
Engineering Minimal k-Perfect Hash Functions
Stefan Hermann #

Karlsruhe Institute of Technology, Germany

Sebastian Kirmayer
Karlsruhe Institute of Technology, Germany

Hans-Peter Lehmann #

Karlsruhe Institute of Technology, Germany

Peter Sanders #

Karlsruhe Institute of Technology, Germany

Stefan Walzer #

Karlsruhe Institute of Technology, Germany

Abstract
Given a set S of n keys, a k-perfect hash function (kPHF) is a data structure that maps the keys to
the first m integers, where each output integer can be hit by at most k input keys. When m = ⌈n/k⌉,
the resulting function is called a minimal k-perfect hash function (MkPHF). Applications of kPHFs
can be found in external memory data structures or to create efficient 1-perfect hash functions,
which in turn have a wide range of applications from databases to bioinformatics.

Several papers from the 1980s look at external memory data structures with small internal
memory indexes. However, actual k-perfect hash functions are surprisingly rare, and the area has
not seen a lot of research recently. At the same time, recent research in 1-perfect hashing shows that
there is a lack of efficient kPHFs. In this paper, we revive the area of k-perfect hashing, presenting
four new constructions. Our implementations simultaneously dominate older approaches in space
consumption, construction time, and query time. We see this paper as a possible starting point of
an active line of research, similar to the area of 1-perfect hashing.

2012 ACM Subject Classification Theory of computation → Data compression; Theory of computa-
tion → Bloom filters and hashing; Information systems → Point lookups

Keywords and phrases Compressed Data Structures, Perfect Hashing

Digital Object Identifier 10.4230/LIPIcs.ESA.2025.99

Related Version Extended Version: https://arxiv.org/abs/2504.20001 [18]

Supplementary Material Software: https://github.com/stefanfred/engineering-k-perfect-
hashing [19], archived at swh:1:dir:e6756f018691a80adc68d839fd3617d8f5e2d0b0

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 882500).
This work was also supported by funding from the pilot program Core Informatics at KIT (KiKIT)
of the Helmholtz Association (HGF).

Acknowledgements This paper is based on and has text overlaps with the bachelor’s thesis of
Sebastian Kirmayer [22].

1 Introduction

Given a set S of n keys, a k-perfect hash function (kPHF) is a data structure that maps
the keys to the first m non-negative integers [m], called bins in the following. Each output
bin can be hit by at most k input keys. The output for any key not in S is undefined, so
a k-perfect hash function does not need to store the input set. For k = 1, there is a wide

© Stefan Hermann, Sebastian Kirmayer, Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer;
licensed under Creative Commons License CC-BY 4.0

33rd Annual European Symposium on Algorithms (ESA 2025).
Editors: Anne Benoit, Haim Kaplan, Sebastian Wild, and Grzegorz Herman; Article No. 99; pp. 99:1–99:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hermann@kit.edu
https://orcid.org/0000-0001-9183-2926
https://orcid.org/0009-0003-1243-6311
mailto:hans-peter.lehmann@kit.edu
https://orcid.org/0000-0002-0474-1805
mailto:sanders@kit.edu
https://orcid.org/0000-0003-3330-9349
mailto:stefan.walzer@kit.edu
https://orcid.org/0000-0002-6477-0106
https://doi.org/10.4230/LIPIcs.ESA.2025.99
https://arxiv.org/abs/2504.20001
https://github.com/stefanfred/engineering-k-perfect-hashing
https://github.com/stefanfred/engineering-k-perfect-hashing
https://archive.softwareheritage.org/swh:1:dir:e6756f018691a80adc68d839fd3617d8f5e2d0b0;origin=https://github.com/stefanfred/engineering-k-perfect-hashing;visit=swh:1:snp:8b568d1c8fe1e13f6ef95d3b2774fc59c259d6b5;anchor=swh:1:rev:2c269037dad34b69a68b56fed38c98656f02c133
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

99:2 Engineering Minimal k-Perfect Hash Functions

range of constructions covering different trade-offs between space consumption, query time,
and construction time. The area is an active field of research with several publications each
year [27, 28, 30, 31, 9, 20, 16, 3, 29, 17, 37]. However, there has been little prior work on
k-perfect hashing. While several papers from the 1980s look at internal memory indexes
for external hash tables, these are not full k-perfect hash functions. We refer to Section 3
for details. In this paper, we present four new k-perfect hash function constructions. Each
covers a different trade-off between the three main performance metrics – space consumption,
construction time, and query time.

Minimality. When m = ⌈n/k⌉, we obtain a minimal k-perfect hash function (MkPHF) [26].
When using the MkPHF to partition 1-PHFs [30, 31], it might be beneficial to look at a
stricter definition where all output bins contain exactly k keys, except possibly the last. The
approaches presented in this paper fulfill the stricter definition. An alternative definition of
non-minimal kPHFs could be that we could fill each output bin with either exactly k keys or
0 keys. For k = 1, this results in an ordinary non-minimal PHF and achieves a significant
reduction in space consumption. However, for k > 1, the resulting space consumption is the
same as the one of MkPHFs [33].

Applications. k-perfect hashing has a wide range of applications. In external memory hash
tables, kPHFs can return the page on which a key is stored. External memory is usually
accessed with page granularity anyway, so having to scan the page for the key only causes
negligible overhead. Compared to a 1-PHF, however, this can significantly reduce the space
needed. For internal memory hash tables it can be beneficial to store more than one key in
each table cell [12]. Using an MkPHF, we can completely fill such a hash table. A k-perfect
hash function can also be used to make the construction of 1-perfect hash functions more
uniform by dividing the input to same-size partitions [30, 31].

Our Contributions. In this paper, we present four new or significantly improved k-perfect
hash function constructions. Threshold-based bumping was previously only briefly described
as an ad-hoc solution to aid 1-perfect hashing [30, 31]. In Section 4, we extend it through
optimal thresholds and CONSENSUS-coded [31] thresholds. Perfect hashing through bucket
placement [37, 20, 2] generalizes to k-perfect hashing in an obvious way. In Section 5, we
introduce an optimal bucket assignment function. RecSplit [9] is a known 1-PHF, which
we extend to a k-PHF in Section 6. Finally, we introduce a variant of the external memory
hash table PaCHash [23] that can be used as an MkPHF in Section 7. To the best of our
knowledge, we then give the first experimental evaluation of different k-perfect hash functions
in Section 8.

2 Preliminaries

In this section we show the space lower bound for minimal k-perfect hash functions. We then
explain preliminary data structures that we use throughout this paper.

Space Lower Bounds. The space lower bound for representing a minimal k-perfect hash
function is rather easy to prove [32, 2, 23]. Let the n input keys be a subset of a universe of
size u. There are

(
u
n

)
possible input sets. Each behavior of an MkPHF can cover at most(

u/(n/k)
k

)n/k
input sets. Therefore, the number of bits we need is at least

S. Hermann, S. Kirmayer, H.-P. Lehmann, P. Sanders, and S. Walzer 99:3

Table 1 Space lower bound for different values of k.

k 1 2 4 10 100 1000
Bits per key 1.443 0.943 0.589 0.300 0.046 0.006

log2

 (
u
n

)
(

u/(n/k)
k

)n/k

 n2∈o(u)
≈ n ·

(
log2(e) − log2(kk/k!)/k

)
= n ·

(
log2(2πk)

2k
+ Θ

(
1
k2

))
.

In Table 1, we give a range of example values. The space lower bounds become more complex
for non-minimal k-perfect hashing, and no tight bounds are known yet [2].

Retrieval Data Structures. A retrieval data structure stores a static function f : S → {0, 1}r

with r-bit output values. It can return arbitrary results for any key not in S. This makes it
possible to represent it using just rn bits. Bumped Ribbon Retrieval (BuRR) [7] is based on
solving a system of linear equations and has a space consumption of 1.01rn bits in practice.

Elias-Fano Coding. Let (ai)i∈[n] be a monotonically increasing sequence of integers. To
store this sequence with Elias-Fano coding [8, 11], we split each integer into two parts. We
store the lower L = ⌈log2(an−1/n)⌉ bits directly in a packed array. Then we store the
remaining upper bits (hi)i∈[n] as a bit vector where the bits at indices hi + i are 1, and all
other bits are 0. On this bit vector, we have hi = select1(i) − i. Together with a lookup
in the packed array, we get constant access time. In total, storing the sequence needs
n · (2 + ⌈log2(an−1/n)⌉) + o(n) bits of space [8, 11].

Golomb-Rice Coding. For a parameter L, Golomb-Rice coding [14, 38] divides an integer x

into the two parts h = ⌊x/2L⌋ and l = x mod 2L. It encodes l using L bits in binary coding,
and h in unary coding. Golomb-Rice coding is optimal for geometrically distributed x with
p = 2−L. We can store a sequence of integers with constant time access by using a common
array for the lower bits, concatenating the upper bits, and using a select data structure.

3 Related Work

We now explain k-perfect hash functions and similar external memory hashing data structures
from the literature. Note that Alon et al. [1] and Berman et al. [4] use the variable k for
the range of the output values in 1-perfect hashing, which is now usually called m. In an
online setting when building hash tables, Frei and Wehner [13] call a family of hash functions
k-ideal if there is, for any input set of size n, some hash function that is k-perfect.

3.1 k-Perfect Hash Functions
Brute-Force Search. Similar to what can be done for 1-perfect hashing [34], we can use
brute-force search to construct k-perfect hash functions. We use a hash function that can be
parameterized by a seed value, changing its behavior completely. We greedily start trying
seed values until we come across one seed where the hash function is k-perfect on our given
input set. Then storing the index of that seed in binary coding is enough to represent the
k-perfect hash function. Unfortunately, like for 1-perfect hashing, we need an exponential

ESA 2025

99:4 Engineering Minimal k-Perfect Hash Functions

number of hash function evaluations, making the approach unfeasible for large input sets.
Mairson [32] shows that the probability of a random function being an MkPHF can be
described by the multinomial coefficient (n/k)−n

(
n

k, k, . . . , k︸ ︷︷ ︸
n/k times

)
.

Bucket Placement. Perfect hashing through bucket placement [37, 20, 2] is a class of
1-perfect hash functions. The idea is to hash the input keys to small buckets of expected size
λ, where λ is a tuning parameter usually in the range 2–6 keys. For each bucket, we then
greedily search for a hash function seed such that the keys in that bucket do not collide with
previous keys. After placing all buckets, we compress the list of seeds while retaining fast
access. The first buckets are easier to place because all bins are empty. It is therefore helpful
to insert the buckets in decreasing order of size. In CHD [2], the keys are hashed uniformly
to the buckets. Despite sorting, the last buckets are still much harder to place than the first.
Therefore, PHOBIC [20] introduces an optimal bucket assignment function β : [0, 1] → [0, 1].
A key with a normalized hash value x ∈ [0, 1] is then assigned to bucket ⌈β(x)n/λ⌉. The
bucket assignment function makes the first buckets much larger to allow even smaller buckets
towards the end, resulting in roughly the same success probability of a seed in all buckets.

Bucket placement can be used as a k-perfect hash function by allowing up to k collisions
for each output bin. The implementation [6] of CHD supports only non-minimal k-perfect
hashing. In Section 5, we extend the idea through an optimized bucket assignment function.

Predecessor Dictionary. Pagh [36] suggests hashing all input keys with a hash function
of range [n3] and sorting them by hash value. Now map the keys linearly to the output
bins and store the smallest hash value in each bin. For a given hash value x, a predecessor
query can give the largest value y in the list such that y ≤ x. The index of that value is the
k-perfect output bin. We implement a variant in Section 7.

Threshold-Based Bumping. Threshold-based bumping [30] is an ad-hoc solution to k-
perfect hashing introduced for simplifying a 1-perfect hash function. The idea is to first hash
all keys to ⌈0.9n/k⌉ bins. The constant of 0.9 is selected arbitrarily in the paper, ensuring
that there are few bins that receive fewer than k keys. An additional hash function uniformly
assigns a fingerprint value ∈ (0, 1] to each key. For each bin, threshold-based bumping then
stores a threshold such that at most k keys in the bin have fingerprints below or equal to
the threshold. It bumps keys with fingerprints larger than the threshold to a second layer
of the same data structure. To reduce the space consumption and to enable fast access, we
restrict ourselves to a small list of possible thresholds and only store the index into the list.
Threshold-based bumping has similarities with perfect hashing through fingerprinting [35]
(which essentially uses 1-bit thresholds) and separator hashing [15, 25] (see Section 3.2). The
idea of bumping is also used in BuRR [7], which solves a system of linear equations and
bumps conflicting rows.

To make the resulting function minimal k-perfect, keys bumped in the second layer have
to be placed into the empty slots left in the bins. Threshold-based bumping does that by
storing an Elias-Fano coded list of bins that still have slots left. Using a minimal 1-PHF on
the bumped keys, it can map each key to one of the empty slots. Refer to Figure 1 for an
illustration. Queries hash the key to a bin. Most keys can immediately return the bin index
because their fingerprint is below the threshold. Some have to look at the next layer and few
have to query the fallback 1-PHF. In Section 4, we extend the approach through an optimal
selection of threshold values, as well as more efficient overloading to minimize the number of
bins with less than k keys.

S. Hermann, S. Kirmayer, H.-P. Lehmann, P. Sanders, and S. Walzer 99:5

3.2 External Memory Hash Tables

In external memory hash tables, a goal is to find objects while only accessing a small number
of external memory pages. For this, different internal memory index data structures have
been proposed. These index data structures are very similar to k-perfect hash functions.
The main difference is that they either need to inspect more than one external memory page
or that they do not fully utilize the external memory, meaning that they are not minimal
k-perfect. Still, these data structures use similar ideas as MkPHFs or can even be adapted
to MkPHFs.

Separator Hashing. Separator hashing [15, 25, 24] is a static, external memory hash table
that guarantees a single disk access for each query. Each key has a probe sequence of output
bins and a fingerprint sequence, both determined through a sequence of hash functions.
For each external memory page, it stores a threshold value for the fingerprint, also called
separator. When querying a key, we look at the bins along its probe sequence. If the key’s
fingerprint for that bin is smaller than the separator, we found the corresponding page.
Otherwise, we continue scanning. A problem with the technique, especially for high load
factors, is that bumped keys map back into the same range of bins. This causes a series of
dependent memory accesses during queries, and complicates the construction.

External Robin-Hood Hashing. Instead of displacing keys based on their fingerprint,
external robin-hood hashing [5] displaces the keys that are at the smallest index of their
probe sequence. The internal memory then stores, for each page, the smallest distance of
a contained key to its home address. Queries iterate over the distance array starting from
their home address until the distance is at least what is stored in the array. If multiple keys
have the same home address, more than one external memory page has to be searched.

Extendible Hashing. The idea of extendible hashing [10] is to store an internal memory
table holding pointers. Each row points to an external memory page holding the keys hashed
to that table row. If the keys hashed to several (adjacent) table rows fit onto an external
memory page together, extendible hashing stores the same pointers multiple times. The
approach achieves a load factor of about 69% [36].

PaCHash. PaCHash [23] is designed as a static external memory hash table with variable-
length keys. However, we only explain the case that each external memory page can hold k

fixed-length keys. Then PaCHash uses a hash function of range [a · n/k], where a is a tuning
parameter. This divides the keys into different buckets.1 For each external memory page, we
store the index of the first bucket overlapping it. Using Elias-Fano coding (see Section 2),
this takes n/k(2 + log(a)) bits. To locate a key, we perform a predecessor query on that
sequence to determine which external memory page should be loaded. If a bucket overlaps
the page boundaries, the index cannot determine whether the key is on the page or on the
previous page. In that case, which happens for roughly 1/a of the queries, PaCHash loads
both adjacent pages. In Section 7, we explain how we can adapt PaCHash to an MkPHF.

1 For consistency within this paper, we interchange the terms bin and bucket of the PaCHash paper.

ESA 2025

99:6 Engineering Minimal k-Perfect Hash Functions

Listing 1 Query algorithm of k-perfect hashing trough threshold-based bumping. Hash function
hX uniformly maps into the set X.
Function query(key ∈ S)

numBins := ⌈(n/k)/γ⌉
bin := h[numBins](key)
thresholdIndex := thresholds[bin]
fingerprint := h[0,1](key)
if fingerprint ≤ TthresholdIndex

return bin
else // bumped to next layer

return numBins + query next layer

k = 3 keys
per bin

⌈γn/k⌉ bins

n keys

Bumped
keys

Hash

Both between
same thresholds

Additional layers
(original: 1 additional)

Bumped
keys

MPHF

Empty slots

4

4

6

...

...

1 2 3 4 5 6

Figure 1 Threshold-based k-perfect hashing. Figure adapted from [30].

4 k-Perfect Hashing Through Threshold-Based Bumping

Threshold-based bumping is introduced in ShockHash-Flat [30] as an ad-hoc implementation
to aid 1-perfect hashing. In this section, we enhance it significantly. Remember from
Section 3.1 that threshold-based bumping hashes each key directly to a bin. Additionally, we
hash each key to determine a uniform fingerprint value ∈ (0, 1]. Each bin stores a threshold
such that at most k keys with fingerprints smaller than or equal to the threshold remain.
The other keys are bumped to another layer of the same data structure. Figure 1 gives an
illustration.

4.1 Overloading
To make it more likely that each bin receives at least k keys, we overload the bins to contain
more than k keys in expectation. While the ad-hoc implementation [30] already overloads the
first layer, we now take this to its logical conclusion and overload all layers. More concretely,
we start with ⌈ n

kγ ⌉ bins where γ > 1 is the overloading factor. We determine the thresholds
to store, which leaves us with n′ bumped keys. From the remaining output bins, we then
use ⌈ n′

kγ ⌉ bins for the next layer. We continue this as long as the total number of bins used
is still smaller than ⌈ n

k ⌉. Only for the remaining keys, we have to use 1-perfect hashing to
puzzle them back into the under-filled bins. Even with overloading, we maintain expected
constant query times and expected linear construction times. Preliminary experiments

S. Hermann, S. Kirmayer, H.-P. Lehmann, P. Sanders, and S. Walzer 99:7

with k = 1000 show that overloading all layers reduces the number of keys bumped in the
last layer from 0.2% (with the original two layers) to 0.02% (with 5 layers). Because the
fallback 1-PHF needs non-negligible space, this reduces the overall space consumption. In
our implementation, we use the 1-PHF FiPS [27] due to its small constant space overhead
when using it for small sets.

4.2 Optimizing the Thresholds

For fast access we use a fixed number of bits to represent the threshold of each bin, which gives
us t possible threshold values. In the following we consider the value of those t thresholds.
For each bin we then only store the index of the threshold. We model the fingerprint of a
key as a uniformly distributed hash value x ∈ (0, 1]. If x is greater than the threshold of the
key’s bin, the key is bumped. It is less likely that we need threshold values close to 0 because
the expected number of keys in each bin is kγ. The ad-hoc implementation [30] therefore
heuristically uses uniformly spaced thresholds in [2

3 , 1]. In this section, we derive an optimal
selection of thresholds.

Our goal is to find the t thresholds T1 < · · · < Tt ∈ [0, 1] such that they minimize
the expected number of empty slots. As a fallback option, we use T1 = 0, bumping all
keys. We also use Tt = 1. A value of Tt < 1 would mean that keys in the range (Tt, 1]
always get bumped, which would counteract our increased load factor. Therefore, we need
to determine the values of the remaining t − 2 thresholds. The number of keys in a bin
is binomially distributed. To simplify analysis, we approximate the number of keys using
a Poisson distribution with γk keys in expectation. We consider the sorted fingerprints
0 < x1 < x2 < . . . of the keys. The distance between any two consecutive keys (xi+1 − xi)
and between 0 and x1 is exponentially distributed with an expected distance of 1/(γk).
Hence, it is equivalent to obtain the fingerprints by sampling consecutive fingerprints using
this exponential distribution until we pass 1. However, for notational convenience we sample
an infinite number of fingerprints in this way and allow them to exceed 1. This does not
change the distribution of the fingerprints smaller 1.

To minimize the number of empty slots we always choose the highest possible threshold
that is still smaller than xk+1, since we need to ensure that at most k keys remain in the bin.
Hence, threshold Ti is chosen if Ti < xk+1 ≤ Ti+1 for i ∈ [t] and we formally set Tt+1 := ∞
to simplify notation. A fingerprint xj results in an empty slot if it is bumped (xj > Ti) and it
is one of the k keys which we want to keep in the bin (xj < xk+1). If we know xk+1, then the
k smaller fingerprints are uniformly distributed in the range (0, xk+1). Hence, the expected
number of empty slots is k xk+1−Ti

xk+1
. The fingerprint xk+1 follows a gamma distribution with

shape k + 1 and rate γk. Let ϕ(x) be the density function of that gamma distribution. We
can calculate the expected number of empty slots of the bin as

E := E[empty slots] =
∫ ∞

0
E[empty slots | xk+1 = s]ϕ(s)ds

=
t∑

i=1

∫ Ti+1

Ti

E[empty slots | xk+1 = s]ϕ(s)ds

=
t∑

i=1

∫ Ti+1

Ti

k
s − Ti

s
ϕ(s)ds (1)

ESA 2025

99:8 Engineering Minimal k-Perfect Hash Functions

For E to be minimal, its derivative with respect to T2, . . . , Tt−1 must be zero. We have:

0 != dE

dTi
= d

dTi

∫ Ti

Ti−1

k
s − Ti−1

s
ϕ(s)ds + d

dTi

∫ Ti+1

Ti

k
s − Ti

s
ϕ(s)ds

= k

(
Ti − Ti−1

Ti
ϕ(Ti) −

∫ Ti+1

Ti

1
s

ϕ(s)ds

)

⇐⇒ Ti−1 = Ti − Ti

ϕ(Ti)

∫ Ti+1

Ti

1
s

ϕ(s)ds (2)

If we knew Tt and Tt−1 we could inductively obtain the remaining thresholds. However, we
only know that Tt = 1 and T1 = 0. Our implementation therefore fixes Tt = 1 and uses
binary search of Tt−1 until T1 is close to 0. This minimizes the number of empty slots under
the necessary conditions Tt = 1 and T1 = 0. For better intuition, we show in the full version
of this paper [18] that the density of thresholds follows a gamma distribution for t → ∞.
The query algorithm of our data structure is shown in Listing 1.

4.3 Tighter Packing With Retrieval
Sometimes there is more than one key between the relevant thresholds. If we take the smaller
threshold, we keep empty slots that we later need to repair. If we take the larger threshold,
we would have more than k keys in the bin. In this case, we extend the data structure by
querying a 1-bit retrieval data structure (see Section 2) on all keys that have fingerprints
between these two thresholds. The bit tells us whether this key should be kept in the bin or
if it should be bumped. This costs us 1 bit per key for all keys between thresholds, even the
ones we do not bump. However, overall, this reduces space because each bumped key leaving
an empty slot costs us several bits of space later to repair. The technique trades some query
time for reduced space consumption.

4.4 CONSENSUS-Coded Thresholds
CONSENSUS [31] is a technique for space-efficiently storing seeds for randomized data struc-
tures. It basically uses a fixed number of bits to store the seed of each subtask. This means
that for some subtasks, there might be multiple successful seeds that can be represented
with these bits, while for other tasks, there might be none. The novel idea of CONSENSUS
is to concatenate the current seed with previous seeds. This means that if we change one
seed, we completely change the meaning of all following seeds. That way, if one task has no
successful seeds, we can backtrack to another successful seed in a previous task and get a
completely new chance for success in the current task.

While the thresholds in threshold-based k-perfect hashing are not classical seeds, we can
still apply the CONSENSUS idea. The similarity is that for some bins, we might have more
than one threshold that gives a sufficiently small number of empty slots, while for other
bins, there might be none. We now use the thresholds of previous bins as a seed value when
determining the fingerprints of the next bin. Selecting a different threshold in a previous bin
therefore gives us a new chance to reduce the number of empty slots.

A problem with this approach is that there might be some bins that are much larger than
γk caused by uniformly hashing keys to bins. Even if we try another hash function seed, the
bins are biased towards having too many keys. Therefore, finding a seed such that exactly k

keys are below one of the thresholds is unlikely. However, we still have the option to bump
too many keys and repair the empty slots later. We need this option anyway because there

S. Hermann, S. Kirmayer, H.-P. Lehmann, P. Sanders, and S. Walzer 99:9

Listing 2 Query algorithm of k-perfect hashing trough bucket placement. Hash function hX

uniformly maps into the set X.
Function query(key ∈ S)

bucket := ⌊(n/λ) · βk(h[0,1](key))⌋
seed := seeds[bucket]
return h[⌈n/k⌉](key, seed)

Anna Mary Dave Lisa John Tom

1

Bucket 1 Bucket 2 Bucket 3

Seed s1 Seed s2 Seed s3

2 3

Data structure

2-PHF output

b(Tom) = 3

hs3(Tom) = 2

(a) Illustration of the data structure using k = 2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized hash value

N
or

m
al

iz
ed

bu
ck

et
in

de
x

Uniform (CHD [2])
k = 1 (PHOBIC [20])
k = 10
k = 100
k = 1000

(b) Bucket assignment functions for different
values of k.

Figure 2 Minimal k-perfect hashing through bucket placement.

might be bins that are not full enough. Therefore, for each actual size of a bin, we determine
how many keys we have to accept bumping if we want to have at least one valid threshold in
expectation. We then accept a seed if the number of empty slots is less than this limit.

5 k-Perfect Hashing Through Bucket Placement

Remember from Section 3.1 that perfect hashing through bucket placement [37, 20, 2] first
hashes n keys to n

λ buckets. For each bucket, it then searches for a hash function seed that
can place the keys without collisions. The bucket assignment function β : [0, 1] → [0, 1]
varies the expected size of each bucket such that placing each bucket has the same success
probability. Figure 2a gives an illustration of the idea and Listing 2 describes the query
algorithm. The idea generalizes trivially to k-perfect hashing, where we now place a bucket
if all output bins stay below k collisions. Because k-perfect hashing has different success
probabilities than 1-perfect hashing, we need a different bucket assignment function βk. In
this section we show how to choose βk such that each bucket has approximately the same
success probability.

We first need some general observations about bucket assignment functions. For key x,
the expected size of its bucket with normalized index βk(x) is λ/β′

k(x).2 Let us assume that
an x-fraction of keys is already mapped to bins. Then let pk(x) be the probability that a

2 In the close neighborhood of x and for infinitesimal δ, a δ-fraction of the hash range (used by δn keys
in expectation) is shared by a (β′

k(x) · δ)-fraction of the n
λ buckets. The quotient is δn/(β′

k(x)δ n
λ) =

λ/β′
k(x) [20].

ESA 2025

99:10 Engineering Minimal k-Perfect Hash Functions

random bin is not full at this point in the construction process. When placing a bucket of
size s, a seed is successful if all keys map to bins that are not full yet which has a probability
of pk(x)s (ignoring self collisions). The optimal solution for k = 1 satisfies that pk(x)λ/β′

k(x)

is some constant [20]. Because λ is a constant, the equation simplifies to pk(x)1/β′
k(x) = Ck.

Rearranging gives

β′
k(x) = ln(pk(x))/ ln(Ck). (3)

For k = 1, a bin is full if there is a single key mapped to it. We therefore have p1(x) = 1 − x

and β′
1(x) = ln(1 − x)/ ln(C1). The constant Ck has to be chosen such that all keys are

placed after the last bucket, i.e. βk(1) = 1. After integration and proper choice of C1 we
have β1(x) = x + (1 − x) ln(1 − x), the optimal bucket assignment function for k = 1 [20].
The difficulty for k > 1 is finding pk(x). Once we have pk(x), we use Equation (3) to obtain
the bucket assignment function. Note that we assume without proof that using Equation (3)
is still optimal for k > 1.

Model. To determine pk(x), we model the following process where we insert bk keys into b

bins of capacity k. We initialize a counter ci = 0 for each bin i ∈ [b]. The keys are handled
sequentially as described in the following. For each key we uniformly sample bins. Sampling
a bin s ∈ [b] has two possible outcomes:

cs < k (Success): We increment the counter cs by one and continue with the next key.
cs ≥ k (Failure): In this case, we also increment the counter cs by one. Note that this
does not change anything in terms of success probabilities, since the bin is already full
anyway. We continue with sampling a new bin for the same key.

Determining pk(x) Numerically. The reason for incrementing the counter even if the bin
is full is that the counter of each bin now follows a Poisson distribution (assuming that
the number of bins b is large). We show how pk(x) can be expressed as the solution of
an integro-differential equation in the full version of this paper [18]. However, solving this
equation is numerically unstable. In the following we give a numerically stable solution for
pk(x). We repeatedly choose values µ. We use each µ as the expected value of the Poisson
distribution that describes the distribution of the counters. For each µ we calculate the
probability p that a key is inserted successfully, as well as the fraction of inserted keys x.
Hence, for each µ we obtain p and x which we use to numerically determine pk(x). We
choose the values µ such that the distance of consecutive x values is sufficiently small. The
success probability p for a given µ is the probability that cs < k, which we calculate using
the cumulative distribution function of the Poisson distribution. To determine the fraction of
inserted keys x for a given expected value µ we consider the counter of the bins as described
in the model. For a bin where the counter is higher than k, we charge k successfully inserted
keys, because all other incrementations are from failures. We then divide by k, since we are
interested in the relative number of inserted keys. Let X follow a Poisson distribution with
mean µ then x = 1

k (E[X | X ≤ k] + kP[X > k]) = 1
kE[X | X ≤ k] + P[X > k].

The Bucket Assignment Function. The final bucket assignment function can be obtained
by numerically evaluating the integral of Equation (3) for βk(x). The constant Ck can be
ignored by normalizing the integral as a last step such that the boundary condition βk(1) = 1
is met. Refer to Figure 2b for an illustration of the bucket assignment functions with different
values of k. Larger k make the function more aggressive, further increasing the size of
the first buckets. For example, for k = 100, 82% of the keys are hashed to 1% of buckets.
Our implementation tabulates the bucket assignment function for specific k and uses linear
interpolation to maintain a fast query time.

S. Hermann, S. Kirmayer, H.-P. Lehmann, P. Sanders, and S. Walzer 99:11

59

Input keys

24 24 11

Bucket 1

8 8 8 8 8 8 8 3

Bucket 2 . . .

Have to repair
for MkPHF

Figure 3 Illustration of RecSplit with k = 8 and lowest-layer fanout ℓ = 3.

6 k-Perfect RecSplit

RecSplit [9] is a very space-efficient 1-perfect hash function. We first explain RecSplit and
then show how we adapt it to a k-perfect hash function.

RecSplit. RecSplit [9] first hashes each key to a bucket of expected size b, where b is a
tuning parameter with default value b = 2000 in the implementation. Within each bucket,
RecSplit then uses brute-force to search for a hash function seed that divides the keys
into two (or more) subsets. The number of these subsets (fanout) depends on the splitting
strategy. This continues recursively until we are left with small input sets of ≤ ℓ keys in the
leaf nodes. These subsets are small enough that it is feasible to search for a perfect hash
function using brute-force. RecSplit stores the hash function seeds determined at each node
using Golomb-Rice coding (see Section 2) in DFS order. An Elias-Fano coded sequence (see
Section 2) stores where the encoding of each bucket starts, as well as the total number of
keys before it. A query traverses the splitting tree of the corresponding bucket, evaluating
the hash function in each node. When descending into a subtree, it sums up the number
of keys in sibling nodes left to it. Therefore, the final hash function value is given by the
number of keys before the bucket, the number of keys to the left in the tree, and the final
brute-force hash function value in the leaf. The RecSplit splitting strategy ensures that all
subtrees except possibly the last are a complete tree where each leaf node receives exactly
ℓ keys. Therefore, only the very last leaf in any tree can have a size smaller than ℓ. We
illustrate RecSplit in Figure 3. Through the use of the buckets, RecSplit achieves linear time
construction and constant time queries.

Main Idea. Our k-perfect adaptation of RecSplit is (almost) straight-forward. We perform
splittings until we are left with leaves of size k. These then do not need to store seeds. We
now use the parameter ℓ to select the fanout of the layer above. The main difficulty is that
the last leaf in each bucket can have size < k. This would make the result a non-minimal
kPHF. In Section 6.1, we explain how we can merge the leaves of adjacent buckets in order
to get output bins of size k. As an alternative, in Section 6.2, we explain nested k-perfect
hashing. This can avoid the problem by ensuring that each bucket’s size is a multiple of k.

6.1 Merging Leaves of Size < k

From the prefix sum of bucket sizes, we know the number of keys x before each bucket. We
start placing the output of the bucket’s tree at the offset ⌊x/k⌋. This means that we do not
leave space for the previous bucket’s leaves of size < k. Only if the total number of keys in

ESA 2025

99:12 Engineering Minimal k-Perfect Hash Functions

1 2 3 4 5 6 7 8 9

p1 = 3 p2 = 6

h

n input keys

⌈an/k⌉ buckets

Retrieval

1 2 3

Figure 4 Illustration of PaCHash for k-perfect hashing with a = k = 3. Queries for keys hashed to
bucket 3 cannot directly determine whether their output bin is 1 or 2 by looking at the cut-points pi.
Therefore, they have to query a retrieval data structure. For the single key in bin 6, the placement
would actually be unambiguous. However, from looking at p2, we cannot see that all keys in bin
6 have to map to the left of the threshold. Therefore, we still need to query the retrieval data
structure. For p2, can store either 6 or 7. We select the bin with fewer keys to reduce the number of
keys in the retrieval data structure.

non-full leaves exceeds k, we get an additional output bin. For this, we calculate a splitting
hash function on the last leaf that splits away the keys needed to fill the leaf. We store the
splitting seed as an additional hash function seed in the Golomb-Rice coded seeds.

During queries, if we arrive in a leaf of size < k, there are two cases. (1) If the remainder
of the bucket position does not cross k, we scan forward the following buckets until one does.
The output bin is then the last bin of that bucket. (2) If the current bucket is the one letting
the remainder cross k, we evaluate the splitting hash function. Then we either return the
last bin of the current bucket, or we scan forward like in the first case.

Note that this means that we have to scan forward the bucket sizes when querying a leaf
of size < k. However, because the number of keys in a bucket is random and much larger
than k, we can assume we get a uniform random remainder. Therefore, in expectation, we
only have to scan two buckets.

6.2 Avoiding Leaves of Size < k Through Nesting
Another technique is to completely avoid leaves of size < k in the first place. We can use a
minimal b-perfect hash function (where k divides b) to partition the keys. In general, we can
nest different k-perfect hash functions to interpolate their trade-offs. One function (maybe
fast and less space-efficient) can map the input set to buckets of k′ keys. Then, in each
bucket, we can construct a k-perfect hash function. We could use the idea to implement a
k-perfect version of CONSENSUS-RecSplit. However, nesting different kPHFs would introduce
another dimension of experiments and make this paper harder to follow. We therefore do
not go into detail about nesting or k-perfect CONSENSUS-RecSplit.

7 k-Perfect PaCHash

As we explain in Section 3.2, PaCHash hashes each key to one of ⌈an/k⌉ buckets. The variable
a is a tuning parameter. For each output bin i, it stores the first bucket pi overlapping it
using Elias-Fano coding (see Section 2). A predecessor query on that list then maps the
bucket to the respective output bin. Figure 4 illustrates the data structure. During queries,
if a searched bucket is contained in the sequence, it is not clear whether the key is supposed

S. Hermann, S. Kirmayer, H.-P. Lehmann, P. Sanders, and S. Walzer 99:13

Listing 3 Query algorithm of k-perfect PaCHash. If the range returned by the internal memory
data structure is ambiguous, we have to query the retrieval data structure. Hash function hX

uniformly maps into the set X.
Function query(key ∈ S)

b := h[⌈an/k⌉](x)
find i such that pi−1 < b ≤ pi // predecessor query
if pi = b

i := i − 1 // b may start in previous block
find first j such that pj > b // predecessor query or scan
if i = (j − 1)

return i

else
return i + retrievalQuery(key) // (j-1-i)-bit retrieval

to be in the bin or in the bin before. In fact, it might be possible that d bins store the same
bucket index. We get a similar problem if a bucket starts exactly at a bin boundary. Then the
index cannot tell whether the bucket overlaps or not. The external memory implementation
then loads all d + 1 candidate bins. However, for k-perfect hashing, we need a different
strategy.

k-Perfect Adaptation. To decide for one of the d + 1 bins using only the index data
structure, we use a ⌈log2(d + 1)⌉ bit retrieval data structure (see Section 2). The stored value
tells us which of the bins to return. Since we rarely need more than one bit, we simply store
the numbers bitwise in a single 1-bit retrieval data structure. Listing 3 gives the pseudocode
of the query algorithm. PaCHash expects 1/a of the queries to load one external memory
page too much [23]. In the context of k-perfect hashing, this means that for 1/a of the
queries, the output bin is ambiguous. This means that the retrieval data structure essentially
stores n/a bits. By selecting a = k, we get a total space consumption of n/k(3 + log(k)),
which already gets close to the lower bound for large k (see Section 2). An advantage of the
technique is that its construction through (integer) sorting and a single scan is very simple.
Like the other approaches it takes linear time. Queries take expected constant time due to
the distribution of values in the Elias-Fano data structure [23]. This adaptation is briefly
mentioned in previous papers [27, 31] but without an implementation. The CONSENSUS
paper [31] gives a simple analysis for the resulting space consumption.

8 Evaluation

In this section, we compare our approaches with CHD [2], as well as the ad-hoc implementation
of threshold-based bumping [31] from the literature. While CHD is not minimal k-perfect,
we still include it in our comparison with a load factor of 97% to give a feeling for the
performance of our approaches. With this paper, we build a foundation for future work on
k-perfect hashing, contributing implementations for future papers to compare against.

We run our experiments on an Intel i7 11700 processor with 8 cores and a base clock
speed of 2.5 GHz. The machine runs Rocky Linux 9.5 with Linux 5.14.0. We use the GNU
C++ compiler version 11.2.0 with optimization flags -O3 -march=native. Following the
practice in 1-perfect hashing [20, 27, 28], our input set consists of 100 million random strings
of uniform random length ∈ [10, 50]. Because all approaches hash the input keys anyway, the
choice of the input set is not very important. Our source code is public under the General
Public License [19].

ESA 2025

99:14 Engineering Minimal k-Perfect Hash Functions

Because each approach has configuration parameters, it can cover a range of trade-offs
between space consumption, construction time, and query time. To give an intuitive overview,
we give visual plots showing different parameters of each approach. Figure 5a gives the
trade-off between construction time and space consumption for three different values of k.
Figure 5b gives the trade-off between query time and space consumption. We also give
a dominance map [27, 7, 28] of the trade-off. For each point having a specific trade-off
between construction time and space consumption, the dominance map in Figure 5a shows
the approach achieving the best query time. As such, it can be seen as a “front view” of the
3-dimensional Pareto space. The dominance map in Figure 5b shows the method with the
fastest construction for a given trade-off between space consumption and query performance.
We show a selection of representative configurations from the Pareto front in the full version
of this paper [18]. In the following, we discuss the different approaches in detail.

Threshold-Based Bumping. Compared to the ad-hoc implementation [31], our implement-
ation of threshold-based bumping offers up to 3 times smaller space overhead due to the
optimized thresholds. Only for k = 100, the linearly spaced ad-hoc thresholds happen to be
close to optimal, so we only achieve small space improvements. For growing k, threshold-
based bumping gets closer to the space lower bound, while the space overhead of most other
approaches increases. Figure 5a also shows that our implementation is up to 50% faster to
construct than the next best technique. This is mainly because the ad-hoc implementation
fully sorts the keys by their bin and fingerprint, while we only partition by the bin and
then use quickselect [21] to find the k-th key. By packing using retrieval, we can achieve
smaller space consumption. This has only a small influence on construction and query times.
Finally, using CONSENSUS-coded thresholds, we achieve smaller space consumption but slower
construction and queries.

Hash and Displace. For the hash and displace technique, Rice coding (see Section 2)
achieves lower space consumption than compact coding at the same construction time. This
comes at the cost of slower queries, as can be seen in Figure 5b, due to the select queries.
Compared to CHD [2], an implementation from the literature, our construction is much
faster. Even though we use CHD with a load factor of just 97%, our construction gets close
to its space consumption. The CHD implementation from the literature crashes for k = 1000,
while our implementation supports large k as well. Our measurements show that the hash
and displace technique with compact coding is fast to query, especially for smaller k. This
is in contrast to the implementation from the literature, which has much slower queries.
In general, the hash and displace technique seems not competitive for k-perfect hashing,
especially for large k.

k-RecSplit. Our k-perfect adaptation of RecSplit achieves the smallest space consumption.
With just 10% overhead over the lower bound, it has a large margin to the next smallest
competitor. This is not surprising, since the RecSplit paper [9] shows that the recursive
splitting idea converges towards the space lower bound. However, its construction is sig-
nificantly slower than the other approaches in Figure 5a. Because splittings become even
more expensive for large k, we do not include the configuration with 10% space overhead for
k = 1000. The queries are slow compared to other approaches.

k-PaCHash. Our k-perfect adaptation of PaCHash is very simple to describe and fast to
construct through sorting followed by a linear scan. However, its queries are slow due to the
predecessor queries in the Elias-Fano coded sequence of bucket indexes.

S. Hermann, S. Kirmayer, H.-P. Lehmann, P. Sanders, and S. Walzer 99:15

k-PaCHash Bucket Placement (Rice) Threshold-Based (ad-hoc) [31]
k-RecSplit CHD [2] (load factor 0.97) Threshold-Based + BuRR
Bucket Placement (Compact) Threshold-Based Threshold-Based + Consensus

0

10

20

T
hr

ou
gh

pu
t

[M
K

ey
s/

s]

k = 10 k = 100 k = 1000

10% 100% 1000%

0

10

20

Relative space overhead

T
hr

ou
gh

pu
t

[M
K

ey
s/

s]

10% 100% 1000%
Relative space overhead

10% 100% 1000%
Relative space overhead

(a) Space consumption versus construction time. The bottom row shows dominance maps indicating the
approach with the fastest queries, given a specific trade-off between space and construction time.

0

20

40

T
hr

ou
gh

pu
t

[M
Q

ue
rie

s/
s]

k = 10 k = 100 k = 1000

10% 100% 1000%

0

20

40

Relative space overhead

T
hr

ou
gh

pu
t

[M
Q

ue
rie

s/
s]

10% 100% 1000%
Relative space overhead

10% 100% 1000%
Relative space overhead

(b) Space consumption versus query time. The bottom row shows dominance maps indicating the approach
with the fastest construction, given a specific trade-off between space and query time.

Figure 5 Comparison of minimal k-perfect hash functions. A relative space overhead of 100%
means that the data structure needs twice the lower bound. Refer to Table 1 for a table with lower
bounds in bits per key.

ESA 2025

99:16 Engineering Minimal k-Perfect Hash Functions

9 Conclusion

To our knowledge, we present the first paper fully dedicated to presenting k-perfect hash
functions. The area of k-perfect hashing has been known for a long time, but has not received
a lot of attention. With the advent of very space-efficient 1-perfect hash functions, however,
the area is becoming more and more relevant. In this paper, we kickstart the development of
kPHFs by introducing four new or significantly improved constructions. Our constructions
cover various trade-offs between space consumption, construction time, and query time.

With threshold-based bumping, we significantly improve a k-perfect hash function that
was previously only described briefly as an ad-hoc solution in 1-perfect hashing papers [30, 31].
We achieve a significant reduction in bumped keys by combining it with retrieval, and we
optimize the threshold function. By combining the idea with CONSENSUS coded seeds, we
achieve a significant reduction in space consumption while retaining its fast queries. We
also extend the idea of perfect hashing through bucket placement by optimizing the bucket
assignment function for k-perfect hashing. As a very space-efficient alternative, we adapt
RecSplit [9] to construct k-perfect hash functions. The main difficulty is to merge leaf nodes
that have size < k. Finally, we adapt PaCHash [23] to a k-perfect hash function by combining
it with a retrieval data structure.

Our extensive evaluation compares our new techniques with competitors from the literature.
Our constructions are simultaneously faster to construct, faster to query, and more space-
efficient than previous approaches. The most promising techniques are threshold-based
bumping and k-RecSplit. While k-RecSplit achieves the best space consumption, it is slow
to construct and query. Threshold-based bumping is very fast to construct and query while
still giving competitive space consumption.

Future Work. This paper revives the research area of k-perfect hashing. In the future, we
expect a wide range of new techniques, like there is in 1-perfect hashing. The approaches
presented in this paper give a starting point outlining the trade-off. Especially our im-
provements to threshold-based bumping can now be used to improve the space efficiency
of CONSENSUS-RecSplit [31]. An open theoretical problem is the space lower bound for
non-minimal k-perfect hashing.

References
1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM),

42(4):844–856, 1995. doi:10.1145/210332.210337.
2 Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. Hash, displace, and

compress. In ESA, volume 5757 of Lecture Notes in Computer Science, pages 682–693. Springer,
2009. doi:10.1007/978-3-642-04128-0_61.

3 Piotr Beling. Fingerprinting-based minimal perfect hashing revisited. ACM J. Exp. Al-
gorithmics, 28:1.4:1–1.4:16, 2023. doi:10.1145/3596453.

4 Francine Berman, Mary Ellen Bock, Eric Dittert, Michael J. O’Donnell, and Darrell Plank.
Collections of functions for perfect hashing. SIAM J. Comput., 15(2):604–618, 1986. doi:
10.1137/0215044.

5 Pedro Celia. External robin hood hashing. Technical report, Computer Science Department,
Indiana University. TR246, 1988.

6 Davi de Castro Reis, Djamel Belazzougui, Fabiano Cupertino Botelho, and Nivio Ziviani.
CMPH – C minimal perfect hashing library. http://cmph.sourceforge.net/, 2012.

7 Peter C. Dillinger, Lorenz Hübschle-Schneider, Peter Sanders, and Stefan Walzer. Fast succinct
retrieval and approximate membership using ribbon. In SEA, volume 233 of LIPIcs, pages
4:1–4:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.SEA.
2022.4.

https://doi.org/10.1145/210332.210337
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1145/3596453
https://doi.org/10.1137/0215044
https://doi.org/10.1137/0215044
http://cmph.sourceforge.net/
https://doi.org/10.4230/LIPICS.SEA.2022.4
https://doi.org/10.4230/LIPICS.SEA.2022.4

S. Hermann, S. Kirmayer, H.-P. Lehmann, P. Sanders, and S. Walzer 99:17

8 Peter Elias. Efficient storage and retrieval by content and address of static files. J. ACM,
21(2):246–260, 1974. doi:10.1145/321812.321820.

9 Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. RecSplit: Minimal
perfect hashing via recursive splitting. In ALENEX, pages 175–185. SIAM, 2020. doi:
10.1137/1.9781611976007.14.

10 Ronald Fagin, Jürg Nievergelt, Nicholas Pippenger, and H. Raymond Strong. Extendible
hashing - A fast access method for dynamic files. ACM Trans. Database Syst., 4(3):315–344,
1979. doi:10.1145/320083.320092.

11 Robert Mario Fano. On the number of bits required to implement an associative memory.
Technical report, MIT, Computer Structures Group, 1971. Project MAC, Memorandum 61".

12 Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space efficient hash
tables with worst case constant access time. Theory Comput. Syst., 38(2):229–248, 2005.
doi:10.1007/S00224-004-1195-X.

13 Fabian Frei and David Wehner. Bounds for c-ideal hashing. In FCT, volume 14292 of Lecture
Notes in Computer Science, pages 205–220. Springer, 2023. doi:10.1007/978-3-031-43587-4_
15.

14 Solomon W. Golomb. Run-length encodings. IEEE Trans. Inf. Theory, 12(3):399–401, 1966.
doi:10.1109/TIT.1966.1053907.

15 Gaston H. Gonnet and Per-Åke Larson. External hashing with limited internal storage. J.
ACM, 35(1):161–184, 1988. doi:10.1145/42267.42274.

16 Ragnar Groot Koerkamp. Ptrhash: Minimal perfect hashing at RAM throughput. CoRR,
abs/2502.15539, 2025. doi:10.48550/arXiv.2502.15539.

17 Stefan Hermann. MorphisHash: Improving space efficiency of shockhash for minimal perfect
hashing. CoRR, abs/2503.10161, 2025. doi:10.48550/arXiv.2503.10161.

18 Stefan Hermann, Sebastian Kirmayer, Hans-Peter Lehmann, Peter Sanders, and Stefan
Walzer. Engineering minimal k-perfect hash functions. CoRR, abs/2504.20001, 2025. doi:
10.48550/arXiv.2504.20001.

19 Stefan Hermann, Sebastian Kirmayer, Hans-Peter Lehmann, and Stefan
Walzer. Engineering Minimal k-Perfect Hash Functions. Software, swhId:
swh:1:dir:e6756f018691a80adc68d839fd3617d8f5e2d0b0 (visited on 2025-09-
08). URL: https://github.com/stefanfred/engineering-k-perfect-hashing,
doi:10.4230/artifacts.24698.

20 Stefan Hermann, Hans-Peter Lehmann, Giulio Ermanno Pibiri, Peter Sanders, and Stefan
Walzer. PHOBIC: perfect hashing with optimized bucket sizes and interleaved coding. In ESA,
volume 308 of LIPIcs, pages 69:1–69:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2024. doi:10.4230/LIPICS.ESA.2024.69.

21 C. A. R. Hoare. Algorithm 65: find. Commun. ACM, 4(7):321–322, July 1961. doi:
10.1145/366622.366647.

22 Sebastian Kirmayer. Engineering k-perfect hashing. Abschlussarbeit - Bachelor, Karlsruher
Institut für Technologie (KIT), 2024. doi:10.5445/IR/1000179026.

23 Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders. PaCHash: Packed and compressed
hash tables. In ALENEX, pages 162–175. SIAM, 2023. doi:10.1137/1.9781611977561.CH14.

24 Per-Åke Larson. Linear hashing with separators - A dynamic hashing scheme achieving one-
access retrieval. ACM Trans. Database Syst., 13(3):366–388, 1988. doi:10.1145/44498.44500.

25 Per-Åke Larson and Ajay Kajla. File organization: Implementation of a method guaranteeing
retrieval in one access. Commun. ACM, 27(7):670–677, 1984. doi:10.1145/358105.358193.

26 Per-Åke Larson and M. V. Ramakrishna. External perfect hashing. In SIGMOD Conference,
pages 190–200. ACM Press, 1985. doi:10.1145/318898.318916.

27 Hans-Peter Lehmann. Fast and Space-Efficient Perfect Hashing. PhD thesis, Karlsruhe
Institute of Technology, Germany, 2024. doi:10.5445/IR/1000176432.

ESA 2025

https://doi.org/10.1145/321812.321820
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1145/320083.320092
https://doi.org/10.1007/S00224-004-1195-X
https://doi.org/10.1007/978-3-031-43587-4_15
https://doi.org/10.1007/978-3-031-43587-4_15
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.1145/42267.42274
https://doi.org/10.48550/arXiv.2502.15539
https://doi.org/10.48550/arXiv.2503.10161
https://doi.org/10.48550/arXiv.2504.20001
https://doi.org/10.48550/arXiv.2504.20001
https://archive.softwareheritage.org/swh:1:dir:e6756f018691a80adc68d839fd3617d8f5e2d0b0;origin=https://github.com/stefanfred/engineering-k-perfect-hashing;visit=swh:1:snp:8b568d1c8fe1e13f6ef95d3b2774fc59c259d6b5;anchor=swh:1:rev:2c269037dad34b69a68b56fed38c98656f02c133
https://github.com/stefanfred/engineering-k-perfect-hashing
https://doi.org/10.4230/artifacts.24698
https://doi.org/10.4230/LIPICS.ESA.2024.69
https://doi.org/10.1145/366622.366647
https://doi.org/10.1145/366622.366647
https://doi.org/10.5445/IR/1000179026
https://doi.org/10.1137/1.9781611977561.CH14
https://doi.org/10.1145/44498.44500
https://doi.org/10.1145/358105.358193
https://doi.org/10.1145/318898.318916
https://doi.org/10.5445/IR/1000176432

99:18 Engineering Minimal k-Perfect Hash Functions

28 Hans-Peter Lehmann, Thomas Mueller, Rasmus Pagh, Giulio Ermanno Pibiri, Peter Sanders,
Sebastiano Vigna, and Stefan Walzer. Modern minimal perfect hashing: A survey. CoRR,
abs/2506.06536, 2025. doi:10.48550/arXiv.2506.06536.

29 Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. SicHash – small irregular cuckoo tables
for perfect hashing. In ALENEX, pages 176–189. SIAM, 2023. doi:10.1137/1.9781611977561.
CH15.

30 Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. ShockHash: Near optimal-space
minimal perfect hashing beyond brute-force. CoRR, abs/2310.14959, 2024. doi:10.48550/
arXiv.2310.14959.

31 Hans-Peter Lehmann, Peter Sanders, Stefan Walzer, and Jonatan Ziegler. Combined search and
encoding for seeds, with an application to minimal perfect hashing. In 33nd Annual European
Symposium on Algorithms (ESA 2025), Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2025. doi:10.4230/LIPIcs.ESA.
2025.110.

32 Harry G. Mairson. The program complexity of searching a table. In FOCS, pages 40–47. IEEE
Computer Society, 1983. doi:10.1109/SFCS.1983.76.

33 Harry G Mairson. The effect of table expansion on the program complexity of perfect hash
functions. BIT Numerical Mathematics, 32:430–440, 1992. doi:10.1007/BF02074879.

34 Kurt Mehlhorn. Data structures and algorithms, vol. 1: Sorting and searching. EATCS
Monographs on Theoretical Computer Science, Springer-Verlag, 1984.

35 Ingo Müller, Peter Sanders, Robert Schulze, and Wei Zhou. Retrieval and perfect hashing using
fingerprinting. In SEA, volume 8504 of Lecture Notes in Computer Science, pages 138–149.
Springer, 2014. doi:10.1007/978-3-319-07959-2_12.

36 Rasmus Pagh. Basic external memory data structures. In Algorithms for Memory Hierarchies,
volume 2625 of Lecture Notes in Computer Science, pages 14–35. Springer, 2002. doi:
10.1007/3-540-36574-5_2.

37 Giulio Ermanno Pibiri and Roberto Trani. PTHash: Revisiting FCH minimal perfect hashing.
In SIGIR, pages 1339–1348. ACM, 2021. doi:10.1145/3404835.3462849.

38 Robert F. Rice. Some practical universal noiseless coding techniques. Jet Propulsion Laboratory,
JPL Publication, 1979.

https://doi.org/10.48550/arXiv.2506.06536
https://doi.org/10.1137/1.9781611977561.CH15
https://doi.org/10.1137/1.9781611977561.CH15
https://doi.org/10.48550/arXiv.2310.14959
https://doi.org/10.48550/arXiv.2310.14959
https://doi.org/10.4230/LIPIcs.ESA.2025.110
https://doi.org/10.4230/LIPIcs.ESA.2025.110
https://doi.org/10.1109/SFCS.1983.76
https://doi.org/10.1007/BF02074879
https://doi.org/10.1007/978-3-319-07959-2_12
https://doi.org/10.1007/3-540-36574-5_2
https://doi.org/10.1007/3-540-36574-5_2
https://doi.org/10.1145/3404835.3462849

	1 Introduction
	2 Preliminaries
	3 Related Work
	3.1 k-Perfect Hash Functions
	3.2 External Memory Hash Tables

	4 k-Perfect Hashing Through Threshold-Based Bumping
	4.1 Overloading
	4.2 Optimizing the Thresholds
	4.3 Tighter Packing With Retrieval
	4.4 CONSENSUS-Coded Thresholds

	5 k-Perfect Hashing Through Bucket Placement
	6 k-Perfect RecSplit
	6.1 Merging Leaves of Size < k
	6.2 Avoiding Leaves of Size < k Through Nesting

	7 k-Perfect PaCHash
	8 Evaluation
	9 Conclusion

