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Abstract
In the parameterized problem #IndSub(Φ) for fixed graph properties Φ, given as input a graph G

and an integer k, the task is to compute the number of induced k-vertex subgraphs satisfying Φ.
Dörfler et al. [Algorithmica 2022] and Roth et al. [SICOMP 2024] conjectured that #IndSub(Φ) is
#W[1]-hard for all non-meager properties Φ, i.e., properties that are nontrivial for infinitely many k.
This conjecture has been confirmed for several restricted types of properties, including all hereditary
properties [STOC 2022] and all edge-monotone properties [STOC 2024].

We refute this conjecture by showing that induced k-vertex graphs that are scorpions can be
counted in time O(n4) for all k. Scorpions were introduced more than 50 years ago in the context of
the evasiveness conjecture. A simple variant of this construction results in graph properties that
achieve arbitrary intermediate complexity assuming ETH.

Moreover, we formulate an updated conjecture on the complexity of #IndSub(Φ) that correctly
captures the complexity status of scorpions and related constructions.
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1 Introduction

Counting small patterns in graphs is a fundamental problem in computer science, with
applications in bioinformatics [39], network analysis [28, 38], databases [18], and other areas.
In this paper, we focus on counting certain induced k-vertex graphs in a large n-vertex input
graph G, for fixed k.

Counting Induced Copies of a Fixed Graph. The starting point of our investigation is
the problem of counting induced H-copies for a fixed individual graph H. Formally, this
problem asks for the number of sets X ⊆ V (G) such that the induced subgraph G[X] is
isomorphic to H. We stress that H is considered fixed in this problem, and only G is the
input. In particular, each such problem can be solved in time O(nk), which is polynomial in
n for fixed k.
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Some improvements over the trivial O(nk) running time are known: For example, triangles
can be counted in O(nω) time [21], where ω < 2.372 is the optimal exponent of n × n matrix
multiplication [1]. This improvement can be lifted to cliques beyond K3: Denoting by C(Kk)
the optimal exponent for counting k-cliques in n-vertex graphs, similar to the exponent of
matrix multiplication, we have C(Kk) ≤ ω · ⌈k/3⌉ (see [30]). Under the Exponential-Time
Hypothesis ETH, there exists a fixed constant α such that C(Kk) ≥ α · k (see [4]).

Writing Cind(H) to denote the optimal exponent of counting induced H-subgraphs [5] for
fixed H, a straightforward reduction shows that Cind(H) = C(Kk) for all k-vertex graphs H.
In other words, for fixed k, all induced H-counting problems with k-vertex H are equally hard,
and they require an exponent of Ω(k) under ETH. Compare this to counting not necessarily
induced subgraphs, where different patterns can yield different complexity exponents: The
number of subgraph copies of the edgeless k-vertex graph ISk in an n-vertex graph is

(
n
k

)
and can thus be computed in linear time, while counting k-cliques is hard.

Counting Patterns From a Set. In recent years, counting occurrences of individual k-
vertex patterns H has been generalized to counting pattern occurrences from a fixed set of
patterns [22, 23]. In this setting, we fix a number k ∈ N and a set H of k-vertex graphs. On
input G, we wish to count the induced k-vertex subgraphs of G isomorphic to some H ∈ H.
This subsumes the problem of counting induced H-copies, but also allows us to address, e.g.,
the problem of counting connected k-vertex graphs [22].

Of course, for every set H, this problem can be solved by counting induced H-copies for the
individual graphs H ∈ H, which readily implies an O(nC(Kk)) time algorithm. Significantly
faster algorithms were only known for trivial pattern sets H, i.e., if the pattern set H is
empty or contains all k-vertex graphs. In these cases, the output is just 0 or

(
n
k

)
, respectively.

Also, for some pattern sets H, slight improvements can be obtained over the O(nC(Kk)) time
algorithm [9], but no nontrivial set H of k-vertex graphs with exponent strictly less than
C(K⌊k/2⌋) was known. In other words, counting induced patterns from a fixed set H of
k-vertex graphs appeared to be either trivial or very hard.

Parameterized Complexity. In the literature, pattern counting is often phrased in terms
of graph properties Φ that may hold on infinitely many graphs rather than finite sets H.
More specifically, in the problem #IndSub(Φ) for a fixed graph property Φ, the input is
a graph G and k ∈ N, and we ask to count the induced k-vertex subgraphs of G satisfying
Φ. Compared to the previous setting, the pattern size k is now part of the input rather
than a fixed constant, so the problem #IndSub(Φ) may not be polynomial-time solvable.
We say that #IndSub(Φ) is fixed-parameter tractable if it can be solved in time f(k) · nO(1)

for a computable function f , and we would like to understand which properties Φ render
#IndSub(Φ) fixed-parameter tractable.

In prior literature, all known properties Φ with fixed-parameter tractable #IndSub(Φ)
are essentially trivial: Formally, we call Φ meager if the restriction Φ(k) of Φ to k-vertex
graphs (i.e., the k-th slice of Φ) is trivial for all but finitely many k ∈ N. Meager computable
properties Φ trivially render #IndSub(Φ) fixed-parameter tractable. Complementing this,
the problem #IndSub(Φ) was conjectured to be #W[1]-hard for all other computable
properties Φ. Here, #W[1] is the parameterized analogue of #P; it is known that ETH rules
out fixed-parameter tractable algorithms for all #W[1]-hard problems (see, e.g., [15]).

▶ Conjecture 1 ([12, 16, 37]). For every property Φ that is computable and not meager, the
problem #IndSub(Φ) is #W[1]-hard.
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This conjecture has been verified for general classes of properties Φ, e.g., properties that are
closed under deleting edges [9, 13, 14] or deleting vertices [16], and other natural classes of
properties [9, 22, 23, 35, 37]. This made it a plausible working hypothesis in the area.

Our Results. We show that Conjecture 1 fails. That is, we exhibit non-meager properties
Φ such that #IndSub(Φ) is fixed-parameter tractable – in fact, even polynomial-time
solvable.

These counterexamples are derived from simple constructions that were introduced 50
years ago in the context of the evasiveness conjecture [27, 33, 26], a major open problem
about the worst-case query complexity of graph properties. In the setting of the evasiveness
conjecture, we are given a fixed graph property Φ, and we wish to decide whether an unknown
k-vertex graph G is contained in Φ, where G can only be accessed via edge queries. More
precisely, the vertex set V (G) is known, and for two vertices v, w, we can query whether vw

is an edge of G. Clearly, every property can be decided by querying all
(

k
2
)

pairs of vertices,
and the evasiveness conjecture postulates that this trivial worst-case upper bound is optimal
for all (edge-)monotone properties.

However, when we drop the monotonicity requirement, properties Φ with linear query
complexity O(k) are known [27, 33], and it turns out that those examples can be used to
refute Conjecture 1.

As a simple counterexample, the property Ψsink of having a sink in a directed graph is
nontrivial on graphs of fixed size k ≥ 2, and hence not meager. Here, a graph D satisfies
Ψsink if there is a vertex s ∈ V (D) with (v, s) ∈ E(D) for all v ̸= s.1 Nevertheless,
#IndSub(Ψsink) can be solved in linear time on directed graphs without antiparallel
edges. We invite the reader to discover the algorithm themselves before proceeding to
Section 3.1. This property actually presented the first counterexample to a (too strong)
version of the evasiveness conjecture on directed graphs [33].
A marginally more involved construction also works for undirected graphs: The scorpion
property Ψ is a non-meager property of undirected graphs such that #IndSub(Ψ) can be
solved in O(n4) time on general undirected graphs. Scorpions were the first counterexample
to a (too strong) variant of the evasiveness conjecture for undirected graphs [27], prompting
the restriction of this conjecture to monotone properties.
We show more generally that #IndSub(Ψ) can be made gradually harder: For every
ℓ ∈ N, we construct a generalized scorpion property Ψℓ such that #IndSub(Ψℓ) can be
solved in O(nℓ+3) time, while ETH rules out O(nα·ℓ) time algorithms for a fixed constant
α > 0. Our construction also allows for ℓ to be a function in k. Under the Strong
Exponential-Time Hypothesis SETH, we rule out O(nℓ+2−ε) time algorithms.

Finally, informed by these counterexamples, we formulate a new hypothesis on the
computational complexity of #IndSub(Φ) for properties Φ. This new hypothesis is more
technical and explained in Section 4. In a nutshell, it is based around the well-established
fact that sums of induced pattern counts like the k-th slices #IndSub(Φ(k) → G) can be
expressed as linear combinations of (not necessarily induced) subgraph counts [5], and that
such basis changes may help in understanding the complexity of a problem [5, 6, 9, 12, 13,
14, 16, 17, 24, 35, 37, 36].

1 Contrary to contemporary notation, in which a sink is a vertex of out-degree 0, we use the term sink to
refer to a vertex s ∈ V (D) such that (v, s) ∈ E(D) for all v ̸= s. This follows the terminology of the
original paper [33], which is still common in the context of the evasiveness conjecture.

ESA 2025
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Figure 1 A graph H is an ℓ-scorpion if it has the above form: Dashed edges may be present in
H or not, solid edges must be present, and non-drawn edges must not be present.

More specifically, the new hypothesis postulates that a useful phenomenon occurs when
expressing the graph parameter #IndSub(Φ(k) → G) as a linear combination of subgraph
counts: Any hard term in such a linear combination ensures hardness of the entire linear
combination. General linear combinations of k-vertex subgraph counts do not enjoy this
useful phenomenon. We demonstrate in Section 4 that our conjecture would imply useful
new ways of proving hardness of #IndSub(Φ(k) → G).

Further Connections to the Evasiveness Conjecture. Notably, this work is not the first
to draw connections between the evasiveness conjecture and the computational complexity
of #IndSub(Φ). Indeed, this connection was already made by Roth and Schmitt [35], who
adapted the topological approach to the evasiveness conjecture, dating back to Kahn, Saks
and Sturtevant [25], to prove lower bounds for #IndSub(Φ) for certain graph properties Φ.
In a similar spirit, [9] adapts a lower bound of Ω(k2) on the query complexity of monotone
graph properties due to Rivest and Vuillemin [32] to obtain hardness of #IndSub(Φ) for
monotone properties Φ. The present work complements these connections on the upper-bound
side: We observe that standard examples of properties Φ with linear query complexity admit
efficient algorithms for #IndSub(Φ).

Currently, these connections seem to be restricted to specific examples and proof tech-
niques. We believe that it is an interesting open question whether a general connection can
be established in either direction. Without going into details, we point out that the Fourier
degree of a property Φ (when Φ is restricted to a slice and viewed as a Boolean function)
provides a lower bound both for the query complexity of Φ [31], and for the computational
complexity of #IndSub(Φ) [9]. However, in both cases, large Fourier degree is only known
to give a sufficient criterion for hardness, so it does not establish a direct link between the
query complexity of Φ and the complexity of #IndSub(Φ).

2 Preliminaries

We write N = {1, 2, 3, . . . } and [n] := {1, ..., n} for n ∈ N. For a set A, we write
(

A
k

)
for the

set of all k-element subsets of A.

Graph Theory. We follow standard textbooks [11] for graph-theoretic notation. Unless
stated otherwise, graphs are simple (i.e., without multiedges or self-loops) and undirected.
We write V (G) and E(G) for the vertex and edge set of G, respectively, and we write
NG(v) := {u | uv ∈ E(G)} for the neighborhood of v ∈ V (G) in G.
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A graph H is a subgraph of G, written H ⊆ G, if it can be obtained by deleting vertices
and edges from G. For X ⊆ V (G), we write G[X] to denote the induced subgraph on X.
For S ⊆ E(G), we write G[S] for the subgraph with vertex set V (G) and edge set S. For
k, ℓ ∈ N, we write Kℓ for the complete ℓ-vertex graph, ISℓ for the edgeless ℓ-vertex graph,
and Kℓ,k for the complete bipartite graph on ℓ + k vertices.

Induced Subgraph Counts. A graph property Φ is a function that maps each graph G to
{0, 1} and is invariant under isomorphisms, i.e., Φ(G) = Φ(H) for all isomorphic graphs
G, H. For k ∈ N, the k-th slice of Φ, denoted by Φ(k), is the restriction of Φ to k-vertex
graphs. We implicitly identify Φ(k) with the set of all k-vertex graphs G satisfying Φ(G) = 1,
and we use graph properties and sets of graphs interchangeably. For k ∈ N and a graph G,
the number of k-vertex induced subgraphs G[X] satisfying Φ will be denoted by

#IndSub(Φ(k) → G) :=
∑

X⊆V (G)
|X|=k

Φ(G[X]).

Moreover, we write #IndSub(Φ(k) → ⋆ ) for the map G 7→ #IndSub(Φ(k) → G).

Complexity Theory. A parameterized problem consists of a function P : Σ∗ → N and a
computable parameterization κ : Σ∗ → N. It is fixed-parameter tractable (FPT) if there is a
computable function f , a constant c ∈ N, and a deterministic algorithm A that computes
P (x) in time O(f(κ(x)) · |x|c) for all x ∈ Σ∗. We write #IndSub(Φ) for the parametrized
problem that gets as input a graph G and a parameter k, and computes #IndSub(Φ(k) → G).

For lower bounds, we rely on the Exponential-Time Hypothesis (ETH) [20], which asserts
the existence of some ε > 0 such that the Boolean satisfiability problem on n-variable 3-CNF
formulas cannot be solved in time O(2ε·n) (see also [10, Conjecture 14.1]). The Strong
Exponential-Time Hypothesis (SETH) [19] states that for all ε > 0, there is a k ≥ 3 such
that Boolean Satisfiability on k-CNF formulas cannot be solved in O(2(1−ε)·n) (see also [10,
Conjecture 14.2]).

3 Main Result

To present the idea underlying the tractability of scorpions, we first consider a variant for
directed graphs, where this idea becomes particularly simple. Then we introduce scorpions
and their generalizations and prove the claimed upper and lower complexity bounds. Finally,
we use scorpions to show that a useful and previously known complexity lower bound on the
complexity of #IndSub(Φ) is tight.

3.1 Directed Graphs Containing a Sink
As a warm-up, we consider a property Ψsink of directed graphs that is nontrivial but yields a
linear-time counting problem #IndSub(Ψsink). For this subsection, we momentarily consider
directed graphs without antiparallel edges, i.e., at most one of the edges (u, v) and (v, u) may
be present. The property Ψsink is defined to hold on H if there is a sink vertex s ∈ V (H), i.e.,
a vertex s such that (u, s) ∈ E(H) for all u ∈ V (H) \ {s}. This property is clearly nontrivial
in every slice k ≥ 2, as there are k-vertex graphs with a sink and k-vertex graphs without a
sink (e.g., an in-star versus the edgeless graph).

ESA 2025
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Towards an algorithm, we observe crucially that every graph without antiparallel edges
contains at most one sink, since two distinct sinks u, v would imply the presence of both
edges (u, v) and (v, u). Hence, for an input graph G, the set of k-vertex sets containing a
sink

X :=
{

X ∈
(

V (G)
k

) ∣∣∣ G[X] ∈ Ψsink

}
can be partitioned, according to the unique sink, into

X =
⋃

v∈V (G)

Xv with Xv := {X ∈ X | v is the sink of G[X]}.

Finally, for fixed v ∈ V (G), every set X ∈ Xv has the form X = {v, w1, . . . , wk−1} with all
w1, . . . , wk−1 pairwise distinct, distinct from v, and incoming neighbors of v, i.e., they satisfy
(wi, v) ∈ E(G). Writing inG(v) for the number of incoming neighbors of v, it follows that

|Xv| =
(

inG(v)
k − 1

)
.

Combining the above equations, we readily obtain a linear-time algorithm for #IndSub(Ψsink)
by computing inG(v) for all v ∈ V (G) and evaluating the resulting formula

#IndSub(Ψ(k)
sink → G) =

∑
v∈V (G)

|Xv| =
∑

v∈V (G)

(
inG(v)
k − 1

)
. (1)

3.2 Generalized Scorpions
The algorithmic idea for counting k-vertex graphs with a sink vertex applies whenever the set
X of induced subgraphs to be counted admits a partition into few sets Xi such that each |Xi|
is easily determined. More specifically, we consider partitions in which each Xi is determined
by the manifestation of a special small set of uniquely identifiable vertices (e.g., the sink
vertex), while the subgraph induced by the other vertices is irrelevant.

To apply this idea to undirected graphs, we use a construction that was first presented in
[27] for the so-called evasiveness conjecture, and which has become a standard example in
this context (see, e.g., [26, Section 13.1]): A graph H is a scorpion if it can be obtained from
an arbitrary graph H ′ with |V (H ′)| ≥ 2 by adding fresh vertices b, t, s, making b adjacent to
all of H ′, and then adding the edges bt and ts. The vertices b, t, s are usually called body, tail
and sting, and it can be shown crucially (see Lemma 3 below) that these vertices are uniquely
recoverable from H. Similarly to the arguments above, this allows us (in Theorem 4) to
design an efficient algorithm to count induced scorpions.

In this paper, we prove these statements for a slightly generalized version of scorpions,
since this allows us to obtain gradually harder properties. Towards this end, we replace the
tail vertex t by a path of ℓ vertices t1, . . . , tℓ. See also Figure 1.

▶ Definition 2. For ℓ ∈ N, an ℓ-scorpion is a graph H with |V (H)| ≥ ℓ + 4 that admits a
tuple of pairwise distinct vertices

( b︸︷︷︸
body of H

, t1, . . . , tℓ︸ ︷︷ ︸
tail of H

, s︸︷︷︸
sting of H

) ∈ V (H)ℓ+2,

such that the following holds: Writing Q := {b, t1, . . . , tℓ, s} and calling the vertices in
V (H) \ Q the legs of H, we have that
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the graph H[Q] is an induced path from the body b to the sting s,
the body b is adjacent to all legs, and
the body b is the only vertex in Q adjacent to legs.

We define Ψℓ as the class of all ℓ-scorpions.

The property Ψℓ is non-meager for all ℓ ≥ 1: Indeed, for k ≥ ℓ + 4, at least one k-vertex
scorpion exists (e.g., consisting of the sting, tail, body, and an independent set of legs), while
the k-vertex graph Kk is not a scorpion.

Note that scorpion graphs are 1-scorpions. Also note that the definition speaks about
“the” body, tail, and sting vertices, as if they were unique. Indeed, they are:

▶ Lemma 3. If H is an ℓ-scorpion, then its body, tail, and sting are unique.

Proof. Let k = |V (H)| and recall that k ≥ ℓ + 4 by Definition 2. The body has degree
k − ℓ − 1 ≥ 3. Since every leg has degree at most k − ℓ − 2, we conclude that H contains
exactly one vertex of degree k − ℓ − 1; this uniquely identifies b.

The vertices not adjacent to b are precisely t2, . . . , tℓ, s. Among these, s is the only vertex
of degree 1 and is thus uniquely identified. The vertices t1, . . . , tℓ are uniquely identified by
their distance from s, since vertex ti is the only vertex at distance ℓ − i + 1 from s. ◀

We use this lemma to show that #IndSub(Ψℓ) can be solved in polynomial time for
every fixed ℓ ≥ 1, similarly to the algorithm presented in Section 3.1.

▶ Theorem 4. There is an algorithm that, given k ≥ ℓ + 4 and an n-vertex graph G as input,
computes #IndSub(Ψ(k)

ℓ → G) in time O(ℓ · nℓ+3).

Proof. Let X be the set of induced k-vertex graphs in G that are ℓ-scorpions. In our proof,
we use the uniqueness of body, tail, and sting to partition X into classes Xq for q ∈ V (G)ℓ+2

and then determine each |Xq| in linear time. Then the algorithm follows from

#IndSub(Ψ(k)
ℓ → G) = |X | =

∑
q∈V (G)ℓ+2

|Xq|. (2)

More specifically, let P ⊆ V (G)ℓ+2 denote the tuples inducing a path in G. Given q ∈ P
with q = (b, t1, . . . , tℓ, s), let Xq ⊆ X denote the set of k-vertex ℓ-scorpions in G with body b,
tail t1, . . . , tℓ and sting s. By Lemma 3, the sets Xq for q ∈ P partition X , so (2) holds with
Xq = ∅ for q /∈ P. It remains to determine |Xq| for q = (b, t1, . . . , tℓ, s) ∈ P. We show that

|Xq| =
(

|XG(q)|
k − ℓ + 2

)
with XG(q) :=

∣∣∣∣∣NG(b) \
⋃

v∈{t1,...,tℓ,s}

NG(v)

∣∣∣∣∣. (3)

Indeed, since the ℓ + 2 vertices in q induce a path, the set Xq consists of all k-vertex sets
X that contain {b, t1, . . . , tℓ, s} and k − ℓ − 2 additional vertices (the legs) that are adjacent
to b and not adjacent to any ti or s. The number of such sets X is precisely |Xq| =

(
XG(q)
k−ℓ+2

)
.

An algorithm with the claimed running time follows from evaluating (2) term by term
while using (3) to determine |Xq|. Indeed, P can be enumerated in time O(nℓ+2) and |Xq|
for q ∈ P can be computed via (3) in time O(ℓn). ◀

Since Ψℓ is non-meager for every ℓ ≥ 1, Theorem 4 refutes Conjecture 1 even with ℓ = 1.

ESA 2025
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3.3 Lower Bounds Based on ETH
Next, we show that the running time obtained in Theorem 4 is essentially optimal under ETH.
In particular, by choosing ℓ as a function of k, we can use ℓ-scorpions to obtain properties
with varying computational difficulty.

To obtain the lower bound, we rely on a result from [6, 9, 37] that provides a lower bound
based on the set of possible Hamming weights attained by a property Φ: Given a graph
property Φ and k ∈ N, we say that Φ attains weight ℓ on slice k if there is a graph H ∈ Φ
with k vertices and ℓ edges. It avoids weight ℓ on slice k if it does not attain it. Note that
every property attains between 0 and

(
k
2
)

+ 1 different weights on slice k, since the attained
weights form a subset of {0, . . . ,

(
k
2
)
}.

▶ Theorem 5 ([9, Lemma 5.1] & [6, Theorem 7.1]). Assuming ETH, there are N0, δ > 0
such that the following holds: If k ≥ N0 and 0 < d ≤ k/2 and Φ avoids at least d · k

distinct weights and attains at least one weight, all on slice k, then no algorithm computes
#IndSub(Φ(k) → G) in time O(nδ·d).

For k ≥ ℓ + 4, we can easily determine the number of weights attained by Ψℓ on slice k:
Since there is no freedom in choosing edges incident to body, tail and sting, this number is
precisely

(
k−ℓ−2

2
)

+ 1. Thus, the number of weights avoided by Ψℓ on slice k is(
k

2

)
−

(
k − ℓ − 2

2

)
− 1 = k(ℓ + 2) − ℓ(ℓ + 5)

2 − 4.

For k ≥ 2ℓ + 4, it follows that Ψℓ avoids at least ℓ/2 · k weights on slice k. Being nontrivial,
it attains at least one weight. Theorem 5 readily implies:

▶ Corollary 6. Assuming ETH, there are N0, δ > 0 such that the following holds: If k ≥ N0
and 0 < ℓ ≤ (k − 4)/2, then no algorithm computes #IndSub(Ψ(k)

ℓ → G) in time O(nδ·ℓ).

▶ Remark 7. The algorithm from Theorem 4 also demonstrates that the lower bound in
Theorem 5 cannot be further improved. Indeed, Ψℓ avoids at most (ℓ + 2) · k weights on slice
k, but #IndSub(Φ(k) → G) can be solved in O(nℓ+3) time. Therefore, ℓ-scorpions show that
the bound in Theorem 5 is essentially tight.

With the lower bound of Corollary 6 at hand, we can obtain properties with varying
computational complexity, by choosing ℓ dependent on k. For example, setting ℓ ≈

√
k yields

a property Ψsqrt for which #IndSub(Ψsqrt) takes nΘ(
√

k) time under ETH. More generally,
consider a monotone increasing f : N → N with 1 ≤ f(k) ≤ (k − 4)/2 for all k ∈ N. We define
Ψf =

⋃
k∈N Ψ(k)

f(k) to contain exactly the k-vertex f(k)-scorpions for all k ∈ N.

▶ Corollary 8. Let f : N → N be monotone increasing with 1 ≤ f(k) ≤ (k − 4)/2. Then
#IndSub(Ψf ) can be solved in time O(k ·nf(k)+3), and assuming ETH, not in time O(nα·f(k))
for a fixed constant α > 0.

In the full version of the paper, we combine results from Section 4 with a result from [3]
to obtain the following lower bound under the Strong Exponential-Time Hypothesis SETH.

▶ Proposition 9. Assuming SETH, for every ℓ ≥ 3 and ε > 0, there is no algorithm solving
#IndSub(Ψℓ) in time O(nℓ+2−ε).

We stress that, in contrast to Corollaries 6 and 8, the SETH lower bound from Proposition
9 only holds for fixed ℓ, and not if ℓ is chosen as a function of k.
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4 An Updated Conjecture Using the Subgraph Basis

Seeing what scorpions have done to Conjecture 1, it is natural to update the conjecture and
reconsider the question when #IndSub(Φ) is fixed-parameter tractable. Towards this, we
first observe that our counterexamples can be generalized in a number of ways while keeping
their key features. This suggests that a dichotomy theorem for #IndSub(Φ) will have to
encompass various tractable cases, as the following facts indicate:

The key to the efficient algorithm in Theorem 4 is that body, tail and sting are uniquely
identified in every ℓ-scorpion, and that no restrictions are imposed on the subgraph induced
by the legs. As long as there is a constant-sized set of uniquely identifiable vertices and
no restrictions on the remaining vertices, an efficient algorithm for #IndSub(Φ) follows.
This however is not the final word: Observe that #IndSub(Φ) has the same complexity
as #IndSub(¬Φ), where ¬Φ contains exactly those graphs that are not contained in Φ
(see, e.g., [37, Fact 2.3]). Notably, the non-scorpion property ¬Ψℓ contains the complete
graph on k vertices for every k ≥ ℓ + 4, which arguably has no constant-sized set of
“uniquely identifiable” vertices.
Beyond, we can also “nest” easy properties: For example, let Λ be the graph property
containing all graphs H with |V (H)| ≥ 9 so that (a) H is a 1-scorpion, with some set of
legs X, and (b) H[X] is not a 2-scorpion. Then #IndSub(Λ) can be solved in polynomial
time using similar arguments as in Theorem 4.

The diversity of these examples suggests that a complexity classification for all properties
Φ may be quite intricate. To obtain a new classification conjecture, we first express the
induced subgraph counts arising in #IndSub(Φ) as linear combinations of (not necessarily
induced) subgraph counts. Such basis changes among counting problems have already been
used for #IndSub(Φ) before [6, 9, 12, 13, 14, 16, 35, 37].2

In the following, recall that Φ(k) for k ∈ N is the restriction of Φ to k-vertex graphs
and let #IndSub(Φ(k) → ⋆ ) be the number of induced k-vertex graphs satisfying Φ(k) in
an input graph. Likewise let #Sub(H → ⋆ ) denote the number of not necessarily induced
H-subgraph copies in an input graph. Then there exists a finite set H of unlabeled graphs
on exactly k vertices, and coefficients αH for H ∈ H, such that

#IndSub(Φ(k) → ⋆ ) =
∑

H∈H
αH · #Sub(H → ⋆ ); (4)

see [2, 5]. In fact, an explicit formula for the coefficients can be found through inclusion-
exclusion: Given a graph property Φ and graph H, the coefficient αH in (4) is given by
the so-called alternating enumerator Φ̂(H) (see [9, 35]), sometimes defined without the
(−1)|E(H)| factor below [12, 13, 14],

Φ̂(H) := (−1)|E(H)|
∑

S⊆E(H)

(−1)|S|Φ(H[S]).

Evaluating fixed finite linear combinations of k-vertex graphs as in (4) is asymptotically
no harder than evaluating the individual H-subgraph counts with Φ̂(H) ̸= 0. For fixed
graphs H, individual H-subgraph counts in turn can be evaluated in time O(nτ(H)+1), where

2 Going further, the problem #IndSub(Φ) has already been expressed in the similar basis of homomorphism
counts, and a dichotomy criterion was shown in terms of this basis [5]. However, the transformation
into the homomorphism basis renders combinatorial interpretations of Φ opaque and only yields an
implicit dichotomy criterion. In particular, all complexity results listed above were achieved using the
subgraph basis rather than the homomorphism basis.
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τ(H) is the vertex-cover number of H (see [5, Theorem 1.1]). In particular, this implies that
#IndSub(Φ) is fixed-parameter tractable when only graphs H of small vertex-cover number
satisfy Φ̂(H) ̸= 0. More quantitatively, writing τΦ(k) for the maximal vertex cover number
among k-vertex graphs H with Φ̂(H) ̸= 0, we have:

▶ Theorem 10 (see, e.g., [8, Theorem 3.6]). For every computable graph property Φ, the
problem #IndSub(Φ) can be solved in time f(k) · nτΦ(k)+1 for a computable function f .

Conversely, under certain conditions, a k-vertex graph H with Φ̂(H) ̸= 0 that is hard on its
own also implies hardness of the entire linear combination. For example, under the guarantee
that all patterns in the linear combination have the same number k of vertices, this occurs
when some graph H with Φ̂(H) ̸= 0 has large treewidth (see, e.g., [12]). Large treewidth is
however only a sufficient criterion, since counting k-matchings (and more generally, patterns
of large vertex-cover number) is hard as well [7].

Knowing about a similar phenomenon for the related case of homomorphism counts, one3

might be led to believe that linear combinations of k-vertex subgraph counts are hard if at
least one pattern has large vertex-cover number. However, this hypothesis is too optimistic,
as shown by k-partial determinants: These are weighted counts of k-vertex cycle covers C

in a graph G, where C is counted with weight −1 if it contains an odd number of cycles,
and with weight 1 otherwise. The patterns in the subgraph count expansion of k-partial
determinants are precisely the cycle covers on k vertices. These do have large vertex-cover
number, yet k-partial determinants can be computed in time O(nω+1) due to the same
cancellations that render usual determinants tractable.

In our updated version of Conjecture 1, we assert that such cancellations cannot occur for
#IndSub(Φ). That is, we assert that graphs of large vertex-cover number in the subgraph
expansion of #IndSub(Φ) indeed render the linear combination hard. Recall that τΦ(k)
denotes the maximal vertex cover number among k-vertex graphs H with Φ̂(H) ̸= 0.

▶ Conjecture 11. If Φ is a computable property and the function τΦ is unbounded, then the
problem #IndSub(Φ) is #W[1]-hard.

Note that, by Theorem 10, the problem #IndSub(Φ) is fixed-parameter tractable if
τΦ is bounded. Hence, Conjecture 11 formulates a complete characterization in terms of
the subgraph basis expression of a property: For a computable property Φ, the problem
#IndSub(Φ) is fixed-parameter tractable if τΦ is bounded, and #W[1]-hard otherwise.

To the best of our knowledge, no counterexamples are known for Conjecture 11. Since
k-partial determinants can be negative, they cannot be written as #IndSub(Φ) for a property
Φ, so they do not form a counterexample to our updated conjecture. Moreover, we verify
that none of the generalized scorpion properties Ψℓ for fixed ℓ ∈ N refute it. More specifically,
we prove that, for every k ≥ ℓ + 4,

τΨℓ
(k) = ℓ + 2. (5)

Thus τΨℓ
(k) ∈ O(1) for fixed ℓ, so Ψℓ does not satisfy the premises of Conjecture 11.

4.1 Scorpions in the Subgraph Basis
We prove (5) in this section. Recall the definition of tail, sting, body, and legs of an ℓ-scorpion
S. We call an ℓ-scorpion S a skeleton if its legs form an independent set. Moreover, an ℓ-
scorpion fossil is any graph S′ obtained from an ℓ-scorpion skeleton S by adding an arbitrary

3 Some did, see a superseded arXiv version of a related paper: https://arxiv.org/abs/2407.07051v1

https://arxiv.org/abs/2407.07051v1
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number of edges uv with u, v ∈ V (S) such that at least one of u, v is not a leg. (Considering
Figure 1, a scorpion skeleton is obtained by removing all dashed edges. A scorpion fossil is
obtained from a scorpion skeleton by adding arbitrary edges, but not between legs.)

To show (5), we prove the stronger statement that the graphs H occurring with non-zero
coefficients Ψ̂ℓ(H) ̸= 0 in the subgraph expansion of Ψℓ are precisely the ℓ-scorpion fossils.
This is indeed stronger: The vertex-cover number of ℓ-scorpion fossils is at most ℓ + 2, since
they retain the independent set on the legs. On the other hand, the augmented biclique
K+

ℓ+2,k−ℓ−2 obtained from a complete bipartite graph by turning the left side (one ℓ + 2
vertices) into a clique is an ℓ-scorpion fossil of vertex-cover number ℓ + 2.

▶ Lemma 12. For every ℓ ∈ N and every k-vertex graph H with k ≥ ℓ+4, we have Ψ̂ℓ(H) ̸= 0
if and only if H is an ℓ-scorpion fossil.

Proof. Let S := {S ⊆ E(H) | H[S] ∈ Ψℓ}. Similar to Theorem 4, we use the uniqueness
of body, tail, and sting to partition S into classes Sq for q ∈ V (H)ℓ+2. More specifically,
for a tuple q = (b, t1, . . . , tℓ, s) ∈ V (H)ℓ+2, let Sq denote the set of all S ∈ S such that the
scorpion H[S] has body b, tail t1, . . . , tℓ and sting s. Note that we may have Sq = ∅.

By Lemma 3, the sets Sq for q ∈ V (H)ℓ+2 partition S, which implies

Ψ̂ℓ(H) = (−1)|E(H)| ·
∑
S∈S

(−1)|S| = (−1)|E(H)| ·
∑

q∈V (H)ℓ+2

∑
S∈Sq

(−1)|S|. (6)

In the following, for a tuple q ∈ V (H)ℓ+2, we write set(q) for the set of entries of q.

▷ Claim 13. If q ∈ V (H)ℓ+2 is such that set(q) is not a vertex cover of H, then∑
S∈Sq

(−1)|S| = 0.

Proof. Let us first observe that the statement is trivial if Sq = ∅.
Let Eq := {e ∈ E(H) | e ∩ set(q) = ∅} be the edges of H without an endpoint in set(q).

Since set(q) is not a vertex cover, we get Eq ̸= ∅. Observe that Fq := S \ Eq = S′ \ Eq for
all S, S′ ∈ Sq, because edges incident to body, tail or sting (i.e., edges incident to the vertices
in q) are fixed. Since edges between leg vertices can be chosen arbitrarily, we conclude that

Sq = {Fq ∪ E′
q | E′

q ⊆ Eq}.

In particular, we obtain∑
S∈Sq

(−1)|S| =
∑

E′
q⊆Eq

(−1)|Fq|+|E′
q| = (−1)|Fq|

∑
E′

q⊆Eq

(−1)|E′
q| = 0

since Eq ̸= ∅. ◁

Now, for the forward direction of the lemma, suppose that Ψ̂ℓ(H) ̸= 0. Then there is
some q = (b, t1, . . . , tℓ, s) such that

∑
S∈Sq

(−1)|S| ̸= 0. This implies that
(a) set(q) is a vertex cover of H by Claim 13, so the vertices in V (H) \ set(q) form an

independent set in H, and
(b) Sq ̸= ∅, i.e., there is some S ⊆ E(H) such that H[S] is an ℓ-scorpion with body b, tail

t1, . . . , tℓ and sting s. Thus, the vertices in V (H) \ set(q) form the legs of H[S].
These two properties together directly imply that H is an ℓ-scorpion fossil.

For the backward direction, suppose H is an ℓ-scorpion fossil, and let q = (b, t1, . . . , tℓ, s)
denote the tuple of body, tail, and sting of an underlying ℓ-scorpion skeleton. Then
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(i) Sq ̸= ∅,
(ii) set(q) is a vertex cover of H.

The first item holds because the underlying ℓ-scorpion skeleton is a witness to Sq ̸= ∅, while
the second item holds from the definition of ℓ-scorpion skeletons.

Now, let A ⊆ V (H)ℓ+2 denote the set of all tuples q′ satisfying (i) and (ii). Then, for
every q′ ∈ A and every S ∈ Sq′ , the legs of H[S] form an independent set, since the vertices
in q′ ∈ A form a vertex-cover. This implies that H[S] is an ℓ-scorpion skeleton, so S contains
exactly k − 1 edges, and we obtain∑

S∈Sq′

(−1)|S| = (−1)k−1|Sq′ | for all q′ ∈ A. (7)

On the other hand, for q′ ∈ V (H)ℓ+2 \ A, the tuple q′ violates (i), or q′ violates (ii). We
obtain directly (in the first case) or via Claim 13 (in the second case) that∑

S∈Sq′

(−1)|S| = 0 for all q′ ∈ V (H)ℓ+2 \ A. (8)

Let us abbreviate Xq′ :=
∑

S∈Sq′ (−1)|S|. Then it follows that

Ψ̂ℓ(H) = (−1)|E(H)|
∑

q′∈V (H)ℓ+2

Xq′

= (−1)|E(H)|

 ∑
q′∈V (H)ℓ+2\A

Xq′ +
∑

q′∈A

Xq′


= (−1)|E(H)|

0 +
∑

q′∈A

(−1)k−1|Sq′ |

 = (−1)|E(H)|+k−1
∑

q′∈A

|Sq′ | ≠ 0,

where we used (7) and (8) in the third equality, and where the last inequality holds since
A ̸= ∅ and Sq′ ̸= ∅ for all q′ ∈ A. ◀

As discussed above, the lemma implies Equation (5) on the maximum vertex-cover
number in the subgraph expansion of the scorpion property. Together with Theorem 10,
the upper bound on the vertex-cover number gives an alternative proof that #IndSub(Ψℓ)
is fixed-parameter tractable for ℓ ∈ N, with the same polynomial degree as in Theorem 4.
We stress that similar arguments also work for the adaptations of the scorpion property
discussed in the beginning of Section 4. For example, for the property Λ defined there, we
get τΛ(k) ≤ 7 for every k ∈ N.

4.2 Implications of the Conjecture
To conclude the paper and as a potential avenue for future work, we show that our refined
Conjecture 11 would easily imply generalizations and variants of known hardness results.

Most of the recent works (see, e.g., [9, 12, 13, 14, 37]) prove hardness of #IndSub(Φ) by
identifying graphs with non-zero alternating enumerator and unbounded treewidth rather
than vertex-cover number; this is a stronger property. More concretely, let ηΦ(k) denote the
maximal treewidth among k-vertex graphs H with Φ̂(H) ̸= 0. If Φ is computable and ηΦ is
unbounded, then #IndSub(Φ) is #W[1]-hard (see, e.g., [9, Theorem 3.1]). However, showing
that ηΦ is unbounded is often quite a challenge. Conjecture 11 postulates that it suffices for
τΦ to be unbounded to obtain #W[1]-hardness, which is often much easier to show.
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As a concrete example, previous work [12] established hardness of #IndSub(Φ) in the
presence of infinitely many primes p with Φ(IS2p) ̸= Φ(Kp,p), where IS2p and Kp,p are the
edge-less and complete bipartite graphs, respectively. Similarly, for edge-monotone properties
Φ, which are studied in [9, 13, 14], we typically obtain Φ(ISk) ̸= Φ(Kk) for all sufficiently
large k. As we show below, Conjecture 11 implies that infinitely many arbitrary prime-order
vertex-transitive graphs H1, H2 with Φ(H1) ̸= Φ(H2) suffice for hardness. A graph H is called
vertex-transitive if for all vertices u, v ∈ V (H) there exists an automorphism φ ∈ Aut(H)
with φ(u) = v.

▶ Proposition 14. Let Φ be a graph property such that, for infinitely many primes p, there
are vertex-transitive graphs H1

p , H2
p with p vertices and Φ(H1

p ) ̸= Φ(H2
p ). Then #IndSub(Φ)

is #W[1]-hard assuming Conjecture 11.

Proof. For a prime p, we say that a group Γ is a p-group if its order is a power of p, and we
establish some facts about groups and graphs:

(I) Each transitive group that operates on a set of p elements contains a transitive p-
subgroup. This holds since Γ contains a cyclic group of order p, which is transitive
(see the discussion before [29, Theorem 1] for more details).

(II) Each vertex-transitive graph is regular. This is trivial.
(III) Every d-regular k-vertex graph H with d > 1 has vertex-cover number τ(H) ≥ k/2 − 1:

By [34], the independence number α(H) of H is at most k/2+1, so τ(H) = k−α(H) ≥
k/2 − 1.

By the requirements of the proposition, there are infinitely many primes p such that there
are vertex-transitive graphs H1

p , H2
p with p vertices and Φ(H1

p) ̸= Φ(H2
p). Hence, there is

an i ∈ {1, 2} with Φ(Hi
p) ̸= Φ(ISp). Let Hp := Hi

p be this graph. Then Aut(Hp) contains a
transitive p-subgroup Γp by (I). We say a subgraph Fp of Hp is a fixed point of Γp in Hp if
V (Fp) = V (Hp) and γ(E(Fp)) = E(Fp) for all γ ∈ Γp, where γ(E(Fp)) := {γ(u)γ(v) | uv ∈
E(Fp)}. Let FP(Γp, Hp) denote the set of fixed points of Γp in Hp (see [14, Appendix A] for
more details on fixed points of group actions in graphs).

We show that there is a fixed point Fp ∈ FP(Γp, Hp) that has a non-zero alternating
enumerator and τ(Fp) ≥ p/2 − 1. For this, let Fp be a fixed point in FP(Γp, Hp) with
Φ(Fp) ̸= Φ(ISp) and Φ(F ′

p) = Φ(ISp) for all F ′
p ∈ FP(Γp, Hp) with F ′

p ⊊ Fp (i.e., F ′
p is a

proper subgraph of Fp). Such a graph Fp exists since Hp ∈ FP(Γp, Hp) and Φ(Hp) ̸= Φ(ISp).
Now, [13, Lemma 4.8] implies that Φ̂(Fp) ̸= 0. Moreover, [13, Lemma 3.1] implies that Γp ⊆
Aut(Fp), and hence Fp is vertex-transitive. Lastly, (II) and (III) yield that τ(Fp) ≥ p/2 − 1.

This means that we can find a sequence of graphs Fp with unbounded vertex cover number
and Φ̂(Fp) ̸= 0, and thus #IndSub(Φ) is #W[1]-hard by Conjecture 11. ◀
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