Barendregt’s Theory of the A-Calculus, Refreshed
and Formalized

Adrienne Lancelot &
Inria & LIX, Ecole Polytechnique, UMR, 7161, Paris, France
Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Beniamino Accattoli &
Inria & LIX, Ecole Polytechnique, UMR 7161, Paris, France

Maxime Vemclefs
Independent, Paris, France

—— Abstract

Barendregt’s book on the untyped A-calculus refines the inconsistent view of S-divergence as
representation of the undefined via the key concept of head reduction.

In this paper, we put together recent revisitations of some key theorems laid out in Barendregt’s
book, and we formalize them in the Abella proof assistant. Our work provides a compact and
refreshed presentation of the core of the book.

The formalization faithfully mimics pen-and-paper proofs. Two interesting aspects are the
manipulation of contexts for the study of contextual equivalence and a formal alternative to the
informal trick at work in Takahashi’s proof of the genericity lemma. As a by-product, we obtain an
alternative definition of contextual equivalence that does not mention contexts.

2012 ACM Subject Classification Theory of computation — Lambda calculus
Keywords and phrases lambda-calculus, head reduction, equational theory

Digital Object Identifier 10.4230/LIPIcs.ITP.2025.13

Supplementary Material Software (Abella formalization code):
https://github.com/adrilancelot/Abella-lambda-Barendregt-theory [40]
archived at swh:1:dir:b20ffd2d8d946adacleb2fffa72112d23a2deeed

1 Introduction

Barendregt’s 1984 classic book [15] still is, today, the main reference for the untyped calculus.
Its theme is the construction of the semantics of the A-calculus induced by partial recursive
functions. The crucial concept is the one of head (3-)reduction, the importance of which
emerged in the 1970s in studies by Barendregt [14, 16] and Wadsworth [64, 65]. In this paper,
we collect simplifications of key results of that theory, to give a new compact, refreshed
presentation, backed by formal proofs.

Barendregt’s book is a heavy monography, often too technical for beginners. Additionally,
along the years typed A-calculi have stolen the spotlight, with the result that nowadays the
untyped A-calculus is often seen as a topic of the past. Therefore, our work is also an attempt
to preserve the beautiful but somewhat endangered theory of the untyped A-calculus, making
it accessible to a wider and younger audience, hopefully as a blueprint for new studies.

Partial Recursive Functions. Partial recursive functions (shortened to PRFs) are based
on the undefined value L, that induces the extensional preorder f <ppp g holding when
Yn €N, f(n) =L or f(n) =N g(n), having as minimum the everywhere undefined function
fi(n) = L.

© Adrienne Lancelot, Beniamino Accattoli, and Maxime Vemclefs;
37 licensed under Creative Commons License CC-BY 4.0

16th International Conference on Interactive Theorem Proving (ITP 2025).

Editors: Yannick Forster and Chantal Keller; Article No. 13; pp. 13:1-13:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:adrienne.lancelot@inria.fr
https://orcid.org/0009-0009-5481-5719
mailto:beniamino.accattoli@inria.fr
https://orcid.org/0000-0003-4944-9944
https://doi.org/10.4230/LIPIcs.ITP.2025.13
https://github.com/adrilancelot/Abella-lambda-Barendregt-theory
https://github.com/adrilancelot/Abella-lambda-Barendregt-theory
https://archive.softwareheritage.org/swh:1:dir:b20ffd2d8d946adac1eb2fffa72112d23a2deeed;origin=https://github.com/adrilancelot/Abella-lambda-Barendregt-theory;visit=swh:1:snp:51adf802a55fe82840e4e8d940b31babccdb58a2;anchor=swh:1:rev:07ea3f03983145ce1b7e070e3afbe9ff730d2531
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

13:2

Barendregt’'s Theory of the A-Calculus, Refreshed and Formalized

PRFs and the A-calculus can represent each other. Moving to the A-calculus provides
dynamic computations, which yield different syntactic implementations of functions that —
extensionally — do the same thing. Barendregt’s theory of the A-calculus is based on the
idea of studying the semantics — that is, the equational theory — induced on A-terms by the
representation of the extensional order on PRFs.

Meaningless Terms and Equational Theories. One of the first choices to make is how
to represent undefinedness [64, 14, 16]. Intuitively, it corresponds to divergence. In the
untyped A-calculus, the paradigmatic never-ending computations is §2 == (A\z.zz)(A\z.xx),
that rewrites to itself in one [-step. It is clear that (2 is a representation of the everywhere
undefined function f;. What is less clear is the criterion that establishes when a given term
is meaningless, that is, when it represents the undefined.

Identifying meaningless terms goes hand in hand with the study of program equivalences
and equational theories: which A-terms should be considered equivalent? A good criterion
to validate a notion of meaningless term is collapsibility, that is, whether the equational
theories that identify all those terms are consistent, that is, do not equate all terms.

A Natural and Inconsistent Equational Theory. It is natural to define as meaningless all
the pB-divergent terms. It turns out, however, that they are not collapsible: equational theories
identifying p-divergent terms are inconsistent; this is the starting point of Barendregt’s
theory. We provide a formalization of the simple standard proof of this fact, in Sect. 3. An
intuition as to why this identification cannot work is that fixpoint combinators, that allow the
encoding of recursion (and the minimization of PRFs) in the A-calculus, are all S-divergent.

Head Reduction to the Rescue. Barendregt and Wadsworth hence introduced a notion
of meaninglessness based on divergence for a sub-reduction of 5, namely head reduction.
Restricting the rewriting rule restricts the set of meaningless term. Going back to our
example, fixpoint combinators terminate for head reduction, while 2 does not.

A number of results in Barendregt’s book focus on showing that the choice of head
divergent as meaningless is a good one. In particular, he gives two proofs of their collapsibility,
one considering H, the minimal equational theory identifying head divergent terms, and one
considering (head) contextual equivalence ~¢ (also known as H*). Both collapsibility proofs
are based on the crucial genericity lemma. For ~¢, he also proves mazimality: ~¢ is the
maximal consistent equational theory identifying head divergent terms.

Refreshing Barendregt’s Theory. The goal of the paper is to prove the collapsibility
theorem, moderninizing and simplyfing the theory leading to it. For that, we choose the proof
of collapsibility based on contextual equivalence, given the prominence that this concept
has — along the decades — achieved in the study of programming languages. Additionally, we
also prove the maximality theorem for ~¢. Along the way, we formalize many theorems of
Barendregt’s theory (confluence, standardization, head factorization, head normalization,
solvability, genericity, and ~¢ is an equational theory), but do so mostly without using
their original proofs in the book [15]. We use several revisitations by Accattoli et al. [8],
Takahashi [57], and Accattoli and Lancelot [9] that allow for easier, self-contained proofs.

We also adopt a different, strictly more general definition of head reduction — following
Accattoli and Dal Lago [7] — that however validates the same properties with the same
proofs. Additionally, we deal with the contextual preorder 3¢ rather than with contextual
equivalence, and more generally deal with inequational theories. Lastly, our formalization
work contributes some revisitations of its own, mentioned below.

A. Lancelot, B. Accattoli, and M. Vemclefs

The Formalization. For the formalization, we rely on the Abella proof assistant [28, 12].
Our formal proofs faithfully follow the pen-and-paper ones in the cited papers. This is partly
due to Abella’s primitive support for binders and for Miller and Tiu’s V (nabla) quantifier
[46, 29], that allows a smooth treatment of free variables, but it is also due to the careful
details provided in the neat pen-and-paper proofs we try to mimic.

The only point where there is a gap between the formalization and pen-and-paper
reasoning is the treatment of contexts, in particular for contextual equivalence. Plugging in
contexts is a variant of meta-level substitution that can capture variables, and that it is not
primitively supported by Abella. Therefore, we represent contexts indirectly, via sub-term
predicates: we represent C(t) saying that ¢ is a sub-term of u = C(t), see sections 6 and 9.

Formalizing Genericity. For the theory, the main contribution of our formalization concerns
the genericity lemma. In a nutshell, genericity states that the contextual closure is monotone
(with respect to the contextual preorder Z¢) on meaningless terms, i.e. if 1 Z¢ ¢t then
C(Ll) Zc C{t). While the statement is natural, its proofs are usually involved; it rather
deserves to be referred to as theorem. Barendregt originally used a topological argument
[15, Prop. 14.3.24] but other arguments exist in the literature: via intersection types by
Ghilezan [31], rewriting-based ones by Takahashi [57], Kuper [39], Kennaway et al. [37], and
Endrullis and de Vrijer [25], and via Taylor expansion by Barbarossa and Manzonetto [13].

We follow Takahashi’s rewriting-based technique — and, more precisely, its revisited
presentation by Accattoli and Lancelot [9] — because it is self-contained and relies on other
theorems we already prove (the head normalization one). To formalize Takahashi’s argument,
we isolate two new concepts: a disentangling lemma (Lemma 14) turning context plugging
into meta-level substitutions up to p-reduction, and a corollary of the head normalization
theorem (Cor. 12) that encapsulates the rewriting argument in the proof of genericity.

As an high-level by-product, we show that the disentangling lemma in fact leads to a
new notion of substitutions equivalence that is equivalent to contextual equivalence and does
not mention contexts — it is the distilled essence of Takahashi’s argument. We believe it to
be an interesting contribution, perhaps the main take-away from our formalization effort.

Related Work. Formalizations of the A-calculus abound. There are countless formalizations
of confluence (e.g. [49, 54, 56, 52, 35, 63, 34, 48, 62, 66]), and some go further, dealing
with standardization (e.g. McKinna and Pollack [43], Norrish [50], Crary [22], Guidi [33],
Gheri and Popescu [30]) but we are not aware of any previous work dealing with the more
advanced theorems we treat here (such as solvability, genericity, collapsibility, maximality).
Larchey-Wendling formalizes in Coq good portions of Krivine’s book on the A-calculus [38];
the Coq sources are available [41], but there is no associated paper. Norrish formalizes in
HOL4 the relationship between PRFs and the A-calculus [51].

Independently and in parallel to us, Norrish and Tian [59] formalized in HOL4 both the
operational characterization of solvability (that we also formalize) and a restricted form
of Béhm'’s separation theorem. Béhm’s theorem is a very challenging result to mechanize;
Norrish and Tian’s development is the first formalized proof of a separation result. Their
work appears in the very same conference of this paper.

There are also many formalizations of techniques for program equivalence: e.g., for
coinductive operational program equivalences in Coq by Biernacki et al. [18] and in Abella by
Momigliano [47], equational theories for call-by-(push-)value in Coq by Rizkallah et al. [55],
and for call-by-push-value in Coq (and partially in Abella) by Forster et al. [26, 27].

13:3

ITP 2025

13:4

Defined in
0Ol-lambda_terms

_and_beta.thm.

Barendregt’'s Theory of the A-Calculus, Refreshed and Formalized

Kind tm type. Define tm : tm -> prop by

nabla x, tm x;
Type abs (tm -> tm) -> tm. tm (abs T) := nabla x, tm (T x);
Type app tm -> tm -> tm. tm (app T U) := tm T /\ tm U.

Figure 1 A-terms and the predicate for inducting on them in Abella.

Our formal revisited results for the A-calculus are similar in spirit to those in Accattoli [4]
(cube property) and Accattoli et al. [5] (translation of A into the m-calculus).

Abella Sources. They can be found on GitHub [40].

2 Formalizing the A\-Calculus in Abella

This section overviews the adopted approach to formalize the A-calculus in Abella.

Key Features of Abella. Abella [28, 12] belongs to the family of proof assistants based
on higher-order abstract formalisms — namely, the one adopted by Abella is Miller and
Nadathur’s A-tree syntaz [45] — which provides primitive support for binders and meta-level
substitution. We assume basic familiarity with these formalisms. A survey by Kaiser et
al. compares Coq, Abella, and Beluga by studying System F in the three frameworks [36].

Abella has two layers, the specification level and the reasoning level. They are based on
different logics, the reasoning level being more powerful and provided with special tactics
to reason about the specification level. In particular, it is only at the reasoning level that
one can use Miller and Tiu’s V (nabla) quantifier [46, 29], that complements the primitive
support for binders with a smooth treatment of free variables.

Reasoning Level. In many formalizations in Abella, definitions are given at the specification
level while statements and proofs are given at the reasoning level. In particular, this is often
done when formalizing typed calculi, since Abella provides some tactics for the involved
typing contexts at the specification level. We follow another approach, giving the definitions
at the reasoning level, which is sometimes preferred when formalizing untyped calculi. One
of the reasons is that in this way we can exploit V to formalize terms with free variables,
obtaining definitions, statements, and reasoning that are closer to those with pen-and-paper.
The same approach is used also (at least) by section 7.3 of the Abella tutorial by Baelde et
al. [12], Tiu and Miller [60], Accattoli [4], Chaudhuri et al. [21], and Accattoli et al. [5].

A-Terms and Induction on Types in Abella. On paper, A-terms are defined inductively,
starting from a set of variables and via the abstraction and the application constructors:

TERMS t,u = x|Az.t]|tu

On paper, we shall follow the standard conventions that application is left associative and
has precedence over abstractions, so that Az.tus denotes Az.((tu)s).

In Abella, it is standard to define A-terms via a type tm and two constructors app and
abs for applications and abstractions, without specifying variables, as in Fig. 1 (left).

Note that abs takes an argument of type tm — tm which is how Abella encodes binders.
More precisely, an object-level binding constructor such as Ax.t is encoded via a pair: an
ordinary constructor abs applied to a meta-level abstraction of type tm — tm. For example,

A. Lancelot, B. Accattoli, and M. Vemclefs

the term Az.zx that binds z in the scope zz is encoded as abs x\ app x x (that is parsed
as abs (x\ app x x)) where x\ app x x is a meta-level abstraction of type tm — tm in
the syntax of Abella. In the rest of the paper, with an abuse of terminology, we call binders
such terms of type tm — tm.

Reasoning by induction on the structure of tm terms is not possible in Abella because of
the open world assumption, stating that new constructors can always be added later to any
type. Thus, one rather defines an additional tm predicate, as in Fig. 1 (right), which is added
to the hypotheses of statements whenever one needs to reason by induction on terms. The
first clause of the tm predicate uses nabla to say that the free variable x is a term. Variables
with capitalized names in the last two clauses are implicitly quantified by V at the clause
level. The second clause states that an abstraction abs T is a term if its body is a term. The
body is obtained applying the binder T (of type tm — tm) to a fresh variable x to obtain
a term of type tm. Such application corresponds in a pen-and-paper proof to the (usually
implicit) logical step that replaces the bound variable with a fresh one.

B-Reduction. The primitive support for substitution of Abella shows up in the following
definition of S-reduction, where t{z+<u} is the capture-avoiding meta-level substitution of u
for all the occurrences of x in t, represented in Abella simply with T U where T is a binder.

t%gt/ t*)Btl uﬁgu'

Azt)u =g t{zeu} tu—gtu Azt —pdxt’ tu—gtu

Define beta : tm -> tm -> prop by
beta (app (abs T) U) (T U);
beta (app T U) (app T’ U) := beta T T’;
beta (abs T) (abs T’) := nabla x, beta (T x) (T’ x);
beta (app T U) (app T U’) := beta U U’.

Confluence and Parallel 3. We shall repeatedly use the confluence property of S-reduction,
that is, the following statement.

» Theorem 1 (Confluence). Lett be a term. Ift —% uy and t =} ug then there exists s
such that uy —>§ s and us —>E s.

This is possibly the theorem with the highest number of formalized proofs. We provide one
following the standard Tait-Martin-Lo6f technique based on parallel S-reduction =g, defined
as follows, and to which we shall come back to in Sect. 5:

PARALLEL 3-REDUCTION =g
t =5t t=st u=pgu t=st u=gu (1)
Axt =g vt tu =5 t'u Azt)u =g t'{zu'}

T =8

3 The Natural Theory is Inconsistent

Barendregt’s theory stems from the study of the representation of partial recursive functions
in the A-calculus, and in particular from the observation that the natural equational theory
that considers all S-diverging terms as representations of the undefined is inconsistent.

13:5

Defined in
O1-lambda_terms
_and_beta.thm.

Stated and Proved in
02-2-confluence.thm.

ITP 2025

13:6

Defined in
03-1-preorders
_ineq_theory.thm.

Defined in
03-2-natural_theory

_is_inconsistent.thm.

Stated and Proved
in
03-2-natural_theory

_is_inconsistent.thm.

Barendregt’'s Theory of the A-Calculus, Refreshed and Formalized

Inequational Theories. An equational theory for the A-calculus is an equivalence relation
that contains 8 and is compatible (a property also referred to as context-closure or compos-
itionality). We shall rather work with ¢nequational theories, simply obtained by starting
with a preorder rather than an equivalence, as they carry enough information and avoid
duplications of symmetric proofs.

» Definition 2 (Inequational theory). An inequational theory R for the A-calculus (also infizely
noted <g) is a relation on terms such that:

Preorder: R is reflexive and transitive;

Compatibility: if t <r w then A\x.t <r Azr.u, ts <g us, and st < su;

Contains §: ift +g u thent <g u and v <g t.

The smallest (in)equational theory is f-conversion, that is, the transitive, reflexive and
symmetric closure of S-reduction.

The Natural Theory is Inconsistent. In rewriting theory, normal forms are the results of the
rewriting computational process. When using A-terms to represent partial recursive functions
(shortened to PRFs), it is tempting to consider S-normal forms as results and S-diverging
terms as representing the special undefined value | of PRFs. From an equational point of
view, this means considering the (in)equational theory that identifies all S-diverging terms.
It turns out that such a natural approach does not work because any such (in)equational
theory is inconsistent, as the closure properties of theories end up identifying all terms.

» Definition 3 ((S-divergence). A term t is coinductively defined as B-divergent if there exists
u such that t =5 u and u is B-divergent.

» Proposition 4 (The natural inequational theory is inconsistent). Let R be an inequational
theory such that t <g u for any two B-divergent terms. Then t <gr w for any two \-terms.

Proof. Consider the term s, = (Ay.yrQ)(Az.\w.z) parametric in r, where Q =
(Az.xx)(Av.zz) is the paradigmatic S-divergent term. Note that s, —7% r. Then note
that ¢t <r sy <r sy <g u for any two terms t and u, because R contains 8 and s, is
[B-divergent for any 7. <

4 Head Reduction

The key concept of Barendregt’s theory of the A-calculus is head reduction. Intuitively, it is
a restriction of 8 that is still being able to simulate partial recursive functions. By being a
restriction, it terminates on more terms. Consequently, the set of head diverging terms is
smaller. At the end of the paper, we shall prove one of the main theorems of Barendregt’s
theory: head diverging terms are collapsible, that is, they can be consistently equated.

Traditional Definition of Head Reduction. The traditional notion of head reduction —, is
defined as follows:
ALy AT (Ayt)usy s —n Az Az t{yeulsy oo s, with n k> 0.

For formalizing it, one needs an inductive definition, which is easily obtained, as follows:

tu —n S t—nu (2)
Az t)u —mn t{zeu} tur —p s Azt —p AT

Traditional head reduction is a deterministic rewriting rule. When it exists, the head redex
is the leftmost-outermost 3-redex.

A. Lancelot, B. Accattoli, and M. Vemclefs

Refreshing Head Reduction. The second clause in (2) is somewhat ugly. One might wonder
what happens if one adopts the following more elegant definition of head reduction — to be
referred to as refreshed here — as done by Accattoli and Dal Lago [7]:

t—nu t—nu (3)
Az t)u —n t{zeu} ts —n us Ax.t —p Ax.u

Strictly speaking, the refreshed definition is not equivalent because it is more liberal: it
defines a non-deterministic rewriting rule. For instance, one has the refreshed head step
r = (Az.(Ay.t)u)s =y (Az.t{y<u})s besides the traditional one r —y, ((Ay.t)u){z<s}.

It turns out, however, that — beyond determinism — the refreshed definition preserves all
the properties of traditional head reduction. In particular, it induces the same sets of head
terminating and diverging terms, and the same notion of head normal form. And it actually
verifies a relaxed form of determinism, as discussed below.

In this work, we adopt the refreshed definition to show that it can indeed replace the
traditional one in Barendregt’s theory. We actually developed the whole formalization with
respect to both definitions. There is only one point where the difference has a minimum
impact, we shall point it out.

Head Normal Forms. The formalization forces to clarify that there are two predicates for
head normal forms, often confused in pen-and-paper proofs. The dynamic, or rewriting one
simply says that —y, does not apply. The static one is an inductive description of head normal
forms, via the auxiliary notion of rigid term, and is modeled on the following grammar.

RIGID TERMS r == z|rt HEAD NORMAL FORM h = r|JAz.h

» Proposition 5 (Characterization of head normal forms).

1. Dynamic to static: if t is a term and it does not —y-reduce then t is a head normal form;

2. Static to dynamic: if h is a head normal form then h does not —y-reduce.
Our formalization uses repeatedly the following easy stability of head normal forms.

» Lemma 6. Ifh be a head normal form and h —3 t then t is a head normal form.

Diamond Property. In fact, not only refreshed head reduction is confluent, it actually has

the stronger diamond property: according to Martini and Dal Lago [23], a relation —, is

diamond if uy ;< t =, up imply w1 = ug Or U1 —> S, ug for some s'. If —, is diamond

then —, is confluent and moreover:

1. Length invariance: all evaluations to normal form with the same start term have the
same length (i.e. if d: t = w and d': t —F v with ¥ —,-normal then |d| = |d'|);

2. Uniform normalization: t is weakly —,-normalizing — or simply terminating — if and only
if it is strongly —,-normalizing.

Essentially, the diamond property captures a more liberal form of determinism.

For (refreshed) head reduction, we formalize the diamond property and the length
invariance and uniform normalization corollaries. In fact, these properties are never used after
this section, apart from the important fact that we implicitly rest on uniform normalization
for using weak normalization as the termination property of reference for head reduction.

L Note that this formulation of the diamond property is weaker than the one for parallel S-reduction = 8
at work in the Tait-Martin-Lof proof of confluence (which does not have “u; = ug or”). This is because
=3 is reflexive (that is, ¢ =g t for any term t), thus it does not need that refinement, which is instead
mandatory for non-reflexive reductions such as head reduction.

13:7

Defined in
04-1-head.thm.

Stated and Proved
in
04-2-head_nfs.thm.

Stated and Proved
in 04-4-head
_stabilizing.thm.
Stated and Proved
in 04-1-head.thm.

Stated and Proved

in

04-5-nat-and-head
_uniform_termination.thm.

ITP 2025

13:8

Stated and Proved
in 05-7-head

_normalization.thm.

Stated and Proved
in 05-7-head

_normalization.thm.

Defined in
05-2-non-head

_reduction.thm.

Stated and Proved
in 05-7-head

_normalization.thm.

Barendregt’'s Theory of the A-Calculus, Refreshed and Formalized

The proof of uniform termination is the only place where adopting refreshed head reduction
requires slightly more work: for traditional head reduction, it is an immediate consequence
of determinism, while in the refreshed case it has to be proved by induction on the number
of head steps using the diamond property.

5 Normalization, Factorization, and Standardization

Barendregt’s study of equational theories is of a semantical nature, but it is based on a key
operational result, the following (untyped) head normalization theorem.

» Theorem 7 (Head Normalization). Lett be a term. Ift —7% u and u does not —-reduce
then —y, terminates on t.

In this section, we overview two proofs of such a theorem, both formalized in Abella. It
is a contribution of this paper to show that head normalization is — repeatedly — the crucial
operational result for head reduction in Barendregt’s theory.

Understanding the Statement. The statement of the head normalization theorem has
three subtleties. Firstly, because of the non-determinism of our refreshed head reduction,
the conclusion of the general rewriting formulation of normalization would ask for strong
normalization of —y, on ¢. Because of uniform normalization, we can simplify it as termination
of —y. Secondly, t might —g-reduce to a term in —y-normal form in many different ways,
possibly without using —y, so that the hypotheses do not immediately imply that —y,
terminates. Thirdly, the conclusion is “—y, terminates on t” and not ¢t —; u, because in
general maximal —y-sequences from ¢ all end on the same term s but it might be that s # w.
For instance, let I := Ay.y: then I(x(II)) —g I(zI) —p «I is a —g-sequence to head normal
form, and yet the unique maximal —y-sequence I(x(II)) —y 2(II) ends in a different term.

Normalization from Factorization. Following Accattoli et al. [8], there is a very simple
abstract proof of head normalization based on two properties. To state them, we need
(refreshed) non-head reduction —_y, given by (traditional —_, — sometimes called internal —
has an additional clause, see [8]):

NON-HEAD REDUCTION —_

t—pt t—pt' t—nt
ut —_p ut’ et —_p Azt tu —_y tu

The two properties then are (where - denotes the concatenation of rewriting relations):
1. Persistence: if t =y, u and t —_y s then s —y r for some r;
2. Factorization: if t =7 u then t =y - =%, u.
Intuitively, persistence states that non-head steps cannot erase head steps. Its proof is
straightforward.

Factorization expresses the fact that head reduction is more important than its comple-
ment; it is a non-trivial theorem. To appreciate the result, note that the opposite factorization
does not hold, that is, one cannot have ¢t —*; - —; u. For instance, the sequence:

t = (Azaylzy))(Az.z) —=n Az2)y((Az.2)y) —a (Az2)yy = u

cannot be re-organized as to have the —_y step before the —y, step.
We provide two proofs of factorization (inducing two proofs of head normalization), one
as a corollary of the standardization theorem and one based on parallel reduction.

A. Lancelot, B. Accattoli, and M. Vemclefs

Factorization via Standardization. Standardization is another classic operational theorem.
It is a complex, hard to grasp rewriting topic, the full appreciation of which requires technical
concepts such as residuals. For the A-calculus, there exist simple treatments of standardization
based on Plotkin’s approach [53] (originally desgined for the call-by-value A-calculus) that
succeed in hiding all the technicalities. Our formalization of standardization is the adaptation
to the reasoning level of Abel’s Abella development [1], who builds on Loader [42], who
builds on Xi [67], who, in turn, builds on Plotkin.

The theorem states that every reduction sequence can be re-organized into a special
standard form. Plotkin’s technique stems from the existence in the A-calculus of a very simple
inductive definition of standard sequence, given here in refreshed form.

REFRESHED STANDARD REDUCTION SEQUENCE ~vgy

t gy t t gy t U ~gp U t = u U ~gp U

Xr ~gy T
s ATt ~sge Azt tu ~sgp t'u’ t ~ge U

» Theorem 8 (Standardization). Let t be a term. Ift =% u then t ~g; u.

Our definition of standard sequence is slightly different from Abel’s (and most treatments of
standardization) as we use refreshed head reduction in the fourth clause, while he uses weak
(i.e. not under abstraction) head reduction, which is deterministic. Our approach changes the
notion of standard sequence: for instance, (Az.(Ay.t)u)s =y (Az.t{y<u}) —p t{z<u}{z<s}
is a standard sequence for us, while traditionally is not. Technically, standard sequences in
our case are not unique, or, equivalently, we are standardizing with respect to a partial order
on redexes (rather than the total leftmost-outermost order). The theory of standardization
for partial orders is complex [32, 44, 6]. Our proof of standardization, however, is remarkably
simple: it follows exactly the structure of Abel’s, and it is actually even simpler, since
moving definitions to the reasoning level removes the need of a few lemmas. Additionally,
our theorem implies factorization exactly as the traditional standardization one.

Factorization via Parallel Reduction. Takahashi [58] gives an original proof of head
factorization based on parallel S-reduction =g, similarly to the famous Tait-Martin-Lof
proof for confluence. Accattoli et al. [8] revisit Takahashi’s work, simplifying her proof
technique. In particular, they identify two abstract properties of parallel 5 with respect
to head reduction — the merge and split properties below — from which factorization easily
follows, similarly to how confluence follows from the diamond property for = 3.

We have formalized their proof, and refer to their paper for extensive discussions, here
we only provide a quick overview. The formalization follows their pen-and-paper proofs
faithfully. The slight difference, again, is that we adopt the refreshed definition of head
reduction, while in [8] they work with the traditional one. Beyond the already discussed
refreshed non-head reduction —_;, we also need its parallel variant = _3 defined as follows
(traditional =_; has an additional clause):

PARALLEL NON-HEAD REDUCTION =_j
t=_pt t=pt u=gu
Azt =_p M.t/ tu =y t'u

Z‘:>—‘h33

The proof of factorization is based on the following three properties, the first of which is
simply the basic requirement for parallel reductions:

Parallel: - 3 C=_1C—7,;

Merge: ift =y - =y u then t =3 u;

Split: if t =5 u then t = - =y u.

13:9

Defined in 05-1-
standardization.thm.

Stated and Proved
in 05-1-
standardization.thm.

The implication is
proved in 05-3-head
_factorization.thm

The proof is spread
over three files
(05-4 to 05-6)

Defined in
05-4-parallel_head
_factorization_up
_to_merge.thm.

ITP 2025

13:10

Parallel and merge
are proved in
05-4-parallel_head
_factorization_up
_to_merge.thm

Defined in
05-5-Indexed
_parallel_beta

_and_arithmetic.thm.

Stated and Proved
in 05-5-Indexed
_parallel_beta

_and_arithmetic.thm.

Defined in

06-solvability.thm.

Stated and Proved
in

06-solvability.thm.

Barendregt’'s Theory of the A-Calculus, Refreshed and Formalized

The parallel and merge properties are easily proved. Split instead is tricky. Accattoli et
al. show that it can be proved easily by considering the following refinement = g of parallel
B-reduction =g, where the index n € N intuitively denotes the number of ordinary 3-steps
done in parallel by the underlying =3 step, and |¢|, (used in the fourth clause) is the number
of occurrences of x in t:

INDEXED PARALLEL 3 REDUCTION

— t:n>5t/ ti@gtl ugﬁu' té,ﬁt/ Ugﬁu/
= o
rT=s® Azt =5 Azt tu " (Az.t)u n+‘t:|>mﬂm+1 t'{xeu'}

The key property of %5 is its substitutivity, which is proved by decorating with indices
the standard proof of the underlying substitutivity property for =5 (which is used in
Tait-Martin-Lof’s proof of confluence).

» Lemma 9 (Substitutivity of =5). Ift =5 t' and u =4 v, then t{zu} :k>,3 t'{x—u'}
where k =n 4+ |t'|; - m.

The formalization of this proof is faithful to Accattoli et al’s pen-and-paper proof. The
slightly annoying aspect is that it requires basic arithmetical properties for manipulating the
indices, and Abella has no arithmetical library. Thus, we had to prove them all by hand.

6 Solvability and Head Contexts

The concept of solvability, due to Wadsworth [65], provides an interactive point of view on
why head divergence is a better representation of the undefined. It shall be used to prove
the maximality theorem at the end of the paper.

Solvability, On Paper. To define solvability, we need to concept of (refreshed) head con-
texts H, defined inductively by H := () | Hu | Ax.H, together with the standard plugging
operation H (t) of a term ¢ in a context (here H), which might involve capture of free variables;
for instance, (Az.(-)u){xy) = Az.xyu.

» Definition 10 ((Un)Solvable terms). A term t is solvable if there is a head context H such
that H(t) —7% I := Az.z, and unsolvable otherwise.

» Theorem 11 (Operational characterization of solvability, Wadsworth [65]). ¢ is solvable (Tesp.
unsolvable) if and only if t is head normalizing (resp. head divergent).

Such a characterization is of a rewriting nature, but not of ¢ in isolation, rather of ¢ with
respect to a head context. The idea is that the head context can decompose t into pieces
and leave nothing, that is, it can (dis)solve it. The requirement of a head context H (rather
than a general context C) forces that contexts cannot simply erase ¢ and replace it with the
identity (a context taking such shortcut is C' :== (Az.I){-), but it is not a head context), they
rather have to dissolve ¢ by interacting with its internal structure.

Solvability shows that there are two kinds of strong (that is, all paths) divergence:

Unremovable strong divergence, that is, strong divergence that cannot be removed by a

head context. The looping term 2 is of this kind, because no head context can erase it.

Removable strong divergence, that is, sub-terms that are strongly divergent but that they

appear in argument position and thus can be removed by a head context. For instance,

Q in 2 is removable by the head context (Az.(-))(Ay.I); note that it happens in Prop. 4.

A. Lancelot, B. Accattoli, and M. Vemclefs

Unremovable strong divergences have to be considered as loops, or undefined terms. On the
other hand, terms with removable strong divergences should not be considered in the same
way, as there are some scenarios/interactions in which their divergence gets removed.

(Head) Contexts in Abella. To formalize the definition of solvability, we shall find some way
of formalizing contexts in Abella. Unfortunately, there is no way of having a direct, first-class
representation because plugging can capture free variables: there is no primitive support for it
in Abella, nor it can be defined by the user, as it goes against the treatment of free variables
in Abella. The workaround is building a predicate head_ctx of type tm — tm — prop such
that head_ctxtwu holds if there exists a head context H such that H(t) = w; thus one is
actually stating that ¢ is a head sub-term of u. The predicate is easily defined inductively,
breaking down the structure of the context construct by construct.

Define head_ctx : tm -> tm -> prop by
head_ctx T T;
head_ctx T (app HT U) := head_ctx T HT /\ tm U ;
nabla x, head_ctx (T x) (abs HT) := nabla x, head_ctx (T x) (HT x).

Define solvable : tm -> prop by
solvable T := exists HT, tm HT /\ head_ctx T HT /\ beta* HT (abs x\ x).

Proving Solvability. The characterization of solvability (Thm. 11) has two directions.
Proving that head normalizing terms are solvable requires to refine the static predicates for
head normal forms with information about the head variable (whether it is free, and, in case,
which one is it). The solving context is then built by induction on the refined predicates by
substituting on the head variable x a term erasing all the arguments of z and leaving the
identity, plus providing dummy arguments for extra head abstractions, if any.

Proving that solvable terms are head terminating requires a big tool. The fact that —4
appears in the definition of solvable means we need to use head normalization (Thm. 7).
Then, what remains to show is the easy fact that, if H(t) is head normalizing, then so is t.

7 Technical Interlude: Formalizing Contexts for Two Terms

For solvability, we represented head contexts indirectly via a sub-term predicate head_ctx :

tm — tm — prop because the head context was always used together with a plugged term.

This context predicate can easily be extended to general contexts (where the hole is not
necessarily in head position), as follows:

Define ctx : tm -> tm -> prop by
ctx T T;
ctx T (app P Q) :=ctx TP \/ ctx T Q;
nabla x, ctx (T x) (abs CT) := nabla x, ctx (T x) (CT x).

For both the study of genericity and the definition of the contextual preorder in the next
sections, a context C' shall be plugged with two different terms ¢ and u. The just defined ctx
predicate unfortunately cannot be used for that. But it can be generalized to the following
4-ary ctxs predicate on terms, that represents two terms ¢ and u (as the first and third
components) together with the two terms C(t) and C(u) (as second and fourth components):

13:11

Defined in
08-solvability.thm.

Unused in the
formalization.

ITP 2025

13:12

Defined in
07-1-contexts-and
-contextual

-preorders.thm.

Stated and Proved
in 08-1-extended

_normalization.thm.

Stated and Proved in

08-2-genericity.thm.

Barendregt’'s Theory of the A-Calculus, Refreshed and Formalized

Define ctxs : tm -> tm -> tm -> tm -> prop by
ctxs T T U U;
ctxs T (app A B) U (app CD) := (ctxs TA U
\/ (ctxs TB U
nabla x, ctxs (T x) (abs CT) (U x) (abs CU):
nabla y, ctxs (T y) (CT y) (U y) (CU y).

/\ B =D /\ tm D)
/N A=C/\ tm C);

O

8 Formalizing Genericity

In this section, we discuss and prove the result known as Barendregt’s genericity lemma,
which shall be used to prove both the collapsibility and maximality theorems of the next
sections. In fact, genericity has an involved proof, so we rather refer to it as a theorem.

Light and Heavy Genericity. Genericity has recently been revisited by Accattoli and
Lancelot [9] who identify a simpler alternative statement, dubbed light genericity, while they
refer to Barendregt’s statement as heavy. They show that the light version is enough for the
main aim of genericity, that is, proving the collapsibility of head diverging terms. The two
statements follow:
Light genericity: let u be —y-divergent and C' be a context such that C(u) is —y-
normalizing. Then, C(t) is —y-normalizing for all ¢.
Heavy genericity: let u be —y-divergent and C' be a context such that C(u) —7% n with n
B-normal. Then, C(t) —% n for all ¢.

Preliminary. The proofs of the genericity properties that we shall develop are based on the
head normalization theorem. Actually, we rather use the following strengthened corollary
(its proof uses confluence as well), the isolation of which is a contribution of this paper. It
shall provide very compact and elegant proofs of genericity.

» Corollary 12 (Extended head normalization). Lett be a term and t —% u. Then t is head
terminating if and only if u is head terminating.

Proving Genericity. Accattoli and Lancelot give a proof of light genericity obtained by
adapting and polishing Takahashi’s one for heavy genericity, from her two-page long paper
titled a simple proof of the genericity lemma [57]. The technique is based on:

1. Substitutions: factoring the statement via an auxiliary one based on substitutions instead
of contexts, as substitutions interact nicely with reduction;

2. Trick: reducing contexts to substitutions via a closure of the plugged term, and transferring
termination between the two via a reasoning that is here encapsulated in the extended
head normalization property above.

We formalize the proofs of both light and heavy genericity. The difficulty is formalizing

Takahashi’s trick, recalled next by adapting Accattoli and Lancelot’s proof using Cor. 12.

» Theorem 13 (Light genericity). Let u be head divergent and s be any term.

1. Light genericity as substitution: if t is a term and t{x<u} is head terminating then
t{x<s} is head terminating.

2. Light genericity as context: if C is a context and C(u) is head terminating then C(s) is
head terminating.

A. Lancelot, B. Accattoli, and M. Vemclefs

Proof.
1. See [9]. In fact, [9] uses head normalization, our Abella proof does not.

2. [Takahashi’s trick] Let fv(u) U fv(s) = {z1,..., 21}, and y be a variable fresh with
respect to fv(u) U fv(s) Ufv(C) and not captured by C. Note that @ := Azy.... A\xg.u is
a closed term. Consider ¢t := C(yx ...xx), and note that:

tHy—u} = Cluxy ... xx) = C{(Axy. ... Azp.u)xy ... 2)) —>g Cu). (4)

The fact that w is head divergent implies that @ is head divergent. Similarly, take
§ = Az1....Az.s and note that t{y«s} =% C(s). By extended normalization (Cor. 12),
C(u) head terminating implies that so is t{y«<u}. By genericity as substitution, t{y<3}
is head terminating. By extended normalization (Cor. 12), C(s) is head terminating. <

Programming Takahashi’s Trick. During the formalization process, we went back and
forth with multiple phrasings of Takahashi’s trick. The difficulty is formalizing the argument
for (4), which relies on knowing the set of free variables of a term — unproblematic on paper
but tricky in Abella — and then uses many abstractions and applications at once. Our
attempts led us to the following disentangling lemma that neatly isolates the idea with
respect to a single term, avoiding the set of free variables of the term and the k-ary notations.

» Lemma 14 (Disentangling). Let C be a context. Then there exist t¢ and a variable
x ¢ £v(C') such that for all terms u there exists uc such that te{z<uc} —% C{u). Moreover,
if u is head divergent then v’ is head divergent.

In fact, the proof of the lemma collects — one at at time — all the variables captured by the
context, rather than all the free variables of the plugged term.

Proof. By induction on C. Cases:
Empty, i.e. C = (-). Pick any z, the statement holds with respect to t¢ == and u¢ = u.

Abstraction, i.e. C = \y.C'. By 4.h., there exists tcr and 2’ ¢ £v(C’) such that for all u,
there exists ucr such that to{z'<uc/} =% C'(u) and if u is head divergent then so is
ucs. Then let z be a fresh variable and set t¢ = A\y.ter {2’ <zy} and uc = Ay.ucr. Note
that ue is head divergent if ucr is, and that:

te{r—uc} = Ayto{d'<zy{r<dyuc}t = Iyto{r'«(Ayuc)y}
=5 Ayte{r'cuc} =5 Ay.C'(u) = C(u).

Where the first %Z is obtained via a standard substitution lemma.

Application left, i.e. C = C'r. By i.h., there exists tcr and 2’ ¢ £v(C’) such that for all
u, there exists ucr such that tor{z’'<ucr} =75 C'(u) and if u is head divergent then so is
ucs. Pick x fresh for C and note that to{o'<z}{x<uc } = to- {2’ <uc}. The statement
holds with respect to t¢ = to{a’<x}r and ue == uer.

Application right, i.e. C = rC’. Analogous to the previous case. <

The lemma captures the difficult-to-formalize part of the trick, and the proof is basic
enough to be easily formalized. Unfortunately, the statement concerns a first-class context,
while our representation of contexts in Abella is indirect, via the sub-term predicate, that is,
always mentioning a plugged-in term — first-class contexts are not available in Abella.

13:13

Stated and Proved in
08-2-genericity.thm.

ITP 2025

13:14

Defined in
08-2-genericity.thm.

Stated and Proved in
08-2-genericity.thm.

Stated and Proved in
08-2-genericity.thm.

Grammar of
B-normal forms
defined in
08-3-beta-nfs.thm.

Stated and Proved
in 08-4-heavy
_genericity.thm.

Barendregt’'s Theory of the A-Calculus, Refreshed and Formalized

Disentangling, Sub-Term Style. Therefore, we have to rephrase the disentangling lemma
in sub-term style. For that, we introduce a disentangling predicate, that holds as
disentangling u C{u) t¢ uc (using the notation of the lemma) and where the type of the
third argument is tm — tm because it is given as a binder to capture the substitution on x.

Define disentangling : tm -> tm -> (tm -> tm) -> tm -> prop by
disentangling T T (x\x) T;
disentangling T (app A B) C1 T’ :=
exists C,
(disentangling T A C T’ /\ C1 = (x\ app (C x) B) /\ tm B)
\/
(disentangling T B C T’ /\ C1 = (x\ app A (C %)) /\ tm A);
nabla x, disentangling (T x) (abs A)
(x\ abs (y\ (Cy (app (x) (y))))) <(abs (y\ T’ y)) :=
nabla y, disentangling (T y) (A y) (x\ Cy x) (T’ y).

The disentangling lemma (Lemma 14) is represented in sub-term style by two statements.
The first one expresses the fact that the disentangling predicate does capture the property of
the lemma for a given plugged term wu:

Theorem disentangling_trick : forall U CU U’ T_C,
tm CU -> disentangling U CU T_C U’ ->
beta* (T_C U’) CU /\ (head_div U -> head_div U’) /\
(nabla x, tm (T_C x)) /\ tm U’.

The second statement expresses the fact that ¢t does not depend on u. This is essential: the
proof of light genericity as context (Thm. 13.2) requires to apply the lemma in sub-term style
twice (for v and s in the notations of Thm. 13), obtaining two terms t¢ and ¢, that might
be different. We have to ensure instead that they coincide, which is expressed as follows:

Theorem ctxs_disentangling : forall U CU S CS,
ctxs U CU S CS ->
exists T_C U’ S’, disentangling U CU T_C U’ /\ disentangling S CS T_C S’.

Formal Proofs of Light and Heavy Genericity. Using this formalization of Takahashi’s
trick, the formalized proofs of light and heavy genericity smoothly follow the pen-and-paper
proofs of Accattoli and Lancelot [9] and Takahashi [57]. To formalize heavy genericity, we
also have to make explicit a mutually inductive grammar of S-normal forms, which Takahashi
hid on paper by writing down full normal forms.

» Theorem 15 (Heavy genericity). Both heavy genericity as substitution and as context hold.

» Remark 16. Takahashi presents light genericity as a corollary of heavy genericity. We
deliberately do not do it. Firstly, because light genericity is an easier, indipendently provable
concept, as pointed out by Accattoli and Lancelot. Secondly, because we actually use parts
of the proof of light genericity in the proof of heavy genericity.

9 The Contextual Preorder

This section starts the study of the (head) contextual preorder 3¢, that is, the asymmetric
variant of head contextual equivalence. For this paper, the contextual preorder is an essential
concept: in Sect. 10, we shall show that ¢ is an inequational theory that consistently
collapses head divergent terms, and in Sect. 11 that it is the maximal such theory.

A. Lancelot, B. Accattoli, and M. Vemclefs

Head Contextual Preorder and Equivalence. A natural notion of program equivalence is
contextual equivalence, that equates terms which behave the same way in any context. We
now define the head contextual preorder, refining the equivalence to an asymmetric relation
and where the “behavior” of a term is whether or not it is head terminating.

» Definition 17 (Head Contextual Preorder and Equivalence). The head contextual preorder
=¢ and head contextual equivalence ~¢ are defined as follows:
t Zc u if, for all contexts C, C(t) is —yn-terminating implies that C{u) is —y-terminating;
t ~c u is the equivalence relation induced by Zc, that is, t ~c t' if t 3¢ u and u 3¢ t.

Head contextual equivalence is sometimes referred to as (the equational theory) H*,
especially in Barendregt’s study of the A-calculus [15].

Contextual relations are sometimes defined slightly differently: they may be restricted to
contexts C' such that C(t) and C(t’) are closed terms. The contextual relations without the
closed requirement are in general stronger, yet in some cases they are equivalent. When the
observation is head termination — as it is the case here — they are equivalent, see [9].

Contextual Preorder, in Abella. We may now transpose the definition of the head contextual
preorder to Abella:

Define ctx_preord : tm -> tm -> prop by
ctx_preord P Q := forall CP CQ, tm P -> tm Q >
ctxs P CP Q CQ -> head_terminating CP -> head_terminating CQ.

Disentangling and the Substitution Preorder. The disentangling lemma of the previous
section is a technical lemma but it actually has an interesting high-level consequence: it
allows one to reformulate contextual preorder/equivalence with no reference to contexts.
First of all, note that the term uc in the statement of the lemma can be described as
AY1. ... Ayp.u for some variables y1,...,y, with n > 0. Then, the following new substitution
preorder is shown equivalent to the contextual preorder thanks to the disentangling lemma.
This is an original contribution of our work, and the distilled essence of Takahashi’s trick.

» Definition 18 (Substitution preorder). The substitution preorder ¢t Zgu u holds when
s{zeAy1.... \yn.t} —n-terminating implies that s{x<Ay;.... \yp.u} is —yn-terminating for
all terms s, variables x, and lists of variables y1,...,y, with n > 0.

» Proposition 19 (Substitution and contextual preorders coincide). ¢ Zgu u if and only if
t ,jc u.

Proof. Direction =. Suppose that C(t) is —y-terminating. By disentangling, there exists
sc, * and a lists of variables y1,...,y, with n > 0 such that t' := sc{z<Ay1.... Ayn.t} =7
C(t). By the head normalization theorem, ¢’ is —y-terminating. By substitution preorder,
u' = sc{z<Ay1.... A\yn.u} is —p-terminating. By the disentangling lemma, u" —% C(u). By
extended head normalization (Cor. 12), C(u) is —p-normalizing.

Direction <. Suppose that t' = s{z<Ay;....\y,.t} is —y-normalizing. Consider
the context C' = (Ax.s)(Ayi.... \yn.(-)) and note that C(t) — t/, so that C(t) is —y-
normalizing. By contextual preorder, C(u) is —y-normalising. Note that C{u) —y v’ =
s{x<Ay1. ... \yp.u}, so that v’ is —y-normalizing. <

13:15

Defined in 09-1-head
_contextual
_preorder.thm.

Defined in 09-1-head
_contextual
_preorder.thm.

Defined in
09-2-subst
_equivalence.thm.

Stated and Proved
in 09-2-subst
_equivalence.thm.

ITP 2025

13:16

Defined in
04-3-head_terminating
_predicates.thm.

Stated and Proved in
10-Collapsibility.thm.

The preorder is
defined in
10-2-definition
-H.thm and proved
consistent in
10-3-consistency
-H.thm.

Barendregt’'s Theory of the A-Calculus, Refreshed and Formalized

10 Collapsibility

Here, we formalize the consistent collapsibility of head divergent terms using light genericity.

Terminology: Ground. For the study of collapsibility, the following terminology borrowed
from Accattoli and Lancelot [9] shall simplify the discussion.

» Definition 20 (Ground theory). A term t is minimum for a preorder < if t < u for all u.
An inequational theory <g is ground if head divergent terms are minimum elements for <r.

Note that if a theory <g is ground then one has t <z u and u <g t for any two minimum
elements t and u, which implies that <z equates all head divergent terms.

Collapsibility of Head Diverging Terms. We are now ready for proving that all head
diverging terms can be consistently equated (unlike S-diverging terms) by showing that the
contextual preorder is an equational theory that is ground, and thus equates them.

» Theorem 21 (Collapsibility).

1. Inequational: the contextual preorder Sc¢ is an inequational theory;
2. Consistency: the contextual preorder Z¢ is consistent;

3. Collapse: the contextual preorder Z¢ is ground.

The difficult part of the theorem is the first point; precisely, that X contains 5. We formalize
the proof by Accattoli and Lancelot [9] that uses non-trivial rewriting theorems, such as head
normalisation (Thm. 7) and confluence of —g (Thm. 1). Up to minor details, the formal
proof follows the pen-and-paper one.

Proof.

1. Tt follows the proof in [9].

2. I Zc holds by considering the empty context C' = (-).

3. Note that light genericity (Thm. 13.2) is exactly the fact that Z¢ is ground. <

Barendregt’s book studies in-depth H, the smallest equational theory equating all head
divergent terms. We consider its associated preorder, and show it consistent.

» Proposition 22. Let <3 be the smallest inequational ground theory. Then <4 is consistent.

Proof. It follows from the fact that <4 is included in Z¢, which is consistent (Thm. 21). <«

11 Maximality

In this section, we prove that the contextual preorder is the maximal consistent equational
theory equating head divergent terms. The proof uses solvability and light genericity.

Terminology: Adequate, and Constructive Variant. We qualify some inequational theories
as adequate, following Accattoli and Lancelot and various work on program equivalence.

» Definition 23 (Adequate theory). An inequational theory <x is adequate if head termination
is stable by <g, i.e. for all t,u, t —y-terminating and t <g w implies u —y-terminating.

An inadequate theory is a theory that does not satisfy the adequacy property and a con-
structively inadequate theory is a theory where there (constructively) exists ¢ and u such that
t is head normalizing but u is head divergent.

A. Lancelot, B. Accattoli, and M. Vemclefs

Maximality of the Head Contextual Preorder. Another cornerstone result in Barendregt’s
study of equational theories is the fact that head contextual equivalence ~¢ is the unique
maximal consistent ground equational theory, that is, it captures all the identifications that

one can do on top of identifying head divergent terms without risking identifying everything.

Barendregt shows that ~¢ is a mazimal consistent theory [15, Thm 16.2.6] relying on
Bohm’s separation theorem. Barendregt and Manzonetto refine the result for 3¢ [17], using
the same technique. We formalize the simpler proof by Accattoli and Lancelot [9] based on
light genericity and solvability, and not needing Béhm’s theorem. Our technique originates
from the proof of maximality for CbV by Egidi et al. [24], also used by Arrial et al. [10].

» Theorem 24 ([9]).
1. Let T be an inequational theory that is ground but constructively inadequate®>. Then T is
inconsistent.

2. Maximality of Z¢: Z¢ is a mazimal consistent inequational theory.

Issues with Maximality in Abella. There are two difficulties when dealing with Thm. 24 in
Abella. Firstly, Point 1 of Thm. 24 and the very concept of maximality require quantification
over equational theories. This cannot be done in Abella because there is no quantification over
binary term relations: quantifying over the type prop is disabled [3] (because of soundness
issues). Fortunately, we may still phrase maximality by showing it for a constant r of type
tm — tm — prop for which we know nothing.

Type r tm -> tm -> prop.

Theorem inadequate_ground_ineq_theories_are_inconsistent
ineq_theory r -> ground r ->
(exists T U, tm T /\ head_terminating T /\ r T U /\ head_div U /\ tm U) ->
inconsistent r.

The proof of this statement mimics the pen-and-paper proof of Point 1 of Thm. 24, as
written by Accattoli and Lancelot [9].

Secondly, there is a delicate point in formalizing the proof of Point 2 of the theorem. The
paper proof starts by picking a theory 7 that is strictly larger than ¢ and two terms ¢ and
u that are related in 7 but not by Z¢. As ¢ and u are not contextually related, there exists
a context C for which, say, C(t) is head terminating while C(u) is not. This step cannot
be formalized in an intuistionistic setting because it directly changes a —V¢ statement into
a J-¢ statement and also uses the fact that (¢ =) = ¢ A —¢); in all generality, these
statements are equivalent to the law of excluded middle [19, 61]. We circumvent the issue by
adding as an axiom the exact statement that is needed for our proof to go through.

Axiom” non_ctx_related : forall P Q,
tm P -> tm Q -> (ctx_preord P Q -> false) ->
exists CP CQ, ctxs P CP Q CQ /\ head_terminating CP /\ head_div CQ.

Theorem head_ctx_preord_is_maximal :
ineq_theory r -> (forall P Q, ctx_preord P Q -> r P Q) ->
(exists PQ, tm P /\ tm Q /\ r P Q /\ (ctx_preord P Q -> false)) ->
inconsistent r.

¢ Axioms in Abella appear as theorems with skipped proofs.

2 Point 1 of this theorem usually states 7 inadequate, we refine the statement to constructively inadequate,
so that the proof of Point 1 is constructive.

13:17

Stated and Proved
in
11-maximality.thm.

Stated and Proved
in
11-maximality.thm.

Stated and Proved
in
11-maximality.thm.

ITP 2025

13:18

Barendregt’'s Theory of the A-Calculus, Refreshed and Formalized

12 Conclusions

We give an original and formalized presentation of the core of the theory of the untyped
A-calculus laid out in Barendregt’s book, building over recent revisited definitions and proof
techniques. Beyond the big picture and the formalization itself, the main contributions are
the representation of contexts in higher-order syntaxes, the first formal proof of the crucial
result of genericity, and the isolation of the substitution preorder.

This paper can also be seen as an extended exercise in formalizing a language with
binders, in the spirit of the POPLmark challenge [11] and its variants [2, 20], with emphasis
on formalizing contexts (as in contextual equivalence). It would be interesting to adapt our
development to other proof assistants.

Future Work. We plan to explore the intuistionic/classical aspects of the maximality
theorem (constructive proofs? constructive definition of contextual preorder?), for which we
currently resort to a classical axiom, and to formalize Bohm’s separation theorem building
on Norrish and Tian’s work [59].

—— References

1 Andreas Abel. Abella proof of the standardization theorem for the lambda calculus, 2009.
URL: https://abella-prover.org/examples/lambda-calculus/sred.html.

2 Andreas Abel, Guillaume Allais, Aliya Hameer, Brigitte Pientka, Alberto Momigliano, Steven
Schéfer, and Kathrin Stark. POPLMark reloaded: Mechanizing proofs by logical relations.
Journal of Functional Programming, 29:€19, 2019. doi:10.1017/S0956796819000170.

3 Abella. Reference guide. https://abella-prover.org/reference-guide.html.

4 Beniamino Accattoli. Proof pearl: Abella formalization of A-calculus cube property. In
Chris Hawblitzel and Dale Miller, editors, Certified Programs and Proofs - Second In-
ternational Conference, CPP 2012, Kyoto, Japan, December 13-15, 2012. Proceedings,
volume 7679 of Lecture Notes in Computer Science, pages 173-187. Springer, 2012. doi:
10.1007/978-3-642-35308-6_15.

5 Beniamino Accattoli, Horace Blanc, and Claudio Sacerdoti Coen. Formalizing functions as
processes. In Adam Naumowicz and René Thiemann, editors, 14th International Conference
on Interactive Theorem Proving, ITP 2023, July 31 to August 4, 2023, Bialystok, Poland,
volume 268 of LIPIcs, pages 5:1-5:21. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2023. doi:10.4230/LIPICS.ITP.2023.5.

6 Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. A nonstandard
standardization theorem. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’1/,
San Diego, CA, USA, January 20-21, 201/, pages 659-670. ACM, 2014. doi:10.1145/2535838.
2535886.

7 Beniamino Accattoli and Ugo Dal Lago. On the invariance of the unitary cost model for head
reduction. In Ashish Tiwari, editor, 23rd International Conference on Rewriting Techniques
and Applications (RTA’12) , RTA 2012, May 28 - June 2, 2012, Nagoya, Japan, volume 15
of LIPIcs, pages 22-37. Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, 2012. doi:
10.4230/LIPICS.RTA.2012.22.

8 Beniamino Accattoli, Claudia Faggian, and Giulio Guerrieri. Factorization and normalization,
essentially. In Programming Languages and Systems - 17th Asian Symposium, APLAS
2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings, pages 159-180, 2019.
doi:10.1007/978-3-030-34175-6_9.

https://abella-prover.org/examples/lambda-calculus/sred.html
https://doi.org/10.1017/S0956796819000170
https://abella-prover.org/reference-guide.html
https://doi.org/10.1007/978-3-642-35308-6_15
https://doi.org/10.1007/978-3-642-35308-6_15
https://doi.org/10.4230/LIPICS.ITP.2023.5
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.4230/LIPICS.RTA.2012.22
https://doi.org/10.4230/LIPICS.RTA.2012.22
https://doi.org/10.1007/978-3-030-34175-6_9

A. Lancelot, B. Accattoli, and M. Vemclefs

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Beniamino Accattoli and Adrienne Lancelot. Light genericity. In Naoki Kobayashi and
James Worrell, editors, Foundations of Software Science and Computation Structures - 27th
International Conference, FoSSaCS 2024, Held as Part of the Furopean Joint Conferences on
Theory and Practice of Software, ETAPS 2024, Luzembourg City, Luxembourg, April 6-11,
2024, Proceedings, Part II, volume 14575 of Lecture Notes in Computer Science, pages 24—46.
Springer, 2024. doi:10.1007/978-3-031-57231-9_2.

Victor Arrial, Giulio Guerrieri, and Delia Kesner. Genericity through stratification. In
Proceedings of the 89th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
24, New York, NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3661814.
3662113.

Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C.
Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve
Zdancewic. Mechanized metatheory for the masses: The POPLMark challenge. In Joe Hurd
and Thomas F. Melham, editors, Theorem Proving in Higher Order Logics, 18th International
Conference, TPHOLs 2005, Ozford, UK, August 22-25, 2005, Proceedings, volume 3603 of
Lecture Notes in Computer Science, pages 50—65. Springer, 2005. doi:10.1007/11541868_4.
David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen
Tiu, and Yuting Wang. Abella: A system for reasoning about relational specifications. J.
Formaliz. Reason., 7(2):1-89, 2014. doi:10.6092/ISSN.1972-5787/4650.

Davide Barbarossa and Giulio Manzonetto. Taylor subsumes Scott, Berry, Kahn and Plotkin.
Proc. ACM Program. Lang., 4(POPL):1:1-1:23, 2020. doi:10.1145/3371069.

Hendrik Pieter Barendregt. Some extensional term models for combinatory logics and A-calculi.
PhD thesis, Univ. Utrecht, 1971.

Hendrik Pieter Barendregt. The Lambda Calculus — Its Syntax and Semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland, 1984.

Henk Barendregt. Representing 'undefined’ in lambda calculus. J. Funct. Program., 2(3):367—
374, 1992. doi:10.1017/S0956796800000447.

Henk Barendregt and Giulio Manzonetto. A Lambda Calculus Satellite. College Publications,
2022. URL: https://wuw.collegepublications.co.uk/logic/mlf/700035.

Dariusz Biernacki, Serguei Lenglet, and Piotr Polesiuk. Proving soundness of extensional
normal-form bisimilarities. Electronic Notes in Theoretical Computer Science, 336:41-56, 2018.
The Thirty-third Conference on the Mathematical Foundations of Programming Semantics
(MFPS XXXIII). doi:10.1016/j.entcs.2018.03.015.

Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. London Math-
ematical Society Lecture Note Series. Cambridge University Press, 1987. doi:10.1017/
CB09780511565663.

Marco Carbone, David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, Frederik Krogsdal
Jacobsen, Alberto Momigliano, Luca Padovani, Alceste Scalas, Dawit Legesse Tirore, Martin
Vassor, Nobuko Yoshida, and Daniel Zackon. The concurrent calculi formalisation benchmark.
In Ilaria Castellani and Francesco Tiezzi, editors, Coordination Models and Languages - 26th
IFIP WG 6.1 International Conference, COORDINATION 2024, Held as Part of the 19th
International Federated Conference on Distributed Computing Techniques, DisCoTec 2024,
Groningen, The Netherlands, June 17-21, 2024, Proceedings, volume 14676 of Lecture Notes in
Computer Science, pages 149-158. Springer, 2024. doi:10.1007/978-3-031-62697-5_9.
Kaustuv Chaudhuri, Matteo Cimini, and Dale Miller. A lightweight formalization of the
metatheory of bisimulation-up-to. In Xavier Leroy and Alwen Tiu, editors, Proceedings of
the 2015 Conference on Certified Programs and Proofs, CPP 2015, Mumbai, India, January
15-17, 2015, pages 157-166. ACM, 2015. doi:10.1145/2676724.2693170.

Karl Crary. A simple proof of call-by-value standardization. Technical Report CMU-CS-09-137,
Carnegie Mellon University, 2009.

Ugo Dal Lago and Simone Martini. The weak lambda calculus as a reasonable machine. Theor.
Comput. Sci., 398(1-3):32-50, 2008. doi:10.1016/J.TCS.2008.01.044.

13:19

ITP 2025

https://doi.org/10.1007/978-3-031-57231-9_2
https://doi.org/10.1145/3661814.3662113
https://doi.org/10.1145/3661814.3662113
https://doi.org/10.1007/11541868_4
https://doi.org/10.6092/ISSN.1972-5787/4650
https://doi.org/10.1145/3371069
https://doi.org/10.1017/S0956796800000447
https://www.collegepublications.co.uk/logic/mlf/?00035
https://doi.org/10.1016/j.entcs.2018.03.015
https://doi.org/10.1017/CBO9780511565663
https://doi.org/10.1017/CBO9780511565663
https://doi.org/10.1007/978-3-031-62697-5_9
https://doi.org/10.1145/2676724.2693170
https://doi.org/10.1016/J.TCS.2008.01.044

13:20

Barendregt’'s Theory of the A-Calculus, Refreshed and Formalized

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Lavinia Egidi, Furio Honsell, and Simona Ronchi Della Rocca. Operational, denotational
and logical descriptions: a case study. Fundam. Informaticae, 16(1):149-169, 1992. doi:
10.3233/FI-1992-16205.

Jorg Endrullis and Roel C. de Vrijer. Reduction under substitution. In Andrei Voronkov,
editor, Rewriting Techniques and Applications, 19th International Conference, RTA 2008,
Hagenberg, Austria, July 15-17, 2008, Proceedings, volume 5117 of Lecture Notes in Computer
Science, pages 425-440. Springer, 2008. doi:10.1007/978-3-540-70590-1_29.

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the expressive power
of user-defined effects: effect handlers, monadic reflection, delimited control. Proc. ACM
Program. Lang., 1(ICFP), August 2017. doi:10.1145/3110257.

Yannick Forster, Steven Schéfer, Simon Spies, and Kathrin Stark. Call-by-push-value in Coq:
operational, equational, and denotational theory. In Proceedings of the 8th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2019, pages 118-131, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3293880.3294097.
Andrew Gacek. The Abella interactive theorem prover (system description). In Aless-
andro Armando, Peter Baumgartner, and Gilles Dowek, editors, Automated Reasoning, 4th
International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Pro-
ceedings, volume 5195 of Lecture Notes in Computer Science, pages 154—161. Springer, 2008.
doi:10.1007/978-3-540-71070-7_13.

Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction. Inf. Comput.,
209(1):48-73, 2011. doi:10.1016/J.IC.2010.09.004.

Lorenzo Gheri and Andrei Popescu. Case Studies in Formal Reasoning About lambda-
Calculus: Semantics, Church-Rosser, Standardization and HOAS. CoRR, abs/2107.11674,
2021. arXiv:2107.11674.

Silvia Ghilezan. Full intersection types and topologies in lambda calculus. J. Comput. Syst.
Sci., 62(1):1-14, 2001. doi:10.1006/jcss.2000.1703.

Georges Gonthier, Jean-Jacques Lévy, and Paul-André Mellies. An abstract standardisation
theorem. In Proceedings of the Seventh Annual Symposium on Logic in Computer Science
(LICS ’92), Santa Cruz, California, USA, June 22-25, 1992, pages 72-81. IEEE Computer
Society, 1992. doi:10.1109/LICS.1992.185521.

Ferruccio Guidi. Standardization and confluence in pure lambda-calculus formalized for the
Matita theorem prover. J. Formaliz. Reason., 5(1):1-25, 2012. doi:10.6092/ISSN.1972-5787/
3392.

Peter V. Homeier. A proof of the Church-Rosser theorem for the A-calculus in higher order
logic. In TPHOLs’01: Supplemental Proceedings, pages 207-222, 2001.

Gérard P. Huet. Residual theory in lambda-calculus: A formal development. J. Funct.
Program., 4(3):371-394, 1994. doi:10.1017/S0956796800001106.

Jonas Kaiser, Brigitte Pientka, and Gert Smolka. Relating System F and Lambda2: A
Case Study in Coq, Abella and Beluga. In Dale Miller, editor, 2nd International Conference
on Formal Structures for Computation and Deduction (FSCD 2017), volume 84 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 21:1-21:19, Dagstuhl, Germany, 2017.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.FSCD.2017.21.
Richard Kennaway, Vincent van Qostrom, and Fer-Jan de Vries. Meaningless terms in
rewriting. J. Funct. Log. Program., 1999(1), 1999. URL: http://danae.uni-muenster.de/
lehre/kuchen/JFLP/articles/1999/A99-01/A99-01 .html.

Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood series in computers
and their applications. Masson, 1993.

Jan Kuper. Proving the genericity lemma by leftmost reduction is simple. In Jieh Hsiang, editor,
Rewriting Techniques and Applications, 6th International Conference, RTA-95, Kaiserslautern,
Germany, April 5-7, 1995, Proceedings, volume 914 of Lecture Notes in Computer Science,
pages 271-278. Springer, 1995. doi:10.1007/3-540-59200-8_63.

https://doi.org/10.3233/FI-1992-16205
https://doi.org/10.3233/FI-1992-16205
https://doi.org/10.1007/978-3-540-70590-1_29
https://doi.org/10.1145/3110257
https://doi.org/10.1145/3293880.3294097
https://doi.org/10.1007/978-3-540-71070-7_13
https://doi.org/10.1016/J.IC.2010.09.004
https://arxiv.org/abs/2107.11674
https://doi.org/10.1006/jcss.2000.1703
https://doi.org/10.1109/LICS.1992.185521
https://doi.org/10.6092/ISSN.1972-5787/3392
https://doi.org/10.6092/ISSN.1972-5787/3392
https://doi.org/10.1017/S0956796800001106
https://doi.org/10.4230/LIPIcs.FSCD.2017.21
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1999/A99-01/A99-01.html
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1999/A99-01/A99-01.html
https://doi.org/10.1007/3-540-59200-8_63

A. Lancelot, B. Accattoli, and M. Vemclefs

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Adrienne Lancelot, Beniamino Accattoli, , and Maxime Vem-
clefs. adrilancelot/Abella-lambda-Barendregt-theory. Software, swhld:
swh:1:dir:b20ffd2d8d946adacleb2fffa72112d23a2deced (visited on 2025-07-17).
URL: https://github.com/adrilancelot/Abella-lambda-Barendregt-theory,

doi:10.4230/artifacts.23906.

Dominique Larchey-Wendling. A constructive mechanization of lambda calculus in Coq. Online
comments and Coq formalization, 2017. URL: https://homepages.loria.fr/DLarchey/
Lambda_Calculus/.

Ralph Loader. Notes on simply typed lambda calculus. Technical report ECS-LFCS-98-
381, University of Edinburgh, 1998. URL: https://www.lfcs.inf.ed.ac.uk/reports/98/
ECS-LFCS-98-381/.

James McKinna and Robert Pollack. Some lambda calculus and type theory formalized. J.
Autom. Reasoning, 23(3-4):373-409, 1999. doi:10.1023/A:1006294005493.

Paul-André Mellies. Axiomatic rewriting theory I: A diagrammatic standardization theorem.
In Aart Middeldorp, Vincent van Oostrom, Femke van Raamsdonk, and Roel C. de Vrijer,
editors, Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan
Willem Klop, on the Occasion of His 60th Birthday, volume 3838 of Lecture Notes in Computer
Science, pages 554—638. Springer, 2005. doi:10.1007/11601548_23.

Dale Miller and Gopalan Nadathur. Programming with Higher-Order Lo-
gic. Cambridge University Press, 2012. URL: http://www.cambridge.org/de/
academic/subjects/computer-science/programming-languages-and-applied-logic/
programming-higher-order-logic?format=HB.

Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Trans. Comput. Log.,
6(4):749-783, 2005. doi:10.1145/1094622.1094628.

Alberto Momigliano. A supposedly fun thing I may have to do again: a HOAS encoding of
Howe’s method. In Proceedings of the Seventh International Workshop on Logical Frameworks
and Meta-Languages, Theory and Practice, LFMTP 12, pages 33—42, New York, NY, USA,
2012. Association for Computing Machinery. doi:10.1145/2364406.2364411.

Julian Nagele, Vincent van Oostrom, and Christian Sternagel. A short mechanized proof of
the Church-Rosser theorem by the Z-property for the AS-calculus in Nominal Isabelle. CoRR,
abs/1609.03139, 2016. arXiv:1609.03139.

Tobias Nipkow. More Church-Rosser Proofs. J. Autom. Reason., 26(1):51-66, 2001. doi:
10.1023/A:1006496715975.

Michael Norrish. Mechanising lambda-calculus using a classical first order theory of terms
with permutations. High. Order Symb. Comput., 19(2-3):169-195, 2006. doi:10.1007/
S10990-006-8745-7.

Michael Norrish. Mechanised computability theory. In Marko C. J. D. van Eekelen, Herman
Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, Interactive Theorem Proving - Second
International Conference, ITP 2011, Berg en Dal, The Netherlands, August 22-25, 2011.
Proceedings, volume 6898 of Lecture Notes in Computer Science, pages 297-311. Springer,
2011. doi:10.1007/978-3-642-22863-6_22.

Frank Pfenning. A Proof of the Church-Rosser Theorem and its Representation in a Logical
Framework. Technical Report CMU-CS-92-186, Carnegie Mellon University, 1992. URL:
https://apps.dtic.mil/sti/citations/ADA256574.

Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125-159, 1975. doi:10.1016/0304-3975(75)90017-1.

Ole Rasmussen. The Church-Rosser Theorem in Isabelle: A Proof Porting Experiment.
Technical Report 164, University of Cambridge, 1995.

Christine Rizkallah, Dmitri Garbuzov, and Steve Zdancewic. A formal equational theory for call-
by-push-value. In Jeremy Avigad and Assia Mahboubi, editors, Interactive Theorem Proving -
9th International Conference, ITP 2018, Held as Part of the Federated Logic Conference, FloC
2018, Ozford, UK, July 9-12, 2018, Proceedings, volume 10895 of Lecture Notes in Computer
Science, pages 523-541. Springer, 2018. doi:10.1007/978-3-319-94821-8_31.

13:21

ITP 2025

https://archive.softwareheritage.org/swh:1:dir:b20ffd2d8d946adac1eb2fffa72112d23a2deeed;origin=https://github.com/adrilancelot/Abella-lambda-Barendregt-theory;visit=swh:1:snp:51adf802a55fe82840e4e8d940b31babccdb58a2;anchor=swh:1:rev:07ea3f03983145ce1b7e070e3afbe9ff730d2531
https://github.com/adrilancelot/Abella-lambda-Barendregt-theory
https://doi.org/10.4230/artifacts.23906
https://homepages.loria.fr/DLarchey/Lambda_Calculus/
https://homepages.loria.fr/DLarchey/Lambda_Calculus/
https://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/
https://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/
https://doi.org/10.1023/A:1006294005493
https://doi.org/10.1007/11601548_23
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/programming-higher-order-logic?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/programming-higher-order-logic?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/programming-higher-order-logic?format=HB
https://doi.org/10.1145/1094622.1094628
https://doi.org/10.1145/2364406.2364411
https://arxiv.org/abs/1609.03139
https://doi.org/10.1023/A:1006496715975
https://doi.org/10.1023/A:1006496715975
https://doi.org/10.1007/S10990-006-8745-7
https://doi.org/10.1007/S10990-006-8745-7
https://doi.org/10.1007/978-3-642-22863-6_22
https://apps.dtic.mil/sti/citations/ADA256574
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1007/978-3-319-94821-8_31

13:22

Barendregt’'s Theory of the A-Calculus, Refreshed and Formalized

56

57

58

59

60

61

62

63

64

65

66

67

Natarajan Shankar. A mechanical proof of the Church-Rosser theorem. J. ACM, 35(3):475-522,
1988. d0i:10.1145/44483.44484.

Masako Takahashi. A simple proof of the genericity lemma. In Neil D. Jones, Masami
Hagiya, and Masahiko Sato, editors, Logic, Language and Computation: Festschrift in Honor
of Satoru Takasu, pages 117-118. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994. doi:
10.1007/BFb0032397.

Masako Takahashi. Parallel reductions in lambda-calculus. Inf. Comput., 118(1):120-127,
1995. doi:10.1006/INCO.1995.1057.

Chun Tian and Michael Norrish. Mechanising Béhm trees and An-completeness. In Yannick
Forster and Chantal Keller, editors, 16th International Conference on Interactive Theorem
Proving (ITP 2025), volume 352 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 28:1-28:18, Dagstuhl, Germany, 2025. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
doi:10.4230/LIPIcs.ITP.2025.28.

Alwen Tiu and Dale Miller. Proof search specifications of bisimulation and modal logics for
the pi-calculus. ACM Trans. Comput. Log., 11(2):13:1-13:35, 2010. doi:10.1145/1656242.
1656248.

A. S. Troelstra and Dirk Van Dalen. Constructivism in Mathematics: An Introduction. North
Holland, Amsterdam, 1988.

Christian Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reason., 40(4):327-356,
2008. doi:10.1007/S10817-008-9097-2.

René Vestergaard and James Brotherston. A formalised first-order confluence proof for
the lambda-calculus using one-sorted variable names. Inf. Comput., 183(2):212-244, 2003.
doi:10.1016/S0890-5401(03)00023-3.

Christopher P. Wadsworth. Semantics and pragmatics of the lambda-calculus. PhD Thesis,
Oxford, 1971.

Christopher P. Wadsworth. The relation between computational and denotational properties
for scott’s dinfty—models of the lambda-calculus. SIAM J. Comput., 5(3):488-521, 1976.
doi:10.1137/0205036.

Xinyi Wan and Qinxiang Cao. Formalization of lambda calculus with explicit names as a
nominal reasoning framework. In Holger Hermanns, Jun Sun, and Lei Bu, editors, Dependable
Software Engineering. Theories, Tools, and Applications - 9th International Symposium, SETTA
2023, Nanjing, China, November 27-29, 2023, Proceedings, volume 14464 of Lecture Notes in
Computer Science, pages 262—278. Springer, 2023. doi:10.1007/978-981-99-8664-4_15.
Hongwei Xi. Upper bounds for standardizations and an application. J. Symb. Log., 64(1):291—
303, 1999. doi:10.2307/2586765.

https://doi.org/10.1145/44483.44484
https://doi.org/10.1007/BFb0032397
https://doi.org/10.1007/BFb0032397
https://doi.org/10.1006/INCO.1995.1057
https://doi.org/10.4230/LIPIcs.ITP.2025.28
https://doi.org/10.1145/1656242.1656248
https://doi.org/10.1145/1656242.1656248
https://doi.org/10.1007/S10817-008-9097-2
https://doi.org/10.1016/S0890-5401(03)00023-3
https://doi.org/10.1137/0205036
https://doi.org/10.1007/978-981-99-8664-4_15
https://doi.org/10.2307/2586765

	1 Introduction
	2 Formalizing the λ-Calculus in Abella
	3 The Natural Theory is Inconsistent
	4 Head Reduction
	5 Normalization, Factorization, and Standardization
	6 Solvability and Head Contexts
	7 Technical Interlude: Formalizing Contexts for Two Terms
	8 Formalizing Genericity
	9 The Contextual Preorder
	10 Collapsibility
	11 Maximality
	12 Conclusions

