
A Fast and Simple Algorithm for the Resource
Constrained Shortest Path Problem
Saman Ahmadi #

School of Engineering, RMIT University, Melbourne, Australia

Andrea Raith #

Department of Engineering Science, University of Auckland, New Zealand

Mahdi Jalili #

School of Engineering, RMIT University, Melbourne, Australia

Abstract
Constrained pathfinding is a classic yet challenging network optimization problem with broad
applicability across many real-world domains. The Resource-Constrained Shortest Path (RCSP)
problem focuses on finding cost-optimal paths that satisfy multiple resource constraints. In this
paper, we propose a novel heuristic-guided search framework that accelerates constrained search
in large-scale networks, including those with negative costs and resources, by leveraging efficient
queuing and pruning strategies. Experimental results on real-world benchmark maps show that
our framework achieves up to two orders of magnitude speedup over state-of-the-art methods,
demonstrating its effectiveness in solving challenging RCSP instances within limited time.

2012 ACM Subject Classification Computing methodologies → Search methodologies; Theory of
computation → Shortest paths

Keywords and phrases constrained pathfinding, shortest path problem, heuristic search

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.97

Related Version arXiv version: https://doi.org/10.48550/arXiv.2503.11037

Funding This research was supported by the Department of Climate Change, Energy, the Environ-
ment and Water under the International Clean Innovation Researcher Networks (ICIRN) program
grant number ICIRN000077. Mahdi Jalili is supported by Australian Research Council through
projects DP240100963, DP240100830, LP230100439 and IM240100042.

1 Introduction

The Resource Constrained Shortest Path (RCSP) problem is a fundamental yet challenging
network optimization problem. It focuses on finding cost-optimal paths between two nodes in a
graph while adhering to constraints on the utilization of limited, potentially multidimensional
resources. Many real-world problems can be modeled as an RCSP instance. Examples are
planning time-constrained explorable non-shortest routes in roaming navigation applications
[24], and finding energy efficient paths with detour limits for electric vehicles [4]. As a
subproblem, RCSP has been utilized to solve orienteering problems [33], and the vehicle
routing problem [12]. RCSP is an NP-Hard problem even for single resource constraint [16].

RCSP and its single-constraint variant, the Weight Constrained Shortest Path (WCSP)
problem, have been studied in the literature for decades. Traditional solutions to RCSP
are generally based on path ranking, dynamic programming (labeling) or branch-and-bound
(B&B) approaches [25, 13], but recent studies have demonstrated that the labeling method
is more effective for solving large-scale RCSP instances. The recent RCBDA* algorithm
[31] is a labeling method that utilizes the dynamic programming approach presented in [29]
to perform a bidirectional A* search guided by cost heuristics, using rigorous yet costly
pruning rules to avoid exploring unpromising paths. Complete paths in this algorithm are

© Saman Ahmadi, Andrea Raith, and Mahdi Jalili;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 97; pp. 97:1–97:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:saman.ahmadi@rmit.edu.au
https://orcid.org/0000-0002-7326-3384
mailto:a.raith@auckland.ac.nz
https://orcid.org/0000-0002-0417-2972
mailto:mahdi.jalili@rmit.edu.au
https://orcid.org/0000-0002-0517-9420
https://doi.org/10.4230/LIPIcs.ESA.2025.97
https://doi.org/10.48550/arXiv.2503.11037
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

97:2 A Fast and Simple Algorithm for the Resource Constrained Shortest Path Problem

obtained by matching backward and forward partial paths, and the amount of a critical
resource available to each search is half of the total budget. The authors concluded that
RCBDA* can perform faster than two other existing RCSP approaches on many instances,
namely the Pulse algorithm (B&B method) [22] and the CSP (path ranking) approach in
[30]. A parallel bidirectional search framework on the basis of Pulse was later developed
in [10], known as BiPulse. This algorithm utilizes the the queuing mechanism developed in
[9] to limit the depth of the Pulse search and postpone the exploration of deep branches of
the search tree, where halted partial paths are explored in a breadth-first search manner.
The authors reported better performance and more solved cases with BiPulse compared to
RCBDA*. Both BiPulse and RCBDA* received awards for their contribution to RCSP [15].
WCEBBA* [3], WCA* [6] and WCBA* [5] are three other A*-based methods that leverage fast
pruning rules in recent bi-objective search literature [32, 2] to tackle constrained pathfinding
more efficiently. Although all of the algorithms have been shown to outperform RCBDA*
and BiPulse on large graphs, their application is limited to instances with a single resource
constraint. Another recent A*-based RCSP method, called ERCA* [27], takes advantage
of recent advancements in multi-objective search with A* [26, 28] to improve the efficiency
of its pruning rules through binary search trees. Like other A*-based methods, the search
in ERCA* is guided by cost heuristics and prunes unpromising paths. Its pruning involves
rigorously discarding any path that exceeds the resource budget or is dominated (i.e., no
better in cost and resource usage) by another previously extended path to the same node,
both before and during path extension. The authors reported several orders of magnitude
faster runtime for ERCA* when compared with BiPulse. However, the performance of ERCA*
against RCBDA* remains unknown. All of the above algorithms are designed and evaluated
for problem instances with non-negative cost and resources.

Contributions. This paper presents a novel and straightforward label-setting framework
built upon A*, called NWRCA*, which incorporates effective search and lazy pruning strategies
to accelerate constrained pathfinding in large-scale networks with negative costs and resources.
We evaluate the framework in two variants that differ slightly in how they maintain search
labels, and we investigate a faster method for computing A*’s heuristics that can potentially
replace the conventional reweighting approach when dealing with negative-weight graphs.
Extensive experiments demonstrate the success of the framework in solving difficult RCSP
instances several orders of magnitude faster than ERCA* and RCBDA*.

2 Problem Definition

Consider an RCSP problem with d resource limits {R1, R2, . . . , Rd} is provided as a directed
graph G with a set of vertices V and a set of edges E ⊆ V × V . Every edge e ∈ E of
the graph has d + 1 ∈ N attributes, represented as (cost, resources) where resources =
{resource1, . . . , resourced} is a form of vector (denoted boldface). An acyclic path π consists of
n distinct vertices {v1, v2, v3, . . . , vn}, where n ≤ |V | and (vi, vi+1) ∈ E for i ∈ {1, . . . , n−1}.
The cost and resource usage of a path π are determined by summing the attributes of all
edges that make up the path. The RCSP problem aims to find (at least) one cost-optimal
paths π∗ from vs ∈ V (start or origin) to vg ∈ V (goal or destination) such that the resource
usages of the path are within the given limits, that is, we must have resourcek(π∗) ≤ Rk for
each resource k ∈ {1, . . . , d}.

In line with the notation in the RCSP literature, we refer to our search objects as labels.
Each label l encapsulates the key information about a partial path from vs and is associated
with an end vertex v ∈ V (last vertex of the path). Label l traditionally stores value pairs

S. Ahmadi, A. Raith, and M. Jalili 97:3

gl and rl that measure the cost and resources of the path, respectively. Additionally, l

includes pl, a reference to the parent label of l, and fl, an estimate of the cost of a complete
path to vg by extending l. Specifically, for each search label l associated with vertex v, we
have fl = gl + hc(v) where hc(v) is a consistent cost heuristic function [17].

▶ Definition 1. The heuristic function hc : V → R is admissible iff hc(v) ≤ cost(λ∗) for
every v ∈ V , where λ∗ is a cost-optimal path from v to vg. hc is consistent if we have
hc(v) ≤ cost(v, u) + hc(u) for every (v, u) ∈ E.

We assume all operations on the resource vectors are performed element-wise. In addition,
we use the ⪯ symbol for direct comparisons of resource vectors, e.g., rl ⪯ rl′ denotes resourcek

of label l is no greater than that of label l′ for all k ∈ {1, . . . , d}. Analogously, we use the ⪯̸
symbol if the relation cannot be satisfied. We now define dominance over labels.

▶ Definition 2. Label l ′ is weakly dominated by label l if we have gl ≤ gl′ and rl ⪯ rl′ ; l ′ is
strongly dominated by l if gl ≤ gl′ and rl ⪯ rl′ but gl ≠ gl′ or rl ̸= rl′ ; l′ is not dominated by
l if gl ≰ gl′ or rl ⪯̸ rl′ .

3 Resource Constrained Pathfinding with A*

Constrained pathfinding with A* involves a systematic search by exploring labels in best-first
order, meaning that the search is guided by the partial path with the smallest cost estimate
or f -value. Each iteration involves three main steps:
i) Extraction: remove one least-cost label from a priority queue Q, also known as Open list.
ii) Dominance pruning: skip exploring labels that are weakly dominated by at least one other
label (with the same vertex);
iii) Expansion: generate new descendant labels, check them for feasibility (against resource
limits), and, if not pruned, store them in Q for further expansion.
The search in this framework generally terminates once an optimal solution is found, or there
is no label in Q to explore, where the latter means there is no feasible solution. If there is
only one resource, it is shown that dominance pruning can be done in constant time when
performing best-first search [5, 6]. Nonetheless, this is not the case in RCSP with multiple
resources and the dominance pruning remains a costly task.

RCSP with negative weights. Many real-world RCSP problems deal with attributes that
are negative in nature, such as energy recuperation in electric vehicles, or attributes that
may exhibit negative values in specific circumstances, such as negative reduced costs in
column generation or pricing problems [19]. Although recent A*-based RCSP solutions, such
as ERCA* and RCBDA*, are primarily designed and evaluated for problem instances with
non-negative edge attributes, they can be adapted to be used for instances with negative
weights (but no negative cycles). This can be achieved through a graph reformulation phase,
where all edge weights are shifted to non-negative values, for example, using Johnson’s
reweighting technique [21]. However, as we will show in this section, our constrained search
framework can be applied directly to graphs with negative edge weights, provided that its cost
heuristic is consistent. With this introduction, we now describe our new RCSP algorithm.

Our approach. Algorithm 1 presents the pseudocode of NWRCA*, our A*-based RCSP
method that employs lazy dominance checks and can handle problem instances with negative
edge weights (but no negative cycles). The algorithm begins by initializing a priority queue
Q and a global cost upper bound f , which maintains the best-known cost of any feasible
solution found during the search. For each vertex v ∈ V , it also initializes a list X (v) to store

ESA 2025

97:4 A Fast and Simple Algorithm for the Resource Constrained Shortest Path Problem

Algorithm 1 NWRCA*.
Input: An RCSP Problem (G, vs, vg, R)
Output: A set of non-dominated cost-optimal solution labels

1 Q ← ∅ , f ←∞
2 X (v)← ∅ ∀v ∈ V

3 hc(v)← optimal cost from v to vg ∀v ∈ V

4 hr(v)← lower bound on resources from v to vg ∀v ∈ V

5 l← new label associated with vs

6 gl ← 0 , rl ← 0d , fl ← hc(vs), pl ← ∅
7 add l to Q
8 while Q ≠ ∅ do
9 extract from Q label l with the smallest f -value

10 if fl > f then break
11 v ← vertex associated with the extracted label l

12 dominated ← false
13 for each l′ ∈ X (v) do
14 if rl′ ⪯ rl then
15 dominated ← true
16 break

17 if dominated = true then continue
18 for each l′ ∈ X (v) do
19 if rl ⪯ rl′ then remove l′ from X (v)
20 add l to X (v)
21 if v = vg then
22 f ← fl

23 continue
24 for each successor u of v do
25 l′ ← new label associated with u

26 gl′ ← gl + cost(v, u)
27 rl′ ← rl + resources(v, u)
28 fl′ ← gl′ + hc(u)
29 pl′ ← l

30 if rl′ + hr(u) ⪯̸ R then continue
31 add l′ to Q

32 return X (vg)

the non-dominated labels resulting from all prior expansions (i.e., closed labels) associated
with vertex v. Like other A*-based RCSP algorithms, NWRCA* requires a cost heuristic
function hc to establish f -values. To enhance pruning of unpromising paths, we also compute
lower bounds on resources using an admissible heuristic function hr : V → Rd. These
cost and resource heuristics can be computed using 1 + d single-objective Dijkstra runs [11],
with re-expansions allowed to accommodate negative weights [20], assuming there are no
negative cycles on any path from vs to vg in any dimension (cost or resources). A similar
strategy has been explored in [1] for multi-objective search. As we will demonstrate in the
experimental section, this heuristic construction method, despite its exponential worst-case
complexity, often outperforms alternatives such as Johnson’s reweighting technique [21] in
practice. NWRCA* then initializes a label with vs and inserts it into Q. Each iteration of
the main search starts at line 8. Let Q be a non-empty queue. The algorithm extracts in
each iteration a label l with the smallest f -value (line 9) and attempts the following steps.

S. Ahmadi, A. Raith, and M. Jalili 97:5

Lazy dominance check. NWRCA* borrows a lazy label pruning technique from the multi-
objective search literature and delays dominance check of newly generated labels until they
are extracted from Q, as in [18] and [1]. Let l be a label extracted from Q with f -value within
the global upper bound. Also let v be the end vertex associated with l. Because the first
dimension is always explored in sorted f order (guaranteed in A* with a consistent heuristic),
we observe that l is already weakly dominated by previous expansions in terms of cost. Note
that all expansions with v use hc(v) as lower bound. As a result, all prior expansions of v

must have exhibited g-value no smaller than gl. This means that the dominance test can
only be done by comparing the resource vector of l, that is, rl, with that of (potentially all)
previous expansions stored in X (v). This process can be further improved by prioritizing the
most recent expansion of v as the first (potentially more informed) candidate for a quick
dominance check, prior to a more rigorous dominance check against the labels of X (v) [1].
The expansion of label l can be skipped if it is found to be dominated by any previously
expanded label (lines 13-16). If l is determined to be non-dominated, NWRCA* removes
from the X (v) list any label l′ whose resource vector is weakly dominated by rl (lines 18-19),
and then adds l to X (v) for future dominance checks at vertex v (line 20). This removal is
correct because any future label that would be dominated by l′ will also be dominated by l,
making it unnecessary to keep the now-redundant label in X (v).

Capturing solutions. A tentative solution path is found if the search extracts a non-
dominated label associated with the goal vertex vg (line 21). Expansion of solution labels is
not necessary. However, in the absence of tie-breaking in Q, new solutions may offer better
resources than previous ones. NWRCA* takes care of this situation by maintaining only
non-dominated labels associated with the goal vertex in X (vg).

Expansion. l’s expansion involves generating new descendant labels through v’s successors
(adjacent vertices). Given hr as an admissible heuristic function, descendant labels with
estimated resource usage exceeding the given limit R cannot lead to a feasible solution and
can be pruned (line 30). Note that in the case of negative resources, new labels whose usage
of resources exceeds the budget (i.e., rl′ ⪯̸ R) can be pruned, provided that all partial
paths are also required to satisfy the resource constraints (which is not assumed in this work).
As part of NWRCA*’s lazy dominance pruning rule, newly generated labels are not checked
for dominance against previously expanded labels or those still in Q; instead, they are only
checked when extracted from the queue. Thus, each descendant label will be added to Q if
its estimated usage of resources to vg is within R.

Termination. NWRCA* explores labels based on their f -value in ascending order. Given
f as global cost upper bound, the search can terminate safely once it extracts a label with
f -value greater than f (line 10). Although this upper bound is initially unknown, it will get
updated as soon as a feasible solution is discovered (line 22). The algorithm returns X (vg),
a set containing cost-optimal labels with non-dominated resources (line 32). If there is no
solution to a given instance (i.e., vg is never reached), this set would remain empty.

Example. We further elaborate on the key steps of NWRCA* by solving a sample RCSP
instance with three edge attributes (two resources), depicted in Figure 1. We assume resource
limits are (R1, R2) = (3, 3). The vertices vs and vg denote start and goal, respectively. The
graph is free of negative cycles, and the values inside each vertex denote hc and (hr1, hr2),
calculated prior to the main search via three single-objective backward searches. We briefly

ESA 2025

97:6 A Fast and Simple Algorithm for the Resource Constrained Shortest Path Problem

vs

2
(0,2)

v3
2

(1,2)

v6
1

(1,1)

v2
3

(1,3)

v5
1

(1,1)

v1
1

(2,2)

v4
2

(0,2)

vg

0
(0,0)

v
hc

hr

1
(-1,0)

1
(1

,1
)

1
(1,

1)

1(1,1)

-1
(3,0)

1(1,1)

1
(1,

1)

0
(1

,1
)

1(1,1)

1
(1

,1
)

1
(1,

1)
1(1,1)

1
(1,

1)

2
(0,2)

1
(1,3)

Figure 1 An RCSP instance with cost above and resources below edges (d = 2). Values inside
the nodes denote vertex identifier, hc and hr of each vertex, listed from top to bottom.

explain all iterations (It.) of NWRCA* for the given instance, with the trace of Q and X sets
provided in Table 1. Pruned labels of each iteration are shown in the third column. For label
extractions, we adopt the Last-In, First-Out (LIFO) strategy in the event of ties in f -values
of labels present in Q. The queue is initialized with the first label l1 associated with vs.

It.1: The search starts with expanding the initial label l1. Since l1 is the first expansion
of vs and thus non-dominated, it is stored in X (vs). Expansion of l1 generates three new
labels: l2, l3, and l4. l2 and l4 are added to Q but l3 is pruned as its resource estimates
are out of bounds, i.e., we have rl3 + hr(v2) ⪯̸ R.
It.2: There are two labels in Q. l2 has the smallest f -value and is expanded first. l2 is
non-dominated and its expansion generates l5 and l6 with v2 and v4, respectively. Both
labels are pruned since their resource estimates are out of bounds.
It.3: l4, associated with v3, is the only label in Q and is extracted. l4 will be stored in
X (v3) as a non-dominated label. l4’s expansion generates three new labels: l7, l8, and l9.
However, only two of these are within the resource bounds and can be added to Q. l9 is
out of bounds as we have 3 + 1 ≰ 3 for its second resource estimate.
It.4: There are two labels in Q, both with the same f -value. l8 is extracted based on the
LIFO strategy. l8 is non-dominated, as this is the first expansion with v4. Expansion of
l8 generates two new labels (l10 and l11, both within the bounds) and adds them to Q.
It.5: l11 is extracted based on the LIFO strategy. l11 is non-dominated and its expansion
generates two labels l12 and l13, but only l12 is added into Q as the second resource
estimate for l13 is not within the bound, i.e., we have 3 + 1 ≰ 3.
It.6: There are three labels in Q, all with the same f -value. The recent insertion l12 is
extracted with vg. This yields the first solution path, followed by updating f ← 3. l12
does not get expanded.
It.7: l10 is extracted, and it appears as a non-dominated solution. However, l10’s resource
vector (0, 3) dominates that of the previous solution. Thus, l10 replaces l12 in X (vg).
It.8: l7 is extracted. l7 is a non-dominated label but dominates and replaces l11 in X (v5).
Expansion of l7 generates two new labels (l14 and l15). Both labels are within the resource
bounds and thus added into Q.
It.9: l14 is extracted with vg. l14 is non-dominated and is added to X (vg). l14 does not
dominate the previous solution.
It.10: l15 is extracted. Given the cost upper bound updated in It.6, the search terminates
due to fl15 surpassing the upper bound f , i.e., we have fl15 = 4 > 3.

S. Ahmadi, A. Raith, and M. Jalili 97:7

Table 1 Tracking Q and X lists in each iteration (It.) of NWRCA* for Figure 1. The symbol ↑

denotes the extracted label, and the last column shows pruned labels during the expansion phase.

It. Q : [fl, gl, rl, vl, pl] X Generated but Pruned

1 ↑l1 = [2, 0, (0, 0), vs,∅] X (vs) = {l1} l3 = [4, 1, (1, 1), v2, l1]

2 ↑l2 = [2, 1, (1, 1), v1, l1] X (v1) = {l2} l5 = [5, 2, (2, 2), v2, l2]
l4 = [3, 1, (−1, 0), v3, l1] l6 = [2, 0, (4, 1), v4, l2]

3 ↑l4 = [3, 1, (−1, 0), v3, l1] X (v3) = {l4} l9 = [3, 2, (0, 3), v6, l4]

4 l7 = [3, 2, (0, 1), v5, l4]
↑l8 = [3, 1, (0, 1), v4, l4] X (v4) = {l8}

5 l7 = [3, 2, (0, 1), v5, l4]
l10 = [3, 3, (0, 3), vg, l8]

↑l11 = [3, 2, (1, 2), v5, l8] X (v5) = {l11}

6 l7 = [3, 2, (0, 1), v5, l4]
l10 = [3, 3, (0, 3), vg, l8]

↑l12 = [3, 3, (2, 3), vg, l11] X (vg) = {l12}

7 l7 = [3, 2, (0, 1), v5, l4]
↑l10 = [3, 3, (0, 3), vg, l8] X (vg) = {l10}

8 ↑l7 = [3, 2, (0, 1), v5, l4] X (v5) = {l7}

9 ↑l14 = [3, 3, (1, 2), vg, l7] X (vg) = {l10, l14}
l15 = [4, 3, (1, 2), v6, l7]

10 ↑l15 = [4, 3, (2, 3), v6, l11]

The example above shows how NWRCA* processes labels in the order of their f -value. As
we observed in It.6, NWRCA* may capture a dominated solution in the absence of tie-breaking,
but we discussed in It.7 how the search refines the set X (vg) in such circumstances to keep
resources of solution paths non-dominated. We now briefly discuss the key differences of
NWRCA* with two recent RCSP approaches, namely ERCA* and RCBDA*.

NWRCA* vs. ERCA*. Although both algorithms utilize best-first search to guide their
constrained search, they differ in four key aspects regarding how labels are handled: (1)
ERCA* checks labels for both dominance and resource usage once during expansion and again
before expansion, whereas NWRCA* performs upper bound pruning only during expansion
and dominance check only before expansion; (2) ERCA* explores labels in lexicographical
order of their resources in case of ties between f -values in the queue (i.e., it compares
labels based on resources in order, starting from the first resource), whereas NWRCA*
does not perform tie-breaking; (3) ERCA* uses a specialized and relatively complex data
structure (balanced binary search tree) to organize and dominance check labels during
the search, whereas expanded labels in NWRCA* are stored in simple lists; (4) ERCA*
immediately terminates upon finding a feasible solution, whereas NWRCA* terminates with
all non-dominated solutions.

NWRCA* vs. RCBDA*. The algorithms differ in four key aspects: (1) RCBDA* conducts a
bidirectional A* search, requiring a specialized and time-intensive procedure to handle frontier
collisions (joining bidirectional labels), whereas NWRCA* performs a simple unidirectional
search. (2) RCBDA* checks new labels for dominance against all previous expansions of the

ESA 2025

97:8 A Fast and Simple Algorithm for the Resource Constrained Shortest Path Problem

vertex, whereas NWRCA* only checks against labels with non-dominated resources; (3)
RCBDA* checks labels for dominance only during expansion, which can lead to the expansion
of dominated labels, whereas NWRCA* performs dominance checks before expansion; (4)
Similar to ERCA*, RCBDA* does not compute all non-dominated solutions.

4 Theoretical Results

This section provides a formal proof for the correctness of constrained search of NWRCA*
and presents theoretical results on why the algorithm can solve RCSP instances with negative
weights but no negative cycles. Throughout this section, we assume there is no negative cycle
on any path from start vertex (vs) to goal vertex (vg) in any dimension, and thus consistent
and admissible heuristic functions hc and hr can be computed for the problem instance.

▶ Lemma 3. Assume the constrained A* search is guided by smallest (potentially negative)
f -values. Let li and li+1 be labels extracted from Q in two consecutive iterations of the search.
We have fli

≤ fli+1 if hc is consistent.

Proof. We distinguish two cases: i) if li+1 was available in Q at the time li was extracted,
the lemma is trivially true. ii) otherwise, li+1 is the descendant label of li. For an edge (v, u)
linking li to its descendant li+1, hc’s consistency ensures hc(v) ≤ hc(u) + cost(v, u). Adding
the cost gli

to both sides of the inequality yields fli
≤ fli+1 . ◀

▶ Corollary 4. Consider the sequence of labels (l1, l2, ..., lt) extracted from Q. If hc is
consistent, then according to the conditions of Lemma 3, i ≤ j guarantees that fli ≤ flj . In
other words, the f -values of the extracted labels do not decrease throughout the process.

▶ Lemma 5. Suppose l′ is extracted after l, both with the same vertex. l weakly dominates l′

if rl ⪯ rl′ .

Proof. Since l is extracted before l′, we have fl ≤ fl′ according to Corollary 4, and con-
sequently gl ≤ gl′ . The other condition rl ⪯ rl′ means that l′ is no smaller than l in all
resources, verifying l′ is weakly dominated by l. ◀

▶ Lemma 6. Let l′ be a label weakly dominated by a previously explored label l, both associated
with the same vertex. The expansion of l′ is not necessary.

Proof. We prove this by contradiction, assuming that l’s expansion is necessary to obtain
a cost-optimal and non-dominated solution path. As l weakly dominates l′, it holds that
gl ≤ gl′ and rl ⪯ rl′ . In this scenario, the partial path represented by l′ can be replaced
with the one represented by l, resulting in a path that is better than or equal to the optimal
solution path obtained via l′. If the resulting path is better, it contradicts the assumption of
l′’s expansion leading to a non-dominated or optimal solution. If both paths are identical in
terms of cost and resources, it becomes clear that the expansion of l has been sufficient,
and thus expanding l′ is unnecessary, again contradicting the assumption. Therefore, we
conclude that expanding the weakly dominated label l′ is not necessary. ◀

▶ Lemma 7. The expansion of label l is not necessary if fl ≰ f or rl + hr ⪯̸ R.

Proof. Given that hr is admissible, the second condition ensures that expanding l towards vg

cannot yield a solution within the resource limits. Similarly, since hc is admissible, the first
condition guarantees that l’s expansion cannot produce a solution with a cost better than
the best-known upper bound f . Therefore, expanding l cannot contribute to any optimal
solution path, and thus is not necessary. ◀

S. Ahmadi, A. Raith, and M. Jalili 97:9

▶ Theorem 8. NWRCA* produces all cost-optimal solution paths with non-dominated re-
sources for the RCSP problem.

Proof. The algorithm explores all feasible search labels from vs towards vg in best-first
order, in search of all optimal solutions. Labels are checked for dominance (Lemma 5) before
expansion, and weakly dominated ones can be safely pruned, as they offer no improvement
over previously expanded labels (with the same vertex) in either cost or resources (Lemma 6).
Labels violating the upper bounds can similarly be pruned safely (Lemma 7). The algorithm
also retains only non-dominated labels in the X lists. This procedure is correct because if a
recently extracted label l′ weakly dominates a previously explored label l, then any future
label l′′ that would have been weakly dominated by l is already weakly dominated by l′,
rendering the storage of l redundant. Building on the above, we just need to show that
the algorithm terminates with returning non-dominated labels. NWRCA* prunes all weakly
dominated labels, but captures all non-dominated labels with vg. However, since it does not
process labels in any specific order of their resources, some tentative solutions may later
appear dominated. Let l′ be a new non-dominated solution extracted after solution l. We
must have fl = fl′ , otherwise the algorithm was terminated if fl′ > f = fl. In this case,
the dominance check in lines 18-19 of Algorithm 1 removes l from X (vg) if it is deemed to
be weakly dominated by new solution l′ (in terms of resources). Once the search exceeds
f , Corollary 4 ensures that expanding the remaining labels in Q cannot produce solutions
with a primary cost better than f . Thus, the termination criterion is correct, and NWRCA*
returns X (vg) as the set of all cost-optimal, non-dominated solution labels. ◀

5 Empirical Analysis

We evaluate the constrained search performance of NWRCA* against two recent A*-based
RCSP approaches: the award-winning RCBDA* algorithm [31] and ERCA* [27]. We did not
consider BiPulse [10] as prior work [27] has demonstrated that it is outperformed by ERCA*.
The algorithms were evaluated on 600 instances across three maps (NY, BAY, and COL)
from the 9th DIMACS Implementation Challenge1, featuring road networks with 264K to
435K vertices and 733K to 1M edges. For each map, we generated 25 random (vs,vg) pairs
to be evaluated on four levels of tightness, resulting in 100 test cases. We study each test
case in scenarios with two and three resources (d = 2, 3). Following the RCSP literature, we
define each resource limit Rk for k ∈ {1, . . . , d} based on the tightness of the constraint τ as:

τ = Rk − hrk

ubrk − hrk

for τ ∈ {20%, 40%, 60%, 80%}

where ubrk and hrk represent the upper and lower bounds on resourcek for paths from vs to
vg, respectively. The upper bound is set by the (non-constrained) cost-optimal path. We
choose the same τ for all resources.

To evaluate the algorithms on graphs with non-correlated but negative weights, following
our previous work [1], we first enriched each map with Shuttle Radar Topography Mission2

height data, and set the edge weights of each map with four new attributes as follows. The
cost of each edge is the energy requirement of an electric vehicle with three passengers
on board, using the energy model in [7]. The calculated energy can be negative in some
downhill links due to energy recuperation. We deliberately did not impose a bound on

1 http://www.diag.uniroma1.it/challenge9
2 https://www2.jpl.nasa.gov/srtm/

ESA 2025

http://www.diag.uniroma1.it/challenge9
https://www2.jpl.nasa.gov/srtm/

97:10 A Fast and Simple Algorithm for the Resource Constrained Shortest Path Problem

battery capacity, enabling the use of plain constrained search for computing energy-efficient
paths. We chose a penalized height function for resource1. Given height(v) as elevation of
vertex v, the second attribute of link (v, u) ∈ E is set to 2× (height(u)−height(v)) for uphill
links, and height(u)− height(v) for downhill links (negative). For resource2 and resource3,
we employed the (reversed) Johnson’s technique to generate cycle-free but random negative
weights in two steps: i) we first assigned a random integer in the [-100,0] range, known as
potential, to each vertex; ii) we then set the third cost of each link (v, u) ∈ E to be the
potential difference between v and u, which was then added by a random integer in the [0,
10] range. The result is two sets of randomized negative weights in the [-100, 110] range
with no negative cycle, which ensures the applicability of the selected algorithms over the
instances. Note that the first and second dimensions cannot contain negative cycles due to
the nature of the chosen metrics. The average percentage of negative weights observed across
the maps for [cost, resrource1, resrource2, resrource3] is [10, 42, 45, 45]%, respectively.

Implementation. We used the publicly available C++ implementations of ERCA* and
developed an improved version of RCBDA* in C++ based on its provided description. In
doing so, we addressed a potential inefficiency in the design related to the label matching
strategy of RCBDA*: rather than storing all expanded labels in a large pool and searching
for complimentary labels (which adds unnecessary overhead in identifying the same matching
vertex), we allocated a separate set for each vertex, optimizing the matching of partial paths
during the bidirectional search. Additionally, the original description of RCBDA* does not
include any dominance or infeasibility pruning rules. Nonetheless, our implementation incor-
porates these strategies, thereby improving its search efficiency. Both RCBDA* and ERCA*
were provided with reweighted graphs (and budgets), ensuring that instances can be handled
correctly in the presence of negative weights. We implemented our NWRCA* algorithm in
C++, providing two variants that differ slightly in their label ordering mechanisms:

NWRCA*v1: (i) labels in X lists are maintained in lexicographical order based on their
r-value, (ii) unexplored labels are ordered in a bucket-based queue and extracted using a
LIFO strategy in the event of ties in their f -values (as in WCA* [6]).
NWRCA*v2: (i) labels in X lists are not maintained in any specific order, (ii) unexplored
labels are ordered in a binary heap queue and extracted in lexicographical order of their
resource estimates (i.e., r + hr) in the event of ties in their f -values.

These variants allow us to investigate the impact of lexicographical label ordering in both X
and Q lists on search performance. Note that the correctness of NWRCA* does not depend on
labels being ordered lexicographically by cost and resources in Q. Keeping non-dominated
labels in lexicographical order within each X list in the first variant allows for partial traversal
over labels of the list for both dominance checking and removal of dominated labels, but
it incurs an additional sorting overhead (see [1] for more details). In contrast, the second
variant provides faster insertion/removal of labels to/from the list (with minimal ordering
overhead), but requires two linear scans over all labels in X , one to ensure that a newly
extracted label is non-dominated and another to remove any dominated labels from the list.

We compiled all C++ code using the GCC7.5 compiler and optimization level O3. The
experiments were conducted on a single core of an Intel Xeon Platinum 8175 processor,
clocked at 2.5GHz, with 16GB of RAM and a one-hour time limit per run. It is worth
mentioning that RCBDA* and both variants of NWRCA* were implemented within the same
framework, using the same data structures to manage labels. Therefore, the performance
comparisons between the algorithms are head-to-head. Our code is publicly available3.

3 https://bitbucket.org/s-ahmadi/multiobj

https://bitbucket.org/s-ahmadi/multiobj

S. Ahmadi, A. Raith, and M. Jalili 97:11

Table 2 Average reweighting and lower-bounding time in each map with three resources (d = 3).

Reweighting time (s) Lower bounding (s)

Approach NY BAY COL NY BAY COL

Graph Reformulation (Johnson) 1.64 2.92 4.02 0.41 0.50 0.54
Modified Dijkstra - - - 0.52 1.00 1.02

Table 3 The runtime statistics of the algorithms (in seconds) for d = 2, 3. For unsolved instances,
the runtime is considered to be one hour. |P| denotes the number of instances solved within the
timeout, and ϕ is the average slowdown factor of the mutually solved instances w.r.t. NWRCA*v1.

Search time (s) Search time (s)

Map Algorithm |P| MeanA MeanG Max. ϕ |P| MeanA MeanG Max. ϕ

NY NWRCA*v1 100 1.01 0.24 11.0 - 100 33.29 2.89 461.0 -
NWRCA*v2 100 3.24 0.59 38.1 2.5 100 108.21 7.73 1607.3 2.5
ERCA* 100 66.04 11.46 765.5 50.5 67 1513.00 217.35 3600.0 93.7
RCBDA* 100 18.91 1.74 31.1 12.1 86 803.41 44.62 3600.0 44.8

BAY NWRCA*v1 100 3.31 0.54 31.1 - 100 125.21 8.65 1803.5 -
NWRCA*v2 100 10.20 1.31 124.6 2.4 96 335.69 22.84 3600.0 2.5
ERCA* 95 306.88 27.28 3600.0 50.0 54 1922.49 479.12 3600.0 98.9
RCBDA* 97 208.72 6.41 3600.0 28.8 73 1320.69 136.40 3600.0 122.0

COL NWRCA*v1 100 2.14 0.50 21.9 - 100 67.92 7.70 720.7 -
NWRCA*v2 100 6.18 1.22 61.3 2.4 100 201.75 19.63 1797.5 2.4
ERCA* 97 204.77 26.46 3600.0 52.3 60 1779.38 468.34 3600.0 96.0
RCBDA* 96 297.38 9.68 3600.0 379.0 72 1346.47 169.16 3600.0 112.4

Instances with two resources d = 2 Instances with three resources d = 3

Computation of heuristics. Our first analysis explores two approaches for computing
heuristic functions for instances with three resources: (i) graph reformulation using Johnson’s
technique (as in ERCA*), and (ii) a modified version of Dijkstra’s algorithm that allows
for re-expansions. For the first approach, we used the improved Bellman-Ford algorithm
[23, 8, 14] to reweight edge costs, followed by Dijkstra’s to compute lower bounds. In case of
RCBDA*, two rounds of lower-bound computation are required (one for the forward search
and another for the backward search). Table 2 compares the average computation time for
both approaches, assuming unidirectional heuristics are needed (as in ERCA* and NWRCA*).
We observe that, the approach (i) requires a considerable amount of time to preprocess
the graphs but enables faster computation of lower bounds, whereas the second approach,
using modified Dijkstra’s algorithm, delivers 3.5 to 4 times faster overall processing time
without the need for reweighting in our (sparse) road networks. While approach (ii) can be
advantageous in scenarios where the graph configuration changes between queries, it may be
up to twice as slow compared to approach (i) when the search graph is static and already
reweighted, though the difference is less than 0.5 seconds. Nonetheless, computing heuristic
functions for NWRCA* using approach (ii) offers several benefits: i) it provides a simple yet
efficient setup for constrained A* search with negative weights; ii) it eliminates the need for
a time-intensive graph reformulation step, which is advantageous in dynamic scenarios; iii)
it performs comparably to conventional methods when weights are non-negative (would be
equivalent to standard Dijkstra).

ESA 2025

97:12 A Fast and Simple Algorithm for the Resource Constrained Shortest Path Problem

1×

100
0×

0.1 1 10 100 1000
0.1

1

10

102

103

NWRCA*v2/RCBDA*/ERCA*

N
W

RC
A*

v1
vs. NWRCA*v2

vs. RCBDA*
vs. ERCA*

0.001 0.01 0.1 1 10 100 1000
0

20

40

60

80

100

Search time in seconds (Logarithmic)

N
um

be
r

of
so

lv
ed

ca
se

s

NWRCA*v1

NWRCA*v2

RCBDA*
ERCA*

Figure 2 (Left) Runtime distribution of NWRCA*v1 versus NWRCA*v2 and the two other al-
gorithms over all instances with d = 3. (Right) Algorithms’ performance over the instances of the
COL map with d = 3 (solved cases sorted based on runtime).

Algorithmic performance. Table 3 presents the experimental results for both scenarios
(d = 2, 3). It displays the number of test cases successfully solved (|P|), the arithmetic
and geometric mean (MeanA and MeanG) and maximum constrained runtime observed (in
seconds) by each algorithm. To enable a fair comparison of actual search performance across
algorithms, and since all algorithms use same heuristic functions, we exclude preprocessing
times (graph reformulation and lower bounding) from our runtime analyses. Therefore, the
runtimes reported in this table refer solely to resource-constrained search time. All algorithms
solved their easiest instances in less than 0.1 seconds. For unsolved cases, the search time is
recorded as the timeout. It can be observed that both variants of NWRCA* have successfully
solved almost all instances for each map in both scenarios, except for the BAY map where
NWRCA*v2 leaves four instances unsolved. The outperformance is even more pronounced
in the BAY and COL maps with d = 3, where ERCA* and RCBDA* could solve less than
75% of cases. In terms of computation time, both variants of NWRCA* deliver significantly
better performance than ERCA* and RCBDA* in all metrics. The detailed results reveal that
NWRCA*v1 consistently outperforms other algorithms, including NWRCA*v2, across nearly
all instances, successfully solving its most challenging case in under 31 minutes.

The parameter ϕ in the last column of Table 3 presents the (arithmetic) average slowdown
factor for each algorithm relative to the top-performing algorithm, NWRCA*v1. This factor
is calculated by comparing the search time of each mutually solved instance with the
corresponding search time of NWRCA*v1, highlighting the relative slowdown. We also show
in Figure 2 (Left) the runtime distribution of NWRCA*v1 against other algorithms over
instances of all maps with three resources (d = 3). Based on the results, NWRCA*v2 performs
nearly 2.5 times slower than NWRCA*v1. This difference in performance is primarily due
to NWRCA*v2’s costly queuing process, which requires lexicographical ordering of labels in
Q (tie-breaking with resources), and NWRCA*v1’s more efficient label pruning mechanism.
This improved pruning efficiency, in particular, stems from the partial traversal of the X
lists, where non-dominated labels are maintained in lexicographical order of their resources.

Larger slowdown factors are observed for ERCA* and RCBDA*, with both algorithms
being outperformed by up to two orders of magnitude on average. The more than one order
of magnitude performance gap between ERCA* and NWRCA* is primarily due to NWRCA*’s
more efficient lazy pruning strategy and its simpler yet effective data structure for dominance

S. Ahmadi, A. Raith, and M. Jalili 97:13

checks, both contributing to significantly faster search times. In contrast, ERCA* suffers
from a more rigid dominance pruning strategy that attempts to eliminate dominated and
infeasible labels both at generation time and again upon extraction from the queue. While
early dominance checks can help reduce queue size, they add computational overhead when
applied to non-dominated labels. Furthermore, rechecking resource feasibility after extraction
is redundant, as resource limits remain unchanged throughout the search, resulting in wasted
computation and reduced efficiency.

Figure 2 (Right) also shows the number of solved cases for each algorithm, sorted by
runtime, on the COL map with three resources. We observe that both variants of NWRCA*
solve 60% of instances within 50 seconds, whereas ERCA* and RCBDA* require above 17
minutes to achieve the same success rate. In summary, both variants of NWRCA* demonstrate
significantly faster performance than the state of the art in terms of computation time, with
NWRCA*v1 being approximately twice as fast as NWRCA*v2.

ERCA* vs. RCBDA*. No performance comparison was provided between ERCA* and
RCBDA* by the authors of ERCA*. Our results show that, while the improved RCBDA*
algorithm solves more instances and achieves better average runtimes than ERCA* on certain
maps, it does not consistently outperform ERCA*. The strong performance of RCBDA*
in many instances is due to its bidirectional framework, which combines perimeter and
alternating search strategies. In terms of worst-case runtime performance (Figure 2 (Left)),
ERCA* generally performs better than RCBDA* but tends to be consistently around two
orders of magnitude slower than NWRCA*v1, whereas RCBDA* can be over three orders of
magnitude slower than NWRCA*v1 in some cases.

6 Conclusion

This paper introduced a novel, fast heuristic-guided label-setting approach with effective prun-
ing mechanisms for efficiently solving resource-constrained shortest path (RCSP) problems in
large-scale graphs. Unlike existing methods that aim to find a feasible solution, our framework
identifies all non-dominated optimal solutions for a given RCSP instance. It also naturally
handles instances with negative costs and resources, provided the cost heuristic is consistent
and the search graph contains no negative cycles. We explored different configurations of the
framework, distinguished by how heuristics are derived and how search labels are stored and
explored during the search process. Experimental results highlight the importance of efficient
ordering of labels in constrained search over large graphs and demonstrate the superiority
of the proposed framework in solving challenging RCSP instances within tight time limits,
outperforming state-of-the-art methods, including an enhanced version of the award-winning
RCBDA* algorithm, by up to two orders of magnitude on average.

References
1 Saman Ahmadi, Nathan R. Sturtevant, Daniel Harabor, and Mahdi Jalili. Exact multi-

objective path finding with negative weights. In Sara Bernardini and Christian Muise,
editors, Proceedings of the Thirty-Fourth International Conference on Automated Planning
and Scheduling, ICAPS 2024, Banff, Alberta, Canada, June 1-6, 2024, pages 11–19. AAAI
Press, 2024. doi:10.1609/ICAPS.V34I1.31455.

2 Saman Ahmadi, Guido Tack, Daniel Harabor, and Philip Kilby. Bi-objective search with
bi-directional A*. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual
European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual
Conference), volume 204 of LIPIcs, pages 3:1–3:15. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ESA.2021.3.

ESA 2025

https://doi.org/10.1609/ICAPS.V34I1.31455
https://doi.org/10.4230/LIPIcs.ESA.2021.3

97:14 A Fast and Simple Algorithm for the Resource Constrained Shortest Path Problem

3 Saman Ahmadi, Guido Tack, Daniel Harabor, and Philip Kilby. A fast exact algorithm for the
resource constrained shortest path problem. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pages 12217–12224. AAAI Press,
2021. doi:10.1609/AAAI.V35I14.17450.

4 Saman Ahmadi, Guido Tack, Daniel Harabor, and Philip Kilby. Vehicle dynamics in pickup-
and-delivery problems using electric vehicles. In Laurent D. Michel, editor, 27th International
Conference on Principles and Practice of Constraint Programming, CP 2021, Montpellier,
France (Virtual Conference), October 25-29, 2021, volume 210 of LIPIcs, pages 11:1–11:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CP.2021.11.

5 Saman Ahmadi, Guido Tack, Daniel Harabor, and Philip Kilby. Weight constrained path
finding with bidirectional A*. In Lukás Chrpa and Alessandro Saetti, editors, Proceedings of
the Fifteenth International Symposium on Combinatorial Search, SOCS 2022, Vienna, Austria,
July 21-23, 2022, pages 2–10. AAAI Press, 2022. doi:10.1609/SOCS.V15I1.21746.

6 Saman Ahmadi, Guido Tack, Daniel Harabor, Philip Kilby, and Mahdi Jalili. Enhanced
methods for the weight constrained shortest path problem. Networks, 84(1):3–30, 2024.
doi:10.1002/net.22210.

7 Saman Ahmadi, Guido Tack, Daniel Harabor, Philip Kilby, and Mahdi Jalili. Real-time
energy-optimal path planning for electric vehicles. arXiv preprint arXiv:2411.12964, 2024.
doi:10.48550/arXiv.2411.12964.

8 Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.
9 Manuel A. Bolívar, Leonardo Lozano, and Andrés L. Medaglia. Acceleration strategies for the

weight constrained shortest path problem with replenishment. Optim. Lett., 8(8):2155–2172,
2014. doi:10.1007/s11590-014-0742-x.

10 Nicolás Cabrera, Andrés L. Medaglia, Leonardo Lozano, and Daniel Duque. An exact
bidirectional pulse algorithm for the constrained shortest path. Networks, 76(2):128–146, 2020.
doi:10.1002/net.21960.

11 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959. doi:10.1007/BF01386390.

12 Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. An exact algorithm
for the elementary shortest path problem with resource constraints: Application to some
vehicle routing problems. Networks, 44(3):216–229, 2004. doi:10.1002/NET.20033.

13 Daniele Ferone, Paola Festa, Serena Fugaro, and Tommaso Pastore. On the shortest path
problems with edge constraints. In 22nd International Conference on Transparent Optical
Networks, ICTON 2020, Bari, Italy, July 19-23, 2020, pages 1–4. IEEE, 2020. doi:10.1109/
ICTON51198.2020.9203378.

14 Lester R Ford Jr. Network flow theory. Technical report, Rand Corp Santa Monica Ca, 1956.
15 Bruce L. Golden and Douglas R. Shier. 2019–2020 glover-klingman prize winners. Networks,

2021. doi:10.1002/net.22072.
16 Gabriel Y. Handler and Israel Zang. A dual algorithm for the constrained shortest path

problem. Networks, 10(4):293–309, 1980. doi:10.1002/net.3230100403.
17 Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern., 4(2):100–107, 1968.
doi:10.1109/TSSC.1968.300136.

18 Carlos Hernández, William Yeoh, Jorge A Baier, Ariel Felner, Oren Salzman, Han Zhang,
Shao-Hung Chan, and Sven Koenig. Multi-objective search via lazy and efficient dominance
checks. In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, pages 7223–7230, 2023.

19 Gerhard Hiermann, Jakob Puchinger, Stefan Ropke, and Richard F. Hartl. The electric fleet
size and mix vehicle routing problem with time windows and recharging stations. Eur. J.
Oper. Res., 252(3):995–1018, 2016. doi:10.1016/J.EJOR.2016.01.038.

20 Donald B Johnson. A note on dijkstra’s shortest path algorithm. Journal of the ACM (JACM),
20(3):385–388, 1973. doi:10.1145/321765.321768.

https://doi.org/10.1609/AAAI.V35I14.17450
https://doi.org/10.4230/LIPIcs.CP.2021.11
https://doi.org/10.1609/SOCS.V15I1.21746
https://doi.org/10.1002/net.22210
https://doi.org/10.48550/arXiv.2411.12964
https://doi.org/10.1007/s11590-014-0742-x
https://doi.org/10.1002/net.21960
https://doi.org/10.1007/BF01386390
https://doi.org/10.1002/NET.20033
https://doi.org/10.1109/ICTON51198.2020.9203378
https://doi.org/10.1109/ICTON51198.2020.9203378
https://doi.org/10.1002/net.22072
https://doi.org/10.1002/net.3230100403
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/J.EJOR.2016.01.038
https://doi.org/10.1145/321765.321768

S. Ahmadi, A. Raith, and M. Jalili 97:15

21 Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. ACM,
24(1):1–13, 1977. doi:10.1145/321992.321993.

22 Leonardo Lozano and Andrés L. Medaglia. On an exact method for the constrained shortest
path problem. Comput. Oper. Res., 40(1):378–384, 2013. doi:10.1016/j.cor.2012.07.008.

23 Edward F. Moore. The shortest path through a maze. In Proc. of the International Symposium
on the Theory of Switching, pages 285–292. Harvard University Press, 1959.

24 Keisuke Otaki, Tomosuke Maeda, Takayoshi Yoshimura, and Hiroyuki Sakai. Roaming
navigation: Diverse constrained paths using heuristic search. IEEE Access, 11:75617–75627,
2023. doi:10.1109/ACCESS.2023.3295830.

25 Luigi Di Puglia Pugliese and Francesca Guerriero. A survey of resource constrained shortest
path problems: Exact solution approaches. Networks, 62(3):183–200, 2013. doi:10.1002/net.
21511.

26 Francisco Javier Pulido, Lawrence Mandow, and José-Luis Pérez-de-la-Cruz. Dimensionality
reduction in multiobjective shortest path search. Comput. Oper. Res., 64:60–70, 2015. doi:
10.1016/j.cor.2015.05.007.

27 Zhongqiang Ren, Zachary B Rubinstein, Stephen F Smith, Sivakumar Rathinam, and Howie
Choset. ERCA*: A new approach for the resource constrained shortest path problem. IEEE
Transactions on Intelligent Transportation Systems, 2023.

28 Zhongqiang Ren, Richard Zhan, Sivakumar Rathinam, Maxim Likhachev, and Howie Choset.
Enhanced multi-objective a* using balanced binary search trees. In Lukás Chrpa and Alessandro
Saetti, editors, Proceedings of the Fifteenth International Symposium on Combinatorial Search,
SOCS 2022, Vienna, Austria, July 21-23, 2022, pages 162–170. AAAI Press, 2022. doi:
10.1609/SOCS.V15I1.21764.

29 Giovanni Righini and Matteo Salani. Symmetry helps: Bounded bi-directional dynamic
programming for the elementary shortest path problem with resource constraints. Discret.
Optim., 3(3):255–273, 2006. doi:10.1016/j.disopt.2006.05.007.

30 Antonio Sedeño-Noda and Sergio Alonso-Rodríguez. An enhanced K-SP algorithm with
pruning strategies to solve the constrained shortest path problem. Appl. Math. Comput.,
265:602–618, 2015. doi:10.1016/j.amc.2015.05.109.

31 Barrett W. Thomas, Tobia Calogiuri, and Mike Hewitt. An exact bidirectional A* approach
for solving resource-constrained shortest path problems. Networks, 73(2):187–205, 2019.
doi:10.1002/net.21856.

32 Carlos Hernández Ulloa, William Yeoh, Jorge A. Baier, Han Zhang, Luis Suazo, and Sven
Koenig. A simple and fast bi-objective search algorithm. In J. Christopher Beck, Olivier
Buffet, Jörg Hoffmann, Erez Karpas, and Shirin Sohrabi, editors, Proceedings of the Thirtieth
International Conference on Automated Planning and Scheduling, Nancy, France, October
26-30, 2020, pages 143–151. AAAI Press, 2020. URL: https://aaai.org/ojs/index.php/
ICAPS/article/view/6655.

33 Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. The orienteering problem:
A survey. Eur. J. Oper. Res., 209(1):1–10, 2011. doi:10.1016/J.EJOR.2010.03.045.

ESA 2025

https://doi.org/10.1145/321992.321993
https://doi.org/10.1016/j.cor.2012.07.008
https://doi.org/10.1109/ACCESS.2023.3295830
https://doi.org/10.1002/net.21511
https://doi.org/10.1002/net.21511
https://doi.org/10.1016/j.cor.2015.05.007
https://doi.org/10.1016/j.cor.2015.05.007
https://doi.org/10.1609/SOCS.V15I1.21764
https://doi.org/10.1609/SOCS.V15I1.21764
https://doi.org/10.1016/j.disopt.2006.05.007
https://doi.org/10.1016/j.amc.2015.05.109
https://doi.org/10.1002/net.21856
https://aaai.org/ojs/index.php/ICAPS/article/view/6655
https://aaai.org/ojs/index.php/ICAPS/article/view/6655
https://doi.org/10.1016/J.EJOR.2010.03.045

	1 Introduction
	2 Problem Definition
	3 Resource Constrained Pathfinding with A*
	4 Theoretical Results
	5 Empirical Analysis
	6 Conclusion

