.

1 Introduction

The edit distance between two strings – the minimum cost of insertions, deletions, and
substitutions needed to transform one string into the other – is one of the most widely used
string similarity measures with numerous algorithmic applications. It provides a robust
model for comparing sequential data and underpins techniques in fields such as computational
biology, natural language processing, and text correction. Nevertheless, many data types
exhibit hierarchical rather than linear structure. For example, RNA secondary structures,
syntactic parse trees of natural language sentences, and hierarchical representations of
documents and code all store information in tree-like forms. One can linearize such data and
still use string edit distance, but the resulting alignments disregard the original hierarchical
structure, and thus more expressive similarity measures are needed in most scenarios.

First introduced by Selkow [38], tree edit distance generalizes the notion of string edit
distance to rooted ordered trees and forests with nodes labeled over an alphabet Σ. It
quantifies the dissimilarity between two forests as the minimal cost of a sequence of node

© Tomasz Kociumaka and Ali Shahali;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 94; pp. 94:1–94:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomasz.kociumaka@mpi-inf.mpg.de
https://orcid.org/0000-0002-2477-1702
mailto:alishahali1382@gmail.com
https://orcid.org/0009-0008-6181-8881
https://doi.org/10.4230/LIPIcs.ESA.2025.94
https://arxiv.org/abs/2507.02701
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

94:2 Faster Algorithm for Bounded Tree Edit Distance in the Low-Distance Regime

edits – insertions, deletions, and relabelings – required to transform one forest into the other.
This distance naturally captures both structural and label-based differences and serves as a
core primitive in various algorithmic and applied domains, including computational biology
[22, 39, 23, 45], analysis of structured data (such as XML and JSON files) [9, 13, 12, 20, 44],
image processing [5, 26, 25, 36], and information extraction [16, 48]; see [6, 2] for surveys.

Tai [41] proposed the first polynomial-time algorithm for computing the tree edit distance:
a dynamic programming procedure running in O(n6) time, where n is the total number of
nodes in the input forests. In the following decades, a sequence of works progressively improved
the runtime. Zhang and Shasha [49] introduced an O(n4)-time algorithm, and then Klein [24]
brought the complexity down to O(n3 log n). Subsequently, Demaine, Mozes, Rossman,
and Weimann [17] presented an O(n3)-time solution, whereas Bringmann, Gawrychowski,
Mozes, and Weimann [8] proved that a hypothetical n3−Ω(1)-time algorithm would violate
the All-Pairs Shortest Paths (APSP) hypothesis in fine-grained complexity. Very recently,
Nogler, Polak, Saha, Vassilevska Williams, Xu, and Ye [33] showed that computing the tree
edit distance is, in fact, equivalent to the APSP problem, and the n3/2Ω(

√
log n) running

time can be inherited from the state of the art for the latter task [46].
The aforementioned conditional lower bounds apply to the weighted tree edit distance only,

where the cost of each edit depends on the involved labels. In the unweighted version with
unit costs, a series of recent results achieved truly subcubic running time using fast matrix
multiplication. Mao [29] presented an O(n2.9546)-time solution, which was subsequently
improved by Dürr [18] to O(n2.9148) and by Nogler et al. [33] to Õ(n(3+ω)/2) = O(n2.6857),
where ω is the fast matrix multiplication exponent and Õ(·) hides poly log n factors. The
state-of-the-art conditional lower bound, inherited from string edit distance [4] and assuming
the Orthogonal Vectors Hypothesis, prohibits n2−Ω(1)-time algorithms already if |Σ| = 1.

Bounded Tree Edit Distance. Even though the decades of research resulted in significantly
faster tree edit distance algorithms, they also revealed fundamental challenges that explain
the difficulty of this problem. A natural way of circumventing these barriers, paved by
classical work for string edit distance [43, 31, 28], is to parameterize the running time not
only in terms of the length n of the input forests but also the value k of the computed
distance. This version of tree edit distance has originally been studied in the unweighted
setting only. Touzet [42] adapted the ideas of Zhang and Shasha [49] to derive an O(nk3)-time
algorithm, whereas Akmal and Jin [1] improved the running time to O(nk2 log n) based on
the approach of Klein [24]. The latter running time remains the state-of-the-art for medium
distances. In the low-distance regime, Das, Gilbert, Hajiaghayi, Kociumaka, Saha, and
Saleh [15] achieved an Õ(n + k15)-time solution and subsequently improved the running time
to O(n + k7 log k) [14]. They also studied the weighted version of the problem and presented
an O(n + k15)-time algorithm assuming that the weight function is normalized (each edit
costs at least one unit; this prohibits arbitrary scaling) and satisfies the triangle inequality.

Still, the Õ(n + poly(k)) running times for tree edit distance are much larger than for
string edit distance and the related Dyck edit distance problem, which asks for the minimum
cost of edits needed to make a given string of parentheses balanced (so that it represents
a node-labeled forest). In the unweighted setting, the state-of-the-art running times are
O(n + k2) for string edit distance [28] and O(n + k5.442) for Dyck edit distance [21]. In
the presence of weights, these complexities increase to Õ(n +

√
nk3) ≤ Õ(n + k3) [10] and

O(n+k12) [14], respectively. Thus, tree edit distance is a natural candidate for improvements.

T. Kociumaka and A. Shahali 94:3

Our Results. As the main contribution, we bring the time complexity of tree edit distance to
Õ(n + k6). Even for unit weights, this improves upon the state of the art if n1/7 ≪ k ≪ n1/4.

▶ Theorem 1.1. There exists a deterministic algorithm that, given two forests F and G with
n nodes in total, each with a label from an alphabet Σ, and oracle access to a normalized
weight function w : (Σ ∪ {ε})2 → R≥0 satisfying the triangle inequality, determines the tree
edit distance k := tedw(F, G) in O(n + k6 log k) time.

We also prove that the O(nk2 log n) running time by Akmal and Jin [1] remains valid in
the presence of weights. This approach gives the best complexity when n1/4 ≪ k ≪ n.

▶ Theorem 1.2. There exists a deterministic algorithm that, given two forests F and G,
with n nodes in total, each with a label from an alphabet Σ, and oracle access to a normalized
weight function w : (Σ ∪ {ε})2 → R≥0, determines k := tedw(F, G) in O(nk2 log n) time.

We believe that the original approach of Akmal and Jin [1] supports the weighted setting
with minimal adjustments; nevertheless, we prove Theorem 1.2 using a slightly different
algorithm that is better-suited for further optimizations. Both solutions are variants of
Klein’s dynamic programming [24] with some states pruned. The main difference is that we
view the input forests as balanced sequences of parentheses and cast the tree edit distance
as the minimum cost of a string alignment satisfying a certain consistency property. In our
interpretation (Section 3), it is almost trivial to see that the classic pruning rules, originally
devised to compute string edit distance in O(nk) time [43, 31], can be reused for tree edit
distance in O(nk2 log n) time. In contrast, Akmal and Jin [1, Lemma 9] spend over four
pages (on top of the analysis of [24]) to bound the number of states surviving their pruning
rules.

Theorem 1.2 combined with the results of [14] lets us derive an O(n + k7 log k)-time
algorithm for weighted tree edit distance, matching the previously best running time for unit
weights. This is due to the universal kernel that transforms the input forests to equivalent
forests of size O(k5) preserving the following capped tree edit distance value:

tedw
≤k(F, G) =

{
tedw(F, G) if tedw(F, G) ≤ k,

∞ otherwise.

▶ Theorem 1.3 ([14, Corollary 3.20]). There exists a linear-time algorithm that, given forests
F, G and an integer k ∈ Z+, constructs forests F ′, G′ of size O(k5) such that tedw

≤k(F, G) =
tedw

≤k(F ′, G′) holds for every normalized weight function w satisfying the triangle inequality.

To bring the time complexity from Õ(n + k7) to Õ(n + k6), we adapt both Theorems 1.2
and 1.3. The main novel insight is that the dynamic-programming procedure behind The-
orem 1.2 behaves predictably while processing regions with certain repetitive (periodic)
structure. Upon an appropriate relaxation of the invariant that the dynamic-programming
values satisfy, processing each repetition of the period can be interpreted as a single min-plus
matrix-vector multiplication. When the period repeats many times, the same matrix is used
each time, and thus we can raise the matrix to an appropriate power (with fast exponentia-
tion) and then compute a single matrix-vector product; see Section 4 for details. This can be
seen as a natural counterpart of an optimization used in [10] for string edit distance.1

1 The matrices arising in the string edit distance computation in [10] are O(k) × O(k) Monge matrices,
which allows for computing each matrix-vector product in O(k) time and each matrix-matrix product
in O(k2) time. In the context of tree edit distance, the Monge property is no longer satisfied, so the
complexities increase to O(k2) and O(k3) respectively; in fact, computing the (weighted) tree edit
distance is, in general, as hard as computing the min-plus product of two n × n arbitrary matrices [33].

ESA 2025

94:4 Faster Algorithm for Bounded Tree Edit Distance in the Low-Distance Regime

Intuitively, the worst-case instances for the kernelization algorithm of Theorem 1.3 are
close to having the necessary structure for our optimization to improve the worst-case running
time. Unfortunately, the implementation in [14] controls the forest sizes only, and it needs
to be modified to keep track of the more subtle instance difficulty measure. The biggest
challenge is that the original algorithm proceeds in logarithmically many steps, each shrinking
the forests by a constant fraction. In every step, the forests are partitioned into O(k) pieces
of size O(n/k), and a constant fraction of pieces is shrunk to size O(k4) each. A partition into
pieces of equal “difficulty” would be much more challenging, so we instead take a different
approach that lets us implement the reduction in a single step; see Section 5 for details.
Notably, the kernelization algorithms for weighted string and Dyck edit distance already have
single-step implementations in [14], but they crucially rely on the fact that the unit-weight
variants of these problems can be solved faster, unlike for tree edit distance.

Related Work

The classical definition of tree edit distance [38] involves labeled rooted trees (or forests)
with node labels. Many other variants have also been studied allowing, among others,
unordered [47, 40], unrooted [40], and edge-labeled [3] trees; see also the surveys [2, 6].

The tree edit distance problem becomes easier not only when the computed distance is
small but also when the input forests are of small depth [49, 11] or when the approximate
distance suffices [3, 7, 37]. There is also a body of work focusing on practical performance
and empirical evaluation, including sequential [34, 35] and parallel [19] implementations.

2 Preliminaries

Consistently with [14], we identify forests with the underlying Euler tours, interpreted as
balanced strings of parentheses. This representation is at the heart of space-efficient data
structures on trees [30, 32], and it allows for a simple definition of tree edits and a seamless
transfer of many tools from strings to forests. Notably, Klein’s algorithm [24] already uses
substrings of the Euler tours of the input forests to identify the dynamic-programming states.

For an alphabet Σ, let PΣ :=
⋃

a∈Σ{(a,)a} denote the set parentheses with labels in Σ.
As formalized next, a forest with node labels over Σ is a balanced string of parentheses in PΣ.

▶ Definition 2.1. The set of forests with labels over Σ (balanced strings over PΣ) is the
smallest subset FΣ ⊆ P∗

Σ satisfying the following conditions:
ε ∈ FΣ,
F ·G ∈ FΣ for every F, G ∈ FΣ,
(a · F ·)a ∈ FΣ for every F ∈ FΣ and a ∈ Σ.

For a forest F , we define the set of nodes VF as the set of intervals [i . . j] ⊆ [0 . . |F |) such
that F [i] is an opening parenthesis, F [j] is a closing parenthesis, and F (i . . j) is balanced. A
forest F is a tree if [0 . . |F |) ∈ VF . For a node u = [i . . j] ∈ VF , we denote the positions of
the opening and the closing parenthesis by o(u) := i and c(u) := j. The label of u, that is,
the character a ∈ Σ such that F [o(u)] = (a and F [c(u)] =)a, is denoted by lbl(u). A simple
inductive argument shows that VF forms a laminar family and, for every i ∈ [0 . . |F |), there
is a unique node u ∈ VF such that i ∈ {o(u), c(u)}; we denote this node by nodeF (i). We
also write mateF (i) for the paired parenthesis, that is, mateF (i) = j if {i, j} = {o(u), c(u)}.

We say that a node u ∈ VF is contained in a fragment F [i . . j) of a forest F if i ≤ o(u) <

c(u) < j; we denote by VF [i. .j) ⊆ VF the set of nodes contained in F [i . . j). Moreover, u

enters F [i . . j) if o(u) < i ≤ c(u) < j and u exits F [i . . j) if i ≤ o(u) < j ≤ c(u). In either of
these two cases, we also say that u straddles F [i . . j).

T. Kociumaka and A. Shahali 94:5

We denote by F[i. .j) the subforest of F induced by F [i . . j), which we obtain from F by
deleting (the parentheses corresponding to) all nodes except for those contained in F [i . . j).
Alternatively, one can obtain F[i. .j) from F [i . . j) by deleting the opening parenthesis of
every node that exits F [i . . j) and the closing parenthesis of every node that enters F [i . . j).

2.1 Tree Edits, Forest Alignments, and Tree Edit Distance
For an alphabet Σ, we define Σ̄ := Σ ∪ {ε}, where ε is the empty string. We say that a
function w : Σ̄2 → R≥0 is normalized if w(a, a) = 0 and w(a, b) ≥ 1 hold for distinct a, b ∈ Σ̄.

Tree edit distance is classically defined using elementary edits transforming F ∈ FΣ:
Node insertion produces F [0 . . i) ·(a ·F [i . . j) ·)a ·F [j . . |F |) for a balanced fragment F [i . . j)

and a label a ∈ Σ, at cost w(ε, a).
Node relabeling produces F [0 . . o(u))·(a ·F (o(u) . . c(u))·)a ·F (c(u) . . |F |) for a node u ∈ VF

and a label a ∈ Σ, at cost w(lbl(u), a).
Node deletion produces F [0 . . o(u)) · F (o(u) . . c(u)) · F (c(u) . . |F |) for a node u ∈ VF , at

cost w(lbl(u), ε).
The tree edit distance tedw(F, G) of two forests F, G ∈ FΣ is then defined as the minimum
cost of a sequence of edits transforming F to G. In this context, without loss of generality, we
can replace w by its transitive closure. If, say w(a, ε) > w(a, b) + w(b, ε), instead of directly
deleting a node with label a, it is more beneficial to first change its label to b and only then
perform the deletion. When w satisfies the triangle inequality, we are guaranteed that an
inserted or relabeled node is never modified (deleted or relabeled) again. Consistently with
modern literature [8, 14, 33], we use a more general alignment-based definition of tedw(F, G)
that enforces the latter condition even if w does not necessarily satisfy the triangle inequality.

▶ Definition 2.2 (Alignment Graph [10]). For strings X, Y ∈ Σ∗ and a weight function
w : Σ̄2 → R≥0, we define the alignment graph AGw(X, Y) as a grid graph with vertices
[0 . . |X|]× [0 . . |Y |] and the following directed edges:

horizontal edges (x, y)→ (x + 1, y) of cost w(X[x], ε) for (x, y) ∈ [0 . . |X|)× [0 . . |Y |],
vertical edges (x, y)→ (x, y + 1) of cost w(ε, Y [y]) for (x, y) ∈ [0 . . |X|]× [0 . . |Y |), and
diagonal edges (x, y)→ (x+1, y +1) of cost w(X[x], Y [y]) for (x, y) ∈ [0 . . |X|)× [0 . . |Y |).

The alignment graph allows for a concise definition of a string alignment.

▶ Definition 2.3 (Alignment). For strings X, Y ∈ Σ∗ and a weight function w : Σ̄2 →
R≥0, an alignment of X[x . . x′) onto Y [y . . y′), denoted by A : X[x . . x′) ⇝⇝ Y [y . . y′), is a
path from (x, y) to (x′, y′) in AGw(X, Y), interpreted as a sequence of vertices. The cost
edw

A(X[x . . x′), Y [y . . y′)) of the alignment A is the total costs of the edges that belong to A.
We write A(X[x . . x′), Y [y . . y′)) for the set of all alignments of X[x . . x′) onto Y [y . . y′).

The edges of an alignment A = A(X[x . . x′), Y [y . . y′)) can be interpreted as follows:
If A includes an edge (x̂, ŷ) → (x̂ + 1, ŷ) for some x̂ ∈ [x . . x′) and ŷ ∈ [y . . y′], then A
deletes X[x̂], denoted by X[x̂] ⇝⇝ A ε.
If A includes an edge (x̂, ŷ) → (x̂, ŷ + 1) for some x̂ ∈ [x . . x′] and ŷ ∈ [y . . y′), then A
inserts Y [ŷ], denoted by ε ⇝⇝ A Y [ŷ].
If A includes an edge (x̂, ŷ)→ (x̂ + 1, ŷ + 1) for some x̂ ∈ [x . . x′) and ŷ ∈ [y . . y′), then
A aligns X[x̂] to Y [ŷ], denoted by X[x̂] ⇝⇝ A Y [ŷ]. If X[x̂] ̸= Y [ŷ], then A substitutes
X[x̂] for Y [ŷ]. If X[x̂] = Y [ŷ], then A matches X[x̂] with Y [ŷ].

Insertions, deletions, and substitutions are jointly called character edits.

ESA 2025

94:6 Faster Algorithm for Bounded Tree Edit Distance in the Low-Distance Regime

The weighted edit distance of fragments X[x . . x′) and Y [y . . y′) with respect to a weight
function w : Σ̄2 → R≥0 is defined as the minimum cost of an alignment:

edw(X[x . . x′), Y [y . . y′)) = min
A∈A(X[x. .x′),Y [y. .y′))

edw
A(X[x . . x′), Y [y . . y′)).

We often consider alignments of the entire string X onto the entire string Y ; we then used
simplified notation including A(X, Y), edw

A(X, Y), and edw(X, Y).

▶ Definition 2.4 (Forest alignment). Consider forests F, G ∈ FΣ. An alignment A ∈
A(F [f . . f ′), G[g . . g′)) is a forest alignment if it satisfies the following consistency condition:

For every two aligned characters F [f̂] ⇝⇝ A G[ĝ], also F [mateF (f̂)] ⇝⇝ A G[mateG(ĝ)].

We write FA(F [f . . f ′), G[g . . g′)) ⊆ A(F [f . . f ′), G[g . . g′)) for the set of forest alignments.

▶ Remark 2.5. Consider a forest alignment A ∈ FA(F [f . . f ′), G[g . . g′)). Then,
A deletes every character F [f̂] with f̂ ∈ [f . . f ′) and mateF (f̂) /∈ [f . . f ′),
A inserts every character G[ĝ] with ĝ ∈ [g . . g′) and mateG(ĝ) /∈ [g . . g′).

Define PΣ = PΣ ∪ {ε} and a mapping λ : PΣ → Σ̄ such that λ((a) = λ()a) = a for each
a ∈ Σ, and λ(ε) = ε. For a weight function w : Σ̄2 → R≥0, we define a corresponding weight
function w̃ : PΣ

2 → R≥0 so that w̃(p, q) = 1
2 w(λ(p), λ(q)) for all p, q ∈ PΣ. The cost of a

forest alignment A ∈ FA(F [f . . f ′), G[g . . g′)) with respect to a weight function w is defined
as tedw

A(F [f . . f ′), G[g . . g′)) := edw̃
A(F [f . . f ′), G[g . . g′)). Moreover, we define

tedw(F [f . . f ′), G[g . . g′)) = min
A∈FA(F [f. .f ′),G[g. .g′))

tedw
A(F [f . . f ′), G[g . . g′)).

For a threshold k ∈ R≥0, we set

tedw
≤k(F [f . . f ′), G[g . . g′)) =

{
tedw(F [f . . f ′), G[g . . g′)) if tedw(F [f . . f ′), G[g . . g′)) ≤ k,

∞ otherwise.

By Remark 2.5, the following value is non-negative for every A ∈ FA(F [f . . f ′), G[g . . g′)):

t̃edw
A(F [f . . f ′), G[g . . g′)) :=

tedw
A(F [f . . f ′), G[g . . g′))−

∑
f̂∈[f. .f ′):

mateF (f̂)/∈[f. .f ′)

w̃(F [f̂], ε)−
∑

ĝ∈[g. .g′):
mateG(ĝ)/∈[g. .g′)

w̃(ε, G[ĝ]).

We naturally generalize this value to t̃edw(F [f . . f ′), G[g . . g′)).

▶ Observation 2.6. For all forests F, G ∈ FΣ, fragments F [f . . f ′) and G[g . . g′), and weight
functions w : Σ̄2 → R≥0, we have t̃edw(F [f . . f ′), G[g . . g′)) = tedw(F[f. .f ′), G[g. .g′)).

3 O(nk2 log n)-Time Algorithm

In this section, we reinterpret Klein’s algorithm [24] and develop its O(nk2 log n)-time variant.

T. Kociumaka and A. Shahali 94:7

3.1 Klein’s Algorithm
Klein’s algorithm [24] uses dynamic programming to compute ted(F[lF . .rF), G[lG. .rG)) =
t̃ed(F [lF . . rF), G[lG . . rG)) for O(n log n) selected fragments F [lF . . rF) of F and all O(n2)
fragments G[lG . . rG) of G. We modify the algorithm slightly so that the computed value
ted(F [lF . . rF), G[lG . . rG)) includes the costs of deleting the single parentheses of nodes
straddling F [lF . . rF) and inserting the single parentheses of nodes straddling G[lG . . rG).

Algorithm 1 Klein(lF , rF , lG, rG): Klein’s algorithm for computing the tree edit distance.

Input: Two fragments F [lF . . rF) and G[lG . . rG) of the input forests
Output: Compute and store the value of dp[lF , rF , lG, rG]

1 if lF = rF then result←
∑

i∈[lG. .rG) w̃(ε, G[i]);
2 else if lG = rG then result←

∑
i∈[lF . .rF) w̃(F [i], ε);

3 else
4 uF = nodeF (lF), vF = nodeF (rF − 1), uG = nodeG(lG), vG = nodeG(rG − 1);
5 if uF /∈ VF [lF . .rF) or (vF ∈ VF [lF . .rF) and size(uF) ≤ size(vF)) then
6 result← dp[lF + 1, rF , lG, rG] + w̃(F [lF], ε);
7 result min← dp[lF , rF , lG + 1, rG] + w̃(ε, G[lG]);
8 if uF ∈ VF [lF . .rF) and uG ∈ VG[lG. .rG) then
9 result min← w̃(F [lF], G[lG]) + dp[lF + 1, c(uF), lG + 1, c(uG)]

+ w̃(F [c(uF)], G[c(uG)]) + dp[c(uF) + 1, rF , c(uG) + 1, rG];
10 else
11 result← dp[lF , rF − 1, lG, rG] + w̃(F [rF − 1], ε);
12 result min← dp[lF , rF , lG, rG − 1] + w̃(ε, G[rG − 1]);
13 if vF ∈ VF [lF . .rF) and vG ∈ VG[lG. .rG) then
14 result min← dp[lF , o(vF), lG, o(vG)] + w̃(F [o(vF)], G[o(vG)])

+ dp[o(vF) + 1, rF − 1, o(vG) + 1, rG − 1] + w̃(F [rF − 1], G[rG − 1]);
15 dp[lF , rF , lG, rG]← result

The algorithm’s implementation is provided in Algorithm 1. We use an operator x
min← y

that assigns x← y if y < x. We also remember which of these assignments were applied so
that we can later trace back the optimal alignment based on this extra information stored.

In the corner case when F [lF . . rF) or G[lG . . rG) is empty, then the unique (and thus
optimal) forest alignment pays for inserting or deleting all characters in the other fragment.
If both F [lF . . rF) and G[lG . . rG) are non-empty, the algorithm considers nodes uF =
nodeF (lF), uG = nodeG(lG), vF = nodeF (rF − 1), and vG = nodeG(rG − 1).

Let us first suppose that uF and vF are contained in F [lF . . rF). If the subtree of vF is at
least as large as the subtree of uF , that is, size(vF) ≥ size(uF), where size(x) = c(x)−o(x)+1,
then algorithm considers three possibilities: F [lF] is deleted, G[lG] is inserted, or F [lF] is
aligned with G[lG]. In the first two possibilities, we can pay for the deleted or inserted
opening parenthesis and align the remaining fragments; see Lines 6–7. In the third possibility,
the consistency condition in the definition of the forest alignments requires that F [mateF (lF)]
is also aligned with G[mateG(lG)]. In particular, the node uG needs to be contained in
G[lG . . rG) so that mateG(lG) = c(uG) and mateF (lF) = c(uF). Thus, we align F (lF . . c(uF))
with G(lG . . c(uG)), align F (c(uF) . . rF) with G(c(uG) . . rG), and pay for aligning uF with
uG, that is F [lF] with G[lG] and F [c(uF)] with G[c(uG)]; see Line 9. If size(vF) < size(uF),
the algorithm handles vF and vG in a symmetric way; see Lines 10–14.

If uF /∈ VF [lF . .rF), we follow Lines 5–9 and effectively consider deleting F [lF] and inserting
G[lG]. Else, if vF /∈ VF [lF . .rF), we follow the symmetric Lines 10–14.

ESA 2025

94:8 Faster Algorithm for Bounded Tree Edit Distance in the Low-Distance Regime

Zhang and Shasha [49] use a very similar dynamic programming; in a baseline version,
their algorithm always constructs the alignment from left to right instead of picking the
side depending on uF and vF . Klein’s optimization allows for an improved running time of
O(n3 log n) instead of O(n4). In the full version [27], we recall the proof of the following
lemma.

▶ Lemma 3.1. The recursive implementation of Algorithm 1 visits O(n log n) fragments of F .

Akmal and Jin’s Algorithm. Akmal and Jin [1] reduce the time complexity of Klein’s
algorithm to O(nk2 log n) when computing ted≤k(F, G). Their solutions prunes some dynamic
programming states so that, in the surviving states, the differences between the sizes
of the subforests F[lF . .rF) and G[lG. .rG) is at most k. This condition also holds for the
difference between the sizes of F[0. .rF) \ F[lF . .rF) and G[0. .lG) \G[lG. .rG), as well as between
F[lF . .|F |) \ F[lF . .rF) and G[lG. .|G|) \ G[lG. .rG); see [1, Lemma 12]. As shown in [1, Lemma
13], for each subforest F[lF . .rF), there are O(k2) subforests G[lG. .rG) satisfying these three
conditions. With a careful implementation, the total number of states becomes O(nk2 log n).

3.2 Our Algorithm
Our variant of Klein’s algorithm simply prunes all states with |lF − lG| > 2k or |rF −rG| > 2k.
In other words, we modify Algorithm 1 so that dp[lF , rF , lG, rG] is set to∞ if either condition
holds, and the existing instructions are executed otherwise. This does not increase the number
O(n log n) of visited fragments F [lF . . rF); see Lemma 3.1. For each of these fragments,
trivially, at most O(k2) fragments of G survive pruning, so the total number of states is
O(nk2 log n). The correctness of the pruning rules follows from the fact that, for all forests
F, G, the width of any alignment in FA(F, G) does not exceed twice its cost, where the width of
an alignment A ∈ A(X[x . . x′), Y [y . . y′)) is defined as width(A) = max{|x̂− ŷ| : (x̂, ŷ) ∈ A}.

In the full version [27], we formalize this intuition using the notion of bounded forest
alignments.

▶ Definition 3.2. Let us fix a threshold k ∈ Z+ and consider fragments F [f . . f ′) and G[g . . g′)
of forests F, G ∈ FΣ. We call a forest alignment A ∈ FA(F [f . . f ′), G[g . . g′)) bounded if
width(A) ≤ 2k. The family of bounded forest alignments is BFAk(F [f . . f ′), G[g . . g′)) ⊆
FA(F [f . . f ′), G[g . . g′)). For a weight function w : Σ̄2 → R≥0, we denote

btedw
k (F [f . . f ′), G[g . . g′)) = min

A∈BFAk(F [f. .f ′),G[g. .g′))
tedw

A(F [f . . f ′), G[g . . g′)).

▶ Lemma 3.3. The dp values computed using the pruned version of Algorithm 1 satisfy

tedw(F [lF . . rF), G[lG . . rG)) ≤ dp[lF , rF , lG, rG] ≤ btedw
k (F [lF . . rF), G[lG . . rG)).

In particular, the dp[0, |F |, 0, |G|] entry stores a value between tedw(F, G) and btedw
k (F, G).

The following observation implies that this is enough to retrieve tedw
≤k(F, G).

▶ Observation 3.4. If tedw(F, G) ≤ k, then tedw(F, G) = btedw
k (F, G).

Proof. Consider the optimal forest alignment A ∈ FA(F, G) with tedw
A(F, G) ≤ k. For each

edge (f, g)→ (f ′, g′), either f−g = f ′−g′ (if the edge is diagonal) or
∣∣(f−g)−(f ′−g′)| = 1 and

the edge cost is at least 1
2 (if the edge is vertical or horizontal). Since (0, 0) ∈ A and the total

cost of edges in A is at most k, every (f, g) ∈ A satisfies |f − g| ≤ 2k, i.e., width(A) ≤ 2k and
A ∈ BFAk(F, G). Hence, btedw

k (F, G) ≤ tedw
A(F, G) = tedw(F, G). The converse inequality

tedw(F, G) ≤ btedw
k (F, G) holds trivially due to BFAk(F, G) ⊆ FA(F, G). ◀

T. Kociumaka and A. Shahali 94:9

With minor implementation details needed to avoid logarithmic overheads for memoization
using a sparse table dp (Akmal and Jin [1] ignore this issue), we achieve the following result.

▶ Theorem 1.2. There exists a deterministic algorithm that, given two forests F and G,
with n nodes in total, each with a label from an alphabet Σ, and oracle access to a normalized
weight function w : (Σ ∪ {ε})2 → R≥0, determines k := tedw(F, G) in O(nk2 log n) time.

4 Faster Algorithm for Repetitive Inputs

In this section, we present an optimized version of our O(nk2 log n)-time algorithm capable
of exploiting certain repetitive structures within the input forests F and G. The following
notion of free pairs captures the structure that our algorithm is able to utilize.

▶ Definition 4.1 (Free pair, free block). Consider forests F, G ∈ FΣ and a fixed threshold
k ∈ Z+. We call a pair of fragments F [pF . . qF) and G[pG . . qG) a free pair if
|pF − pG| ≤ 2k, and
there exists a balanced string R ∈ FΣ with 4k ≤ |R| < 8k such that F [pF−|R| . . qF +|R|) =
Re+2 = G[pG − |R| . . qG + |R|) holds for some integer exponent e ∈ Z+.

For that free pair, we call the fragment F [pF . . qF) a free block with period R and exponent e.

Our improved algorithm assumes that the input forests F and G are augmented with a
collection F of disjoint free blocks F [pF . . qF), each associated with the underlying period R,
exponent e, and the corresponding fragment G[pG . . qG). The speed-up compared to the
algorithm of Section 3 is noticeable if the free blocks in F jointly cover most of the characters
of F , that is, the number of remaining non-free characters is asymptotically smaller than |F |.

▶ Theorem 4.2. There exists a deterministic algorithm that, given forests F, G ∈ FΣ of total
length n, oracle access to a normalized weight function w : Σ̄2 → R≥0, a threshold k ∈ Z+,
and a collection F of t disjoint free blocks in F such that m characters of F are not contained
in any free block, computes tedw

≤k(F, G) in O(n log n + mk2 log n + tk3 log n) time.

Intuitively, the algorithm skips all the free blocks, which allows reducing the O(nk2 log n)
running time of Theorem 1.2 to O(mk2 log n), i.e., the algorithm needs to pay for non-free
characters only. Nevertheless, processing each free block takes O(k3 log n) extra time, and
O(n log n)-time preprocessing time is still needed to avoid overheads for memoization.

Processing Free Blocks. To understand our speed-up, let us consider a free pair with
period R and exponent e, that is, F [pF . . qF) = Re = G[pG . . qG). We picked the parameters
so that |R| ≥ 4k ≥ width(A) + |pF − pG|, and thus every alignment A ∈ BFAk(F, G) aligns
F [pF . . qF) = Re with a fragment G[p′

G . . q′
G) contained in G[pG−|R| . . qG + |R|) = Re+2. By

the same argument, the image of every copy of R within F [pF . . qF) = Re is contained within
the corresponding copy of R3 within G[pG − |R| . . qG + |R|) = Re+2. Moreover, when we
align F [pF . . qF) to G[p′

F . . q′
F) ⊆ G[pG − |R| . . qG + |R|), it suffices to partition G[p′

F . . q′
F)

into e fragments and independently optimally align each copy of R in F [pF . . qF) with the
corresponding fragment of G[p′

F . . q′
F). This is because R is balanced, so every node of Re

is contained within a single copy of R, and thus the consistency condition in Definition 2.4
does not impose any constraints affecting multiple copies of R.

The optimal costs of aligning R with relevant fragments of R3 can be encoded in the
following matrix, constructible in O(|R|3 log |R|) time using Algorithm 1 (Klein’s algorithm).

ESA 2025

94:10 Faster Algorithm for Bounded Tree Edit Distance in the Low-Distance Regime

▶ Definition 4.3. For a balanced string R ∈ FΣ, we define a matrix MR of size (2|R|+ 1)×
(2|R|+ 1) with indices i, j in the range [−|R| . . |R|] as follows:

MR[i, j] =
{

tedw(R, R3[|R|+ i . . 2|R|+ j)) if |R|+ i ≤ 2|R|+ j,

∞ otherwise.

In order to derive the optimal costs of aligning Re = F [pF . . qF) with the relevant
fragments of Re+2 = G[pG − |R| . . qG + |R|), we simply compute the e-th power of MR with
respect to the min-plus product. Formally, the min-plus product of matrices A ∈ RI×J and
B ∈ RJ×K is a matrix C ∈ RI×K such that C[i, k] = minj∈J A[i, j]+B[j, k] for (i, k) ∈ I×K.

For each free block F [pF . . qF) = Re ∈ F, we construct the matrix Me
R in O(k3 log n) time

using Algorithm 1 followed by fast exponentiation, which reduces to computing O(log e) min-
plus products. We apply the matrix whenever we are tasked with filling a dp[lF , rF , lG, rG]
entry such that F [pF . . qF) is a prefix or a suffix of F [lF . . rF). Formally, if lF ≤ pF < qF =
rF , then we use the following formula instead of following Algorithm 1:

dp[lF , rF , lG, rG]← min
p′

G
∈[pF −|R|. .pF +|R|]

dp[lF , pF , lG, p′
G] + Me

R[p′
G − pG, rG − qG]. (1)

In the symmetric case of lF = pF < qF ≤ rF , we apply

dp[lF , rF , lG, rG]← min
q′

G
∈[qF −|R|. .qF +|R|]

dp[qF , rF , q′
G, rG] + Me

R[lG − pG, q′
G − qG]. (2)

In the full version [27], we formalize the intuition above to prove that Equations (1)
and (2) preserve the invariant of Lemma 3.3, that is,

tedw(F [lF . . rF), G[lG . . rG)) ≤ dp[lF , rF , lG, rG] ≤ btedw
k (F [lF . . rF), G[lG . . rG)).

For (1), this boils down to the following lemma; the case of (2) is symmetric.

▶ Lemma 4.4. Consider fragments F [lF . . rF), G[lG . . rG) of forests F, G ∈ FΣ, a normalized
weight function w : Σ̄2 → R≥0, and a threshold k ∈ Z+ such that |rF − rG| ≤ 2k. If there is a
free pair F [pF . . qF) = G[pG . . qG) = Re such that F [pF . . qF) is a suffix of F [lF . . rF), then

btedw
k (F [lF . . rF), G[lG . . rG))
≥ min

p′
G

∈[pF −|R|. .pF +|R|]
btedw

k (F [lF . . pF), G[lG . . p′
G)) + Me

R[p′
G − pG, rG − qG]

≥ min
p′

G
∈[pF −|R|. .pF +|R|]

tedw(F [lF . . pF), G[lG . . p′
G)) + Me

R[p′
G − pG, rG − qG]

≥ tedw(F [lF . . rF), G[lG . . rG)).

We further argue in the full version [27] that the recursive implementation of Algorithm 1
augmented with the optimizations of (1) and (2) visits O(m log n) fragments F [lF . . rF),
where m is the number of non-free characters, including O(t log n) fragments F [lF . . rF) for
which (1) or (2) apply. Specifically, our optimized algorithm visits fragments F [lF . . rF)
visited by the original Algorithm 1 and satisfying the following additional property: every
free block F [pF . . qF) ∈ F is either disjoint with F [lF . . rF) or contained in F [lF . . rF).
Our implementation takes O(n log n) extra preprocessing time to list fragments visited by
Algorithm 1 and filter those satisfying the aforementioned property.

T. Kociumaka and A. Shahali 94:11

5 Universal Kernel with Improved Repetitiveness Guarantees

In this section, we outline our approach to strengthen Theorem 1.3 into the following result:

▶ Theorem 5.1. There exists a linear-time algorithm that, given forests F , G and an integer
k ∈ Z+, constructs forests F ′, G′ of size O(k5) such that tedw

≤k(F ′, G′) = tedw
≤k(F, G) holds

for every normalized quasimetric w (weight function satisfying the triangle inequality), and
a collection of O(k3) disjoint free blocks in F ′ with O(k4) non-free characters.

Compared to Theorem 1.3, we require the presence of O(k3) free blocks that jointly
capture all but O(k4) characters of the output forest F ′; consult Definition 4.1. At the very
high level, the proofs of both Theorems 1.3 and 5.1 consist in three steps: decomposing the
input forests F and G into several pieces, identifying pieces that can be matched exactly,
and replacing (pairs of) identical pieces with smaller equivalent counterparts.

Forest Decompositions and Piece Matchings. Following [14], we say that a piece of a
forest F is a subforest – a balanced fragment F [i . . j) – or a context – a pair of fragments
⟨F [i . . i′); F [j′ . . j)⟩ such that F [i . . j) is a tree and F [i′ . . j′) is balanced. We denote the set
of pieces contained in a fragment F [i . . j) of F by P(F [i . . j)); we set P(F) = P(F [0 . . |F |)).

In isolation from F , a context can be interpreted as a pair of non-empty strings C =
⟨CL; CR⟩ ∈ P+

Σ × P+
Σ such that CL · CR is a tree. The composition of contexts C, D results

in a context C ⋆ D := ⟨CL ·DL; DR · CR⟩. Moreover, the composition of a context C and a
forest H results in a tree C ⋆ H := CL ·H · CR. For any decomposition of a forest F into
disjoint pieces, one can recover F using the concatenation and composition operations.

We define the depth of a context C = ⟨CL; CR⟩ to be the number nodes of CL · CR with
the opening parenthesis in CL and the closing parenthsis in CR. Note that the depth of the
context C ⋆ D is equal to the sum of the depths of C and D.

The following notion formalizes the concept of a matching between pieces of F and G.

▶ Definition 5.2. For two forests F and G and a fixed threshold k ∈ Z+, a piece matching
between F and G is a set of pairs M⊆ P(F)× P(G) such that:

across all pairs (f, g) ∈M, the pieces f ∈ P(F) are pairwise disjoint, and
there exists a forest alignment A ∈ FA(F, G) of width at most 2k (i.e., A ∈ BFAk(F, G))
that matches f to g perfectly for every (f, g) ∈M.

The kernelization algorithm behind Theorem 1.3 repeatedly identifies a piece matching
M of size |M| = O(k) covering Ω(n) vertices of F and replaces each pair of matching pieces
(f, g) ∈M with a pair of “equivalent” pieces (f ′, g′) of size O(k4). After O(log n) steps, this
yields forests of size O(k5). Our strategy relies on the following new result:

▶ Theorem 5.3. There exists a linear-time algorithm that, given forests F, G ∈ FΣ and a
threshold k ∈ Z≥0, either certifies that ted(F, G) > k or constructs a size-O(k) piece matching
M between F and G that leaves O(k4) unmatched characters.

The proof of Theorem 5.3, presented in the full version [27], reuses a subroutine of [14]
to construct a decomposition D ⊆ P(F) of F into O(n/k3) pieces of size O(k3) each. The
next step is to build a piece matching M ⊆ D × P(G) that leaves at most k pieces of D
unmatched. We modify a dynamic-programming procedure from [14] so that, additionally,
the unmatched characters of G form O(k) fragments. As a result, even though the obtained
matching is of size |M| = O(n/k3), it is possible to reduce its size to O(k). For this, it
suffices to repeatedly identify pairs of adjacent pieces f, f ′ ∈ P(F) matched to adjacent

ESA 2025

94:12 Faster Algorithm for Bounded Tree Edit Distance in the Low-Distance Regime

pieces g, g′ ∈ P(G), and then replace these pieces with their unions f ∪ f ′ and g ∪ g′ (as
formalized in the full version [27], two disjoint pieces are adjacent if their union, consisting
of the characters contained in at least one of these pieces, can be interpreted as a piece).

Periodic Blocks and Red Characters. The main ingredient of our kernelization algorithm
is a procedure that replaces a pair of matching pieces (f, g) ∈M with a pair of “equivalent”
smaller pieces (f ′, g′). Unlike [14], where the goal was to reduce the piece size to O(k4), we
aim to identify O(k2) disjoint free blocks with O(k3) non-free nodes within the replacement
piece f ′. Unfortunately, free blocks lack a canonical construction, and it would be tedious to
maintain a specific selection while the forests change. Instead, we use the following notions:
▶ Definition 5.4. For a fixed threshold k ∈ Z+, we say that a string S ∈ P∗

Σ forms a periodic
block if it satisfies the following properties:
|S| ≥ 42k, that is, the fragment is of length at least 42k, and
S has a string period of length at most 4k with equally many opening and closing
parentheses.

For a string T ∈ P∗
Σ, we denote by Bk(T) the set of fragments of T that are periodic blocks.

For a context C = ⟨CL; CR⟩, we denote by Bk(C) the disjoint union of Bk(CL) and Bk(CR).
We partition the characters of T ∈ P∗

Σ into black and red based on the family Bk(T).
▶ Definition 5.5. A character T [i] of a string T ∈ P∗

Σ is black if there exists a periodic
block T [l . . r) ∈ Bk(T) such that i ∈ [l + 5k . . r− 5k). The remaining characters are red. We
denote by blackk(T) and redk(T) the sets of black and red characters of T .

For a context C = ⟨CL; CR⟩, the sets blackk(C) = blackk(CL)⊔blackk(CR) and redk(C) =
redk(CL) ⊔ redk(CR) are defined as disjoint unions.

Piece Reduction. The following definitions in [14] formalize the concept of equivalent
pieces.
▶ Definition 5.6 ([14, Definition 3.4]). For a threshold k ∈ Z≥0 and a weight function w,
forests P, P ′ are called tedw

≤k-equivalent if

tedw
≤k(F, G) = tedw

≤k(F [0 . . lF) · P ′ · F [rF . . |F |), G[0 . . lG) · P ′ ·G[rG . . |G|))

holds for all forests F and G with matching pieces F [lF . . rF) = P = G[lG . . rG) satisfying
|lF − rG| ≤ 2k.
▶ Definition 5.7 ([14, Definition 3.9]). For a threshold k ∈ Z≥0 and a weight function w,
contexts P = ⟨PL; PR⟩ and P ′ = ⟨P ′

L; P ′
R⟩ are called tedw

≤k-equivalent if

tedw
≤k(F, G) = tedw

≤k(F [0 . . lF) · P ′
L · F [l′

F . . r′
F) · P ′

R · F [rF . . |F |),
G[0 . . lG) · P ′

L · G[l′
G . . r′

G) · P ′
R · G[rG . . |G|))

holds for all forests F and G with matching pieces ⟨F [lF . . l′
F); F [r′

F . . rF)⟩ = P = ⟨G[lG . . l′
G);

G[r′
G . . rG)⟩ satisfying |lF − lG| ≤ 2k and |rF − rG| ≤ 2k.

In the full version [27], we slightly modify the arguments of [14] to prove the following results:
▶ Lemma 5.8 (see [14, Lemma 3.17]). There is a linear-time algorithm that, given a forest
P and a threshold k ∈ Z+, computes a forest P ′ with |P ′| ≤ |P | and |redk(P ′)| ≤ 158k2 such
that P and P ′ are tedw

≤k-equivalent for every normalized quasimetric weight function w.

▶ Lemma 5.9 (see [14, Lemma 3.18]). There is a linear-time algorithm that, given a context
P and a threshold k ∈ Z+, computes a context P ′ with |P ′| ≤ |P | and |redk(P ′)| ≤ 1152k3

such that P and P ′ are tedw
≤k-equivalent for every normalized quasimetric weight function w.

T. Kociumaka and A. Shahali 94:13

Complete Kernelization Algorithm. In the full version [27], we combine the above ingre-
dients to formally prove Theorem 5.1. Our procedure first applies Theorem 5.3. Then, for
every pair of matched pieces (f, g) ∈M, we use Lemma 5.8 or 5.9 (depending on piece type)
to obtain an equivalent piece P ′ with O(k3) red characters. The remaining (black) characters
in P ′ can be traced back to O(k2) periodic blocks and each periodic block within P ′ yields a
free block in the output forest F ′ that covers the underlying black characters.

6 Summary

▶ Theorem 1.1. There exists a deterministic algorithm that, given two forests F and G with
n nodes in total, each with a label from an alphabet Σ, and oracle access to a normalized
weight function w : (Σ ∪ {ε})2 → R≥0 satisfying the triangle inequality, determines the tree
edit distance k := tedw(F, G) in O(n + k6 log k) time.

Proof. First, suppose that the task is to compute tedw
≤k(F, G) for a given threshold k. In

this case, we use the algorithm of Theorem 5.1, resulting in a pair of forests F ′, G′ of size
O(k5) such that tedw

≤k(F ′, G′) = tedw
≤k(F, G), as well as a collection of O(k3) free blocks in

F ′ with O(k4) non-free characters. Based on this, the algorithm of Theorem 4.2 computes
tedw

≤k(F ′, G′) = tedw
≤k(F, G) in O(k5 · log k5 + k4 · k2 log k5 + k3 · k3 log k5) = O(k6 log k)

time. Including the O(n) running time of Theorem 5.1, we get O(n + k6 log k) total time.
In the absence of a given threshold, we consider a geometric sequence of thresholds

(di)i∈Z≥0 , with di = 2i · ⌈(n/ log n)1/6⌉, and we compute tedw
≤di

(F, G) for subsequent i ∈ Z≥0
until tedw

≤dj
(F, G) ≤ dj holds for some j ∈ Z≥0, which indicates tedw(F, G) = tedw

≤dj
(F, G).

Since d0 = O((n/ log n)1/6), the initial iteration costs O(n + d6
0 log d0) = O(n) time.

Consequently, if k ≤ d0, then the whole algorithm runs in O(n) time.
Due to di ≥ d0 ≥ (n/ log n)1/6, the running time of the ith iteration iteration is

O(d6
i log di). This sequence grows geometrically, so the total running time of the algo-

rithm is dominated by the running time of the last iteration, which is O(d6
j log dj). If k > d0,

then j > 0 and, since the algorithm has not terminated one iteration earlier, dj = 2dj−1 < 2k.
Consequently, the overall running time is O(k6 log k) when k > d0. ◀

References
1 Shyan Akmal and Ce Jin. Faster algorithms for bounded tree edit distance. In Nikhil Bansal,

Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 12:1–12:15. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.12.

2 Tatsuya Akutsu. Tree edit distance problems: Algorithms and applications to bioinformatics.
IEICE Trans. Inf. Syst., 93-D(2):208–218, 2010. doi:10.1587/TRANSINF.E93.D.208.

3 Tatsuya Akutsu, Daiji Fukagawa, and Atsuhiro Takasu. Approximating tree edit dis-
tance through string edit distance. Algorithmica, 57(2):325–348, 2010. doi:10.1007/
s00453-008-9213-z.

4 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018. doi:10.1137/
15M1053128.

5 John Bellando and Ravi Kothari. Region-based modeling and tree edit distance as a basis
for gesture recognition. In 1oth International Conference on Image Analysis and Processing
(ICIAP 1999), 27-29 September 1999, Venice, Italy, pages 698–703. IEEE Computer Society,
1999. doi:10.1109/ICIAP.1999.797676.

ESA 2025

https://doi.org/10.4230/LIPIcs.ICALP.2021.12
https://doi.org/10.1587/TRANSINF.E93.D.208
https://doi.org/10.1007/s00453-008-9213-z
https://doi.org/10.1007/s00453-008-9213-z
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.1109/ICIAP.1999.797676

94:14 Faster Algorithm for Bounded Tree Edit Distance in the Low-Distance Regime

6 Philip Bille. A survey on tree edit distance and related problems. Theor. Comput. Sci.,
337(1–3):217–239, June 2005. doi:10.1016/j.tcs.2004.12.030.

7 Mahdi Boroujeni, Mohammad Ghodsi, MohammadTaghi Hajiaghayi, and Saeed Seddighin.
1+ϵ approximation of tree edit distance in quadratic time. In Moses Charikar and Edith
Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 709–720. ACM, 2019.
doi:10.1145/3313276.3316388.

8 Karl Bringmann, Paweł Gawrychowski, Shay Mozes, and Oren Weimann. Tree edit distance
cannot be computed in strongly subcubic time (unless apsp can). ACM Trans. Algorithms,
16(4), July 2020. doi:10.1145/3381878.

9 Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on compressed xml. In
Proceedings of the 29th International Conference on Very Large Data Bases - Volume 29, VLDB
’03, pages 141–152. VLDB Endowment, 2003. doi:10.1016/b978-012722442-8/50021-5.

10 Alejandro Cassis, Tomasz Kociumaka, and Philip Wellnitz. Optimal algorithms for bounded
weighted edit distance. In 64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 2177–2187. IEEE, 2023.
doi:10.1109/FOCS57990.2023.00135.

11 Panagiotis Charalampopoulos, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. On
the hardness of computing the edit distance of shallow trees. In Diego Arroyuelo and Barbara
Poblete, editors, String Processing and Information Retrieval - 29th International Symposium,
SPIRE 2022, Concepción, Chile, November 8-10, 2022, Proceedings, volume 13617 of Lecture
Notes in Computer Science, pages 290–302. Springer, 2022. doi:10.1007/978-3-031-20643-6_
21.

12 Sudarshan S. Chawathe. Comparing hierarchical data in external memory. In Malcolm P.
Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie,
editors, VLDB’99, Proceedings of 25th International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK, pages 90–101. Morgan Kaufmann, 1999. URL:
http://www.vldb.org/conf/1999/P8.pdf.

13 Gregory Cobena, Serge Abiteboul, and Amélie Marian. Detecting changes in XML documents.
In Rakesh Agrawal and Klaus R. Dittrich, editors, Proceedings of the 18th International
Conference on Data Engineering, San Jose, CA, USA, February 26 - March 1, 2002, pages
41–52. IEEE Computer Society, 2002. doi:10.1109/ICDE.2002.994696.

14 Debarati Das, Jacob Gilbert, MohammadTaghi Hajiaghayi, Tomasz Kociumaka, and Barna
Saha. Weighted edit distance computation: Strings, trees, and dyck. In Barna Saha and
Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 377–390. ACM, 2023.
doi:10.1145/3564246.3585178.

15 Debarati Das, Jacob Gilbert, MohammadTaghi Hajiaghayi, Tomasz Kociumaka, Barna Saha,
and Hamed Saleh. Õ(n + poly(k))-time algorithm for bounded tree edit distance. In 63rd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022. IEEE, 2022.
doi:10.1109/FOCS54457.2022.00071.

16 Davi de Castro Reis, Paulo Braz Golgher, Altigran Soares da Silva, and Alberto H. F. Laender.
Automatic web news extraction using tree edit distance. In Stuart I. Feldman, Mike Uretsky,
Marc Najork, and Craig E. Wills, editors, Proceedings of the 13th international conference on
World Wide Web, WWW 2004, New York, NY, USA, May 17-20, 2004, pages 502–511. ACM,
2004. doi:10.1145/988672.988740.

17 Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. An optimal de-
composition algorithm for tree edit distance. ACM Trans. Algorithms, 6(1), December 2010.
doi:10.1145/1644015.1644017.

18 Anita Dürr. Improved bounds for rectangular monotone min-plus product and applications.
Inf. Process. Lett., 181:106358, 2023. doi:10.1016/J.IPL.2023.106358.

https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1145/3313276.3316388
https://doi.org/10.1145/3381878
https://doi.org/10.1016/b978-012722442-8/50021-5
https://doi.org/10.1109/FOCS57990.2023.00135
https://doi.org/10.1007/978-3-031-20643-6_21
https://doi.org/10.1007/978-3-031-20643-6_21
http://www.vldb.org/conf/1999/P8.pdf
https://doi.org/10.1109/ICDE.2002.994696
https://doi.org/10.1145/3564246.3585178
https://doi.org/10.1109/FOCS54457.2022.00071
https://doi.org/10.1145/988672.988740
https://doi.org/10.1145/1644015.1644017
https://doi.org/10.1016/J.IPL.2023.106358

T. Kociumaka and A. Shahali 94:15

19 Dayi Fan, Rubao Lee, and Xiaodong Zhang. X-TED: massive parallelization of tree edit
distance. Proc. VLDB Endow., 17(7):1683–1696, 2024. doi:10.14778/3654621.3654634.

20 Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Compressing
and indexing labeled trees, with applications. J. ACM, 57(1), November 2009. doi:10.1145/
1613676.1613680.

21 Dvir Fried, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, Ely Porat, and Tatiana
Starikovskaya. An improved algorithm for the k-dyck edit distance problem. ACM Trans.
Algorithms, 20(3):26, 2024. doi:10.1145/3627539.

22 Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, USA, 1997. doi:10.1017/cbo9780511574931.

23 Matthias Höchsmann, Thomas Töller, Robert Giegerich, and Stefan Kurtz. Local similarity in
RNA secondary structures. In 2nd IEEE Computer Society Bioinformatics Conference, CSB
2003, Stanford, CA, USA, August 11-14, 2003, pages 159–168. IEEE Computer Society, 2003.
doi:10.1109/CSB.2003.1227315.

24 Philip N. Klein. Computing the edit-distance between unrooted ordered trees. In Proceedings of
the 6th Annual European Symposium on Algorithms, ESA ’98, pages 91–102, Berlin, Heidelberg,
1998. Springer-Verlag. doi:10.1007/3-540-68530-8_8.

25 Philip N. Klein, Thomas B. Sebastian, and Benjamin B. Kimia. Shape matching using edit-
distance: an implementation. In S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual
Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, pages 781–790.
ACM/SIAM, 2001. URL: http://dl.acm.org/citation.cfm?id=365411.365779.

26 Philip N. Klein, Srikanta Tirthapura, Daniel Sharvit, and Benjamin B. Kimia. A tree-
edit-distance algorithm for comparing simple, closed shapes. In David B. Shmoys, editor,
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January
9-11, 2000, San Francisco, CA, USA, pages 696–704. ACM/SIAM, 2000. URL: http://dl.
acm.org/citation.cfm?id=338219.338628.

27 Tomasz Kociumaka and Ali Shahali. Faster algorithm for bounded tree edit distance in the
low-distance regime, 2025. doi:10.48550/arXiv.2507.02701.

28 Gad M. Landau and Uzi Vishkin. Fast string matching with k differences. Journal of Computer
and System Sciences, 37(1):63–78, 1988. doi:10.1016/0022-0000(88)90045-1.

29 Xiao Mao. Breaking the cubic barrier for (unweighted) tree edit distance. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 792–803. IEEE, 2021. doi:10.1109/FOCS52979.2021.00082.

30 J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses and
static trees. SIAM J. Comput., 31(3):762–776, 2001. doi:10.1137/S0097539799364092.

31 Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1(2):251–
266, 1986. doi:10.1007/BF01840446.

32 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees.
ACM Trans. Algorithms, 10(3):16:1–16:39, 2014. doi:10.1145/2601073.

33 Jakob Nogler, Adam Polak, Barna Saha, Virginia Vassilevska Williams, Yinzhan Xu, and
Christopher Ye. Faster weighted and unweighted tree edit distance and APSP equivalence. In
57th Annual ACM Symposium on Theory of Computing, STOC 2025, pages 2167–2178. ACM,
2025. doi:10.1145/3717823.3718116.

34 Mateusz Pawlik and Nikolaus Augsten. Efficient computation of the tree edit distance. ACM
Trans. Database Syst., 40(1):3:1–3:40, 2015. doi:10.1145/2699485.

35 Mateusz Pawlik and Nikolaus Augsten. Tree edit distance: Robust and memory-efficient. Inf.
Syst., 56:157–173, 2016. doi:10.1016/J.IS.2015.08.004.

36 Thomas B. Sebastian, Philip N. Klein, and Benjamin B. Kimia. Recognition of shapes by
editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell., 26(5):550–571, 2004.
doi:10.1109/TPAMI.2004.1273924.

ESA 2025

https://doi.org/10.14778/3654621.3654634
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/3627539
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1109/CSB.2003.1227315
https://doi.org/10.1007/3-540-68530-8_8
http://dl.acm.org/citation.cfm?id=365411.365779
http://dl.acm.org/citation.cfm?id=338219.338628
http://dl.acm.org/citation.cfm?id=338219.338628
https://doi.org/10.48550/arXiv.2507.02701
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1109/FOCS52979.2021.00082
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1007/BF01840446
https://doi.org/10.1145/2601073
https://doi.org/10.1145/3717823.3718116
https://doi.org/10.1145/2699485
https://doi.org/10.1016/J.IS.2015.08.004
https://doi.org/10.1109/TPAMI.2004.1273924

94:16 Faster Algorithm for Bounded Tree Edit Distance in the Low-Distance Regime

37 Masoud Seddighin and Saeed Seddighin. 3 + ϵ approximation of tree edit distance in truly
subquadratic time. In 13th Innovations in Theoretical Computer Science Conference, ITCS
2022, volume 215, pages 115:1–115:22, 2022. doi:10.4230/LIPIcs.ITCS.2022.115.

38 Stanley M. Selkow. The tree-to-tree editing problem. Information Processing Letters, 6(6):184–
186, 1977. doi:10.1016/0020-0190(77)90064-3.

39 Bruce A. Shapiro and Kaizhong Zhang. Comparing multiple RNA secondary structures using
tree comparisons. Comput. Appl. Biosci., 6(4):309–318, 1990. doi:10.1093/bioinformatics/
6.4.309.

40 Raghavendra Sridharamurthy, Talha Bin Masood, Adhitya Kamakshidasan, and Vijay Natara-
jan. Edit distance between merge trees. IEEE Trans. Vis. Comput. Graph., 26(3):1518–1531,
2020. doi:10.1109/TVCG.2018.2873612.

41 Kuo-Chung Tai. The tree-to-tree correction problem. J. ACM, 26(3):422–433, July 1979.
doi:10.1145/322139.322143.

42 Hélène Touzet. A linear tree edit distance algorithm for similar ordered trees. In Proceedings
of the 16th Annual Conference on Combinatorial Pattern Matching, CPM’05, pages 334–345,
Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/11496656_29.

43 Esko Ukkonen. Algorithms for approximate string matching. Information and Control,
64(1):100–118, 1985. International Conference on Foundations of Computation Theory. doi:
10.1016/S0019-9958(85)80046-2.

44 Yuan Wang, David J. DeWitt, and Jin-yi Cai. X-diff: An effective change detection algorithm
for XML documents. In Umeshwar Dayal, Krithi Ramamritham, and T. M. Vijayaraman,
editors, Proceedings of the 19th International Conference on Data Engineering, March 5-8,
2003, Bangalore, India, pages 519–530. IEEE Computer Society, 2003. doi:10.1109/ICDE.
2003.1260818.

45 Michael S. Waterman. Introduction to computational biology - maps, sequences, and genomes:
interdisciplinary statistics. CRC Press, 1995.

46 R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018. doi:10.1137/15M1024524.

47 Yoshiyuki Yamamoto, Kouichi Hirata, and Tetsuji Kuboyama. Tractable and intractable
variations of unordered tree edit distance. Int. J. Found. Comput. Sci., 25(3):307–330, 2014.
doi:10.1142/S0129054114500154.

48 Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter Clark. Answer extraction
as sequence tagging with tree edit distance. In Lucy Vanderwende, Hal Daumé III, and Katrin
Kirchhoff, editors, Human Language Technologies: Conference of the North American Chapter
of the Association of Computational Linguistics, Proceedings, June 9-14, 2013, Westin Peachtree
Plaza Hotel, Atlanta, Georgia, USA, pages 858–867. The Association for Computational
Linguistics, 2013. URL: https://aclanthology.org/N13-1106/.

49 Kaizhong Zhang and Dennis E. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput., 18(6):1245–1262, 1989. doi:10.1137/0218082.

https://doi.org/10.4230/LIPIcs.ITCS.2022.115
https://doi.org/10.1016/0020-0190(77)90064-3
https://doi.org/10.1093/bioinformatics/6.4.309
https://doi.org/10.1093/bioinformatics/6.4.309
https://doi.org/10.1109/TVCG.2018.2873612
https://doi.org/10.1145/322139.322143
https://doi.org/10.1007/11496656_29
https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/10.1109/ICDE.2003.1260818
https://doi.org/10.1109/ICDE.2003.1260818
https://doi.org/10.1137/15M1024524
https://doi.org/10.1142/S0129054114500154
https://aclanthology.org/N13-1106/
https://doi.org/10.1137/0218082

	1 Introduction
	2 Preliminaries
	2.1 Tree Edits, Forest Alignments, and Tree Edit Distance

	3 O(nk² log n)-Time Algorithm
	3.1 Klein's Algorithm
	3.2 Our Algorithm

	4 Faster Algorithm for Repetitive Inputs
	5 Universal Kernel with Improved Repetitiveness Guarantees
	6 Summary

