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Abstract
We consider the following generalization of dominating sets: Let G be a host graph and P be a
pattern graph P . A dominating P -pattern in G is a subset S of vertices in G that (1) forms a
dominating set in G and (2) induces a subgraph isomorphic to P . The graph theory literature
studies the properties of dominating P -patterns for various patterns P , including cliques, matchings,
independent sets, cycles and paths. Previous work (Kunnemann, Redzic 2024) obtains algorithms
and conditional lower bounds for detecting dominating P -patterns particularly for P being a k-clique,
a k-independent set and a k-matching. Their results give conditionally tight lower bounds if k is
sufficiently large (where the bound depends the matrix multiplication exponent ω). We ask: Can we
obtain a classification of the fine-grained complexity for all patterns P ?

Indeed, we define a graph parameter ρ(P ) such that if ω = 2, then(
nρ(P )m

|V (P )|−ρ(P )
2

)1±o(1)

is the optimal running time assuming the Orthogonal Vectors Hypothesis, for all patterns P except
the triangle K3. Here, the host graph G has n vertices and m = Θ(nα) edges, where 1 ≤ α ≤ 2.

The parameter ρ(P ) is closely related (but sometimes different) to a parameter δ(P ) =
maxS⊆V (P ) |S| − |N(S)| studied in (Alon 1981) to tightly quantify the maximum number of occur-
rences of induced subgraphs isomorphic to P . Our results stand in contrast to the lack of a full
fine-grained classification of detecting an arbitrary (not necessarily dominating) induced P -pattern.
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1 Introduction

Among the most intensively investigated graph problems is the dominating set problem:
Given a graph G = (V, E), find a (small) vertex subset S ⊆ V that dominates all vertices,
i.e., for each v ∈ V , we have v ∈ S or there is some s ∈ S with {s, v} ∈ E. In many
scenarios, one might not merely want to find any dominating set, but rather a dominating
set S satisfying some additional requirements. Possibilities include S forming a connected
subgraph, admitting a perfect matching, or more generally being connected by a prescribed
topology (e.g., rings or cliques) or even being fully disconnected (i.e., forming an independent
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set). In this work, we study a general form of such problems: For any pattern graph H, the
(Non-induced) Dominating P -Pattern problem asks to determine, given a graph G, whether
there exists a (non-)induced copy of P in G that dominates all vertices of G.

Indeed, for various patterns P , the structural properties of Dominating P -Patterns
have been well investigated, e.g., Dominating Cliques [5, 7, 12, 15, 26, 27, 28], Dominating
Independent Sets1 [8, 9, 10, 29, 34], Dominating (Induced) Matchings [22, 37, 38], Dominating
Cycles [17, 18] or Dominating Paths [19, 20, 42]. Recently, the algorithmic complexity of
detecting Dominating P -Patterns in general graphs has been performed by Künnemann
and Redzic, focusing on cliques, independent sets and perfect matchings [30] (see below for
further details). In this work, we set out to understand the fine-grained complexity of this
problem for all patterns P .

Note that the Dominating P -Pattern problem is the natural combination of two classic
problems which are heavily studied in isolation: Dominating Set and P -Pattern Detection.

k-Dominating Set: Dominating set is a notoriously difficult problem. When parameterized
by the solution size k (i.e., |S|), it is the arguably most natural W[2]-complete problem
and hard even to approximate within f(k) factors [6, 24]. The best known algorithm
is based on fast matrix multiplication and solves it in time nk+o(1) for all sufficiently
large k [16]. This is tight in the sense that an O(nk−ϵ)-time algorithm for any k ≥ 3 and
ϵ > 0 would refute the k-Orthogonal Vectors Hypothesis (k-OVH) and thus the Strong
Exponential Time Hypothesis [36] (see Section 2 for details). Taking the graph sparsity
(i.e., the number m of edges) into account as well, a recent result [21] gives upper and
conditional lower bounds establishing a tight time complexity of mnk−2±o(1) if the matrix
multiplication exponent ω is equal to 2.
P -Pattern Detection (aka Induced P -Subgraph Isomorphism): The complexity of P -
Pattern Detection for general P is sensitive to the considered pattern P . The probably
most notable special case is k-Clique Detection. It is the most natural W [1]-complete
problem and also resists good approximations [6, 31, 23]. Its best known algorithm solves
it in time essentially O(n ω

3 k) [33]2 and is conjectured to be optimal, see, e.g., [1]. For
other (classes of) patterns P , however, only partial results are known: While for any
k-node pattern P , the problem can be reduced to k-Clique Detection, this approach is
not necessarily optimal. E.g., all 4-node patterns except clique and independent set can
be detected polynomially faster than the conjectured time for clique and independent
set, see in particular [25, 16, 39, 13]. Despite significant effort (see [25, 16, 39, 14, 13] for
a selection), the task of finding matching upper and conditional lower bounds appears
far from completed. Let us remark that also for Non-induced P -Pattern Detection a
fine-grained classification of all patterns P remains open (see, e.g., [32, 13]).

We ask: How does the time complexity of Dominating P -Pattern relate to the complexity
of P -Pattern Detection versus to the complexity of k-Dominating Set? Can we, despite the
lack of a complete classification for P -Pattern Detection classify the fine-grained complexity
of all dominating patterns?

Previous work appears to indicate that the complexity should be governed by the
domination aspect: By adapting the conditional lower bound of Patrascu and Williams for
k-Dominating Set [36] (see also [21, 30]) it is not too difficult to obtain a conditional lower

1 We remark that a Dominating Independent Set is equivalent to the well-studied notion of a Maximal
Independent Set.

2 If k is divisible by 3.
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bound of nk−o(1) in dense graphs for any pattern P , based on k-OVH. However, the situation
becomes much more interesting for sparse graphs. Here, it has already been observed that
the fine-grained time complexity is highly sensitive to the specific pattern P . Specifically,
Künnemann and Redzic [30] give some curious insights into selected patterns: (Here, to
simplify the presentation, we assume that ω = 2 and that k-OVH holds.)

If P is the k-star (a tree with a root and k − 1 leaves), the tight time complexity is
mnk−2±o(1), i.e., even in very sparse graphs with m = Θ(n), we only save a linear factor
in n compared to the nk±o(1) complexity in dense graphs.
In contrast, if P is the clique with k ≥ 5 vertices or the independent set with k ≥ 3 vertices,
we obtain a particularly simple case with tight time complexity of (m k+1

2 /n)1±o(1). In
very sparse graphs with m = O(n), the resulting running time of n

k−1
2 ±o(1) is less than

the square root of the running time of nk±o(1) in dense graphs.
Finally, the substantially different pattern of a perfect matching on k ≥ 4 vertices achieves
the only slightly worse time complexity of m

k
2 ±o(1).

We remark that the above results suggest that in sparse graphs, Dominating P -Pattern
shares an additional flavor with the P -Pattern Enumeration problem: It is not too difficult
to obtain an algorithm whose running time is roughly bounded by the time required to list
all occurrences of the pattern P . However, it turns out that this number alone cannot fully
explain the time complexity: While for the case of perfect matchings, the time complexity
coincides precisely with the maximum number of occurrences of the pattern, for others (e.g.,
independent sets or cliques), the time complexity is polynomially less than the maximum
number of occurrences of the pattern. This begs the question: which other parameter of the
pattern P captures the time complexity of Dominating P -Pattern?

Our results. To state the time complexity for any pattern P , we introduce the following
graph parameter ρ(P ). Here for any graph P and S ⊆ V (P ), we let N(S) denote the (open)
neighborhood of the vertices S, where N(∅) = ∅.3

▶ Definition 1.1. Let P be an arbitrary pattern graph, and denote by I(P ) ⊆ V (P ) the set
of isolated nodes of P . Choose an independent set S ⊆ V (P ) \ I(P ) maximizing |S| − |N(S)|;
if S is not uniquely defined, take any choice maximizing |S|. We define

ρ(P ) :=
{

|S| − |N(S)| if S ̸= ∅
−1 if S = ∅.

and set

tP (n, m) := nρ(P ) · m
|V (P )|−ρ(P )

2 .

These quantities turn out similar (but sometimes different) to the maximum number
of occurrences of the pattern graph P for patterns without isolated nodes (i.e., I(P ) = ∅).
Specifically, if I(P ) = ∅ and S ̸= ∅, the maximum number of induced copies of P in an n-vertex
m-edge graph G is Θ(tP (n, m)). Indeed, for connected graphs G and patterns P , Alon [3]
defines the parameter δ(P ) := maxS⊆V (P ) |S| − |N(S)| and establishes Θ(nδ(P )m

|V (P )|−δ(P )
2 )

as the maximum number of induced copies of P in G whenever G has m = Θ(n) edges

3 For any graph G, we will always denote by V (G) and E(G) its set of vertices and edges, respectively.
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(which generalizes to arbitrary m ≥ n).4 Note that ρ(P ) and δ(P ) may only differ for some
patterns P with δ(P ) = 0, in which case ρ(P ) ∈ {0, −1}. In contrast, if P contains isolated
nodes (e.g., the case of Dominating Independent Set), the number of occurrences of P and
tP (n, m) may differ vastly (e.g., between Θ(nk) and Θ(mk/2)).

Our results determine that for all patterns (possibly except the triangle K3), tP (n, m)1±o(1)

is the conditionally tight time complexity of detecting a Dominating P -Pattern if ω = 2. Put
differently, for any pattern P (except K3), we can easily determine the conditionally optimal
running time (assuming ω = 2)! Specifically, we obtain the following algorithmic result:

▶ Theorem 1.2 (Upper Bound). For any pattern graph P with at least 16 vertices, there
is an algorithm solving Dominating P -Pattern problem in time tP (n, m)1+o(1). Further, if
ω = 2, this algorithm exists for all patterns P except K3.

We remark that our algorithms have a running time close to tP (n, m)1±o(1) even under
current values of ω and small pattern sizes – the small polynomial overhead depends on ω and
vanishes if ω = 2 (except for the triangle K3). Further, we complement our algorithmic result
by a corresponding conditional lower bound of tP (n, m)1−o(1) based on the k-Orthogonal
Vectors Hypothesis (and thus the Strong Exponential Time Hypothesis).

▶ Theorem 1.3 (Conditional Lower Bound). For any pattern graph P with at least 2 vertices,
there is no algorithm solving the P -Dominating Set problem in time O(tP (n, m)1−ε) for any
ε > 0 unless the k-Orthogonal Vectors Hypothesis fails.

The only pattern P for which we do not obtain an algorithm matching the lower bound
of Theorem 1.3 is the triangle K3. For this pattern, our best algorithm only leaves a time
overhead of m1/3+o(1) if ω = 2, yielding a bound of (tK3(n, m) · m

1
3 )1+o(1) = (m 7

3 /n)1+o(1)

in this case.

▶ Theorem 1.4. We can solve Dominating Triangle in time
(

m1+ 2ω
ω+1 /n

)1+o(1)
.

Technical Outline and Overview. In Section 3, we obtain our algorithmic results: We first
study sufficiently large connected patterns P (different from K3 and K4), which we call
basic patterns. We argue that there are only O(tP (n, m)) sets that might form a Dominating
P -Pattern (using similar arguments to Alon [3]). Moreover, we show how to enumerate all
such candidate sets in time tP (n, m)1+o(1) in such a way that allows us to reduce to fast
matrix multiplication to perform a dominance check as in Eisenbrand and Grandoni [16].
Notably, this approach introduces a polynomial overhead for K3 and K4, as the created
matrices are too large compared to the lower bound. We handle these cases separately: Using
a careful combination of ideas from sparse Triangle Counting [4] and sparse 2-Dominating
Set [21], we are able to improve the algorithms for K4 and K3; if ω = 2, this completely
eliminates the overhead for K4 and reduces the overhead for K3 to m1/3+o(1). Finally, we
extend our algorithm beyond connected patterns by showing how to handle isolated nodes:

4 To clarify the correspondence, we remark that already Alon (see [3, proof of Lemma 8]) observed
that in the definition of δ(P ), one may without loss of generality let S range only over independent
sets: for any set S maximizing |S| − |N(S)|, the set S′ = S \ (S ∩ N(S)) is an independent set with
|S′| − |N(S′)| ≥ |S| − |N(S)|. Thus, whenever a nonempty set S maximizes |S| − |N(S)|, we have
ρ(P ) = δ(P ). Alon proves that a connected m-edge graph G has a maximum number of Θ(m

|V (P )|+δ(P )
2 )

induced copies of P , where P is any connected pattern. The generalization to an arbitrary trade-off
between n and m is implicit in our proofs.
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We can no longer enumerate all candidate sets, as this number becomes too large. Instead,
we apply a recursive approach similar to the algorithm for Dominating Independent Sets
given in [30]. Here, particularly the case of a single isolated node requires great care.

Due to space reasons, our conditional lower bounds had to be deferred to the full version
of the paper. Our conditional lower bound construction generalizes the ones in [30] (which in
turn are based on [36, 21]): Specifically, we reduce from a version of the k-OV problem with
carefully chosen set sizes. Intuitively, the parameter ρ(P ) spells out how to choose these
sizes: (1) for every vertex v ∈ S, we have a set of n vectors, (2) for every vertex v ∈ N(S),
we have a set of m/n vectors, and (3) for every vertex v ∈ V (P ) \ (S ∪ N(S)), we have a set
of

√
m vectors. The precise construction requires care; in particular if S = ∅, we need to use

an alternative choice of a single set of m/n vectors and k − 1 sets of
√

m vectors.
We additionally study variants of Dominating P -Pattern where we are given a set Q of

patterns rather than a single pattern. The corresponding problem Dominating Q-Pattern
asks to detect a dominating set S that induces a subgraph isomorphic to some P ∈ Q. A
notable special case is the Non-Induced Dominating P -Pattern problem in which the task
is to detect a dominating set S such that G[S] contains P as a subgraph. Combining the
following theorem with Theorems 1.2 and 1.3, our results settle the fine-grained complexity
of Non-Induced Dominating P -Pattern for any pattern P except K3 (assuming ω = 2).

▶ Theorem 1.5 (Dominating Q-Pattern, Informal version). Let Q be a finite set of patterns of
identical order. The fine-grained complexity of Dominating Q-Pattern is dominated by the
pattern P ∈ Q with the highest time complexity.

Due to the space restrictions, the proof of this theorem is provided only in the full version of
the paper.

2 Preliminaries

For a n ∈ N, [n] denotes the set {1, . . . , n}. For a set X, its power set is denoted by 2X and the
set of all subsets of size k by

(
X
k

)
. For two sets X, Y , by X × Y we denote a set of unordered

pairs, i.e. X × Y := {{x, y} | x ∈ X, y ∈ Y }. For a pattern graph P and a host graph G,
we use k and n, respectively, to denote their order, i.e., number of vertices. As a shorthand
for {u, v}, the notation uv denotes an edge between u and v. The set N(v) = {u | uv ∈ E}
is the neighborhood of v. The closed neighborhood of v is N [v] = N(v) ∪ {v}. For a set of
vertices S ⊆ V , by N(S) (resp. N [S]), we denote the set

⋃
v∈S N(v) (resp.

⋃
v∈S N [v]).

Moreover, the subgraph of G induced by S is denoted by G[S]. For a vertex v ∈ V , the
graph G − v denotes the graph G with the vertex v deleted. Likewise, for a set X ⊆ V , we
use G − X := G[V \ X]. A set of vertices D ⊆ V dominates the graph G if every vertex of v

is either in D or has a neighbor in D.
The matrix multiplication exponent ω ≥ 2 is the smallest constant such that there is an

algorithm multiplying any two n × n matrices in nω+o(1) time. For two rectangular matrices
of size n1 = n × n2 and n2 × n3, MM(n1, n2, n3) denotes the time complexity of multiplying
these matrices. Similarly, for matrix of size na × nb and nb × nc, nω(a,b,c)+o(1) denotes the
time complexity of multiplying them. Further, α ≤ 1 is the largest constant such that
ω(1, α, 1) = 2. The best known bounds for α and ω are ω ≤ 2.3713 [2], and α ≥ 0.3213 [41].

3 Algorithm for Pattern Dominating Set

In this section we develop the algorithms for Dominating P -Pattern problem for different
choices of patterns P and prove the following main theorem as stated in the Introduction.

ESA 2025
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▶ Theorem 1.2 (Upper Bound). For any pattern graph P with at least 16 vertices, there
is an algorithm solving Dominating P -Pattern problem in time tP (n, m)1+o(1). Further, if
ω = 2, this algorithm exists for all patterns P except K3.

In order to prove this theorem, we proceed in three steps. We first develop algorithms for
a class of patterns P we call basic: all patterns that contain no isolated vertices and are
not isomorphic to a K3 or K4. We then handle patterns with isolated vertices and the
remaining small cliques K3, K4 separately. An important ingredient that we use to speed up
the dominance check is an approach via fast matrix multiplication due to Eisenbrand and
Grandoni [16].

▶ Lemma 3.1. Let X, Y be the sets of vertices and ϕ : 2X → {0, 1} be a predicate such that
for any D ⊆ X we can check ϕ(D) in constant time. Let VA, VB ⊆ 2X be sets of subsets
of X such that any subset D ⊆ X that satisfies ϕ can be written as a union of two sets
A ∈ VA and B ∈ VB. Then in time MM(|VA|, |Y |, |VB |) we can enumerate all subsets of X

that satisfy ϕ and dominate Y .

We remark that in the k-Dominating Set algorithm [16], the predicate ϕ(D) from the previous
lemma is true if |D| = k and false otherwise. In our case, for a fixed pattern P , the predicate
ϕ(D) will be true if the subgraph of G induced by D is isomorphic to P (i.e. G[D] ∼= P ).5
Recall also our definition of the parameter ρ(P ), which will be relevant in this section.

▶ Definition 1.1. Let P be an arbitrary pattern graph, and denote by I(P ) ⊆ V (P ) the set
of isolated nodes of P . Choose an independent set S ⊆ V (P ) \ I(P ) maximizing |S| − |N(S)|;
if S is not uniquely defined, take any choice maximizing |S|. We define

ρ(P ) :=
{

|S| − |N(S)| if S ̸= ∅
−1 if S = ∅.

and set

tP (n, m) := nρ(P ) · m
|V (P )|−ρ(P )

2 .

Let S be a (possibly empty) independent set of non-isolated vertices in P that maximizes the
value |S| − |N(S)| as in Definition 1.1. We define the remainder set R to be V (P ) \ N [S].
The following observation follows directly from the fact that S is an independent set.

▶ Observation 3.2. Let P be a pattern on k vertices and S, N(S), R be as defined above.
Then S, N(S), R form a partition of V (P ).

Before proceeding with the algorithm, we state another observation, that gives us a nice way
to think about the value of tP (n, m) depending on whether set S is empty or not.

▶ Observation 3.3. Let P be a pattern on k vertices and S, N(S), R be the partition of V (P )
as defined above.

If S = ∅, then tP (n, m) = m(k+1)/2+o(1)

n .
If S ̸= ∅, then tP (n, m) = tP [N [S]](n, m) · m|R|/2.

If we consider a partition into sets S, N(S) and R similar as above, intuitively we have some
structure on the parts S (independent set in P ) and N(S) (there exists a maximal matching
that matches each vertex in N(S) to a vertex in S), but we have very little structure on how
the remainder set looks like. In the following lemma we show that we can decompose the
remainder set R into much simpler subgraphs (disjoint edges and cycles).

5 Note that verifying ϕ takes f(|P |) = O(1) time, for constant size patterns.
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▶ Lemma 3.4. Let S, N(S) and R be a partition of V (P ) as defined above and assume that
the induced subgraph P [R] contains no isolated vertices. Then the following holds.

There exists a spanning subgraph of P [R] that is isomorphic to a disjoint union of edges
and odd cycles.
For any vertex x ∈ R, there exists a spanning subgraph of P [R − x] that is isomorphic to
a disjoint union of edges and odd cycles.

The proof follows from a structural theorem proved in [11] together with the choice of the
set S in Definition 1.1. For details we refer the reader to the full version of the paper. We
are now equipped with all the tools we need to construct the algorithm for the first family of
patterns P that we call basic patterns.

3.1 Basic Patterns
In this section we construct an algorithm that solves the P -Dominating Set problem in
the (conditionally) optimal time for most of the patterns. More precisely, we say a pattern
graph P is basic if: 1) it has at least three vertices; 2) it has no isolated vertices; 3) it is
neither isomorphic to a K3 nor a K4. We prove the following theorem for basic patterns.

▶ Theorem 3.5. For any basic pattern P on at least 16 vertices, there exists an algorithm
solving the Dominating P -Pattern problem in time tP (n, m)1+o(1). Moreover, if ω = 2, this
time complexity can be achieved for all basic patterns.

The high level idea is to first decompose the pattern into (not necessarily induced) odd cycles,
edges and isolated vertices, and then enumerate all possible valid choices for each of those
parts efficiently, and then use Lemma 3.1 to check if the union of guessed parts induces a
subgraph isomorphic to P , and if it dominates G. We first show that we can enumerate all
subgraphs isomorphic to the remainder set R efficiently. Let k := |V (P )| and n := |V (G)|.
We say a vertex v ∈ V (G) is heavy if deg(v) ≥ n

k − 1. We prove the following lemma in the
full version of the paper.

▶ Lemma 3.6. Let P be a basic pattern. Let S, N(S), R be a partition of V (P ) as defined in
Definition 1.1. Then the following holds.
1. We can enumerate all subgraphs of G that are isomorphic to P [R] in time O(m|R|/2).
2. We can enumerate all subgraphs of G that are isomorphic to P [R] and contain a heavy

vertex in time O( m(|R|+1)/2

n ).
We now use the lemma above to handle the case when the decomposition into S, N(S) and
R as in Definition 1.1 yields S = ∅. Due to space constraints, we only sketch the proof here.
The details can be found in the full version.

▶ Lemma 3.7. Let P be a basic pattern and S, N(S), R be a partition of V (P ) as defined in
Definition 1.1, such that S = ∅. If the basic pattern P has at least 16 vertices, then there

exists an algorithm solving Dominating P -Pattern in time
(

m
k−1

2
n

)1+o(1)
= tP (n, m)1+o(1).

If ω = 2, this time complexity can be achieved for all basic patterns P .

Proof (sketch). If S = ∅, then V (P ) = R and Lemma 3.6 applies to all of P . Recall that
any dominating set of size k contains a heavy vertex vh (a vertex of degree at least n/k − 1),
hence we can first guess this vertex in time O(m

n ). By Lemma 3.4, there is a spanning
subgraph of P that is isomorphic to a disjoint union of edges and odd cycles and we can find
such a spanning subgraph in f(k) = O(1) time. Assume that this decomposition yields α

odd cycles and β disjoint edges. If β > 0, we show that we can decompose P − vh further
into two graphs B1, B2 such that they satisfy the following conditions:

ESA 2025



98:8 Fine-Grained Classification of Detecting Dominating Patterns

Each Bi is a disjoint union of independent P3’s (paths of length two) and K2’s (independent
edges), such that each copy of P3 will correspond to a subgraph of G that is isomorphic
to P3 and whose all vertices either have degree at most

√
m, or one of the endpoints has

degree at least
√

m. 6

B1 ∪ B2 is a spanning subgraph of P − vh.
(Without loss of generality) 0 ≤ |V (B1)| − |V (B2)| ≤ 2.
We can enumerate all copies of G isomorphic to Bi that satisfy the degree constraints of
P3 in time O(m|Bi|/2).

In particular, for k ≥ 16, we have |V (B1)| + |V (B2)| = k − 1 ≥ 15, and combining this
with the inequality above, we can conclude that |V (B1)| ≥ |V (B2)| ≥ 7. Using that the
rectangular matrix multiplication constant α ≥ 0.321, and that m ≥ n, we for the exponent

ω(1,
2

|V (B′
1)| , 1) = ω(1,

2
|V (B′

2)| , 1) = 2, (1)

and hence we obtain for all k ≥ 16:

O
(

m

n
MM

(
m

|V (B′
1)|

2 , n, m
|V (B′

2)|
2

))
≤ O

(
m

n
MM

(
m

|V (B′
1)|

2 , m, m
|V (B′

2)|
2

))
(m ≥ n)

≤ O
(

m

n
· m

|V (B′
1)|+|V (B′

2)|
2 +o(1)

)
(Eq. 1)

= O
(

m

n
· m

k−1
2 +o(1)

)
=

(
m

k+1
2

n

)1+o(1)

.

If on the other hand β = 0 (i.e. the decomposition contains only copies of odd cycles),
we proceed similarly, but the best bound on the size difference between B1 and B2 is
0 ≤ |V (B1)| − |V (B2)| ≤ 3, which is not good enough in general. To get around this issue,
we distinguish between two cases. If there exists a vertex in P − vh that is mapped to
a vertex of degree ≥

√
m in G, we can make sure that there exists a copy of P3 whose

one endpoint will be mapped to a vertex in G that has degree at least
√

m. We can
decompose this P3 further into an edge and a vertex of degree ≥

√
m, and intuitively use

these components to “re-balance” the sets V (B1) and V (B2) as above. If on the other
hand all vertices in P − vh are mapped to vertices in G that have degree at most

√
m,

we then know that if |Y | := |G − NG[vh]| ≥ (k − 1)
√

m + 1, there is no valid solution.
If on the other hand |Y | ≤ (k − 1)

√
m, by Lemma 3.1, we can find any such solution

in time bounded by O
(

m
n MM

(
m

|V (B1)|
2 ,

√
m, m

|V (B2)|
2

))
. Similarly as in previous case,

for k ≥ 16, we get that |V (B1)| ≥ |V (B1)| ≥ 6 and again since α ≥ 0.321, we obtain
ω(1, 1

|V (B1)| , 1) = ω(1, 1
|V (B2)| , 1) = 2. Hence, we can bound the time complexity as

O
(m

n
MM

(
m

|V (B1)|
2 ,

√
m, m

|V (B2)|
2

))
≤ O

(m

n
·
(√

m
)|V (B1)|+|V (B2)|+o(1)

)
= O

(m

n
·
(√

m
)k−1+o(1)

)
=
(

m
k+1

2

n

)1+o(1)

◀

The second case for basic patterns is that the decomposition into S, N(S) and R as in
Definition 1.1 yields S ̸= ∅. Intuitively this case is simpler than the one above, since we can
use the sets S, N(S) to simulate β > 0, even if β = 0 and “balance” the sets V (B1) and
V (B2). We only sketch the proof, as the details are quite similar to the ones above.

6 Hence in G we will be able to enumerate all subgraphs isomorphic to P3 that fulfill this degree requirement
in time O(m3/2).
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▶ Lemma 3.8. Let P be a basic pattern and S, N(S), R be a partition of V (P ) as defined in
Definition 1.1, such that S ̸= ∅. If the basic pattern P has at least 16 vertices, then there
exists an algorithm solving Dominating P -Pattern in time

(
n|S|−|N(S)|m|N(S)|+ |R|

2

)1+o(1)
=

tP (n, m)1+o(1). If ω = 2, this time complexity can be achieved for all basic patterns P .

Proof (sketch). Similarly as above, construct the sets B1 and B2 by finding a spanning
subgraph of P [R] that consists of union of independent P3’s and K2’s and distributing the
connected components as equally as possible. Clearly, we have that |V (B1)| + |V (B2)| = |R|,
and (without loss of generality) 0 ≤ |V (B1)| − |V (B2)| ≤ 3. Since S ̸= ∅, also N(S) ̸= ∅ (by
definition S contains no isolated vertices), hence we can distribute the edges from a perfect
matching between the set N(S) and some subset of S of size |N(S)| (such perfect matching
always exists by Hall’s marriage theorem) between the sets B1 and B2 similarly as in previous
lemma to obtain graphs B′

1, B′
2. Clearly, it holds that |V (B′

1)| + |V (B′
2)| = 2|N(S)| + |R| and

(without loss of generality) 0 ≤ |V (B′
1)| − |V (B′

2)| ≤ 2. We then define the graphs Q1, Q2
that consist of ⌊ |S|−|N(S)|

2 ⌋ and ⌈ |S|−|N(S)|
2 ⌉ isolated vertices respectively. Similarly as above,

we can enumerate all subgraphs of G isomorphic to B′
i ∪ Qi in time O

(
n|Qi|m

|B′
i

|
2

)
. Also,

by similar arguments as above, we have that for k ≥ 16, the matrices are “thin enough” that
rectangular matrix multiplication techniques can be used to obtain the tight running time of

MM
(

n|Q1|m
|B′

1|
2 , n, n|Q2|m

|B′
2|

2

)
≤
(

n|Q1|+|Q2|m(|B′
1|+|B′

2|)/2
)1+o(1)

(k ≥ 16)

≤
(

n|S|−|N(S)|m
2|N(S)|+|R|

2

)1+o(1)
◀

3.2 Small Cliques
In this section, we deal with the remaining small patterns, i.e., the cliques of size at most 4.
We note that in [30] the K2 was already settled, so it remains to settle the cliques of size 3
and 4. In particular, this section is dedicated to proving the following two main theorems.

▶ Theorem 3.9. For a Dominating Triangle, there exists a deterministic
(

m1+ 2ω
ω+1

n

)1+o(1)

-

time algorithm and a randomized m
ω+1

2 +o(1)-time algorithm.

▶ Theorem 3.10. There is a randomized algorithm solving K4-Dominating Set in time(
m(ω+3)/2

n

)1+o(1)
. If ω = 2, this is

(
m5/2

n

)1+o(1)
= tK4(n, m)1+o(1).

We start with the simple deterministic algorithm for Dominating Triangle problem that
uses a reduction to the All-Edges-Triangle-Counting problem. This problem asks for a given
tripartite graph G = (V1 ∪ V2 ∪ V3, E) to determine, for every edge e in (V1 × V2) ∩ E, how
many triangles in G contain e. It is well known that this problem can be solved in time
m

2ω
ω+1 +o(1) (see e.g. [4]). We remark that any O(m 4

3 −ε)-time algorithm would refute the
3-SUM and the APSP Hypothesis [35, 40], giving matching lower bounds if ω = 2.

▶ Lemma 3.11 (All-Edge Triangle Counting, see [4]). There is an algorithm solving All-Edges-
Triangle-Counting in time m

2ω
ω+1 +o(1).

By using this lemma, we are able to solve the problem in O (tK3(n, m)) · m
ω−1
ω+1 +o(1), which

evaluates to O (tK3(n, m)) · m
1
3 +o(1) if ω = 2. By a more careful approach, we are able to

construct a randomized algorithm that uses a bloom-filter inspired approach similar to the

ESA 2025
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one in [21], to achieve O (tK3(n, m)) · n√
m

, which is better whenever m ∈ Ω(n1.10283) with
current value of ω and m ∈ Ω(n1.2) if ω = 2, giving us the second part of the Theorem 3.9.
We remark that although this value can be slightly improved by using a more careful analysis,
it seems that in order to match the lower bound, a new technique will be required. We now
sketch the approach of the deterministic algorithm and give the details to both algorithms in
the full version of the paper.

▶ Proposition 3.12. There exists a deterministic algorithm solving Dominating Triangle in

time
(

m1+ 2ω
ω+1

n

)1+o(1)

. If ω = 2, this equals
(

m7/3

n

)1+o(1)
.

Proof (sketch). We first guess a heavy vertex w (a vertex satisfying deg(w) ≥ n/3 − 1). We
then run a breadth-first-search from w and let (X0 = {w}, X1, . . . , Xn) be the obtained BFS
layering. Note that for any ℓ ≥ 3, if Xℓ is non-empty, we can conclude that there is no
dominating clique that contains w and we can proceed with the next choice of the heavy
vertex. Otherwise, finding any dominating triangle in G that contains w is equivalent to
finding an edge u, v in X1 that dominates all vertices in X2. For any vertex u, we write
N2(u) := N(u)∩X2. Using the principle of inclusion-exclusion, we can write |N2(u)∪N2(v)| =
|N2(u)| + |N2(v)| + |N2(u) ∩ N2(v)|. We note that for any pair of vertices u, v ∈ X1 the value
|N2(u) ∩ N2(v)| corresponds to the number of triangles containing the edge uv. Hence, by
employing the algorithm from Lemma 3.11, we obtain the desired time. ◀

On the other hand, by coming up with a more involved argument, we are able to construct a
randomized algorithm that matches the lower bound (up to resolving the matrix multiplication
exponent ω) for the remaining small pattern, namely Dominating 4-Clique. The algorithm
starts similarly as above. That is, we first guess a heavy vertex w in time O

(
m
n

)
, and then

we partition the vertices into two sets X1 and X2 based on the distance from w and thus
reduce to detecting a triangle in X1 that dominates X2. We then consider two cases based
on the size of X2. If |X2| ≤ 3

√
m, this turns out to be quite easy, and boils down to using

standard matrix multiplication algorithms (with a bit more careful analysis). If on the
other hand |X2| > 3

√
m, we then either reduce to counting cliques (triangles and K4’s) in a

certain restricted setting, or use the randomized bloom-filter based approach of [21] (with a
finer-grained analysis) to achieve the desired running time. This approach gives us the proof
of Theorem 3.10 and we provide the detailed proof in the full version of the paper.

3.3 Handling Isolated Vertices
In the last two subsections we considered the graphs that have no isolated vertices. It remains
to prove that we can obtain a tight classification even for patterns with isolated vertices. In
particular, we prove the following theorem.

▶ Theorem 3.13. Let P be any pattern graph with k vertices and 1 ≤ r ≤ k isolated
vertices. There is a randomized algorithm that enumerates all dominating P -patterns in time
tP (n, m) · m

ω−2
2 +o(1) with high probability. If ω = 2, this is tP (n, m)1+o(1).

We again consider two cases separately, namely when r ≥ 2 and r = 1. In the first (simpler)
case of r ≥ 2, we aim to reduce to the Maximal r-Independent Set problem, which is known
to have efficient algorithm in sparse graphs (see [30]). We enumerate all subgraphs of G that
correspond to the induced subgraph of P that does not contain isolated vertices, and then
after removing the closed neighborhood of the enumerated subgraph, we run the Maximal
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r-Independent Set algorithm on the remaining part. By a careful analysis, we obtain the
desired time. We provide a sketch of the proof here, for the full proof, see the full version of
the paper.

▶ Lemma 3.14. Let P be a pattern with 2 ≤ r ≤ k isolated vertices. Then there exists
a randomized algorithm solving P -Dominating Set in time

(
tP (n, m) · m(ω−2)/2)1+o(1) with

high probability. If ω = 2, this is equal to (tP (n, m))1+o(1).

Proof (sketch). If r = k, then this problem is precisely the Maximal k-Independent Set

problem, and by [30] can be solved in the time bounded by
(

m(k−1)/2+ω/2

n

)1+o(1)
, as desired.

Hence, we may assume that 2 ≤ r ≤ k − 2 (if P contains at least one edge, then at least two
vertices have degree ≥ 1). Let X := {x ∈ V (P ) : degP (x) ≥ 1} and Y := V (P ) \ X be the
set of non-isolated and isolated vertices in P respectively. Let S, N(S), R be the partition
of V (P ) as in Definition 1.1. We can enumerate all induced subgraphs of G isomorphic to
P [X] in some time O

(
t
(1)
P [X](n, m)

)
(the ratio of the size of this set to tP [X](n, m) depends

only on whether the set S is empty or not). For each enumerated subgraph H, we appeal to
the randomized Dominating r-Independent Set algorithm from [30] on the graph G − N [H]
that runs in O

(
t
(2)
r (n, m)

)
(depends on which vertex from P is mapped to a heavy vertex).

It is straightforward to see that this algorithm is correct. We conclude the proof by showing
that the product of t

(1)
P [X](n, m) and t

(2)
r (n, m) is in all cases bounded by tP (n, m) (see the

full version of the paper for details). ◀

Things get slightly more complicated when dealing with patterns that only have one
isolated vertex. In particular, the preprocessing part of the algorithm above takes in the
worst case Θ

(
tP [X](n, m) · m

)
, while for pattern graphs with only one isolated vertex, we

have tP (n, m) = O
(
tP [X](n, m) ·

√
m
)
. To circumvent this overhead, we employ a more

careful analysis and use a hashing-based approach similar to that in Section 3.2. We first
provide an algorithm for two special cases of some of the smallest patterns that exhibit this
structure and then the idea is to reduce any pattern to one of these special cases.

▶ Lemma 3.15. Let G be a graph with n vertices and m edges, and let Y ⊆ V (G) be a subset
of vertices of G. Then we can construct an algorithm that w.h.p. enumerates all choices of
three vertices u, v, w in time m(ω+1)/2+o(1), such that the following is satisfied.

The vertex w is contained in Y and satisfies deg(w) <
√

m.
Vertices u and v are adjacent in G and both of them are non-adjacent to w in G (i.e. the
induced subgraph G[{u, v, w}] is isomorphic to an edge and an isolated vertex).
Y ⊆ N [u] ∪ N [v] ∪ N [w].

Proof. Without loss of generality, assume that deg(u) ≥ deg(v). Let t be such that t ≤
deg(u) ≤ 2t. Assume first that t ≤

√
m. Then each vertex u, v, w has degree bounded

by O(
√

m) and so, if there exists a valid triple that dominates Y , the size of Y must also
be bounded by O(

√
m). Hence by Lemma 3.1 we can enumerate all valid triples in time

MM(m,
√

m,
√

m) ≤ m(ω+1)/2+o(1), as desired.7 For the rest of this proof we assume that
t ≥

√
m. We now proceed to enumerate all valid triples u, v, w such that deg(v) ≤

√
m. To

this end, we run the following routine. For each of the O(m/t) valid choices for the vertex u,
construct the tripartite graph Hu = (V (1)

u ∪ V
(2)

u ∪ V
(3)

u , Eu), where V
(1)

u corresponds to a

7 Since vertices u, v are adjacent, there are at most m choices for this pair, and w is by assumption in Y ,
and |Y | ≤ O(

√
m)
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copy of N(u), while V
(2)

u and V
(3)

u each correspond to a copy of the set Y − N(u). The set
of edges Eu is constructed naturally, that is, for each pair x ∈ V

(i)
u , y ∈ V

(j)
u for i ̸= j we

add an edge xy if and only if the edge between the corresponding vertices is present in G

(we assume that each vertex is adjacent to itself in G). It is easy to see that for any fixed u,
any valid choice of v, w corresponds precisely to a choice of v ∈ V

(1)
u and w ∈ V

(2)
u such that

the following two conditions are satisfied: 1) V
(3)

u ⊆ N(w) ∪ N(v) and 2) vw ̸∈ E(Hu). Now,
since we are only enumerating triples u, v, w where both v, w have degrees at most

√
m, if

for a fixed u the set V
(3)

u contains more than 2
√

m vertices, we can conclude that no pair
v, w satisfies both conditions and proceed with the next choice of u. On the other hand, if
|V (2)

u | = |V (3)
u | ≤ 2

√
m, by Lemma 3.1, for any fixed u, we can enumerate all the valid pairs

of non-adjacent vertices v, w that dominate Y − N(u) in time

Tu(n, m) ≤ MM
(

V (1)
u , V (3)

u , V (2)
u

)
≤ MM

(
t,

√
m,

√
m
)

≤ O
(

t√
m

)
MM

(√
m,

√
m,

√
m
)

(t ≥
√

m)

≤ t · m
ω−1

2 +o(1).

Repeating this for each of the possible O(m/t) many choices of vertex u yields the desired
time. It remains to enumerate the triples of vertices u, v, w where deg(v) ≥

√
m. Recall also

that 2t ≥ deg(u) ≥ deg(v) and t ≥
√

m. Hence, since by the first condition of the Lemma,
we are only interested in the triples u, v, w with deg(w) ≤

√
m ≤ t, if the set Y contains

more than 5t vertices, we can conclude that no triple u, v, w satisfies Y ⊆ N [u] ∪ N [v] ∪ N [w].
Hence, we can assume that Y ≤ 5t. Let B be a matrix whose rows correspond to adjacent
pairs of vertices u, v with t ≤ deg(u) ≤ 2t and deg(v) ≥

√
m and whose columns correspond

to the set Y . We set the entry B[(u, v), y] to 0 if either u or v are adjacent to y and to 1
otherwise. Similarly, we construct a matrix C whose columns correspond to the set of vertices
w ∈ Y such that deg(w) ≤

√
m and the rows correspond to Y . Set the entry B[y, w] to 1 if

w and y are adjacent (we understand that each vertex is adjacent to itself) and 0 otherwise.
Notice that u, v, w dominate Y if and only if (B · C)[(u, v), w] =

∑
k B[w, k] (each vertex

that is not dominated by the pair (u, v) is dominated by w). Also notice that the matrix B

is an O
(

m
√

m
t

)
× O (t) and C is an O (t) × O (t) matrix with at most m non-zeros. Hence

by a Lemma from [21] (see full version for details), we can enumerate with high probability
all valid triples u, v, w in time

√
m · mω/2+o(1) = m

ω+1
2 +o(1), as desired. We remark that we

enumerate all valid triples for any fixed t in the claimed time. To enumerate all the valid
triples, simply run the previous algorithm O(log(n)) times, once for each ℓ ∈ 1, . . . , ⌊log(n)⌋,
setting t = 2ℓ. ◀

An almost identical argument as in previous lemma can also be used to show that we can
efficiently enumerate the solutions that are isomorphic to C2r+1 + K1.

▶ Lemma 3.16. Let G be a graph with n vertices and m edges, and let Y ⊆ V (G) be a subset
of vertices of G. Then we can construct an algorithm that w.h.p. enumerates all choices of
2r + 2 vertices x1, . . . , x2r+1, w in time mr+ω/2+o(1), such that the following is satisfied.

The vertex w is contained in Y and satisfies deg(w) <
√

m.
Vertices x1, . . . , x2r+1 form a cycle in G (not necessarily induced) and w is not adjacent
to any of the vertices xi in G.
Y ⊆ N [w] ∪ N [x1] ∪ · · · ∪ N [x2r+1].
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The idea for any pattern with precisely one isolated vertex v is to decompose the pattern
into sets S, N(S), R as in Definition 1.1, and then depending on whether the set S is empty
or not, we either directly reduce to the setting of Lemma 3.15, or first apply Lemma 3.4 to
decompose R into edges and odd cycles, and then reduce to either the setting of Lemma
3.15, or that of Lemma 3.16. For the lack of space, we give the detailed proof in the the full
version of the paper.

▶ Proposition 3.17. Let P be a pattern with one isolated vertex. Then there exists a
randomized algorithm solving P -Dominating Set in time O (tP (n, m)) · m

ω−2
2 +o(1).
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