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—— Abstract

Many countermeasures against timing side-channel attacks have been developed in recent years,
including tools to verify that code or a binary is constant-time, compilers or languages that compile
into constant-time code, and a formal verification of a compiler that retains the constant-time
property.

We take a first step toward formally verifying a C compiler that eliminates control-flow-induced
timing side channels. Specifically, we extend CompCert with Partial Control-Flow Linearization
(PCFL) [14], a global if-conversion algorithm that was repurposed by Soares et al. [19] for removing
timing side channels.

Our transformation is split into multiple steps, separating linearization from instruction predica-
tion. One of the intermediate states contains the current program points before and after linearization
simultaneously and we exploit a postdominance relation between those to show semantic preservation.
We give a new proof that PCFL leaves uniform program points untouched and use it to show that
our transformation correctly eliminates all secret control flow.

Although our transformation currently only supports a subset of C, making it unsuitable for use
in production, it gives an insight into how a global graph-based linearization technique like PCFL
can be verified in CompCert and thereby shows the challenges and obstacles of this undertaking.
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1 Introduction

Timing side-channels are still a relevant threat for implementations of cryptographic al-
gorithms, nearly 30 years after their discovery by P. Kocher [11]. Many measures against
them have been explored and new ones are still developed. For example, there are numerous
tools that validate whether a given binary is constant-time like ct-verif [2], dude-ct [17]
or [5]. Measures that automatically remove timing side-channels from arbitrary code are also
effective. For example, compiler passes like Constantine [6] and SC-Eliminator [21] try
to find and fix both control-flow- and data-flow-induced side channels. FaCT [7] is a DSL
which serves a similar purpose. Soares et al. [19] use Partial Control-Flow Linearization
(PCFL) [14], a global if-conversion technique, to remove all secret-dependent control flow
and thereby only linearize as few branches as possible.
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However, while combining a constant-time compiler pass with a subsequent verification
that the result is actually constant-time gives security guarantees, it does not show that the
transformed code behaves semantically equivalent to the original code. It is still a young
field of research to combine formally verified compilation with removing timing side-channels.
Besson et. al. [16] give a type-directed, verified constant-time transformation pass for Jasmin,
a language specifically designed for verifiable cryptography [1].

CompCert is a formally verified C compiler that is powerful enough to be used in
industrial applications [8, 12]. All of its transformations are proven semantically correct,
thereby virtually eliminating the possibility of compiler-introduced bugs. Barthe et al. [3]
show that a mildly modified version of CompCert compiles programs that are already
constant-time down to assembly code that is also constant-time — which is not at all obvious
as constant-time is often lost precisely because of compiler optimizations.

This work takes a first step in the direction of formally verifying a CompCert transforma-
tion that removes timing leaks from C code. Our transformation:

removes secret-dependent control flow, but does not consider data flow like cache or

micro-architectural effects, and

only works on a subset of C, currently disallowing memory instructions, loops and function

calls.

Our work shows that even under these restrictions verifying such a transformation is a
complex and effortful endeavor: we have added a total of 9000 LOC to CompCert. Beneath
implementation and verification of four transformations, they contain formalization of graphs,
postdominance, influence regions and topological sorting.

Our contributions are as follows:

We formally verify a compiler transformation that removes secret-dependent control flow

for a subset of C, laying the groundwork for prospective verification efforts.

We describe how global properties, especially postdominance, are established during the

transformation, are present in our graph-based intermediate representations and are then

used to prove semantic preservation.

We prove that our transformation correctly integrates with our taint analysis and removes

all secret branches, thereby giving a new proof for a uniformity theorem of Hack and
Moll [14].

This paper proceeds as follows: Section 2 introduces Partial Control-Flow Linearization
and the CompCert compiler. Section 3 explains our multi-step transformation and the
intermediate representations that we created, and proves semantic preservation. In Section 4
we show that our transformation actually removes secret control flow and Section 5 sketches
how our imposed restrictions can be significantly relaxed. Section 6 presents a new proof of
the key theorem about uniformity and Section 7 finally discusses future work and how the
imposed restrictions may or may not be relaxed even further.

2 Foundations

2.1 Partial Control-Flow Linearization

In their work that was originally aimed at auto-vectorization, Hack and Moll [14] distinguish
between uniform and varying variables and conditions and they show that PCFL linearizes
all branches that depend on varying conditions. Soares et al. [19] repurpose the context of
this transformation to timing side-channel mitigation simply by replacing varying with secret.
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if (secret):

if (public): if (public):
x = cos(x) x = secret 7 cos(x) : x
else: else:
x = tan(x) x = secret 7 tan(x) : x
else: y = secret 7 y : y+1
y = y+l X = secret 7 x : x+1

x = x+1 return x*y
return x*y

(a) Original code. (b) Partially linearized code.

Figure 1 Example linearization. Figure 3 illustrates the control-flow graph of this function.

PCFL in itself is a graph transformation working on a function’s control flow graph, but
it leaves the details of instruction predication to the implementer of the transformation. A
basic example of partial linearization is shown in Figure 1: the secret condition is removed
and affected assignments are replaced with select operations, which are assumed to be
constant-time. Figure 3 shows how PCFL changes the control flow graph of this code.

The Algorithm

The main idea of PCFL is that it may change the target of any edge v —g w of the CFG
but when doing so — thereby going on a detour — it is guaranteed that the original target
postdominates the new one. This ensures that all code that was executed in the original
graph is also executed after linearization.

PCFL takes an acyclic graph (V, E) with a topological sort! idz € Sym(V). The graph

is assumed to have a unique entry € V and exit € V. Further, a function secret_ cond :

V — bool is required that decides whether the condition at a given vertex is secret.?
PCFL returns a transformed graph (V, E'") with the following properties:
idx is also a topological sort for (V, E'") and entry and exit are also entry and exit
vertices of (V, E'™)
Each secret condition was linearized, that is, has a single successor in (V, E")
A map detour : V — V — V, such that
detour__spec holds: for each edge v — g w there is an edge v — guin (detour v w) such
that w postdominates (detour v w) in (V, E'™).

The algorithm, shown in Algorithm 1, works as follows: We go through the vertices in
topological order, at each step considering the vertex b := idx[i]. For each edge b — s, we

choose the topologically first successor next from either s or the set of deferred edges of b.

If b is tainted, all edges b — s get the same successor. Then, b — next is added to the
linearized graph Ej;,, and detour b s := next. To guarantee that s postdominates next, we
add next — s to the set of deferred edges D.

To show detour__spec, we begin by showing the following basic invariants, where b = idx]i]
and D; and E!" denote the respective values at the beginning of the 4’th iteration:

(vyw) € D; = b <4dn ¥ <idz W

(v,w) € Eéi” — UV <iga b N U <jgz w

1 We do not require the topological sort to be loop- or dominance-compact, and we do not discuss here
how PCFL handles loops.
2 This function is the result of a taint analysis, see Section 4.
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Algorithm 1 Partial linearization algorithm. The linearized graph is (V, E*™).

1: D:=0,E" =0

2: for i from 0 to |V| — 1 do
b := idx[i]
T:={s|(—s)e D}

3:

4

5: if secret cond b then

6: S:={s|(b—s)€E}

7 next := min;q, (17U S)

8 detour b s :=nextVseS

9: EYm .= E"™ U {(b — next)}

10: D :=DU{(next - t) |t € (TUS)\ {next}}

11: else

12: for each (b — s) € E do

13: next := min;q, (T'U {s})

14: detour b s := next

15: EY .= E" U {(b — next)}

16: D :=DU{(next —t) |t € (TU{s})\ {next}}
17: end for

18: end if

19: D:=D\{(b—s)|(b—s)e D}

20: end for

Here, v <;4, w means that v appears before w in idx, and v <;g; w means v <;g w V v = w.
We can then show the following lemma captures the relationship between D, E" and detour:

» Lemma 1. For any i,v with b = idz[i] and b —g v:
[v=detour bv A (bv) € EIY] V [(b,detour bv) € By A (detour b v,v) € Ditq] .

We also prove Lemma B.3 of [14]: (v,w) € D; == w postdominates v in (V, E!").
Together with the fact that Efm C Effl we can conclude detour__spec, which is present in
our development as Theorem new_target_spec.

2.2 CompCert

The CompCert compiler consists of a handful of intermediate representations (IRs). Each
transformation in CompCert transforms a program from one IR into another IR, thereby
proving that the program behaviors are similar.> This proof is done via small-step simulation
diagrams [13]. In small-step semantics, a program executes by making steps between program
states until reaching a final state. A state may consist of registers, memory, call stack, the
current operation and so on.

To show a simulation diagram between an original and a transformed program, we show
that one step of execution in the original IR corresponds to one or more steps of execution
in the transformed IR and that the corresponding states of both IRs match. An example
simulation diagram is shown in Figure 4. Given a few additional properties of the IR’s
semantics, such a forward simulation diagram yields the required semantic preservation of
the transformation [18]. Since all of CompCert’s transformations are semantics-preserving,
the entire compiler pipeline is as well.

3 Actually, the behavior of the transformed IR may improve upon the original IR when it has undefined
behavior or goes wrong.
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A prominent IR is RTL, resembling a control flow graph. It separates the program
into functions, each one having instructions that operate on a pseudo-register level. Our
transformation is designed to work on RTL.

» Note 2 (CompCert Notation).

When considering a specific IR, say, PredRTL, we write s; —preqd S2 OT 51 —>;‘md S9
for valid transitions or paths between two states. In addition to respecting the graph
structure of the IR, these execute the instruction at the given point and update the state
accordingly.

code@Qu refers to the instruction at program point v € V. This instruction is either
an operation that calculates and assigns a value to a (pseudo-)register (written as
dst <- op(args)), or a condition that evaluates a comparison and branches the control
flow depending on its result (written as if cond(args)). There are also nop and return

instructions which we do not direct much attention to here because they are uninteresting.

With registers we mean register locations, denoted by reg, while a register state is a
mapping from registers to values, reg — val.

3 Transformation And Semantic Preservation

We now describe the transformation and sketch the proof of semantic preservation. For the
rest of this paper, fix a function that we want to transform and let gorig = (V, Eorig) denote
its control flow graph.

There are three main restrictions on the function:

Jorig must be acyclic, that is, free of loops.

The function cannot call other functions* and cannot read or write memory — only

operations (like add, neg, mov etc.) and conditions are allowed.

All operations used in the function must be safe as we will discuss in Section 3.3.

While these restrictions sound severe, we show in Section 5 that safe operations are in
fact only required at certain non-uniform program points, and Section 7 discusses how the
restrictions on loops, function calls and memory may be lifted in the future.

» Note 3 (Notation).
We fix a topological sort idz which is a permutation of V. We assume gorig to have a
unique® entry € V and exit € V.

vy w denotes that w postdominates v in g, that is, every path v —7 exit, contains w.

In particular, v v.

explicit .. select
PCFL predication ;
graph lowering
RTL — GraphRTL PredRTL — SelRTL——— RTL
YGorig (gpcfz, go'r'ig) Ipcfl

Figure 2 Transformation pipeline.

4 Our transformation is of course proven correct for every function fulfilling these requirements, even if
we cannot exit the main function when compiling real code.
5 A unique exit can easily be simulated with gotos to a shared return statement.
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Our work transforms an RTL function back to an RTL function and proceeds in four steps
as displayed in Figure 2: we first equip RTL with an explicit graph structure without changing
any semantics.® Then, PCFL is performed, transforming the graph Jorig INtO gpepr, but
leaving the code as is. During predication we get rid of g,.;¢ and predicate all operations
using select instructions. The last step allows to lower these selects into architecture-specific
operation sequences.

3.1 PredRTL

PredRTL is the principal intermediate representation of our transformation: it captures the
essence of PCFL by considering both graphs gorig and gpcy; and the current positions in
both of them simultaneously and relates them using detour__spec.

» Definition 4 (function). A PredRTL function” consists of:
Jorig and gpcsi: the graphs before and after PCFL,
detour : V —V —-V

detour__spec :Yv — w:v — detour vw A detour vw > w.
orig pefl pefl

When PCFL begins a detour by changing the edge v =iy w into v =41 detour v w,
for semantic preservation it is required that the instructions at v and w are executed while
all instructions on the detour are silent, that is, do not change the register state.®

Therefore, a PredRTL state can convey the information whether it is currently on a detour
or not by simply storing the current positions in both gpcsi and gorig. The latter represents
the original path that would be taken through g.r;; while the former also contains any
detours made in gp.r;. Only when both positions agree, the current operation is allowed to
change register values. We see that there is no need to construct a boolean expression for
the predicate — a simple integer comparison is enough.

» Definition 5 (state). We denote a PredRTL state by (v, vorig, 7s) where v, vorig € V are
the positions in gpcr; and gorig, respectively, and rs : reg — val is the current register state.
If v = vorig, we call the state live, otherwise we call it dummy.
The initial state is init := (entry, entry, rSparams) With rSperems coming from the argu-
ments passed to the function.

» Definition 6 (—p,cq). The following table defines the valid transitions between PredRTL
states, depending on whether the source state is live and on the instruction at the program
point. The first line inside each cell shows the target state of the transition.

Instruction type

code@u = dst <- op(args) code@Qu = if cond(args) with
Source State | with v —vopig w 0 Sorig wi and v D opig wy
Live: —pred (detour v w,w,rs’); —pred (detour v w,w, rs);
(v,v,r8) rs’ :=rs[dst +—eval op(args) | | w:= (eval cond(args))?w; : wy
Dummy: —pred (detour v W, Vorig, r'S); —pred (detour v W, Vorig, 1'S);
(v, Vorig, TS) op(args) evaluates successfully | w:= (eval cond(args))?w: : wy

6 An explicit Graph type is handy for constructing and reasoning about graphs independently of instruc-
tions.

7 For clarity, we illustrate a slightly simplified version of all IRs in this paper.

8 Because we do not allow memory instructions, only the register state is relevant for semantic preservation.
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Yorig pefl

Two edges were redirected: detour 1 6 = 2 and detour 5 8 = 6. For all other edges v —orig W,
detour v w = w. The paths 1 -6 -7 —8and 1 -2 — 3 — 5 — 8 in GraphRTL are translated
into (1,1) — (2,6) — [(3,6) or (4,6)] — (5,6) — (6,6) — (7,7) — (8,8) and
(1,1) = (2,2) — (3,3) = (5,5) — (6,8) — (7,8) — (8,8), respectively.

Figure 3 Example translation of a GraphRTL function and some paths into PredRTL. For simplicity,
the register state is omitted from the states.

We see that, while dummy states do not change the register state, we still require that
the instruction at a dummy state executes successfully. We will discuss this in more detail in
Section 3.3. Using detour__spec, we see:

» Corollary 7. For any step (v,Vorig,S) —pred (W, Worig,Ts") we have v —pef w and
either Vorig = Worig OT Vorig —orig Worig - |

The following postdominance-relation guarantees that any detour that is taken in gp.p
will eventually come back to its original target:

> Definition 8. A PredRTL state s is reachable if there is a path init —..; s.

» Lemma 9 (Postdominance). For every reachable state (v,Vopig,7$), v l>fl Vorig-
pc

The proof is a simple induction over the step, using Corollary 7.

3.2 GraphRTL — PredRTL Simulation

Let us consider a GraphRTL function with the CFG gorig. PCFL generates gp.r; and thereby
constructs and proves both detour and detour__spec, as described in Section 2.1.

A GraphRTL state, like RTL, only consists of the position in gorig and the register state.

Figure 3 shows an example translation of some executions in GraphRTL to PredRTL.

» Definition 10 (Matching). A GraphRTL state (v,rs) and a PredRTL state (w, Worig,7's’)
match when:

(0,78) ~ (W, Worig, 18") =V = W = Wopig N T5=T5".
Notably, only live PredRTL states can match a GraphRTL state.

To prove semantic preservation, we apply a small-step simulation argument as described
in [12]. Therefore, consider a GraphRTL step (v,78) —>graph (w,7s"). We want to show that
(v,v,78) —>;Ted (w,w,rs"). The simulation diagram in Figure 4 outlines the situation.

31:7
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GraphRTL PredRTL

(v,v,78)

l

(detour v w,w,rs’)

(v,78)

v

(o, w, rs') 3 *
o

(w,rs’) ---me T (w,w,rs")

Figure 4 Simulation diagram between GraphRTL and PredRTL.

The first step is (v,v,78) —>prea (detour v w,w,rs’) and by Lemma 9, every reachable
state (0, w,rs’) fulfills & ppep w, so we have to reach the state (w,w,rs’) after an unknown
number of intermediate steps between dummy states, all of which do not change the register
state rs’ anymore.

The only caveat is that for all the intermediate steps, the respective operation must be
executable. To see how this can fail, consider the code in Figure 5: by linearizing a secret
guard condition, a possible division by zero is introduced that could not happen before.

Similarly, in Figure 6, CompCert cannot continue simulation at the inner condition
because its operand is undefined. Linearization removes the outer secret condition and
therefore introduces undefined behavior when secret = false.

By restricting the code to only use a certain subset of safe operations we can overcome
this issue and therefore show semantic preservation.

3.3 Safe Operations and Register-Definedness

if (sec > 0):
x =1/ sec x1 =1/ sec
else: x2 =0
x =0 x = (sec > 0) 7 x1 : x2

Figure 5 Code where linearization changes the semantics: removing the secret guard condition
if (sec > 0) lets the linearized code halt if sec = 0.

pub = pub << 32

// pub is undef now pub = pub << 32
if (sec): al = a + 1
if (pub): if (pub):
a+=1 a=(sec) 7 al : a

Figure 6 Code where linearization changes the semantics: when sec is false, simulation of the
linearized code cannot continue at the undefined public condition if (pub).

In CompCert, evaluating an operation returns an option val. This may be None, in
which case the simulation cannot continue. Similarly, evaluating a condition returns an
option bool, which also stops the simulation in case of None. This happens if one of the
values to be compared is Vundef, which is a special val representing undefinedness.

To be able to show that the simulation successfully runs during a detour, we therefore
require three things:
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1. the PredRTL code is well typed

2. the PredRTL code only uses safe operations

3. during execution of PredRTL, all values stored in the registers are well typed and defined
at any time.

» Definition 11 (Safe Operation). A value val is defined if val <> Vundef. An operation is
safe if executing it with correctly typed and defined arguments yields Some val such that
val is again defined.

Unsafe operations are all those than can halt the code (like division) or introduce undefined
behavior (like bit-shifts). These include a lot of operations and we describe in Section 5 how
this restriction can be weakened.

Welltyping and definedness of the code is verified during RTL-to-GraphRTL translation
while welltyping and definedness of the register state is proven inductively for each possible
PredRTL step. To get register-definedness and -welltypedness at the initial state, we simply
initialize them all to some value, say zero, in their respective type.

The following three lemmata (which we have so far only proven for x86 as operations
and their safety are architecture-specific) summarize what we introduced in this section and
let us conclude with the semantic preservation proof.

> Claim 12 (Safe Operation Execution).

YV op args, op_safe op -> welltyped op args -> all_defined args ->
3 (v: val), eval_operation op args = Some v /\ v <> Vundef.

> Claim 13 (Condition Execution).

V cond args, welltyped cond args -> all_defined args ->
3 (b: bool), eval_condition cond args = Some b.

> Claim 14 (Welltypedness and Definedness). For every reachable state (v, vorig, 7s), we have
rs_welltyped rs and rs_defined rs.

3.4 Predication

Predication is the transformation from PredRTL to SelRTL, which is a similar IR to GraphRTL,
only augmented by a platform-independent select instruction. During predication, we get
rid of the original graph g,.;; and define both states and transitions between these states
only via gpcri. Thereby we rewrite all operations such that conditional operation execution
is translated into actual code execution with clearly defined effects.

Like GraphRTL, a SelRTL state only consists of a program point and register values. We
get rid of vy by instead storing its value in a fresh register called v_orig_reg and keeping
it updated at each step. A few more fresh registers are used for auxiliary calculations during
predication. With Vint: nat -> val we inject statically known program points into 64-bit
register values.

Figure 7 sketches the predication of operations and conditions. Each instruction is
translated into a sequence of instructions: first we determine whether we are at a live state
by comparing the program point of the instruction that we translate (which is statically
known during the translation) with the current content of the v_orig_reg register.

319

ITP 2025



31:10 On Verifying Secret Control Flow Elimination

code@u = dst <- op(args) with codeQu = if cond(args) with
U —orig W: v —t>om-g wy and v i>om-g wy:
1 live <~ (v_orig_reg =7 Vint v) 1 live <- (v_orig_reg =7 Vint v)
2 dummy_dst <- eval op(args) 2 cond_res <- eval cond(args)
3 dst <- 3 v_orig_new <-
select(live, dummy_dst, dst) select(cond_res, Vint w_t, Vint w_f)
4 v_orig_reg <- 4 v_orig_reg <-
select(live, Vint w, v_orig_reg) select(live, v_orig_new, v_orig_reg)
l cond. uniform cond. secret
detour v w “/ X’
5 if (cond_res =7 true) 5 nop
ltrue lfalse l
detour v wy detour v wy detour v w;
= detour v wy

Figure 7 Predication of operations and conditions. r <- select(c,t,f) either writes the value
in register t or f into r, depending on the whether the value in register c is true or false.

Operations are executed and stored into dummy_dst which always succeeds because of
the safety measures outlined in Section 3.3. We employ select-operations to write to the
operation’s actual destination and to v_orig_reg depending on whether we are live. The
successor of this instruction block stays the successor of the instruction in g ;.
Conditions are always evaluated. If we are live, v_orig_reg is updated with the new
successor in g_orig. Only uniform conditions keep their conditional branch while secret
conditions are linearized, in which case detour v w; = detour v wy by PCFL.

Nop instructions do not need to be predicated and neither does the return instruction
because it is at the ewxit vertex which can only be reached in g,.f; by a live state.

» Definition 15 (Matching). A PredRTL state (v, vorig,7s) and a SelRTL state (w,rs’)
match when:

V, Vorig, TS) ~ (W,rs8" ) == v=w A rs >rs° N rs|v_orig reg| = Vint v,p4.
g / /> 9 / g g V 9

With this matching relation it is not hard, only lengthy, to prove that semantic preservation
between PredRTL and SelRTL holds.

Notice that any PredRTL transition (v, Vorig,7S) —>pred (W, Worig, r's’) is translated into
a SelRTL path (v, 7s.) —>S+el (w,rs,) and, by Corollary 7, v —,cf; w. Therefore, a SelRTL
function does not need to store g,riy anymore, only an extended version of gy is required
as its CFG.

3.5 Select Lowering

To go back from SelRTL to RTL we maily need to decide how to lower select instructions. We
can use the builtin select operation on architectures that have one (which is also what we
currently do on x86), while on platforms without one we can employ a sequence of bitwise
instructions: when the value inside c is either 0 or 1, —c is either 000...000 or 111...111,
so by masking the values in t and f with -c, we can simply translate the instruction
r <- select(c,t,f) intor <- ((-c) & t) | ((~(-c)) & £).

9 rs’ > rs means: Vr,rs(r) # Vundef = rs'(r) = rs(r), so rs’ may contain additional values.
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With the welltypedness and definedness of the registers at hand it should be straightfor-
ward to choose the right operations and prove that they give the correct result.

4 Control-Flow Security

The transformation preserves semantics irregardless of which conditions are secret. In
this section we define our taint analysis — the procedure to determine which registers and
conditions are secret — and prove the control-flow security of the transformation, meaning
that it removes all secret-dependent control flow. In this section we only consider the graph
Jorig unless specified otherwise; all graph-related notations refer to gorig-

Influence Regions

Given a vertex ¢ # exit, let ipd ¢ denote its immediate post-dominator. Let ir(c) be the
influence region of ¢ and i (c) its influence region enlarged by ipdc, that is:

v Eir(c) <= c—T"v—Tipde
vEirt(c) <= veir(c) V v=ipde

ir(c) is empty if the instruction at ¢ is no condition, since ¢ then has only one successor.

4.1 Taint Analysis

When writing a C function, our development allows the programmer to declare a set of para-
meters as secret with the tainted attribute. The goal of taint analysis is to determine which
registers and conditions are secret, that is, may depend on the values of secret parameters
during execution. This materializes in two properties, secret_reg and secret__cond.

» Definition 16 (Uniform). For v € V, let uni v :<= Ve € V,v € ir(¢c) = —secret_cond c.

uni is equivalent to the uni defined by Hack and Moll for which we give a proof in the
supplementary material and in our development. If a program point is uniform, it will be
reached in gp.s exactly if it is reached in goriy (see Section 4.2).

We want the following requirements to hold after successful taint analysis:

> Claim (T0). For each tainted parameter p we have secret_reg p (as parameters inject
into the register space).

> Claim (T1). if code@Quv = dst <- op(args) and any_ secret args, then secret_reg dst.
> Claim (T2). if code@Qv = dst <- op(args) and —uni v, then secret_reg dst.
> Claim (T3). if code@Qu = if cond(args) and any_secret args, then secret_cond v.

Here we used any__secret regs :<= 3r € regs, secret_reg r.

To achieve this, we use the Kildall dataflow inequation solver [9] present in CompCert.

We define the state to be a tuple of secret registers and secret conditions. The transfer
function works similar to the above requirements, using the current program point’s state in
place of secret_reg and secret_ cond.
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For simplicity, we want a result that is independent of the program point (that is, a
register is either always secret or never). We therefore add an extra edge exit — entry to
Jorig during the analysis: because this leads to a path between any two vertices of the graph
(via v =* exit — start —* w), the Kildall dataflow inequations allow us to prove that the
analysis result is the same everywhere, which lets us conclude that Claims TO to T3 hold.

After above taint analysis has been performed in GraphRTL, the GraphRTL-to-PredRTL
transformation uses secret cond to tell PCFL which conditions to linearize.

4.2 Proving Control-Flow Security

By control-flow security of PredRTL we mean that two executions of the same PredRTL
function that are called with the same public parameters and arbitrary secret ones make
exactly the same control flow decisions. This is equivalent to program counter security as
defined by Molnar et. al. [15].

To show control-flow security, we need the following uni-dummy relation theorem that we
will prove in Section 6 and which is equivalent to Theorem 4.1 from [14]:

Uni-Dummy Relation. For every reachable dummy state (v, vorig, 7s), we have —uni v. <

We now prove control-flow security for a single PredRTL step. Let init; and inity be two
initial states of the function with the same public parameters.

» Definition 17. agree_publicly rs rs’ <= Vr € reg, (msecret_reg r = rs(r) =rs'(r)).

» Lemma 18.

If  inity —5,q (V' w1, 78)) —prea (v1,w1,751),

*

. . / / !
inity —3.eq (V' W, 785) —pred (va, w2,752) and
agree__publicly rs| rsh,

then vy =wvy A agree_publicly rsy rso.

Proof. Consider the instruction at v’ and whether the states (v’,w,rs}) and (v', wh, rsb)
are live.
If code@v’ = dst <- op(args):
As v’ has only one successor, v; = v is clear. It remains to show that rs; and rsy agree
publicly. If both states are dummy, the registers are not updated and so the statement
holds by assumption. If both states are live, consider args. If any _secret args, we have
secret_reg dst by Claim T1 and so the change to dst is irrelevant for public agreement. If
—any__secret args, rsi(args) = rsa(args) (because agree__publicly rsy rs2) and therefore
the result of op(args) is the same in both executions.
If one state is live and one is dummy, say v = w} # w), we make use of the uni-dummy
relation which yields —uni v’. By Claim T2 it is then secret_reg dst and so public
agreement is preserved.
If code@v’ = if cond(args):
As the registers are not changed, only v; = vy remains to show. If the condition is
uniform, by Claim T3 we have —any _secret args and therefore the result of cond(args)
is the same in both executions, so the same branch is taken. If the condition is secret, we
use the linearization property of PCFL that secret conditions only have a single successor
in Gpcfl- <4
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We can now conclude control-flow security, which we formulate as follows. Let s1 L* pred
$o denote a simulation path from s; to so where tr is the trace of all traversed program
points. If two paths have the same trace, it follows that the same sequence of instructions
was performed, only with possibly different values.

» Corollary 19 (Control-Flow Security).

t7‘1 t'fg
If inity —" prea (V1,w1,781), Nty —" prea (V2, wo,rs2) and |tri| = |tra|,

then try =tro A vy =vy A agree_publicly rs; rso.

Proof. We do an induction on |try| = [tra]. If both are empty, the relevant states are inity
and inity, which both start at the entry vertex, so by Claim TO, we get rs; = rsa.
Otherwise, remove the most recent program point from try and tre to get tr] and trs.
We then have the following situation:
tr’l
inity —" prea (V, W1, 781) —prea (v1,w1,751)

tr'z
.. * / / !
inity —" pred (V3, Wy, 785) —pred (V2, wa,752)

By induction, ¢r] = trh, v = v} and agree_publicly rs} rsh, so we can use Lemma 18 to
finish the proof. <

Our development features control-flow security via Theorem control_flow_security.

Cube Simulation

Now that we have showed the control-flow security of PredRTL, it remains to show a similar
result for the SelRTL and RTL functions that are produced by the transformation. This can
be done via a cube simulation diagram [3], where one axis represents the two IRs between
which we simulate, another one the progress in time and the third one the two different
executions of the same function. We have not written this proof in our development but
it seems straightforward by doing a case distinction on the possible PredRTL steps and
employing the control-flow security step lemma from above. It is thereby important to mark
all the new registers introduced during predication as secret because they can differ between
both executions.

5 Allowing Unsafe Instructions

One big restriction of our current development is the limitation to safe instructions, as
described in Section 3.3, which also includes banning memory instructions because they
cannot be predicated.

The uni-dummy relation allows us to lift these restrictions considerably. We reformulate
its statement: if v is a uniform program point, every reachable state (v,vorig,7s) is live,
meaning v is reached in g,y exactly if it is reached in gorig-

Therefore it is enough to predicate instructions at non-uniform program points, while
those at uniform program points can simply be copied to the SelRTL code. This allows us to
use unsafe operations and memory instructions at all uniform program points.

When doing this, we still have to be careful with the register-definedness: we need to make
sure that registers used at nonuniform program points are defined, otherwise the simulation
may break just as described in Section 3.3. So, an unsafe operation can only be allowed when
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its destination register is not used as the argument of any operation at a nonuniform program
point. We therefore cannot fully remove but instead relax the rs_defined rs condition to
critical_rs_defined rs where the set of critical registers has been determined together
with the taint analysis.

We did not yet implement or prove the critical register relaxation and with it the
permission for unsafe operations that we described here in our development. To show a proof
of concept however, we added support for the I1oad operation at nonuniform program points
to allow loading from memory and use the uni-dummy relation to show that these Iloads
do not have to be predicated. Because we did not relax rs_defined, we cheated a bit by
axiomatically requiring that for any Iload that returns Some val, val <> Vundef.

6 Proving the Uni-Dummy Relation

The uni-dummy relation was prominent in the previous sections as it was required both for
proving control-flow security and for restricting predication to fewer instructions. While
its statement is similar to Theorem 4.1 in [14] which was already proven there, we will
still provide a different proof in this section because our formulation with influence regions
provides a slightly different insight than theirs using control dependence.

As in Section 4, all graph-related notations in this section refer to gorig.

» Definition 20.

Given c1,co € V, we say that their influence regions intersect if
ciNey = Ar,x €irt(c) AN x€irt(co).

Indirect intersection is denoted by an intersection chain: ¢; Nca M-+ Neckg—1 Nck.
For v,w € V, define

chain v w <= ey, €V v €irt(c,) A w€irt(cy)
A cyN-Ney A Vee{ey,...,cu},secret_cond c.

If chain v w, then v and w are related by a chain of intersecting influence regions, each
coming from a secret condition. When PCFL changes an edge target, it relates to the original
one via chain:

> Claim 21. Vv =459 w with w # detour v w, we have chain w (detour v w).

Figure 8 illustrates this: for the new edge 6 — 7 there is 6 € i (1), 7 € ir*(3) and
1N 2N 3 with all of 1,2, 3 being secret conditions.

Assuming Claim 21 we can prove the following theorem that is stronger than the uni-
dummy relation:

» Theorem 22. For every reachable dummy state (v, Vorig,7$), we have chain v vVorig.

Proof. We prove the statement via induction on — 4. Consider the previous step that
led to this state:
(w,w,rs") —pred (U, Vorig, 78): this implies w —orig Vorig and v = detour w vorig. The
statement follows from Claim 21.
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Y ¥ 4

A b

PCFL @T\.._@"":?@ .-
H \~~~ ------------ ‘—,—

gorig gpcfl

Figure 8 All conditions 1, 2 and 3 are secret. Dashed edges were created by PCFL. We see that
for all new edges v — w we have chain v w (influence regions are considered in gorig, N0t in gpesi)-

(W, Vorig, T8") —pred (U, Vorig,7s) With w # vgpig: this implies w —4pg w' with v =
detour w w’. By induction, chain w very and by Claim 21, chain v w’, therefore
Cw N+ N Cyorig @A cy M-+ M Cyyr.
If w # ipd ¢, then by w — w’ we get w’ € ir™(c,) and therefore the following is a valid
intersection chain for v and vorig:

Cy Moo M Cyr My M- M Cyorig-
N—_——

contain w’

Otherwise, ipdcy, = W <idz Vorig Side iPd Cyorig 50 We use below Claim 23 to find a

&€ {Cuw,- -, Coorig} With w € ir(¢) and therefore w’ € ir*(&). The chain is then:
Cy NN cyr NC NN Cyorig- |
—— ;
contain w’

> Claim 23 (Chain Containment). If¢;N---Ney and ipd ¢; <jq. ipd ek, then Ji,ipd ¢; € ir(c;).

A proof for Claim 23 is provided in the supplementary material and in our development. We
will now restate and prove the uni-dummy relation, present as Corollary uni_chain_path
in our development.

» Theorem 24. For every reachable dummy state (v, Vorig, 7's), we have ~uni v.

Proof. Let (v,vorig,7s) be an reachable dummy state. By Lemma 22 it is chain v vorig,
SO Cy M-+ N Cyorig With v € irt(c,) and all of {c,,... , Coorig} are secret. To show —uni v,
we need a ¢ with v € ir(¢) A secret_cond ¢. If ¢ # ipd ¢,, we can just use ¢,. Otherwise,
we use Claim 23, noting that ipdc, = v <idge Vorig Side iPd Cvorig, Which gives us such a

¢ e {cy,. -, Coorig}- <

6.1 PCFL Invariant

It remains to show Claim 21 which is, in contrast to what we have shown so far, a statement
about PCFL itself.

Consider the PCFL algorithm as described in Section 2.1 and let D; denote the set
of deferred edges before the i’th step. Recall the invariant from Section 2.1 stating that
(v,w) € D; = v <ige w. We now inductively prove the additional invariant: (v,w) €
D; = chain v w. Trivially, Dy is empty.

After processing b — the ¢’th vertex in idx — an edge (v,w) € D;11 arises in one of five
ways:
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1. (v,w) € D;. The invariant holds by induction.

2. b—v A b— w with b a secret condition. As v € irT(b) A w € ir™(b), we can use the
trivial chain bNb.

3.b—>v A (byw) € D; with v <;4, w. By induction, there is a chain ¢, N --- N ¢, with
beirt(c) A weirt(cy).
If b # ipd e then v € irt(c,) and so the same chain works for chain v w. Otherwise,
from ipd ¢y = b <;igz W <4z ipd ¢, and Claim 23 we get a & with b € ir(¢), so v € ir™ (¢)
and so ¢N -+ N ¢y gives the required chain.

4. (byv) € D; N b— w with v <;q, w. This case is equivalent to the one above by noting
chain v w = chain w v.

5. (b,v) € D; A (byw) € D; with v <;4, w. By induction, there are two chains cé N---Necy
and cg N---Ncy, and so we get the required chain via:

CyN---N g NeE NNy
——"

contain b

Proof of Claim 21. To conclude Claim 21, assume v — w and detour v w =: w’ # w:
Either v — w’ with v secret: then we have w € ir™* (v) and w’ € ir™ (v), giving chain w w'.
Otherwise (v,w’) € D;, giving chain v w’' by above invariant. We conclude chain w w’
again using Claim 23 and v <;q, w'. <

7 Future Work

This work can be expanded in many ways, most prominently by reducing the restrictions
that we have imposed initially. We shortly sketch how this may be done in each case.

Memory and Unsafe Operations

In Section 5 we already described how the restriction to safe operations and memory
instructions can be weakened, allowing us to use them at uniform program points given some
requirements on the registers they are allowed to write to.

It is also possible to allow memory writes or unsafe operations at nonuniform program
points to a certain degree. For example, a division like x <- 1/y may be transformed into
a two-step safe division before predication: y' <- select(y =7 0, 1, y) ;; x <= 1/y'.
Soares et. al [20] describe a similar transformation for memory accesses: a shadow memory can
be introduced and a memory store like *x <- y can be transformed into p <- select(live,
x, shadow) ;; *p <- y during predication; loads work analogously. While this allows
compiling code with arbitrary unsafe and memory instructions (and thereby maintaining
verified control-flow security), it introduces cache effects that are not at all obvious to
mitigate.

Function Calls

Function calls at uniform locations with all-public parameters can be handled similarly to
unsafe operations as described in Section 5.

If we allow secret parameters in function calls, we need a global taint analysis that
guarantees that every parameter of a function that is ever instantiated with a secret value
is marked as tainted. This global taint analysis may also be outsourced to other tools or
manually annotated by the user and then assumed as an axiom in CompCert.
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When function calls are additionally allowed at nonuniform locations, we would have
to transform them in such a way that they are fully side-effect free (that is, no external
calls and only shadow-memory access). Without assuming some kind of acyclicity in the call
graph we will not be able to prove semantic preservation because a dummy function call
during a detour may never return control back to its caller.

Loops

Assuming all loops only have uniform exit edges (and are in a nice enough form), it should
be manageable to verify PCFL: first do a loop analysis and then either perform PCFL after
removing all back-edges and reinsert them afterwards, or transform each loop in itself, each
being an acyclic graph without its back-edge. Beyond integrating a verified loop analysis into
CompCert (which has already been done in [4]) one would have to explore and reformulate
what happens to the postdominance relationship between v and v,,;4 by either restricting
attention to a relevant loop-subgraph during simulation or by finding a sensible global
formulation. If we require that each loop has a single exit edge, by uniformity of its condition
it should be straightforward to show that the loop exit is taken simultaneously in PredRTL
and in GraphRTL.

If we allow loops to have secret exit edges, it is impossible to prove semantic preservation

using the extended transformation described by Hack and Moll [14] or by Soares et al. [19].

This is not only because the transformation is complex and extremely intricate, especially
when considering nested loops, but because it can break simulation: a loop that exited through
a secret exit before may never exit after the transformation. Additional external guarantees
(or a weaker notion of simulation that is allowed to diverge after the transformation of a
terminating program) and an immense time effort would be required for verifying such a
transformation.

Control-Flow Security

We have only formally proven that PredRTL-code is free of secret branches. To maintain this
guarantee through the full chain of transformations down to assembly code, one could integrate
the work done by Barthe et al. [3] which verifies that most CompCert-transformations are
constant-time preserving.
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