
The Planted Orthogonal Vectors Problem
David Kühnemann #

University of Amsterdam, The Netherlands

Adam Polak # Ñ

Bocconi University, Milan, Italy

Alon Rosen #Ñ

Bocconi University, Milan, Italy

Abstract
In the k-Orthogonal Vectors (k-OV) problem we are given k sets, each containing n binary vectors
of dimension d = no(1), and our goal is to pick one vector from each set so that at each coordinate at
least one vector has a zero. It is a central problem in fine-grained complexity, conjectured to require
nk−o(1) time in the worst case.

We propose a way to plant a solution among vectors with i.i.d. p-biased entries, for appropriately
chosen p, so that the planted solution is the unique one. Our conjecture is that the resulting k-OV
instances still require time nk−o(1) to solve, on average.

Our planted distribution has the property that any subset of strictly less than k vectors has the
same marginal distribution as in the model distribution, consisting of i.i.d. p-biased random vectors.
We use this property to give average-case search-to-decision reductions for k-OV.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases Average-case complexity, fine-grained complexity, orthogonal vectors

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.95

Related Version Full Version: https://arxiv.org/abs/2505.00206

Funding Work supported by European Research Council (ERC) under the EU’s Horizon 2020 research
and innovation programme (Grant agreement No. 101019547) and Cariplo CRYPTONOMEX grant.
Part of this work was done when the first author was visiting Bocconi University.

Acknowledgements We are grateful to Andrej Bogdanov, Antoine Joux, Moni Naor, Nicolas Resch,
Nikolaj Schwartzbach, and Prashant Vasudevan for insightful discussions.

1 Introduction

The security of cryptographic systems crucially relies on heuristic assumptions about average-
case hardness of certain computational problems. Sustained cryptanalysis alongside techno-
logical advances such as large-scale quantum computers, put these hardness assumptions
under constant risk of being invalidated. It is therefore desirable to try to design crypto-
graphic schemes based on new computational problems, preferably ones whose hardness is
well-studied.

The field of computational complexity developed over the last fifty years a good under-
standing of the hardness of certain problems – e.g., SAT is widely believed to require at least
superpolynomial, maybe even exponential time [28] – however these are worst-case problems,
and hence unsuitable for direct use as a basis for cryptography.

Fine-grained complexity [27] is a younger branch of computational complexity that studies
“hardness of easy problems”, i.e., problems known to be solvable in polynomial time but
supposedly not faster than some specified polynomial, say not faster than in cubic time. It
gives rise to fine-grained cryptography [6, 23, 25], the idea that it might be possible to build

© David Kühnemann, Adam Polak, and Alon Rosen;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 95; pp. 95:1–95:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.kuhnemann@student.uva.nl
https://orcid.org/0009-0006-8144-1423
mailto:adam.polak@unibocconi.it
https://adampolak.github.io/
https://orcid.org/0000-0003-4925-774X
mailto:alon.rosen@unibocconi.it
https://www.alonrosen.net/
https://orcid.org/0000-0002-3021-7150
https://doi.org/10.4230/LIPIcs.ESA.2025.95
https://arxiv.org/abs/2505.00206
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

95:2 The Planted Orthogonal Vectors Problem

cryptography, notably public-key encryption, based on conjectured average-case hardness
of polynomial-time problems studied in fine-grained complexity. These problems are easier
than NP-hard ones, but for polynomials of sufficiently high degree may still be hard enough
to give honest parties an adequate advantage over malicious attackers.

1.1 The k-Orthogonal Vectors Problem
The Orthogonal Vectors (OV) problem [29], together with its generalization k-OV, is one
of the three main hard problems studied in fine-grained complexity, alongside 3SUM and
APSP [27]. Arguably, among the three, OV is the one whose (worst-case) hardness we
understand the most – in particular because it is implied by the Strong Exponential Time
Hypothesis (SETH) [16], which is about the very well studied SAT problem.

We say that vectors u1, ..., uk ∈ {0, 1}d are orthogonal if, for all j ∈ [d],
∏k

ℓ=1 uℓ[j] = 0,
meaning that for every coordinate there is at least one zero entry among the k vectors. For
k ≥ 2, let U1, ..., Uk each be a collection of n d-dimensional binary vectors, which we view as
matrices in {0, 1}n×d. We denote by Uℓ,i the i-th vector of Uℓ. The k-Orthogonal Vectors
problem (k-OV) asks whether there exist (s1, . . . , sk) ∈ [n]k such that U1,s1 , U2,s2 , . . . , Uk,sk

are orthogonal.

Worst-case complexity. The naive algorithm solves k-OV in time O(nkd). For any fixed
constant c, the algorithms by Abboud et al. [1] and Chan and Williams [8] solve OV in
dimension d = c log n in time O(n2−εc) with εc > 0. However, Gao et al. [13] conjecture that
no such strongly subquadratic algorithm exists for superlogarithmic dimension d = ω(log n).
This conjecture (known as Low-dimension Orthogonal Vector Conjecture) is also implied
by SETH [29]. Both the upper bound for d = O(log n) and the SETH-implied hardness for
d = ω(log n) generalize to k-OV, for any constant k ≥ 2, where the running time barrier is
nk [27].

Average-case complexity. For cryptographic purposes we care about average-case hardness
– because we want to be able to efficiently sample instances that are hard to solve (in contrast
to only having an existential knowledge that there are some hard instances). Moreover,
the sampler shall correctly tell (with good probability) whether its output is a yes- or
no-instance.

One way to achieve this is to embed a solution in an instance sampled from a distribution
that generates no-instances with good probability. This method of planting a solution has
been applied to a number of problems, e.g., k-Clique [18] and (in the fine-grained setting)
k-SUM [12, 2] (a generalization of 3SUM) and Zero-k-Clique [23] (a generalization of Zero-
Triangle, which is a problem harder than both 3SUM and APSP), but not for (k-)OV. The
following question remains wide-open [6, 11, 10]:

How to plant orthogonal vectors (so that they are hard to find)?

1.2 Our results
We propose a way of planting a solution in k-OV instances where each vector entry is
i.i.d. according to a p-biased1 coin flip, for an appropriately chosen value of p so that the
planted solution is the only one in the instance, with good probability. We conjecture that
solving these instances requires nk−o(1) time on average.

1 We say that a random bit is p-biased if it equals 1 with probability p and equals 0 with probability 1 − p.

D. Kühnemann, A. Polak, and A. Rosen 95:3

Let us remark that all our results are already nontrivial for k = 2, i.e., for the Orthogonal
Vectors problem. However, from the point of view of cryptographic applications, larger values
of k are more interesting (as they potentially offer a bigger advantage for the honest parties),
so we present all our results in full generality.

Superlogarithmic dimension. The k-OV problem might have appeared as a poor candidate
for a fine-grained average-case hard problem, as Kane and Williams [19] showed that for any
fixed p ∈ (0, 1), k-OV instances of i.i.d. p-biased entries can be solved in O(nk−εp) time for
some εp > 0 by AC0 circuits. However, such instances are only nontrivial for d = Θ(log n),2
a parameter setting which can be anyway solved in time O(nk−ε), even in the worst case,
using the algorithm of Chan and Williams [8]. To obtain a candidate hard distribution based
on i.i.d. entries, we therefore choose to sample the entries as 1 with subconstant probability
p(n) = o(1), which leads to nontrivial instances in the superlogarithmic dimension regime
d = ω(log n). In the full version of the paper we present another simple argument why a
logarithmic dimension is not sufficient, further justifying our choice.

The (k−1)-wise independence. Our planting procedure has the following notable property:
any subset of k − 1 (or less) out of the k vectors that form the planted solution has the
marginal distribution identical to that of k − 1 independently sampled vectors with i.i.d. p-
biased random entries. In particular, each individual vector of the solution has the same
marginal distribution as any other vector in the instance. This would not be true if we
planted k random vectors conditioned on orthogonality (i.e., a type of solution that may
appear spontaneously with small probability), because such vectors tend to be sparser than
the expectation. This sparsity is what makes the Kane–Williams algorithm [19] work, and
lack thereof makes our instances immune to that algorithmic idea.3

We note that the (k − 1)-wise independence property holds “for free” in natural distribu-
tions for k-SUM [2, 12] and Zero-k-Clique [23] because of the natural symmetry of cyclic
groups Zm. However, it is a priori unclear how to get it for k-OV.

Finally, in Theorem 7, we argue that our distribution is the unique distribution over k-OV
instances that has this property, explaining the title of this paper.

Search-to-decision reductions. To demonstrate the usefulness of the (k − 1)-wise inde-
pendence property, we give a fine-grained average-case search-to-decision reduction for our
conjectured hard k-OV distribution. Actually, we give two such reductions. The first one, in
Section 6, is very simple, but it introduces an O(log n) overhead in the failure probability, so
it is relevant only if the decision algorithm succeeds with probability higher than 1− 1

log n .
The other reduction, in Section 7, looses only a constant factor in the failure probability.
Even though we present both reductions specifically for k-OV, they are likely to generalize
to any planted problem with the (k − 1)-wise independence property.

Planting multiple solutions. In the full version of the paper, we also argue that (k−1)-wise
independence allow planting more than one solution in a single instance, which we believe
might be useful for building cryptographic primitives.

2 For larger (resp. smaller) d, almost all instances will be no-instances (resp. yes-instances).
3 Note though that the Kane–Williams algorithm does not run in truly subquadratic time in superloga-

rithmic dimension anyway, so above all it is the high dimension, not the (k − 1)-wise independence,
that makes our distribution immune to all known attacks.

ESA 2025

95:4 The Planted Orthogonal Vectors Problem

1.3 Technical overview
Planting. How do we generate k orthogonal vectors such that any k − 1 of them look
innocent? First of all, we can focus on generating a single coordinate, and then repeat the
process independently for each of the d coordinates. Consider the joint distribution of k

i.i.d. p-biased random bits. We need to modify it to set the probability of k ones to 0. If
we just do it, and scale up the remaining probabilities accordingly, the probability of k − 1
ones turns out wrong. After we fix that, the probability of k − 2 ones is off, and so on, in a
manner similar to the inclusion-exclusion principle. By doing this mental exercise we end up
with a formula for the joint distribution of k bits in a single coordinate of the k vectors to be
planted. How do we actually sample from this distribution? Since it has the (k − 1)-wise
independence property, the following approach must work: First sample k − 1 i.i.d. p-biased
bits, and then sample the k-th bit with probability depending on the number of ones among
the first k − 1 bits. In Section 3 we show how to set this last probability exactly.

Search-to-decision reductions. Both our reductions are based on the same basic idea: In
order to find the planted solution, we replace some of the vectors in the input instance
with newly sampled vectors with i.i.d. p-biased entries and run the decision algorithm on
such a modified instance. If at least one of the planted vectors got resampled, the resulting
instance has the same distribution as if no planting occurred (thanks to the (k − 1)-wise
independence), and so the decision algorithm returns no with good probability. Otherwise
the planted solution is still there and the decision algorithm likely says yes.

Our first reduction (see Section 6) applies this idea to perform a binary search. It
introduces a factor of k log n overhead in the running time and also in the failure probability,
because we need to take a union bound over all invocations of the decision algorithm returning
correct answers.

Our second reduction (see Section 7) is an adaptation of a search-to-decision reduction
for k-SUM due to Agrawal et al. [2]. In short, the reduction repeatedly resamples a random
subset of vectors, runs the decision algorithm, and keeps track for each of the original
vectors, how many times the decision algorithm returned yes when this vector was not
resampled. Statistically, this count should be larger for vectors in the planted solution. A
careful probabilistic analysis shows that this is indeed the case.

1.4 Open problems
Hardness self-amplification. Could a black-box method increase the success probability
of algorithms solving (the search or decision variants of) the planted k-OV problem, at a
small cost in the running time? If so, the lack of algorithms with high success probability for
planted k-OV would then suggest that no algorithm can solve the problem even with just
a small success probability – a property desirable, e.g., from the point of view of potential
cryptographic applications.

Such hardness self-amplification was recently shown for (both the search and decision
variants of) the planted clique problem by Hirahara and Shimizu [15]. In the world of
fine-grained complexity, Agrawal et al. [2] showed hardness self-amplification for the planted
k-SUM search problem and closely related problems. Hardness self-amplification for planted
k-OV remains an open problem.

Because of the overhead in the failure probability induced by both of our search-to-decision
reductions, hardness self-amplification for the decision variant of the planted k-OV problem
in particular would mean that the hardness of the search problem could be based on a weak
conjecture about the hardness of the decision problem, such as Conjecture 10.

D. Kühnemann, A. Polak, and A. Rosen 95:5

Fine-grained asymmetric cryptography. A key goal of fine-grained cryptography is to
devise an advanced asymmetric cryptography scheme – such as public key encryption – whose
security is based on hardness of a well understood problem from fine-grained complexity. So
far the closest to this goal seems to be the key exchange protocol due to LaVigne, Lincoln, and
Vassilevska Williams [23], which is based on hardness of the planted Zero-k-Clique problem.
Despite being based on a parameterized problem (that allows for arbitrary polynomial
nk−o(1)-hardness by simply choosing a large enough k), the protocol offers only quadratic
security, i.e., breaking the encryption takes only quadratically more than it takes to encrypt
and decrypt a message. This limitation seems inherent to the protocol because it is based on
a similar idea as Merkle puzzles [24].

It is an open problem if fine-grained cryptography with superquadratic security is possible.
We believe that k-OV could be a good hard problem for that purpose, because of a different
structure, which addition-based problems, like k-SUM and Zero-k-Clique, are lacking.

We remark that the key exchange protocol of LaVigne, Lincoln, and Vassilevska Williams
[23] can be adapted to work with our planted k-OV instead of the planted Zero-k-Clique
problem, but naturally the protocol’s security remains quadratic. One needs new techniques
to break the quadratic barrier.

In recent work, Alman, Huang, and Yeo [5] show that if one-way functions do not exist
then average-case hardness fine-grained assumptions on planted k-SUM and Zero-k-Clique
are false for sufficiently large constant k. It might be possible to generalize their results
to k-OV. However, a construction of public-key encryption from planted k-OV would be
interesting even in a world where one-way functions do exist, as they are not known to imply
superquadratic-gap public-key encryption [17].

Faster algorithms for average-case OV. Algorithms for random OV instances seem to be
underexplored. Up until recently [4] it was not known if the average-case OV admits even a
subpolynomial improvement compared to the worst case. With this paper we hope to inspire
more research in this direction. We would even be happy to see our conjecture refuted.

A natural starting point for such an attack is the recent Alman–Andoni–Zhang algo-
rithm [4] for random OV. It works in time n2−Ω(log log c/ log c) for dimension d = c log n, so
it is not truly subquadratic for d = ω(log n). However, in their setting, the hardest case is
when the probability p of a one entry is chosen to make the expected number of orthogonal
pairs a constant, while in our setting we use a higher value of p to lower the expectation to
inverse polynomial – which means that in our setting the orthogonal pair “stands out more”.
It might seem plausible to adjust internal parameters of the algorithm (in particular, the
so-called group size) to better exploit our setting. However, under closer inspection, it turns
out that the key quantity in the analysis of the algorithm is the expected inner product of
two random vectors, equal to p2d, which happens to be Θ(log n) in both settings. Refuting
our conjecture likely requires a new technical development beyond such an adjustment.

Finally, let us point out a related problem: the planted approximate maximum inner
product problem, often referred to as the light bulb problem. Unlike planted OV, it is known
to admit truly subquadratic O(n1.582)-time algorithms [26, 20, 21, 3]. This is in contrast
with the worst-case complexities of the two problems, which are known to be equivalent
under fine-grained reductions [9, 22].

A worst-case to average-case reduction. In the opposite direction than the previous open
problem, one could try to show that our conjectured hardness of the planted k-OV problem is
implied by one of well-studied worst-case hypotheses in fine-grained complexity, e.g., SETH.

ESA 2025

95:6 The Planted Orthogonal Vectors Problem

This would require a worst-case to average-case reduction. So far, in fine-grained complexity,
such reductions are only known for algebraic or counting problems [6, 14, 7, 11, 10], but not
for decision nor search problems like ours.

2 The model distribution

Fix k ≥ 2, and let d = α(n) log n for α(n) = ω(1). We define the family of model distributions
k−OVα

0 (n) that generate k matrices U1, ..., Uk ∈ {0, 1}n×d where all entries are i.i.d. p-biased
bits with probability

p =
(

1− 2−
2k

α(n)

) 1
k ≈

(
2k ln(2)

α(n)

) 1
k

.

As will become apparent later, for the planting algorithm to work it is crucial that p ≤ 1/2,
but thanks to α(n) = ω(1) this holds for large enough n.

We show that the model distribution indeed generates no-solutions with good probability.

▶ Lemma 1. A k-OV instance sampled from the model distribution k−OVα
0 (n) is a no-

instance with probability at least 1− 1
nk .

Proof. For a k-OV instance U = (U1, . . . , Uk) ∼ k−OVα
0 (n), a fixed combination of vectors

u1, . . . , uk (where uℓ ∈ Uℓ) is orthogonal iff, for each coordinate j ∈ [d], not all of the k vectors
feature a one in that coordinate. Since k i.i.d. p-biased bits are all ones with probability
pk, the probability that u1, . . . , uk are orthogonal (determined by the all-ones event not
occurring in any of the d coordinates) is:

Pr[u1, ..., uk are orthogonal] =
(
1− pk

)d =
(

2−
2k

α(n)

)α(n) log(n)
= n−2k.

By linearity of expectation, the expected value for the number of solutions among all nk

possible combinations of k vectors, denoted by c(U), is

E[c(U)] =
∑

ui∈Ui

(1≤i≤k)

Pr[u1, . . . , uk are orthogonal] = nk · n−2k = 1
nk

.

By Markov’s inequality, this is also a bound on the probability of any solution occurring,
i.e., Pr[c(U) ≥ 1] ≤ E[c(U)] = 1

nk . Therefore, an instance sampled from k−OVα
0 (n) is a

no-instance with probability at least 1− 1
nk . ◀

We remark that one can make the probability of sampling a no-instance arbitrarily high.
Indeed, in order to get the probability 1− 1

nc it suffices to replace 2k with k +c in the formula
for the probability parameter p. However, having in mind the cryptographic motivation, 1

nk

seems to be a reasonable default choice for the failure probability of the sampler, because
with the same probability the attacker can just guess the solution.

3 The planted distribution

To plant a solution at locations s1, . . . , sk ∈ [n] in an instance U sampled from k−OVα
0 (n),

we apply the following randomized algorithm.

D. Kühnemann, A. Polak, and A. Rosen 95:7

Plant(U, s1, . . . , sk).
1. For each coordinate 1 ≤ j ≤ d:

a. Let m be the number of ones among U1,s1 [j], . . . , Uk,sk
[j].

b. If k −m is even, flip Uk,sk
[j] with probability

(
p

1−p

)k−m

. (Here we need p ≤ 1/2.)
2. Return U.

We justify this way of planting in Section 4. For now, observe that if all vectors U1,s1 , . . . , Uk,sk

feature a one at coordinate j, we have m = k and Plant flips the final bit Uk,sk
[j] to a zero

with probability(
p

1− p

)k−m

=
(

p

1− p

)0
= 1.

On the other hand, if the last coordinate is the single zero alongside m = k − 1 ones, then
k −m = 1 is odd and Plant will never break orthogonality by flipping the last bit to a one.
Thus, Plant(U, s1, . . . , sk) outputs a yes-instance of k-OV with a solution at s1, . . . , sk. We
call the k vectors at these positions the planted vectors.

We sample yes-instances of k-OV by planting a solution in an instance U ∼ k−OVα
0 (n)

at locations s1, . . . , sk chosen uniformly at random.

Distribution k−OVα
1 (n).

1. Sample U from k−OVα
0 (n).

2. Sample (s1, . . . , sk) uniformly at random from [n]k.
3. Return Plant(U, s1, . . . , sk).

The above observation about Plant immediately yields the following.

▶ Lemma 2. A k-OV instance sampled from the planted distribution k−OVα
1 (n) is a yes-

instance with probability 1.

4 The (k − 1)-wise independence of planted vectors

Our method of planting orthogonal vectors arises from the idea that for any planted problem,
any proper “piece” of the planted solution should be indistinguishable from any comparable
piece of the instance as a whole, conditioned on the latter still being consistent with being a
part of a solution itself.

For example, in the case of planting a k-clique in a graph G this requirement is trivial.
Indeed, the projection of the clique onto a smaller subset of k′ < k vertices yields a k′-clique,
which are exactly those subgraphs of G of size k′ which could feasibly belong to a solution.

In contrast to the previous example, in the case of k-SUM, any set of k − 1 elements
x1, . . . , xk−1 in an instance could feasibly be part of a solution, as one can always construct
a k−th number xk such that

∑k
i=1 xi = 0. Thus, by the principle we described, to plant a

solution in an instance with i.i.d. uniformly random elements, the marginal distribution of
the distribution of planted solutions (x1, . . . , xk) given by any projection to k − 1 elements
should itself be uniformly random. This holds true in the case of the planted k-SUM [2],
where the planted solution is distributed uniformly over the set of all k-tuples that form valid
k-SUM solutions. The case of planted Zero-k-Clique [23] is analogous. For both of these
problems, planting by inserting k elements drawn from the model distribution conditioned
on them forming a solution yields a distribution that follows the described principle.

ESA 2025

95:8 The Planted Orthogonal Vectors Problem

This is different from the k-OV problem with a model distribution of i.i.d. vector entries.
Here, as with k-SUM and Zero-k-Clique, any set of k− 1 elements (in this case vectors) could
form a solution to k-OV. All that is needed is for the last vector to feature a zero in all those
coordinates where the other k − 1 all were one. However, sparse vectors are far more likely
to be part of a solutions than dense ones. Therefore, conditioning k i.i.d. p-biased vectors on
being orthogonal yields a distribution which does not follow our principle: projecting onto
any subset of k′ < k vectors results in vectors that are on average sparser than (and thus
different from) k′ i.i.d. p-biased vectors. As we will show now, our method of planting does
satisfy this principle: Any subset of k − 1 planted vectors are independent and identically
distributed p-biased vectors.

Let M ∼ k−OVα
0 (n) and U = Plant(M, s1, . . . , sk). Recall that both sampling from the

model distribution k−OVα
0 (n) and the planting by Plant are independent and identical for each

coordinate j ∈ [d]. Hence, all k-bit sequences x = (U1,s1 [j], U2,s2 [j], . . . , Uk,sk
[j]) ∈ {0, 1}k,

for all j ∈ [d], are independent and identically distributed, according to a distribution whose
probability density function we denote by Pk : {0, 1}k → R.

▶ Lemma 3. Let x ∈ {0, 1}k and let m be the number of ones in x. Then

Pk(x) = pm(1− p)k−m − (−1)k−mpk.

Proof. Fix a coordinate j ∈ [d]. Let X = (M1,s1 [j], M2,s2 [j], . . . , Mk,sk
[j]) be the random

variable denoting the entries of the j-th coordinate among the vectors at locations s1, . . . , sk

before planting. We proceed by case distinction.

Case 1. If m− k is even, the probability of x occurring in the given coordinate j ∈ [d] of
the planted solution is given by

Pk(x) = Pr [X = x and Plant does not flip the final bit]

= pm(1− p)k−m ·

(
1−

(
p

1− p

)k−m
)

= pm(1− p)k−m − 1 · pk

= pm(1− p)k−m − (−1)k−mpk.

Case 2a. If m− k is odd and x = y1 for some y ∈ {0, 1}k−1, then x = y1 may occur either
directly in the model instance, or by y0 (for which m− k is even) occurring in the model
instance and Plant flipping the final bit:

Pk(x) = Pr [X = y1] + Pr [X = y0 and Plant flips the final bit]

= pm(1− p)k−m + pm−1(1− p)k−(m−1) ·
(

p

1− p

)k−(m−1)

= pm(1− p)k−m + pk

= pm(1− p)k−m − (−1)k−mpk.

Case 2b. Similarly, if m − k is odd and x = y0 for some y ∈ {0, 1}k−1, then x = y0 can
occur either directly in the model instance or by Plant flipping the final bit of the sequence y1:

D. Kühnemann, A. Polak, and A. Rosen 95:9

Pk(x) = Pr [X = y0] + Pr [X = y1 and Plant flips the final bit]

= pm(1− p)k−m + pm+1(1− p)k−(m+1) ·
(

p

1− p

)k−(m+1)

= pm(1− p)k−m + pk

= pm(1− p)k−m − (−1)m−kpk. ◀

▶ Remark 4. Despite Plant acting only on the last collection Uk, Lemma 3 implies that the
resulting distribution k−OVα

1 (n) is invariant under permutation of the sequence of the k

collections U1, . . . , Uk.

Having Pk as the distribution of planted vectors, rather than, e.g., the k-vector joint
model distribution conditioned on orthogonality, ensures (k − 1)-wise independence among
the planted vectors. I.e., the projection of k planted vectors onto any subset of size k′ < k is
identically distributed to k′ vectors from the model distribution.

▶ Lemma 5 ((k − 1)-wise independence). Marginalizing any one of the k bits of Pk yields
k − 1 independent p-biased bits.

Proof. By Remark 4 we may assume w.l.o.g. that the last bit is the one marginalized out.
The lemma then follows from the definition of Plant, as the first k−1 entries of any coordinate
in the planted vectors are unchanged from the model instance, and are therefore independent
p-biased bits. ◀

This property is useful in bounding the probability of a planted instance containing a
solution besides the planted one.

▶ Lemma 6. A k-OV instance sampled from the planted distribution k−OVα
1 (n) has more

than one solution with probability less than 1
nk .

Proof. While the k vectors at positions s1, . . . , sn are guaranteed to form a solution, by
(k − 1)-wise independence, all combinations of 0 ≤ k′ < k of these vectors and k − k′

non-planted vectors form a set of k independent p-biased vectors which is therefore a solution
to the k-OV problem with probability (1− pk)d = 1

n2k . By linearity of expectation,

E[c(U)] = 1 + (1− pk)d · (nk − 1) < 1 + 1
nk

,

and the claim follows from Markov’s inequality. ◀

4.1 Uniqueness
Our way of planting is unique in the following sense.

▶ Theorem 7. Let Q : {0, 1}k → R be a probability distribution such that Q(1k) = 0 and
that marginalizing any one of the k bits yields k− 1 independent p-biased bits. Then Q = Pk.

Proof. We show that Q(x) = Pk(x) for all x ∈ {0, 1}k. Let m denote the number of ones in
x. We proceed by induction over k −m, i.e., the number of zeros in x.

Base case: k − m = 0. Then m = k and x = 1k. Thus Q(x) = Q(1k) = 0 = Pk(x).

ESA 2025

95:10 The Planted Orthogonal Vectors Problem

Inductive case: k − m > 0. We assume w.l.o.g. that the k −m zeros are the last bits of
x, i.e., x = 1m0k−m. Marginalizing the final k −m > 0 bits of Q yields k − (k −m) = m

independent p-biased bits, whereby the probability of all m remaining bits being ones is

pm =
∑

y∈{0,1}k−m

Q(1my) = Q(1m0m−k︸ ︷︷ ︸
=x

) +
∑

y∈{0,1}k−m

y ̸=0k−m

Q(1my).

Thereby,

Q(x) = pm −
∑

y∈{0,1}k−m

y ̸=0k−m

Q(1my)

= pm −
∑

y∈{0,1}k−m

y ̸=0k−m

Pk(1my) (by the induction hypothesis)

= pm + Pk(x)−
∑

y∈{0,1}k−m

Pk(1my)

where the sum term is merely the probability of 1m in the marginal distribution of Pk, which
by Lemma 5 in turn consists of m independent p-biased bits. Hence,

= pm + Pk(x)− pm = Pk(x). ◀

5 Conjectured hard problems

In this section we formally define the problems that we conjecture to require nk−o(1) time.

▶ Definition 8 (Solving planted decision k-OV). Let A be an algorithm that given a k-OV
instance U outputs either 0 or 1. For α(n) = Ω(1), we say A solves the decision k-OVα

problem with success probability δ(n), if for both b ∈ {0, 1} and large enough n,

Pr
U∼k-OVα

b
(n)

[A(U) = b] ≥ δ(n),

where randomness is taken over both the instance U and the random coins used by A.

Similarly, we define a notion of recovering a solution from a planted instance.

▶ Definition 9 (Solving planted search k-OV). Let A be an algorithm that given a k-OV
instance U outputs a tuple (s1, ..., sk) ∈ {1, ..., n}k. For a given α(n) = Ω(1), we say A
solves the planted search k-OVα problem with success probability δ(n) if for large enough n,

Pr
U∼k−OVα

1 (n)
(s1,...,sk)←A(U)

[U1,s1 , ..., Uk,sk
are orthogonal] ≥ δ(n),

where randomness is taken over both the instance U and the random coins used by A.

Now we are ready to formally state our main conjecture.

▶ Conjecture 10. For any α(n) = ω(1) and ε > 0, there exists no algorithm A that solves the
planted decision k-OV problem with any constant success probability δ > 1

2 in time O(nk−ε).

D. Kühnemann, A. Polak, and A. Rosen 95:11

6 Search-to-decision reduction via binary search

We reduce the search problem of finding the planted solution to the decision problem of
determining whether an instance contains a planted solution. This means that given a
decision algorithm that can correctly distinguish whether an instance was sampled from
the model or planted distribution with sufficient probability, one can recover the planted
secret through this reduction. The reduction introduces a factor O(log n) increase in both
the running time and error probability of the algorithm.

The idea is to find each planted vector using something akin to binary search on each
collection Ui. We can split Ui into two partitions of roughly equal size and run the decision
algorithm twice, on instances where one of the two partitions is first replaced by newly
sampled p-biased vectors. The vector planted in Ui is guaranteed to be replaced in one
of these cases, and by (k − 1)-wise independence the resulting instance follows the model
distribution. The search space is thus cut in half and we can recurse on this smaller search
space to eventually find the planted vector.

▶ Theorem 11 (Search-to-decision reduction). Let α(n) = polylog(n) and let Adecide be an
algorithm that solves the planted decision k-OV problem with success probability 1 − δ(n)
in time T (n). Then there exists an algorithm Asearch that solves the planted search k-OV
problem with success probability at least 1− k⌈log n⌉ · δ(n) in expected time Õ(T (n) + n).

Proof. Consider an instance U = (U1, . . . , Uk) ∼ k−OVα
1 (n). First let us focus only on

recovering the location i ∈ [n] of the planted vector in the first collection U1. The reduction
begins with the “full” search space S := [n], and narrows it down by half in each iteration,
so that the desired i is recovered after ⌈log n⌉ iterations.

At each iteration, the current search space S is arbitrarily partitioned in two sets of equal
size (up to one vector when |S| is odd). The decision algorithm Adecide is then executed
on two new instances, where the respective sets of vectors in U1 are replaced with newly
sampled p-biased vectors.

By the (k − 1)-wise independence, if the vector belonging to the solution is replaced, all
vectors are independently and identically distributed p-biased vectors, i.e., the instance is
distributed according to k−OVα

0 (n). On the other hand, if the solution survives resampling,
the instance remains distributed according to k−OVα

1 (n). Therefore, the output of Adecide is
used to decide which of the two partition blocks should be assumed as the new search space.

The reduction is correct if Adecide decides correctly at every iteration. Of course, Adecide

might fail with probability δ(n). By a union bound over all ⌈log n⌉ invocations of Adecide

this happens with probability at most ⌈log n⌉ · δ(n). Thereby Asearch recovers the location i

of the first planted vector with success probability at least 1− ⌈log n⌉ · δ(n).
As for the runtime, Adecide with runtime T (n) is invoked O(log n) times, and across all

iterations n− 1 vectors are resampled in total. Since a single p-biased bit can be sampled
in expected time O(− log p) = O(log α(n)) = O(log log n), sampling a d-dimensional vector
takes polylog(n) time in expectation. Therefore, recovering the location of the first planted
vector takes time Õ(T (n) + n).

The same process is repeated another k−1 times to recover the locations of the planted vec-
tors among U2, ..., Uk. As k is constant, this does not increase the running time asymptotically
but the success probability drops to 1− k⌈log n⌉ · δ(n). ◀

ESA 2025

95:12 The Planted Orthogonal Vectors Problem

7 Search-to-decision reduction via counters

We present a second search-to-decision reduction, adapted from that of Agrawal et al. [2] for
planted k-SUM. As in the method in Section 6, we use the fact that an algorithm Adecide for
the decision k-OV problem, when given a planted k-OV instance with some of the vectors
resampled, correctly detects whether any of the planted vectors were among the resampled
vectors. However, instead of iteratively narrowing a pool of candidate vectors, we iterate
this process on the entire instance, and, for each vector u, we keep count of the number of
iterations in which u survived and Adecide’s output was 1. After O(log(n)) iterations we
output the vectors with the highest counts among each of the k collections, which, as we
show, coincides with the planted solution (with good probability).

▶ Theorem 12 (Search-to-decision reduction). For any α(n) = polylog(n), if there ex-
ists an algorithm that solves the planted decision k-OV problem with success probability
at least 1 − δ(n) in time T (n), then there exists an algorithm that solves the planted
search k-OV problem with success probability at least 1 − 13k · δ(n) − 1

nk in expected time
O
((

T (n) + n polylog(n)
)

log n
δ(n)

)
.

In more detail, let Mix be the following randomized algorithm, which takes a k-OV
instance U and resamples some of the vectors:

Algorithm Mix(U).
1. For each ℓ ∈ [k] and i ∈ [n]:

a. With probability 1− 2− 1
k , replace Uℓ,i by a newly-sampled p-biased vector

2. Output U

For ℓ ∈ [k], let Rℓ ⊆ [n] indicate the indices of the vectors of Uℓ which are replaced by Mix.
For a vector u in U and a given execution of Mix, we say u survives if Mix does not replace
u. We say s = (s1, . . . , sk) survives if Uℓ,sℓ

survives for each ℓ ∈ [k], i.e., ∀ℓ∈[k]sℓ /∈ Rℓ.
Now, let B(s) be the binary random variable indicating whether s survives. Our chosen

probability for Mix to resample a vector yields the following.

▶ Lemma 13. For a k-OV instance U and any s ∈ [n]k, s survives with probability one half,
i.e., PrMix[B(s) = 1] = 1

2 .

Proof. Each vector is independently picked to be replaced with probability 1− 2− 1
k . The

chance of all k vectors surviving is

Pr
Mix

[B(s) = 1] =
(

1−
(

1− 2− 1
k

))k

= 2− 1
k ·k = 1

2 . ◀

As laid out before, our search algorithm repeatedly executes Mix and then the given
decision algorithm Adecide. The hope is that the output of the latter correlates with the
survival of the planted solution. We therefore also keep track of which vectors survive
whenever Adecide believes there is still a planted solution in the instance output by Mix.

D. Kühnemann, A. Polak, and A. Rosen 95:13

Algorithm Asearch(U).
1. Initialize a counter Cℓ,i := 0 for each ℓ ∈ [k] and i ∈ [n].
2. Repeat m = Θ(log n) times:

a. V← Mix(U)
b. b := Adecide(V)
c. If b = 1:

i. Set Cℓ,i := Cℓ,i + 1 for every Uℓ,i that was not replaced by Mix
3. Set sℓ := arg maxi∈[n] Cℓ,i for each ℓ ∈ [k]
4. Output s = (s1, . . . , sk)

This works well for instances U where Adecide is good at detecting whether a particular
solution survives. To capture this notion, we say an instance U is good, if it has only one
solution, at some location s, and the output of Adecide indicates whether s survives except
for a small constant probability, i.e.,

Pr[Adecide(Mix(U)) ̸= B(s)] <
1

12k
,

where the probability is taken over the internal randomness used by Mix.
In the following, let Sample be a randomized algorithm that outputs a planted instance

sampled from k−OVα
1 (n) as well as the location s of the planted solution.

▶ Lemma 14. If Adecide solves the planted decision k-OV problem with success probability
at least 1 − δ(n), an instance U ∼ k−OVα

1 (n) is good except with probability at most
12k · δ(n) + 1

nk .

Proof. An instance U ∼ k−OVα
1 (n) contains only a single solution except with probability

less than 1
nk . We will now show that for such U with only the planted solution, the decision

algorithm Adecide correctly detects if this solution survives except with probability < 12k·δ(n),
from which the claim follows by a union bound.

First, consider the following distribution:

Distribution k−OVα
B(n).

1. (U, s)← Sample
2. V← Mix(U)
3. Output (V, B(s)).

Observe that, if we condition on B(s) = 1, the planted solution survives Mix, which
merely resamples some of the i.i.d. p-biased vectors in the instance. Thus, V is distributed
according to k−OVα

1 (n). On the other hand, if B(s) = 0, at least one of the planted vectors
is replaced by a newly-sampled p-biased vector. By (k − 1)-wise independence, the subset of
planted vectors that survive are i.i.d. p-biased vectors, as are all other vectors in V. Hence,
conditioning on B(s) = 0 yields the model distribution k−OVα

0 (n).
Therefore, for the algorithm Adecide, which solves the planted decision k-OV problem

with success probability at least 1− δ(n), we have

Pr
(V,B)←k−OVα

B
(n)

[Adecide(V) ̸= B] ≤ δ(n).

ESA 2025

95:14 The Planted Orthogonal Vectors Problem

Now, let Z(U, s) be the random variable that, for a given instance U with a solution planted
at s, denotes the probability of Adecide(Mix(U)) ̸= B(s), where the randomness is taken over
the internal coins used by Mix. Then

δ(n) ≥ Pr
(V,B)←k−OVα

B
(n)

[Adecide(V) ̸= B]

= E
(U,s)←Sample

[
Pr
Mix

[Adecide(Mix(U)) ̸= B(s)]
]

= E
(U,s)←Sample

[Z(U, s)] .

By Markov’s inequality,

Pr
(U,s)←Sample

[
Z(U, s) ≥ 1

12k

]
≤ 12k E[Z(U, s)] ≤ 12k · δ(n).

Next, observe that s is the only solution in the instance U output by Sample with good
probability,

Pr
(U,s)←Sample

[U has a solution besides s] = Pr
U←k−OVα

1 (n)
[c(U) > 1] <

1
nk

.

Thus, by a union bound over this and our result in the first step, we find that an instance
U ∼ k−OVα

1 (n) is good except with probability at most 12k · δ(n) + 1
nk :

Pr
U←k−OVα

1 (n)
[U is good]

= Pr
U,s←Sample

[
s is the only solution of U and Z(U, s) <

1
12k

]
≥ 1− Pr

U,s←Sample
[U has a solution besides s]− Pr

U,s←Sample

[
Z(U, s) ≥ 1

12k

]
> 1− 1

nk
− 12k · δ(n). ◀

We now show that the search algorithm performs well on this large fraction of good
instances.

▶ Lemma 15. Let Adecide be an algorithm that solves the planted decision k-OV problem
with success probability 1− δ(n). Then Asearch fails to recover the solution s of good instances
with probability less than δ(n).

Proof. Let U be a good instance with its only solution at s. After t iterations, we expect
the counters for vectors in the solution s to be the highest. Using the fact that 1

k√2
< 1− 1

2k ,
we find that for non-planted vectors, i.e., where sℓ ̸= i,

E[Cℓ,i] = t · Pr
Mix

[
Uℓ,i survives and Adecide(Mix(U)) = 1

]
(∗)

≤ t ·
(

Pr
Mix

[Uℓ,i survives and B(s) = 1] + Pr
Mix

[
Adecide(Mix(U)) ̸= B(s)

])
< t ·

(
1

k
√

2
· 1

2 + 1
12k

)
< t ·

((
1− 1

2k

)
1
2 + 1

12k

)
= t

(
1
2 −

2
12k

)
.

D. Kühnemann, A. Polak, and A. Rosen 95:15

On the other hand, for planted vectors, i.e., where sℓ = i,

E[Cℓ,i] ≥ t · Pr
Mix

[
s survives and Adecide(Mix(U)) = 1

]
(∗∗)

= t · Pr
Mix

[
B(s) = 1 and Adecide(Mix(U)) = B(s)

]
≥ t ·

(
1− Pr

Mix
[B(s) = 0]− Pr

Mix

[
Adecide(Mix(U)) ̸= B(s)

])
> t ·

(
1− 1

2 −
1

12k

)
= t ·

(
1
2 −

1
12k

)
.

Picking the k highest counters is guaranteed to yield the solution s if the ranges of the
counters of the planted and non-planted vectors do not overlap, that is to say if no counter
deviates from its expected value by half the difference of (the bounds on) the two expected
values (∗∗) and (∗), which we denote by ∆:

∆ := 1
2

[
t ·
(

1
2 −

1
12k

)
− t ·

(
1
2 −

2
12k

)]
= t

1
24k

.

Each counter Cℓ,i is the sum of t i.i.d. binary random variables. By a Chernoff bound, a
counter Cℓ,i for a vector which is not in the planted solution, i.e., sℓ ≠ i, exceeds its expected
value by ∆ with probability at most

Pr [Cℓ,i ≥ E[Cℓ,i] + ∆] < exp
(
−2t

(
∆
t

)2
)

= exp
(
− 2t

242 · k2

)
.

Similarly, a counter Cℓ,i for a vector that is part of a planted solution (sℓ = i) falls short of
its expected value by ∆ with at most the same probability

Pr [Cℓ,i ≤ E[Cℓ,i]−∆] < exp
(
−2t

(
∆
t

)2
)

= exp
(
− 2t

242 · k2

)
.

For a choice of t = 242·k2

2 · log kn
δ(n) = O

(
log n

δ(n)

)
iterations, both of these probabilities are at

most δ(n)
kn . If none of the k · n counters deviate by ∆, the ranges of counters for vectors at s

and those for vectors not at s are disjoint and selecting for the highest counters is guaranteed
to yield s. Thus, by a union bound over all k ·n counters, we fail to recover s with probability
at most kn · δ(n)

kn = δ(n). ◀

We can now complete the proof of Theorem 12.

Proof of Theorem 12. By Lemma 14, an instance U ∼ k−OVα
1 (n) is good except with

probability at most 12k · δ(n) + 1
nk . By Lemma 15, Asearch is able to recover the solution

s from a good instance except with probability at most δ(n). By a union bound against
the instance not being good or Asearch failing on a good instance, Asearch solves the planted
search k-OV problem with success probability at least 1− 13kδ(n)− 1

nk .
In each of the O

(
log n

δ(n)

)
iterations, we execute both Mix and Adecide once and update

the counters. Each execution of Mix samples, in expectation, k · n · (1− 2− 1
k) = O(n) new

vectors, each of which can be sampled in polylog(n) expected time as explained in the proof
of Theorem 11. Adecide runs in time T (n) and updating the counters takes linear time, for
the total expected runtime of O

((
T (n) + n polylog(n)

)
log n

δ(n)

)
. ◀

ESA 2025

95:16 The Planted Orthogonal Vectors Problem

References
1 Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the

polynomial method to algorithm design. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages 218–230. SIAM, 2015.
doi:10.1137/1.9781611973730.17.

2 Shweta Agrawal, Sagnik Saha, Nikolaj I. Schwartzbach, Akhil Vanukuri, and Prashant Nalini
Vasudevan. k-SUM in the sparse regime: Complexity and applications. In Advances in
Cryptology – CRYPTO 2024 – 44th Annual International Cryptology Conference, volume
14921 of Lecture Notes in Computer Science, pages 315–351. Springer, 2024. doi:10.1007/
978-3-031-68379-4_10.

3 Josh Alman. An illuminating algorithm for the light bulb problem. In 2nd Symposium on
Simplicity in Algorithms, SOSA 2019, volume 69 of OASIcs, pages 2:1–2:11. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2019. doi:10.4230/OASICS.SOSA.2019.2.

4 Josh Alman, Alexandr Andoni, and Hengjie Zhang. Faster algorithms for average-case
orthogonal vectors and closest pair problems. In 2025 Symposium on Simplicity in Algorithms
(SOSA), pages 473–484. SIAM, 2025. doi:10.1137/1.9781611978315.35.

5 Josh Alman, Yizhi Huang, and Kevin Yeo. Fine-grained complexity in a world without cryptog-
raphy. In Advances in Cryptology – EUROCRYPT 2025 – 44th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, volume 15607 of Lecture Notes
in Computer Science, pages 375–405. Springer, 2025. doi:10.1007/978-3-031-91098-2_14.

6 Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Average-case
fine-grained hardness. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, pages 483–496. ACM, 2017. doi:10.1145/3055399.3055466.

7 Enric Boix-Adserà, Matthew S. Brennan, and Guy Bresler. The average-case complexity of
counting cliques in Erdős-Rényi hypergraphs. In 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, pages 1256–1280. IEEE Computer Society, 2019. doi:
10.1109/FOCS.2019.00078.

8 Timothy M. Chan and R. Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. ACM Trans. Algorithms, 17(1):2:1–2:14, 2021.
Announced at SODA 2016. doi:10.1145/3402926.

9 Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages
21–40. SIAM, 2019. doi:10.1137/1.9781611975482.2.

10 Mina Dalirrooyfard, Andrea Lincoln, Barna Saha, and Virginia Vassilevska Williams. Average-
case hardness of parity problems: Orthogonal vectors, k-SUM and more. In Proceedings of the
2025 Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2025, pages 4613–4643.
SIAM, 2025. doi:10.1137/1.9781611978322.158.

11 Mina Dalirrooyfard, Andrea Lincoln, and Virginia Vassilevska Williams. New techniques for
proving fine-grained average-case hardness. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, pages 774–785. IEEE, 2020. doi:10.1109/FOCS46700.2020.
00077.

12 Itai Dinur, Nathan Keller, and Ohad Klein. Fine-grained cryptanalysis: Tight conditional
bounds for dense k-SUM and k-XOR. J. ACM, 71(3):23, 2024. Announced at FOCS 2021.
doi:10.1145/3653014.

13 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness
for first-order properties on sparse structures with algorithmic applications. ACM Trans.
Algorithms, 15(2):23:1–23:35, 2019. Announced at SODA 2017. doi:10.1145/3196275.

14 Oded Goldreich and Guy N. Rothblum. Counting t-cliques: Worst-case to average-case
reductions and direct interactive proof systems. In 59th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2018, pages 77–88. IEEE Computer Society, 2018.
doi:10.1109/FOCS.2018.00017.

https://doi.org/10.1137/1.9781611973730.17
https://doi.org/10.1007/978-3-031-68379-4_10
https://doi.org/10.1007/978-3-031-68379-4_10
https://doi.org/10.4230/OASICS.SOSA.2019.2
https://doi.org/10.1137/1.9781611978315.35
https://doi.org/10.1007/978-3-031-91098-2_14
https://doi.org/10.1145/3055399.3055466
https://doi.org/10.1109/FOCS.2019.00078
https://doi.org/10.1109/FOCS.2019.00078
https://doi.org/10.1145/3402926
https://doi.org/10.1137/1.9781611975482.2
https://doi.org/10.1137/1.9781611978322.158
https://doi.org/10.1109/FOCS46700.2020.00077
https://doi.org/10.1109/FOCS46700.2020.00077
https://doi.org/10.1145/3653014
https://doi.org/10.1145/3196275
https://doi.org/10.1109/FOCS.2018.00017

D. Kühnemann, A. Polak, and A. Rosen 95:17

15 Shuichi Hirahara and Nobutaka Shimizu. Hardness self-amplification: Simplified, optimized,
and unified. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, pages 70–83. ACM, 2023. doi:10.1145/3564246.3585189.

16 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. Announced at FOCS
1998. doi:10.1006/JCSS.2001.1774.

17 Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
pages 44–61. ACM, 1989. doi:10.1145/73007.73012.

18 Ari Juels and Marcus Peinado. Hiding cliques for cryptographic security. Designs, Codes and
Cryptography, 20(3):269–280, 2000. Announced at SODA 1998.

19 Daniel M. Kane and Richard Ryan Williams. The orthogonal vectors conjecture for branching
programs and formulas. In 10th Innovations in Theoretical Computer Science Conference,
ITCS 2019, volume 124 of LIPIcs, pages 48:1–48:15. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPICS.ITCS.2019.48.

20 Matti Karppa, Petteri Kaski, and Jukka Kohonen. A faster subquadratic algorithm for finding
outlier correlations. ACM Trans. Algorithms, 14(3):31:1–31:26, 2018. Announced at SODA
2016. doi:10.1145/3174804.

21 Matti Karppa, Petteri Kaski, Jukka Kohonen, and Padraig Ó Catháin. Explicit correlation
amplifiers for finding outlier correlations in deterministic subquadratic time. Algorithmica,
82(11):3306–3337, 2020. Announced at ESA 2016. doi:10.1007/S00453-020-00727-1.

22 Karthik C. S. and Pasin Manurangsi. On closest pair in euclidean metric: Monochromatic
is as hard as bichromatic. In 10th Innovations in Theoretical Computer Science Conference,
ITCS 2019, volume 124 of LIPIcs, pages 17:1–17:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPICS.ITCS.2019.17.

23 Rio LaVigne, Andrea Lincoln, and Virginia Vassilevska Williams. Public-key cryptography
in the fine-grained setting. In Advances in Cryptology – CRYPTO 2019 – 39th Annual
International Cryptology Conference, volume 11694 of Lecture Notes in Computer Science,
pages 605–635. Springer, 2019. doi:10.1007/978-3-030-26954-8_20.

24 Ralph C. Merkle. Secure communications over insecure channels. Commun. ACM, 21(4):294–
299, 1978. doi:10.1145/359460.359473.

25 Alon Rosen. Fine-grained cryptography: A new frontier? IACR Cryptol. ePrint Arch., page
442, 2020. URL: https://eprint.iacr.org/2020/442.

26 Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and the closest pair problem. J. ACM, 62(2):13:1–13:45, 2015. Announced at FOCS
2012. doi:10.1145/2728167.

27 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity,
pages 3447–3487. World Scientific, 2018. doi:10.1142/9789813272880_0188.

28 R. Ryan Williams. Some estimated likelihoods for computational complexity. In Computing
and Software Science – State of the Art and Perspectives, volume 10000 of Lecture Notes in
Computer Science, pages 9–26. Springer, 2019. doi:10.1007/978-3-319-91908-9_2.

29 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/J.TCS.2005.09.023.

ESA 2025

https://doi.org/10.1145/3564246.3585189
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1145/73007.73012
https://doi.org/10.4230/LIPICS.ITCS.2019.48
https://doi.org/10.1145/3174804
https://doi.org/10.1007/S00453-020-00727-1
https://doi.org/10.4230/LIPICS.ITCS.2019.17
https://doi.org/10.1007/978-3-030-26954-8_20
https://doi.org/10.1145/359460.359473
https://eprint.iacr.org/2020/442
https://doi.org/10.1145/2728167
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1007/978-3-319-91908-9_2
https://doi.org/10.1016/J.TCS.2005.09.023

	1 Introduction
	1.1 The k-Orthogonal Vectors Problem
	1.2 Our results
	1.3 Technical overview
	1.4 Open problems

	2 The model distribution
	3 The planted distribution
	4 The (k-1)-wise independence of planted vectors
	4.1 Uniqueness

	5 Conjectured hard problems
	6 Search-to-decision reduction via binary search
	7 Search-to-decision reduction via counters

