
Verification of the CVM Algorithm with a
Functional Probabilistic Invariant
Emin Karayel #

School of Computation, Information and Technology, Technical University of Munich, Germany

Seng Joe Watt #

Institute for Infocomm Research (I2R), A*STAR, Singapore

Derek Khu #

Institute for Infocomm Research (I2R), A*STAR, Singapore

Kuldeep S. Meel #

Georgia Institute of Technology, Atlanta, GA, USA
University of Toronto, Canada

Yong Kiam Tan #

Institute for Infocomm Research (I2R), A*STAR, Singapore
Nanyang Technological University, Singapore

Abstract
Estimating the number of distinct elements in a data stream is a classic problem with numerous
applications in computer science. We formalize a recent, remarkably simple, randomized algorithm
for this problem due to Chakraborty, Vinodchandran, and Meel (called the CVM algorithm).
Their algorithm deviated considerably from the state of the art, due to its avoidance of intricate
derandomization techniques, while still maintaining a close-to-optimal logarithmic space complexity.

Central to our formalization is a new proof technique based on functional probabilistic invariants,
which allows us to derive concentration bounds using the Cramér–Chernoff method without relying
on independence. This simplifies the formal analysis considerably compared to the original proof
by Chakraborty et al. Moreover, our technique opens up the possible algorithm design space; we
demonstrate this by introducing and verifying a new variant of the CVM algorithm that is both
total and unbiased – neither of which is a property of the original algorithm. In this paper, we
introduce the proof technique, describe its use in mechanizing both versions of the CVM algorithm in
Isabelle/HOL, and present a supporting formalized library on negatively associated random variables
used to verify the latter variant.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Higher order logic; Mathematics of computing → Probabilistic algorithms; Theory
of computation → Pseudorandomness and derandomization

Keywords and phrases Verification, Isabelle/HOL, Randomized Algorithms, Distinct Elements

Digital Object Identifier 10.4230/LIPIcs.ITP.2025.34

Supplementary Material
Software: https://isa-afp.org/entries/CVM_Distinct_Elements.html [34]
Software: https://github.com/joewatt95/CVM/tree/main/isabelle/CVM_Transforms [48]

archived at swh:1:dir:7df92f0347e7bd150efef42e3edbbde0037498cc
Software: https://isa-afp.org/entries/Negative_Association.html [33]

Funding Seng Joe Watt: Singapore NRF Fellowship Programme NRF-NRFF16-2024-0002.
Kuldeep S. Meel: Natural Sciences and Engineering Research Council of Canada (NSERC), funding
reference [RGPIN-2024-05956].
Yong Kiam Tan: Singapore NRF Fellowship Programme NRF-NRFF16-2024-0002.

© Emin Karayel, Seng Joe Watt, Derek Khu, Kuldeep S. Meel, and Yong Kiam Tan;
licensed under Creative Commons License CC-BY 4.0

16th International Conference on Interactive Theorem Proving (ITP 2025).
Editors: Yannick Forster and Chantal Keller; Article No. 34; pp. 34:1–34:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:me@eminkarayel.de
https://orcid.org/0000-0003-3290-5034
mailto:Watt_Seng_Joe@i2r.a-star.edu.sg
https://orcid.org/0000-0002-6883-4736
mailto:derek_khu@i2r.a-star.edu.sg
https://orcid.org/0009-0000-0293-0664
mailto:meel@cs.toronto.edu
https://orcid.org/0000-0001-9423-5270
mailto:yongkiam.tan@ntu.edu.sg
https://orcid.org/0000-0001-7033-2463
https://doi.org/10.4230/LIPIcs.ITP.2025.34
https://isa-afp.org/entries/CVM_Distinct_Elements.html
https://github.com/joewatt95/CVM/tree/main/isabelle/CVM_Transforms
https://archive.softwareheritage.org/swh:1:dir:7df92f0347e7bd150efef42e3edbbde0037498cc
https://isa-afp.org/entries/Negative_Association.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

34:2 Verification of the CVM Algorithm with a Functional Probabilistic Invariant

1 Introduction

In 2022, Chakraborty, Vinodchandran, and Meel [10] published a remarkable streaming
algorithm for the distinct elements problem [41]. Indeed, Knuth later wrote a note on the
algorithm [35], pointing out its interesting properties and christening it the CVM algorithm
(which we use for the rest of this paper). One striking property of the CVM algorithm is
that, in contrast to every other known algorithm for the problem, it does not rely on hashing
the stream elements. Instead, the algorithm could theoretically be implemented in a setting
where objects in the data stream only allow for equality comparisons. Another property is its
simplicity, which is why the authors called it “an algorithm for the textbook”. The algorithm
is displayed in its entirety in Algorithm 1.

Algorithm 1 CVM algorithm for distinct elements estimation [10].

Input: Stream elements a1, . . . , al, 0 < ε, 0 < δ < 1.
Output: A cardinality estimate R for set A = {a1, . . . , al} such that P (|R− |A|| > ε|A|) ≤ δ

1: χ← {}, p← 1, n =
⌈ 12

ε2 ln (6l
δ)
⌉

2: for i← 1 to l do
3: b

$←− Ber(p) ▷ randomly sample a bit b from the Bernoulli distribution
4: if b then ▷ insert ai if b is true (with prob. p)
5: χ← χ ∪ {ai}
6: else ▷ remove ai otherwise
7: χ← χ− {ai}
8: if |χ| = n then ▷ if buffer χ is full
9: χ

$←− subsample(χ) ▷ discard elements of χ independently with prob. 1
2

10: p← p
2

11: if |χ| = n then return ⊥ ▷ fail if χ remains full
12: return |χ|

p ▷ estimate cardinality of A

The pen-and-paper analysis of CVM [10, 11] relies on a sequence of transformations of
the algorithm. The reason for these transformations is that standard methods for analyzing
randomized algorithms, such as Chernoff–Hoeffding bounds, usually make statements about
independent random variables. However, for Algorithm 1, the state variables are far from
being independent.1 For example, in Line 3 the Bernoulli distribution is sampled with the
parameter p, which itself depends on previous random operations; similarly, the subsampling
step in Line 9 is only applied if the buffer χ is full, which also depends on previous random
operations. The aforementioned sequence of transformations by Chakraborty et al. results in
another randomized algorithm which can be analyzed using standard methods, and from
which the desired results for the original algorithm can be deduced. To our knowledge, it seems
impossible to analyze Algorithm 1 more directly using known textbook methods [3, 39, 40].

In this paper, we present a new technique for analyzing randomized algorithms which
yields a direct and substantially more general proof of the CVM algorithm. Our approach
is very similar to how deterministic algorithms are verified using loop invariants. The key
difference is that our choice of “loop invariant” for the randomized streaming algorithm is a
functional probabilistic inequality, namely, we consider invariants of the form:

E[h] ≤ h(c)

1 There is an incorrect claim in the initial published proof of CVM [10, Claim 6] that the indicator
functions for elements in χ are independent; a later version by the same authors [11] provides a correct
proof. The original error serves as a side motivation for this work.

E. Karayel, S. J. Watt, D. Khu, K. S. Meel, and Y. K. Tan 34:3

where the expectation is taken over the distribution of the state of the algorithm; h is allowed
to range over a class of functions (mapping states to real values); and c is a fixed state
(possibly chosen differently at each loop iteration). By first establishing such an invariant
for Algorithm 1, we can then use it (via different choices of h) to establish error bounds for
the algorithm. We coined the term “functional probabilistic invariant”, borrowing loosely
from the theory of the calculus of variations, where scalar-valued maps – called functionals –
from the problem space are used to solve optimization problems. In our case we are using
scalar-valued maps – i.e., functionals – from the distribution of the state of the algorithm,
which lead us to the name for our new technique. We believe the new proof remains accessible
at the undergraduate level, albeit with some exposure to mechanized theorem proving.

To show the generality of our technique, we introduce a new variant of the CVM algorithm,
where the subsampling step in Line 9 of Algorithm 1 selects a random m-subset of χ instead
of independently discarding each element with some probability. This variant has the benefit
that it is total (never returns ⊥) because the second check in Line 11 becomes obsolete. More
interestingly, the variant is unbiased, i.e., the expected value of the algorithm’s output is
exactly the cardinality of the elements in the stream; this is a new property that neither the
original CVM algorithm nor classic algorithms for the distinct elements problem possess.

The modified subsampling step leads to additional dependence for the elements in χ

which cannot be readily removed using transformations as was done in the original proof.
Instead, we verify the new variant with our probabilistic invariant-based approach, using
results from the theory of negatively associated random variables [29] to establish the desired
functional invariant. The concept of negative association is a generalization of independence;
importantly, negatively associated variables observe closure properties and fulfill Chernoff–
Hoeffding bounds similarly to independent random variables. It should be stressed that the
theory of negative association is orthogonal to our new technique, but its formalization is
also a contribution of this work.

In summary, our main contributions are:
Introduction of a new technique using functional probabilistic invariants to verify tail-
bounds for randomized algorithms inductively/recursively.
Verification of the original CVM algorithm using our new technique.
Presentation and verification of a new variant of CVM that is total and unbiased.
Formalization of a theory of negatively associated random variables used to analyze the
new CVM variant.

We carried out the mechanizations using Isabelle/HOL [42], which comes with a large
repository of foundational libraries [1] for the verification of randomized algorithms. We
have also mechanized the transformation-based CVM proof by Chakraborty et al. [10, 11],
which provides a rough point of comparison: verification of the CVM algorithm using our
new technique required only 1003 lines, while the original proof required 2634 lines.2

The rest of this paper is organized as follows. Section 2 provides background information
on randomized algorithms, in particular on their semantics in Isabelle/HOL. Section 3
introduces our new technique and explains how probabilistic loop invariants can be used to
establish tail bounds for the original CVM algorithm. Section 4 introduces the concept of
negative association and our new total and unbiased variant of the CVM algorithm. Section 5
presents the formalization of both variants of the algorithm, and Section 6 describes our

2 We count the total number of lines of Isabelle code in the whole project, excluding empty, comment,
and presentation-related lines.

ITP 2025

34:4 Verification of the CVM Algorithm with a Functional Probabilistic Invariant

new formalized library on negatively associated random variables. Section 7 discusses some
challenges faced in our alternative verification of CVM using the transformation-based proof
by Chakraborty et al. The final sections present related work and a summary of our results.

The supplementary material contains:
formalization [34] of the CVM algorithm, both the original version (Algorithm 1) and
our new version (Algorithm 3) using functional probabilistic invariants;
formalization [33] of a library for negative association; and
formalization [48] of the CVM algorithm following the proof by Chakraborty et al. [10, 11].

2 Background

2.1 Randomized Algorithms and Distinct Elements
The CVM algorithm is a streaming algorithm for the distinct elements problem. As shown
in Algorithm 1, given a data stream a1, . . . , al, the goal of such algorithms is to return an
accurate cardinality estimate for the set A = {a1, . . . , al}.

Importantly, CVM is a probably approximately correct (PAC) algorithm where its output
estimate R satisfies P (|R− |A|| > ε|A|) ≤ δ for parameters ε and δ, i.e., the probability
that the relative error of R with respect to |A| exceeds ε is at most δ. Moreover, let us
assume that the space needed to store each element in the stream is b bits, then the CVM
algorithm requires only O(ε−2b ln(δ−1l)) bits of mutable state, which is far less than storing
each stream element deterministically.

▶ Remark 1. The asymptotically optimal randomized algorithm for distinct elements requires
O(ε−2 ln δ + b) bits, but it requires more advanced algorithmic techniques. It would not be
possible to present using such elementary steps as in Algorithm 1 as it involves computations
in finite fields and random walks in expander graphs [8, 32]. ⌟

2.2 Semantics of Randomized Algorithms
We briefly review how reasoning about randomized algorithms works in Isabelle/HOL using
the Giry monad [21]. Multiple authors provide more thorough discussions of the concept in
the context of Isabelle and other proof assistants [4, 17, 37].

The key idea is to model a randomized algorithm as a probability space representing the
distribution of its results. As an example, let us consider Algorithm 2.

Algorithm 2 Example for sequential composition.

1: p
$←− Ber(1

2)
2: q

$←− Ber(1
3 + p

2)
3: return q

In the first step, Algorithm 2 flips a fair coin, such that p is 1 with probability 1
2 and 0

otherwise; the notation Ber(p) represents the Bernoulli distribution. In the second step, the
algorithm flips a coin q which depends on p. This has the consequence that, to semantically
model q, we have to consider functions returning probability spaces, like: p 7→ Ber(1

3 + p
2),

which is being bound to the distribution of p. The resulting distribution for q is a compound
distribution resulting from a combination of Ber(1

3) (when p = 0) and Ber(5
6) (when p = 1).

This example captures the main aspects of modeling randomized algorithms in the Giry
monad. Indeed, randomized algorithms can be modeled using the following ingredients:

E. Karayel, S. J. Watt, D. Khu, K. S. Meel, and Y. K. Tan 34:5

Primitive Random Operations. For example, a simple fair coin flip is represented using the
Bernoulli distribution, Ber(1

2).
Return Combinator. Given an element x, we can construct the singleton probability space,

assigning probability 1 to x and 0 to everything else. In monad notation, this is written
as: return x.

Bind Combinator. The bind combinator represents sequential composition of two randomized
algorithms m and f , where the latter randomized algorithm consumes the output of the
former; in monad notation, this is: m>>=f . Mathematically, this is the most involved
operation, because f is a function returning probability spaces, which takes inputs from
the probability space m.
Let us consider an event A in the probability space m>>=f . Its probability can be
evaluated by integrating over its probabilities in f with respect to m:

Pm>>=f (A) =
∫

m

Pf(x)(A) dx.

Another key property is the calculation of expectations; if h is a random variable over
m>>=f , we can compute its expectation as:

Em>>=f [h] =
∫

m

Ef(x)[h] dx. (1)

Equation 1 is crucially used to establish the invariants we introduce next in Section 3.

3 Functional Probabilistic Invariants

In this section, we will derive our new technique using Algorithm 1 as an example. Let
us start by briefly reviewing the algorithm – its state is a buffer χ (initially empty) and a
fraction p > 0 (initially set to 1). The buffer tracks a subset of the elements of the stream
encountered so far, with maximal size n chosen according to the desired accuracy parameters
ε, δ, and the stream size l. The algorithm iterates over the stream elements, adding each
one to the buffer with probability p or conversely – if the current stream element is already
in the buffer – removing it with probability (1− p) (Lines 3–7). If the number of elements
in the buffer reaches the maximal size n, the subsampling operation is executed, which
discards each element in χ independently with probability 1

2 ; then, p is adjusted to reflect
the fact that the buffer now contains each element with probability pnew = pold

2 (Lines 8–10).
If the subsampling operation fails, i.e., if no elements get discarded, then the algorithm
fails returning ⊥ (Line 11). After processing the stream, the algorithm returns |χ|

p as a
probably-approximately correct estimate for the number of distinct elements in the stream.

▶ Remark 2. For our discussion below, it is convenient to analyze Algorithm 1 without Line
11, i.e., we will skip the second check of |χ| = n determining whether the subsampling step
succeeded. This modified version simplifies our analysis as we do not have to worry about
the possibility of the algorithm failing (returning ⊥). This transformation is also used in the
original CVM proof [11], where the total variational distance between these two variants of
the algorithms is shown to be at most δ

2 . Thus, probability bounds derived for the modified
version can be transferred to the original algorithm, with a correction term of δ

2 . ⌟

ITP 2025

34:6 Verification of the CVM Algorithm with a Functional Probabilistic Invariant

3.1 Deriving a Simple Probabilistic Invariant
Consider the random variables Xs := I(s ∈ χ) indicating the presence of a stream element
s ∈ A = {a1, . . . , al} in the buffer, where we write I for the indicator of a predicate, so
I(true) = 1 and I(false) = 0. Before the algorithm first encounters the stream element s, Xs

will be 0 unconditionally, because the buffer χ is always a subset of the stream elements
processed so far, i.e., χ ⊆ {a1, . . . , am} after loop iteration m.

In the loop iteration where element s occurs for the first time, it will be inserted with
probability p in Lines 3–7. This means, after Line 7, we have:

E[p−1Xs] = 1. (2)

Interestingly, this equation is preserved for the rest of the algorithm. For example, let
us consider a subsampling step: each s is independently discarded with probability 1

2 so
P(Xs = 1) is halved, but so is p after subsampling, which preserves the equation.

Let us see how we can verify Equation 2 more formally. For that, we model the state of
the randomized algorithm as a pair (χ, p) and we write χ and p for the random variables
projecting their respective components from the distribution of the state of the algorithm.
We will refer to parts of each loop iteration in Algorithm 1 as step1 (resp. step2) for Lines
3–7 (resp. Lines 8–10). The final distribution of the algorithm is the distribution resulting
from the sequential composition of alternating steps over the stream:

init >>= step1 a1 >>= step2 >>= step1 a2 >>= · · ·>>= step1 al >>= step2

where we parameterize step1 with the stream element that it processes. The term init
represents the initial state, i.e., init = return ({}, 1). It is easy to show by induction over
the sequence of steps, we have 0 < p ≤ 1 and χ ⊆ A for all possible states of the algorithm.

Let us verify that Equation 2 is preserved as an invariant over all steps. To verify that
step1 a preserves Equation 2, we assume some probability space of states Ω fulfills Equation 2
and we would like to show that it is still true for Ω >>= step1 a. By Equation 1,

EΩ >>= step1 a[p−1Xs] =
∫

Ω

∫
Ber(p)

p−1 I (s ∈ (if τ then χ ∪ {a} else χ− {a})) dτ dσ. (3)

Note that we write p or χ even though we should actually write p(σ) or χ(σ), i.e., we
remember that these implicitly depend on σ. To see that the right-hand side is equal to 1, it
is useful to consider cases on whether a = s. When a = s, the right-hand-side is equal to
1 by definition of the Bernoulli distribution (since p ∈ (0; 1]). When a ̸= s, it follows from
the induction hypothesis on Ω; in particular, the term in the inner integral is constant with
respect to τ .

The same invariant-based argument is possible for step2. Let us assume Ω is a probability
space of states fulfilling Equation 2. Then by Equation 1, EΩ >>= step2 [p−1Xs] equals∫

Ω

(
if |χ| = n then

(∫
subsample(χ)

I(s ∈ τ)
p/2 dτ

)
else I(s ∈ χ)

p

)
dσ. (4)

Note that the true and false cases of the inner if-then-else both evaluate to the same value:
p−1 I(s ∈ χ). If s /∈ χ both sides of the equation are 0, because the subsampling operation
returns a subset of χ. If s ∈ χ the probability that the element gets subsampled is 1/2, so
we arrive again at 1/2

p/2 = p−1 I(s ∈ χ). Hence: EΩ >>= step2 [p−1Xs] = EΩ[p−1Xs] = 1. This
completes the invariance proof for Equation 2.

E. Karayel, S. J. Watt, D. Khu, K. S. Meel, and Y. K. Tan 34:7

3.2 Deriving a Functional Probabilistic Invariant

With Equation 2 established, it is straightforward to show that the expected value of the
output estimate p−1|χ| for the modified algorithm (without Line 11) is equal to the desired
cardinality |A|. However, recall that we are interested in verifying the estimate’s PAC
guarantee. A typical approach to establishing such a guarantee is to use Chernoff bounds
which provide exponential tail bounds (i.e., concentration bounds) for the deviation of sums
of independent random variables from their mean. However, these are not directly useful in
the CVM algorithm because the key random variables, e.g., p−1Xs for s ∈ A, are dependent.

An alternative is the Cramér–Chernoff method, which is a general method to obtain tail
bounds for any random variable. It can be stated simply as P(X ≥ a) ≤ M(t)e−ta for all
t > 0, where M(t) := E[exp(tX)] is the moment generating function of the random variable X.
It is also possible to obtain lower tail bounds P(X ≤ a) using the Cramér–Chernoff method,
which just requires estimates for M(t) for t < 0, instead of t > 0.

In our case, we are interested in estimating the moment generating function of the random
variable p−1|χ| for the CVM algorithm:

E[exp(tp−1|χ|)] = E
[∏

s∈A

h(p−1Xs)
]

for h(x) = exp(tx). At this point, it is tempting to see whether the proof for Equation 2
can be generalized to establish bounds for the above. Indeed, we managed to establish the
following generalized result:

E
[∏

s∈A

h(p−1Xs)
]
≤ h(1)|A| (5)

for every non-negative concave function h : R≥0 → R≥0. However, the exponential function
in M(t) is convex, but we can instead try to derive tail bounds for the random variable
I(p ≥ q)p−1|χ|, for some fixed constant q > 0. This leads to a similar invariant inequality:

E
[∏

s∈A

I(p ≥ q)h(p−1Xs)
]
≤ h(1)|A| (6)

with the new condition that h needs to be non-negative and concave only on [0; q−1]. This
then allows us to approximate the exponential function from above with an affine function h

on the range [0; q−1], which yields tail bounds for p−1|χ| under the condition p ≥ q. As an
example, the upper tail bound can be derived as follows:

P(p−1|χ| ≥ (1 + ε)|A| ∧ p ≥ q) ≤ P(I(p ≥ q)p−1|χ| ≥ (1 + ε)|A|)

≤
Markov

e−t(1+ε)|A| E
[∏

s∈A

I(p ≥ q) exp(tp−1Xs)
]

≤ e−t(1+ε)|A| E
[∏

s∈A

I(p ≥ q)h(p−1Xs)
]

≤
Ineq. 6

e−t(1+ε)|A|h(1)|A|

≤
Calculus

e−nε2/12

ITP 2025

34:8 Verification of the CVM Algorithm with a Functional Probabilistic Invariant

Algorithm 3 New total and unbiased CVM algorithm variant.

Input: Stream elements a1, . . . , al, 0 < ε, 0 < δ < 1.
Output: A cardinality estimate R for set A = {a1, . . . , al} such that P (|R− |A|| > ε|A|) ≤ δ

1: χ← {}, p← 1, n =
⌈ 12

ε2 ln (3l
δ)
⌉
, 1

2 ≤ f < 1, such that nf integer
2: for i← 1 to l do
3: b

$←− Ber(p) ▷ insert ai with probability p (and remove it otherwise)
4: if b then
5: χ← χ ∪ {ai}
6: else
7: χ← χ− {ai}
8: if |χ| = n then ▷ if buffer χ is full
9: χ

$←− subsample(χ) ▷ select a random nf -subset of χ

10: p← pf

11: return |χ|
p ▷ estimate cardinality of A

where we choose h(x) = 1 + qx(et/q − 1). Note that h is affine and it can be easily checked3

that it is an upper approximation of exp(tx) for x ∈ [0; q−1]. For the last step, we have
to find the t that produces the required bound.4 To use these bounds, we also have to
separately estimate P(p < q). For that, we use a similar strategy, as in the original proof by
Chakraborty et al. [11], with q = n

4|A| . The formalization in the supplementary material [34]
contains a detailed informal step-by-step proof using our approach in its appendix. Besides
the use of Equation 1 and the Cramér–Chernoff method, the steps are elementary.

We call inequalities like Inequality 5 and 6: functional probabilistic invariants. The
inequalities can be established using induction over the steps of the randomized algorithm.
Even though the actual distribution of the states themselves are not known, nor do we
think it is possible to find useful closed form descriptions for them, the invariant establishes
valuable information about the distribution of the state. In this case, enough information, to
establish exponential tail bounds for the algorithm.

4 An Unbiased CVM Variant and Negative Dependence

An interesting consequence of our invariant-based approach is that it allowed us to devise
and verify a refined version of the CVM algorithm that is both total and unbiased.

4.1 Unbiased CVM Variant
When we look at the subsampling step of Algorithm 1, our invariant (Inequality 5) imposes
the following condition on the subsampling operation. It should be noted that the condition
becomes apparent while establishing Inequality 5 using similar but more general steps as
described in Equations 3 and 4.5∫

subsample(χ)

∏
s∈S

g(I(s ∈ τ)) dτ ≤
∏
s∈S

EBer(f)[g] (7)

3 Because the exponential function is convex and h is affine, we only have to check the end points: 0, q−1.
4 We use t = q ln(1 + ε) which is not the real optimum, but better for algebraic evaluation.
5 A step-by-step proof of the derivation is also available in the appendix of the formalization [34,

Appendix A].

E. Karayel, S. J. Watt, D. Khu, K. S. Meel, and Y. K. Tan 34:9

for all non-negative functions g and any S ⊆ χ, where f is the probability of retaining each
element in the subsampling step of the algorithm. (This parameter f was fixed to 1

2 in the
original presentation of the algorithm for simplicity.) Any subsampling step that satisfies
Inequality 7 can be used while still preserving Inequalities 5 and 6 for the algorithm.

Motivated by this observation, our new variant is shown in Algorithm 3. For the
subsampling step, instead of keeping each element of χ with probability 1

2 , we pick a uniform
random nf -subset of χ, where 1

2 ≤ f < 1 and nf is an integer. For example, it is possible
to choose f = n−1

n , i.e., discarding just one random element from χ in the subsampling
step. Since this new subsampling step always reduces the size of χ, the variant is total
(never returns ⊥). The invariant-based approach allows us to show that the algorithm is
probably-approximately correct and also unbiased, i.e., the expectation of the result is exactly
|A|. These depend crucially on establishing Inequality 7 for the new subsampler, for which
we need a new concept.

4.2 Background on Negative Dependence
Some sets of random variables possess a property called negative association, a generaliz-
ation of independence. The concept was introduced by Joag-Dev and Proschan [29], who
showed that it has many useful closure properties compared to other previously introduced
notions of negative dependence, such as negative correlation or negative orthant dependence.
Importantly, standard Chernoff–Hoeffding type bounds still apply to negatively associated
random variables [16, Prop. 7]. Negative association is defined as follows:

▶ Definition 3. For a function defined on n-tuples f : V n →W , we will denote by dep(f)
the set of coordinates the function depends on, i.e., dep(f) ⊆ {1, . . . , n} is minimal, such
that f(x) = f(y) for all x, y ∈ V n with xi = yi for all i ∈ dep(f).

▶ Definition 4 (Negative Association). A set of random variables X1, . . . , Xn : Ω → R is
negatively associated if, for all non-decreasing functions f, g : Rn → R, which depend on
disjoint sets of the variables, i.e., dep(f) ∩ dep(g) = ∅, the following inequality holds:

E[f(X1, . . . , Xn)g(X1, . . . , Xn)] ≤ E[f(X1, . . . , Xn)] E[g(X1, . . . , Xn)].

The following proposition summarizes some important properties of negatively associated
sets of random variables.

▶ Proposition 5 (Summary of results for negatively associated random variables [29]).
1. If X = (X1, . . . , Xn) are negatively associated then E[f(X)g(X)] ≤ E[f(X)] E[g(X)] for

non-increasing functions f, g with dep(f) ∩ dep(g) = ∅.
2. If X = (X1, . . . , Xn) are negatively associated, Y = (Y1, . . . , Ym) are negatively associated,

and the pair of vector-valued random variables X and Y are independent, then the union
X1, . . . , Xn, Y1, . . . , Ym is a set of negatively associated random variables.

3. If X = (X1, . . . , Xn) are negatively associated and f1, . . . , fm : Rn → R are all non-
increasing or all non-decreasing functions, such that dep(fi)∩ dep(fj) = ∅ for i ̸= j, then
f1(X), . . . , fm(X) form a set of negatively dependent random variables of size m.

4. If X1, . . . , Xn are independent then X1, . . . , Xn are negatively associated.
5. A subset of a negatively associated set of random variables is again negatively associated.

These properties illustrate the trade-off between negative association and independence.
For example, Property 3 would be true for independent random variables, even without the
condition of monotonicity. To analyze our new subsampler, the following is an important
lemma about negatively associated random variables.

ITP 2025

34:10 Verification of the CVM Algorithm with a Functional Probabilistic Invariant

▶ Lemma 6. Let X1, . . . , Xn be negatively associated and f1, . . . , fn be all non-decreasing
(or all non-increasing), non-negative functions, then

E
[

n∏
i=1

fi(Xi)
]
≤

n∏
i=1

fi(E[Xi]).

Proof. This follows from the definition of negative association (or Property 1 of Proposition 5,
if the fi are non-increasing) using induction. ◀

The case for non-decreasing functions of the above lemma is pointed out by Joag-Dev
and Proschan [29, P.2]. The reason for our interest in this lemma stems from the fact that
indicator variables of random m-subsets are negatively associated. This is a consequence of
the fact that permutation distributions are negatively associated [29, Th. 2.11]. Thus, for
the new subsampling step in Line 9 of Algorithm 3, we can derive using Lemma 6:∫

subsample(χ)

∏
s∈S

g(I(s ∈ τ)) dτ ≤
∏
s∈S

∫
subsample(χ)

g(I(s ∈ τ)) dτ =
∏
s∈S

EBer(f)[g]. (8)

for any non-negative g and S ⊆ χ. Note that the domain of g has two values, so it is either
non-increasing or non-decreasing. Also, if S is a singleton, the inequality becomes an equality.
With this ingredient, we can conclude that our results about the original algorithm derived
in the previous section also hold for our new variant (Algorithm 3).

5 Formalization of the CVM algorithm

Let us now turn to details of our formalization of the CVM algorithm in Isabelle/HOL using
our invariant-based approach [34]. We verified both the total, unbiased variant (Algorithm 3)
and the original variant (Algorithm 1) from the introduction.
▶ Note 7. In our supplementary material [34], the theory CVM_Abstract_Algorithm veri-
fies a generalized version of the CVM algorithm, with an abstract subsampling oper-
ation that is required to fulfill Inequality 7. The specialization happens in the fol-
lowing theories, where CVM_Original_Algorithm verifies the original algorithm, and
CVM_New_Unbiased_Algorithm verifies the new total and unbiased variant. Note that only
CVM_New_Unbiased_Algorithm depends on the new library for negatively associated random
variables, which we describe in more detail in Section 6. The total number of lines required for
the verification of the original algorithm is 1003 lines. In addition, we actually verified a slight
generalization of Algorithm 1 where the subsampling probability can be any f ∈ [1

2 ; e−1/12];
the original CVM algorithm [10] is the special case f = 1

2 . ⌟

A snippet of the formalization of Algorithm 3 is presented in Figure 1 (the formalization
of Algorithm 1 is very similar). We use the same variables as in the informal presentation: n

for the maximal size of the buffer, f for the fraction of elements to keep in the buffer when
subsampling. The condition ‹n ∗ f ∈ �› expresses the requirement that the nf must be
integer. Instead of representing the state using pairs, as we did in the informal discussion, we
use a datatype with the single constructor State, which has two arguments χ and p, the buffer
and the probability that the stream elements are in the buffer, respectively. Isabelle/HOL
provides notation closely related to informal pseudocode, so it is usually feasible to read a
formal statement without expert knowledge. Nevertheless, Table 1 contains a brief glossary
of the syntax used in the formalization.

The theorem that establishes the correctness of the algorithm, i.e., that the relative error
will exceed ε with probability at most δ is expressed in the following snippet:

E. Karayel, S. J. Watt, D. Khu, K. S. Meel, and Y. K. Tan 34:11

context
fixes f :: real and n :: nat
assumes f-range: ‹f ∈ {1/2 ..<1}› ‹n ∗ f ∈ �› and n-gt-0 : ‹n > 0 ›

begin

definition ‹initial-state = State {} 1 › — Setup initial state χ = ∅ and p = 1.
fun subsample where — Subsampling operation: Sample random nf subset.

‹subsample χ = pmf-of-set {S . S ⊆ χ ∧ card S = n ∗ f }›

fun step where — Loop body.
‹step a (State χ p) = do {

b ← bernoulli-pmf p;
let χ = (if b then χ ∪ {a} else χ − {a});

if card χ = n then do {
χ ← subsample χ;
return-pmf (State χ (p ∗ f))
} else do {

return-pmf (State χ p)
}
}›

fun run-steps where — Iterate loop over stream xs.
‹run-steps xs = foldM-pmf step xs initial-state›

fun estimate where ‹estimate (State χ p) = card χ / p›
fun run-algo where — Run algorithm and estimate.

‹run-algo xs = map-pmf estimate (run-steps xs)›
[. . .]
end

Figure 1 Formalized version of Algorithm 3.

theorem correctness:
assumes ‹ε ∈ {0<..<1 ::real}› ‹δ ∈ {0<..<1 ::real}›
assumes ‹real n ≥ 12 / ε2 ∗ ln (3 ∗ real (length xs) / δ)›
defines ‹A ≡ real (card (set xs))›
shows ‹P(R in run-algo xs. |R − A| > ε ∗ A) ≤ δ›

The first line gives conditions on parameters ε and δ, which must be strictly between 0 and 1.
The next line requires the buffer size n to be larger than or equal to 12ε−2 ln(3δ−1l). Then,
we introduce the abbreviation A for the cardinality of the set of elements in the sequence xs.
The notation P(x in M . P x) denotes the probability of a predicate P in the probability
space M , so the conclusion gives the PAC guarantee for the output estimate R from run-algo.

Similarly, we have also formalized unbiasedness of Algorithm 3:

theorem unbiasedness: ‹measure-pmf .expectation (run-algo xs) id = card (set xs)›

where the expression measure-pmf .expectation M f denotes the expectation of the random
variable f on the probability space M.

Our proofs are available both in mechanized form in Isabelle/HOL and as a pen-and-paper
proof included in the associated proof document. In practice, we developed the latter proof
first and then mechanized it in Isabelle/HOL without much surprise. Most of the lemmas
can be identified one-to-one between both proofs; Isabelle’s existing libraries, automation
capabilities, and structured proof format were used extensively in our proofs.

ITP 2025

34:12 Verification of the CVM Algorithm with a Functional Probabilistic Invariant

Table 1 Isabelle/HOL syntax used in Figure 1.

Term Description

card S Cardinality of a finite set S.
real Type of real numbers and conversion from natural numbers into

real numbers.
nat Type of natural numbers (non-negative integers).
bernoulli-pmf p The probability space over the Boolean values, where the prob-

ability of True is p. (Bernoulli distribution.)
pmf-of-set S For a finite set S, the uniform probability space on S. (Every

element of S is equiprobable.)
map-pmf f A The probability space representing the distribution of the random

variable f over the probability space A.
return-pmf x The probability space of the singleton {x}.
foldM-pmf f xs a Iterate randomized algorithm f over the sequence xs using the

initial state a.

6 Formalization of a Library for Negative Association

As mentioned in Section 4, formalizing the total and unbiased variant of the CVM algorithm
requires results from the theory of negative association.

▶ Note 8. The formalization of the theory of negative association is included in a separate
AFP entry [33]. This library contains key results used to establish the invariants for CVM
(e.g., Neg_Assoc_Permutation_Distributions). Although not needed for CVM, we have
also mechanized the standard Chernoff bounds (Neg_Assoc_Chernoff_Bounds), including
the additive bounds by Hoeffding [27, Th. 1, 2] and the multiplicative bounds by Motwani
and Raghavan [40, Th. 4.1, 4.2]. Another example application included in the library is
proving the false positive rate of Bloom filters (Neg_Assoc_Bloom_Filters). In total, the
library contains 2974 lines of Isabelle code. ⌟

Our formalization follows the definitions by Joag-Dev and Proschan [29] closely. However,
their definition leaves the class of test functions f and g (in Definition 4) imprecise. In the
formalization, we use different conditions for introduction and elimination rules. In particular,
for introduction rules, the test functions are bounded and measurable. However, we provide
stronger elimination rules, showing that if X1, . . . , Xn are negatively associated, then the
inequality on expectations is true even if f, g are only square-integrable; or, alternatively,
integrable and non-negative. This is derived using the monotone convergence theorem.

Another deviation from the original work is that we do not require that the random
variables are real-valued. In the formalization, any linearly ordered topological space with
the Borel σ-algebra is allowed as the range space. In this case, the test functions must be
monotone with respect to the respective order on the range space.

A key issue we faced during formalization was that there are many theorems that condition
on a set of functions being either simultaneously monotone or simultaneously anti-monotone.
To reduce duplication, we introduce a notation that allows us to abstract over the direction
of relations: ≤≥η; it evaluates to the forward version of the relation ≤ if η = Fwd and the
converse: ≥ if η = Rev. For example the FKG inequality [3, Ch. 6],[20]

E[fg] ≥ E[f] E[g]

E. Karayel, S. J. Watt, D. Khu, K. S. Meel, and Y. K. Tan 34:13

is true, if f and g are both monotone, or both antimonotone, on a probability space whose
domain is a finite distributive lattice with a log-supermodular probability mass function.
The reverse inequality is also true, if f is monotone and g is antimonotone, or vice versa.
Using our parameterized relation symbol, we can state all variants in a concise manner:

theorem fkg-inequality-pmf :
fixes M :: ‹(′a :: finite-distrib-lattice) pmf ›
fixes f g :: ‹ ′a ⇒ real›
assumes ‹

∧
x y. pmf M x ∗ pmf M y ≤ pmf M (x ⊔ y) ∗ pmf M (x ⊓ y)›

assumes ‹monotone (≤) (≤≥τ) f › ‹monotone (≤) (≤≥σ) g›
shows ‹(

∫
x. f x ∂M) ∗ (

∫
x. g x ∂M) ≤≥τ ∗ σ (

∫
x. f x ∗ g x ∂M)›

Here, σ and τ are relation directions, and σ ∗ τ multiplies relation directions, i.e., σ ∗ τ is the
forward direction if σ and τ have the same direction, and it is the reverse direction otherwise.
The first assumption denotes the log-supermodularity of the probability mass function, while
the second assumptions are the parametric monotonicity conditions. The FKG inequality is
a key result which enables verification of negative association for random variables. This
includes the indicator variables for the new subsampling operation we introduced in Section 4.

Let us summarize a few key formalized results for negatively associated random variables
in our library. The following is the well-known Hoeffding inequality [27] generalized for
negatively associated random variables.

lemma hoeffding-bound-two-sided:
assumes ‹neg-assoc X I › ‹finite I ›
assumes ‹

∧
i. i∈I =⇒ a i ≤ b i›

assumes ‹
∧

i. i∈I =⇒ AE ω in M . X i ω ∈ {a i..b i}› ‹I ̸= {}›
defines ‹n ≡ real (card I)›
defines ‹µ ≡ (

∑
i∈I . expectation (X i))›

assumes ‹δ ≥ 0 › ‹(
∑

i∈I . (b i−a i)2) > 0 ›
shows ‹P(ω in M . |(

∑
i∈I . X i ω)−µ| ≥ δ∗n) ≤ 2∗exp (−2∗(n∗δ)2 / (

∑
i∈I . (b i−a i)2))›

Another key result (shown below) used for the verification of our CVM variant is the
negative-associativity of the indicator functions of random k-subsets of a finite set S (with
cardinality greater than or equal to k).

lemma n-subsets-distribution-neg-assoc:
assumes ‹finite S› ‹k ≤ card S›
defines ‹p ≡ pmf-of-set {T . T ⊆ S ∧ card T = k}›
shows ‹measure-pmf .neg-assoc p (∈) S›

This is a consequence of a more general result, which we have also shown, that permutation
distributions are negatively associated. We relied on the proof by Dubhashi et al. using the
FKG inequality [15, Th. 10]; there is a prior proof by Joag-Dev and Proschan [29, Th. 2.11],
which is incomplete.6

6 The step which we could not directly formalize is the assertion (Sentence 14) in the proof of Theorem 2.11
([29]) that the conditional expectation of the random variable f(X) is smaller iff the smallest element
of the permutation is contained in dep(f). That statement is non-trivial and requires a proof using a
theorem such as the FKG-inequality. We think Dubhashi et al. developed their proof to complete it.

ITP 2025

34:14 Verification of the CVM Algorithm with a Functional Probabilistic Invariant

A CVM
(Alg. 1)

B CVM w/o
Line 11

C Eager Ver.
(Alg. 4)

D Random
Process

Chernoff
Bounds

Functional
Invariant

CVM PAC
Guarantee

Transformation-based Proof

Probabilistic
Invariant Proof

Figure 2 An overview of the two formalized proof approaches for the CVM algorithm.

7 Transformation-Based Proof

Here, we describe the transformation-based proof by Chakraborty et al. [11], focusing on the
challenging parts in its formalization. An overview of the proof is shown in Figure 2, which
highlights, in part, why the transformation-based approach required more work to formalize,
and why we developed our new approach using probabilistic invariants.
▶ Note 9. The transformation-based formalization of the CVM algorthm is included in
the supplementary material [48]. To formalize probabilistic transformations (relating two
distributions), we built on an existing relational program logic in Isabelle/HOL [37]. The
formalization took 2634 lines which is considerably longer than the proof using our invariant-
based technique (1003 lines). ⌟

As mentioned in Section 1, the main difficulty in directly analyzing Algorithm 1 is the lack
of independence in its state variables. The technique Chakraborty et al. use to circumvent
this issue is by progressively modifying the algorithm (A – D in Figure 2), in a manner that
obviously bounds (or preserves) its distribution, and such that the final algorithm D can be
described using a simple random process with independent coin flips.

For interested readers, A corresponds to [11, Algorithm 1], B is [11, Algorithm 2], and
D is [11, Algorithm 3]. Whereas Chakraborty et al. move directly from B to D with an
informal argument, C is a transformation we added in the formalization to bridge this gap.

7.1 A Bridging Transformation
Let us consider algorithm B in a state where k subsampling steps have been performed, i.e.,
p = 2−k. The algorithm would perform a coin flip lazily with probability p when it encounters
the next stream element. The transformation C is shown in Algorithm 4, and we prove
that it computes precisely the same distribution as B . In C , we eagerly perform a fixed
number of coin flips for each sequence element at the beginning. Now, each element is put
into the state χ, whenever the first k coin flips associated with the sequence element are all
1s. This happens exactly with probability 2−k, which means the behaviour of the algorithm
is unchanged from B . Similarly, in the subsampling operation, only those elements whose
k + 1-th associated coin flip is 1 are kept; the operation p 7→ p

2 is replaced with k 7→ k + 1.
This again preserves the behaviour of B that each element is discarded independently with
probability 1/2.

It is easy to show for C that the coin flips are independent, and that the set of elements
in χ in any state are exactly those stream elements for which the first k entries of their
associated coin flips are 1. The final random process D directly computes the final set of
elements in χ after the stream, taking K as a fixed parameter; one relates C to D by:

P C (k = K ∧ χ = X) ≤ P D
K

(χ = X)

E. Karayel, S. J. Watt, D. Khu, K. S. Meel, and Y. K. Tan 34:15

Algorithm 4 Modified CVM algorithm with independent coin flips. The function last_index
returns the index of the last occurrence of an element in the sequence, before the current iteration.

Input: Stream elements a1, . . . , al, 0 < ε, 0 < δ < 1.
Output: A cardinality estimate R for set A = {a1, . . . , al} such that P (|R− |A|| > ε|A|) ≤ δ

1: χ← {}, k ← 0, n =
⌈ 12

ε2 ln (6l
δ)
⌉

2: b[i, j] $←− Ber(1/2) for i, j ∈ {1, · · · , l} ▷ perform l2 unbiased independent coin flips
3: for i← 1 to l do
4: if b[i, 1] = b[i, 2] = · · · = b[i, k] = 1 then ▷ insert ai if first k flips are 1s.
5: χ← χ ∪ {ai}
6: else
7: χ← χ− {ai}
8: if |χ| = n then ▷ if buffer χ is full
9: χ← {a ∈ χ | b[last_index(a), k + 1] = 1} ▷ keep elems. whose k + 1-th flip is 1

10: k ← k + 1
11: return 2k|χ| ▷ estimate cardinality of A

for fixed values of K and X. To see how tail bounds can be derived from this inequality,
let us first consider the failure event where the algorithm C ’s estimate exceeds the desired
estimation interval and it ends with some fixed value k = K. Using D , this can be bounded
using a Chernoff bound for the probability that the number of stream elements whose
associated coin flips start with K 1s is outside 2−K |A|(1 ± ε). Now, we can take a union
bound over all the possible values K to establish a global bound for the failure event in C .
This is explained in more detail by Chakraborty et al. [11].

7.2 Eager to Lazy Coin Flips
A remaining question is how to formalize the transformation from B to C . Our insight is
that it is best to solve the problem backwards, i.e., we start with the modified algorithm
C , which performs all the coin flips in advance eagerly and convert it back to B which
implicitly performs the coin flips lazily at the point they are needed.

The main idea is to automatically push down the coin flips through the expression tree of
Algorithm 4. To explain how this works, let us first define the sampling function, i.e., let f

be a function that takes as argument a vector of coin flips indexed by I, then we can express
the distribution of f with respect to independent unbiased coin flips as:

sample f = map-pmf f (prod-pmf I (λ-. bernoulli-pmf (1/2)))

The interesting fact is that we can distribute the sampling operation over composition:

▶ Observation 10. Let f, g be functions consuming a set of coin flips (indexed by I), where
g also consumes the output of f , such that, f depends only on the coin flips indexed by J ⊆ I

and g depends on the complement I − J , then:

sample (λω. g ω ◦ f ω) = sample f >>= (λx. sample (λω. g ω x))

By recursively applying the observation, we end up with elementary lookup operations,
e.g., sample (λω. ω i), for which it is easy to see that it is just a coin flip, i.e., equal to
bernoulli-pmf (1/2). This lets us readily transform C to B and prove their distributions
equivalent.

ITP 2025

34:16 Verification of the CVM Algorithm with a Functional Probabilistic Invariant

A detail that we have simplified here is that the split of the index sets, e.g., which coin
flips f depends on and which coin flips g depends on, may be dynamic. For example, when
the algorithm increases the subsampling counter k, it will have read the corresponding row
of coin flips. This means we have a situation where the previous loop iteration communicates
to the next loop iteration which coin flips it depends on using the state; and the next loop
iteration will indeed only read coin flips that were not read by the previous iteration.

To handle these situations we generalized Observation 10 to allow for the case where the
set of indices J splitting the set of coin flips f and g depend on, may itself depend on the
result of f .

8 Related Work

8.1 Algorithms for the Distinct Elements Problem
It is important to note that there are several practical solutions for the distinct elements
problem. The first solution was presented by Flajolet [19] in 1985; however, like many other
authors [18, 26], his solution makes the assumption that a fixed hash function can be regarded
as a fully random function. Alon et al. [2, Section 2.3] presented an easy remedy, which does
not require such unmotivated model assumptions. Their algorithm just relies on keeping
track of the maximum of the hash values of the stream elements, where the hash function
must be chosen uniformly from a pairwise independent family.

Later, Bar-Yossef et al. [5], Kane et al. [30] and Błasiok in 2020 [8] improved on the
solution by Alon et al. For example, Bar-Yossef et al. present a solution (Algorithm 3 in
their work) with a space-complexity of O(ln(δ−1)(ε−2(ln(ε−1) + ln b) + b))), which can be
implemented in practice. This is slightly better than the CVM algorithm which requires
O(ε−2 ln(δ−1l)b). In particular, there is no dependency on the length of the stream l. The
more recent and more sophisticated solution by Błasiok is space-optimal, with a space
complexity of O(ε−2 ln(δ−1) + b). We [32] presented a version of the latter that preserves
monotonicity and supports the merge-operation, which enables its use in distributed settings,
such as Map-Reduce pipelines [13]. It should be noted that these recent algorithms are
mostly of theoretical interest, as the constants, as well as the implementation complexity,
are rather large. A comprehensive review of distinct elements algorithms has been compiled
by Pettie and Wang [43, Table 1]. What makes the CVM algorithm unique is its simplicity
and the fact that it does not rely on hashing, which may enable more general use-cases than
the traditional algorithms.

The aforementioned hash-based algorithms are biased; Flajolet et al. [19] points this out
and also provides bounds on the distance between the expected result and the cardinality of
the stream. Most authors do not discuss the matter of bias but it is not hard to show. One
issue, for example, is that the usual method to amplify the accuracy of these algorithms is
using the median, which does not preserve expectations. In the context of query processing,
unbiasedness has been discussed [23, Section 2.1], but we could not find any similar discussion
for the distinct elements problem in the streaming model.

8.2 Probabilistic Invariants and Formalization
As far as we know, probabilistic invariants have not been used to establish exponentially
decreasing tail-bounds. However, it is fairly common to use recursive analysis techniques
to establish results about expectations or variance of random variables, such as their run-
time [40, Section 1.4]. This is easy due to the linearity of expectations and – for independent
random variables – linearity of variances. A simple example is the Morris counter [44] or the
expected run-time of the quick-sort algorithm [39, Section 2.5].

E. Karayel, S. J. Watt, D. Khu, K. S. Meel, and Y. K. Tan 34:17

There is also research on the (automated) analysis of loop invariants, for probabilistic
loops, using their characteristic functions [7, 38]. This approach works by establishing the
limiting distribution of the state of the loop. De Medeiros et al. [12, Section 3.2] also establish
methods to derive limiting distributions of probabilistic loops. Our approach differs from
these techniques by avoiding computation of the distribution, which, we think, is infeasible
for the CVM algorithm. Instead, we investigate invariants of classes of functions of the
distributions, which are relevant for the analysis. There is research on automated evaluation
of moments for restricted classes of loops which contain only polynomial assignments and no
branches [6, 36]. However, these methods do not extend to algorithms with non-continuous
operations, or control flow that depends on non-deterministic state variables.

Finally, verification of randomized algorithms expressed in functional programming
languages has been tackled by various authors using various proof assistants [4, 9, 12, 17,
22, 25, 28, 45, 46, 47]; the most closely related efforts are our mechanizations of frequency
moments algorithms [31, 32]. Moreover, for classical imperative randomized algorithms,
there are approaches based on probabilistic Hoare logic [14]. An interesting related work by
Haselwarter et al. [24] discusses some of the issues we encountered in the transformation-based
proof (Section 7), such as (approximate) equivalence between related randomized algorithms.
However, because our work reasons directly over the semantics of randomized algorithms
expressed in the Giry monad, we did not deeply explore probabilistic logic-based methods.

9 Conclusion

We presented the first formalization of the CVM algorithm using Isabelle/HOL. Central to our
formalization is a novel invariant-based proof technique to establish exponentially decreasing
tail-bounds for randomized algorithms, which is inspired by our alternative analysis of the
CVM algorithm via the Cramér–Chernoff method. Our technique can be summarized by the
following two steps:
1. Find functionals over the state distribution of the algorithm, for which it is possible to

establish bounds on their expectation inductively/recursively.
2. Use those bounds to establish tail bounds on the result of the algorithm.
Comparing our approach against the original proof by Chakraborty et al. [11] shows that our
technique yields a considerably shorter formalization (with 1003 vs. 2634 lines). Interestingly,
our technique also readily generalized to a new CVM variant with stronger properties (totality
and unbiasedness) – we formalized this latter version using the same invariant, together with
a new library of results for negative association. In future work, it would be interesting to
formalize other variations of subsampling for CVM.

Note that we have yet to apply our proof technique to examples beyond CVM. (It is easy
to construct artificial examples.) Identifying realistic applications for our new method is an
interesting avenue for future work – this could lead to further refinements of the method,
and a better understanding of how to identify suitable functionals for the proofs.

References
1 Archive of Formal Proofs. Accessed: 2025-02-26. URL: https://isa-afp.org.
2 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/JCSS.1997.
1545.

3 Noga Alon and Joel H. Spencer. The Probabilistic Method, Second Edition. John Wiley, 2000.
doi:10.1002/0471722154.

ITP 2025

https://isa-afp.org
https://doi.org/10.1006/JCSS.1997.1545
https://doi.org/10.1006/JCSS.1997.1545
https://doi.org/10.1002/0471722154

34:18 Verification of the CVM Algorithm with a Functional Probabilistic Invariant

4 Philippe Audebaud and Christine Paulin-Mohring. Proofs of randomized algorithms in Coq.
Sci. Comput. Program., 74(8):568–589, 2009. doi:10.1016/J.SCICO.2007.09.002.

5 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting
distinct elements in a data stream. In José D. P. Rolim and Salil P. Vadhan, editors, RANDOM,
volume 2483 of LNCS, pages 1–10. Springer, 2002. doi:10.1007/3-540-45726-7_1.

6 Ezio Bartocci, Laura Kovács, and Miroslav Stankovič. Automatic generation of moment-based
invariants for Prob-solvable loops. In Yu-Fang Chen, Chih-Hong Cheng, and Javier Esparza,
editors, ATVA, volume 11781 of LNCS, pages 255–276. Springer, 2019. doi:10.1007/978-3-
030-31784-3_15.

7 Kevin Batz, Mingshuai Chen, Sebastian Junges, Benjamin Lucien Kaminski, Joost-Pieter
Katoen, and Christoph Matheja. Probabilistic program verification via inductive synthesis of
inductive invariants. In Sriram Sankaranarayanan and Natasha Sharygina, editors, TACAS,
volume 13994 of LNCS, pages 410–429. Springer, 2023. doi:10.1007/978-3-031-30820-8_25.

8 Jarosław Błasiok. Optimal streaming and tracking distinct elements with high probability.
ACM Trans. Algorithms, 16(1):3:1–3:28, 2020. doi:10.1145/3309193.

9 Azucena Garvía Bosshard, Jonathan Bootle, and Christoph Sprenger. Formal verification of the
Sumcheck protocol. In CSF, pages 605–619. IEEE, 2024. doi:10.1109/CSF61375.2024.00014.

10 Sourav Chakraborty, N. V. Vinodchandran, and Kuldeep S. Meel. Distinct elements in streams:
An algorithm for the (text) book. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and
Grzegorz Herman, editors, ESA, volume 244 of LIPIcs, pages 34:1–34:6. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ESA.2022.34.

11 Sourav Chakraborty, N. V. Vinodchandran, and Kuldeep S. Meel. Distinct elements in streams:
An algorithm for the (text) book. CoRR, abs/2301.10191, 2023. doi:10.48550/arXiv.2301.
10191.

12 Markus de Medeiros, Muhammad Naveed, Tancrède Lepoint, Temesghen Kahsai, Tristan
Ravitch, Stefan Zetzsche, Anjali Joshi, Joseph Tassarotti, Aws Albarghouthi, and Jean-
Baptiste Tristan. Verified foundations for differential privacy. CoRR, abs/2412.01671, 2024.
doi:10.48550/arXiv.2412.01671.

13 Jeffrey Dean and Sanjay Ghemawat. MapReduce: a flexible data processing tool. Commun.
ACM, 53(1):72–77, 2010. doi:10.1145/1629175.1629198.

14 Jerry den Hartog and Erik P. de Vink. Verifying probabilistic programs using a Hoare like
logic. Int. J. Found. Comput. Sci., 13(3):315–340, 2002. doi:10.1142/S012905410200114X.

15 Devdatt P. Dubhashi, Volker Priebe, and Desh Ranjan. Negative dependence through the
FKG inequality. BRICS Report Series, 3(27), 1996. doi:10.7146/brics.v3i27.20008.

16 Devdatt P. Dubhashi and Desh Ranjan. Balls and bins: A study in negative dependence.
Random Struct. Algorithms, 13(2):99–124, 1998. doi:10.1002/(SICI)1098-2418(199809)13:
2<99::AID-RSA1>3.0.CO;2-M.

17 Manuel Eberl, Max W. Haslbeck, and Tobias Nipkow. Verified analysis of random binary tree
structures. J. Autom. Reason., 64(5):879–910, 2020. doi:10.1007/S10817-020-09545-0.

18 Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. HyperLogLog: the
analysis of a near-optimal cardinality estimation algorithm. In Conference on Analysis of
Algorithms, 2007. doi:10.46298/dmtcs.3545.

19 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182–209, 1985. doi:10.1016/0022-0000(85)90041-
8.

20 C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre. Correlation inequalities on some partially
ordered sets. Commun. Math. Phys., 22(2):89–103, 1971. doi:10.1007/BF01651330.

21 Michèle Giry. A categorical approach to probability theory. In B. Banaschewski, editor,
Categorical Aspects of Topology and Analysis, volume 915 of LNM, pages 68–85. Springer, 1982.
doi:10.1007/BFb0092872.

https://doi.org/10.1016/J.SCICO.2007.09.002
https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-031-30820-8_25
https://doi.org/10.1145/3309193
https://doi.org/10.1109/CSF61375.2024.00014
https://doi.org/10.4230/LIPICS.ESA.2022.34
https://doi.org/10.48550/arXiv.2301.10191
https://doi.org/10.48550/arXiv.2301.10191
https://doi.org/10.48550/arXiv.2412.01671
https://doi.org/10.1145/1629175.1629198
https://doi.org/10.1142/S012905410200114X
https://doi.org/10.7146/brics.v3i27.20008
https://doi.org/10.1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0.CO;2-M
https://doi.org/10.1007/S10817-020-09545-0
https://doi.org/10.46298/dmtcs.3545
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.1007/BF01651330
https://doi.org/10.1007/BFb0092872

E. Karayel, S. J. Watt, D. Khu, K. S. Meel, and Y. K. Tan 34:19

22 Kiran Gopinathan and Ilya Sergey. Certifying certainty and uncertainty in approximate
membership query structures. In Shuvendu K. Lahiri and Chao Wang, editors, CAV, volume
12225 of LNCS, pages 279–303. Springer, 2020. doi:10.1007/978-3-030-53291-8_16.

23 Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Lynne Stokes. Sampling-based estimation
of the number of distinct values of an attribute. In Umeshwar Dayal, Peter M. D. Gray,
and Shojiro Nishio, editors, VLDB, pages 311–322. Morgan Kaufmann, 1995. URL: http:
//www.vldb.org/conf/1995/P311.PDF.

24 Philipp G. Haselwarter, Kwing Hei Li, Alejandro Aguirre, Simon Oddershede Gregersen, Joseph
Tassarotti, and Lars Birkedal. Approximate relational reasoning for higher-order probabilistic
programs. Proc. ACM Program. Lang., 9(POPL):1196–1226, 2025. doi:10.1145/3704877.

25 Maximilian P. L. Haslbeck and Tobias Nipkow. Verified analysis of list update algorithms.
In Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen, editors, FSTTCS, volume 65
of LIPIcs, pages 49:1–49:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPICS.FSTTCS.2016.49.

26 Stefan Heule, Marc Nunkesser, and Alexander Hall. HyperLogLog in practice: algorithmic
engineering of a state of the art cardinality estimation algorithm. In Giovanna Guerrini
and Norman W. Paton, editors, EDBT, pages 683–692. ACM, 2013. doi:10.1145/2452376.
2452456.

27 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13–30, March 1963. doi:10.2307/2282952.

28 Joe Hurd. Formal verification of probabilistic algorithms. Technical Report UCAM-CL-TR-566,
University of Cambridge, Computer Laboratory, 2003. doi:10.48456/tr-566.

29 Kumar Joag-Dev and Frank Proschan. Negative association of random variables with applica-
tions. Annals of Statistics, 11:286–295, 1983. doi:10.1214/AOS/1176346079.

30 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct
elements problem. In Jan Paredaens and Dirk Van Gucht, editors, PODS, pages 41–52. ACM,
2010. doi:10.1145/1807085.1807094.

31 Emin Karayel. Formalization of randomized approximation algorithms for frequency moments.
In June Andronick and Leonardo de Moura, editors, ITP, volume 237 of LIPIcs, pages 21:1–
21:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ITP.
2022.21.

32 Emin Karayel. An embarrassingly parallel optimal-space cardinality estimation algorithm.
In Nicole Megow and Adam D. Smith, editors, APPROX/RANDOM, volume 275 of LIPIcs,
pages 35:1–35:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/
LIPICS.APPROX/RANDOM.2023.35.

33 Emin Karayel. Negatively associated random variables. Archive of Formal Proofs, January 2025.
, Formal proof development. URL: https://isa-afp.org/entries/Negative_Association.
html.

34 Emin Karayel, Derek Khu, Kuldeep S. Meel, Yong Kiam Tan, and Seng Joe Watt. Verification
of the CVM algorithm with a new recursive analysis technique. Archive of Formal Proofs,
February 2025. , Formal proof development. URL: https://isa-afp.org/entries/CVM_
Distinct_Elements.html.

35 Donald E. Knuth. The CVM algorithm for estimating distinct elements in streams, 2023.
Accessed: 2025-01-14. URL: https://www-cs-faculty.stanford.edu/~knuth/papers/cvm-
note.pdf.

36 Andrey Kofnov, Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Efstathia Bura.
Moment-based invariants for probabilistic loops with non-polynomial assignments. In Erika
Ábrahám and Marco Paolieri, editors, QEST, volume 13479 of LNCS, pages 3–25. Springer,
2022. doi:10.1007/978-3-031-16336-4_1.

37 Andreas Lochbihler. Probabilistic functions and cryptographic oracles in higher order logic.
In Peter Thiemann, editor, ESOP, volume 9632 of LNCS, pages 503–531. Springer, 2016.
doi:10.1007/978-3-662-49498-1_20.

ITP 2025

https://doi.org/10.1007/978-3-030-53291-8_16
http://www.vldb.org/conf/1995/P311.PDF
http://www.vldb.org/conf/1995/P311.PDF
https://doi.org/10.1145/3704877
https://doi.org/10.4230/LIPICS.FSTTCS.2016.49
https://doi.org/10.4230/LIPICS.FSTTCS.2016.49
https://doi.org/10.1145/2452376.2452456
https://doi.org/10.1145/2452376.2452456
https://doi.org/10.2307/2282952
https://doi.org/10.48456/tr-566
https://doi.org/10.1214/AOS/1176346079
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.4230/LIPICS.ITP.2022.21
https://doi.org/10.4230/LIPICS.ITP.2022.21
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.35
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.35
https://isa-afp.org/entries/Negative_Association.html
https://isa-afp.org/entries/Negative_Association.html
https://isa-afp.org/entries/CVM_Distinct_Elements.html
https://isa-afp.org/entries/CVM_Distinct_Elements.html
https://www-cs-faculty.stanford.edu/~knuth/papers/cvm-note.pdf
https://www-cs-faculty.stanford.edu/~knuth/papers/cvm-note.pdf
https://doi.org/10.1007/978-3-031-16336-4_1
https://doi.org/10.1007/978-3-662-49498-1_20

34:20 Verification of the CVM Algorithm with a Functional Probabilistic Invariant

38 Annabelle McIver and Carroll Morgan. Probabilistic loops: Invariants and variants, pages
37–78. Springer, New York, NY, 2005. doi:10.1007/0-387-27006-X_2.

39 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomization and Probab-
ilistic Techniques in Algorithms and Data Analysis. Cambridge University Press, USA, 2nd
edition, 2017.

40 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995. doi:10.1017/CBO9780511814075.

41 Steve Nadis. Computer scientists invent an efficient new way to count, 2024. Accessed: 2025-01-
14. URL: https://www.quantamagazine.org/computer-scientists-invent-an-efficient-
new-way-to-count-20240516.

42 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. doi:10.1007/3-540-45949-9.

43 Seth Pettie and Dingyu Wang. Information theoretic limits of cardinality estimation: Fisher
meets Shannon. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC, pages
556–569. ACM, 2021. doi:10.1145/3406325.3451032.

44 Robert H. Morris Sr. Counting large numbers of events in small registers. Commun. ACM,
21(10):840–842, 1978. doi:10.1145/359619.359627.

45 Daniel Stüwe and Manuel Eberl. Probabilistic primality testing. Archive of Formal Proofs,
2019. , Formal proof development. URL: https://isa-afp.org/entries/Probabilistic_
Prime_Tests.html.

46 Yong Kiam Tan, Jiong Yang, Mate Soos, Magnus O. Myreen, and Kuldeep S. Meel. Formally
certified approximate model counting. In Arie Gurfinkel and Vijay Ganesh, editors, CAV,
volume 14681 of LNCS, pages 153–177. Springer, 2024. doi:10.1007/978-3-031-65627-9_8.

47 Joseph Tassarotti, Koundinya Vajjha, Anindya Banerjee, and Jean-Baptiste Tristan. A formal
proof of PAC learnability for decision stumps. In Catalin Hritcu and Andrei Popescu, editors,
CPP, pages 5–17. ACM, 2021. doi:10.1145/3437992.3439917.

48 Seng Joe Watt, Derek Khu, Emin Karayel, Kuldeep S. Meel, and
Yong Kiam Tan. Verification of the CVM algorithm with the transformation-
based proof. URL: https://archive.softwareheritage.org/swh:1:dir:
7df92f0347e7bd150efef42e3edbbde0037498cc;origin=https://github.com/joewatt95/
CVM;visit=swh:1:snp:90c68a9518ce6768c54e4596003838d7d6579cc3;anchor=swh:1:rev:
6bba527562c6911c664586df83e2fdeeadbd869a;path=/isabelle/CVM_Transforms/.

https://doi.org/10.1007/0-387-27006-X_2
https://doi.org/10.1017/CBO9780511814075
https://www.quantamagazine.org/computer-scientists-invent-an-efficient-new-way-to-count-20240516
https://www.quantamagazine.org/computer-scientists-invent-an-efficient-new-way-to-count-20240516
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/3406325.3451032
https://doi.org/10.1145/359619.359627
https://isa-afp.org/entries/Probabilistic_Prime_Tests.html
https://isa-afp.org/entries/Probabilistic_Prime_Tests.html
https://doi.org/10.1007/978-3-031-65627-9_8
https://doi.org/10.1145/3437992.3439917
https://archive.softwareheritage.org/swh:1:dir:7df92f0347e7bd150efef42e3edbbde0037498cc;origin=https://github.com/joewatt95/CVM;visit=swh:1:snp:90c68a9518ce6768c54e4596003838d7d6579cc3;anchor=swh:1:rev:6bba527562c6911c664586df83e2fdeeadbd869a;path=/isabelle/CVM_Transforms/
https://archive.softwareheritage.org/swh:1:dir:7df92f0347e7bd150efef42e3edbbde0037498cc;origin=https://github.com/joewatt95/CVM;visit=swh:1:snp:90c68a9518ce6768c54e4596003838d7d6579cc3;anchor=swh:1:rev:6bba527562c6911c664586df83e2fdeeadbd869a;path=/isabelle/CVM_Transforms/
https://archive.softwareheritage.org/swh:1:dir:7df92f0347e7bd150efef42e3edbbde0037498cc;origin=https://github.com/joewatt95/CVM;visit=swh:1:snp:90c68a9518ce6768c54e4596003838d7d6579cc3;anchor=swh:1:rev:6bba527562c6911c664586df83e2fdeeadbd869a;path=/isabelle/CVM_Transforms/
https://archive.softwareheritage.org/swh:1:dir:7df92f0347e7bd150efef42e3edbbde0037498cc;origin=https://github.com/joewatt95/CVM;visit=swh:1:snp:90c68a9518ce6768c54e4596003838d7d6579cc3;anchor=swh:1:rev:6bba527562c6911c664586df83e2fdeeadbd869a;path=/isabelle/CVM_Transforms/

	1 Introduction
	2 Background
	2.1 Randomized Algorithms and Distinct Elements
	2.2 Semantics of Randomized Algorithms

	3 Functional Probabilistic Invariants
	3.1 Deriving a Simple Probabilistic Invariant
	3.2 Deriving a Functional Probabilistic Invariant

	4 An Unbiased CVM Variant and Negative Dependence
	4.1 Unbiased CVM Variant
	4.2 Background on Negative Dependence

	5 Formalization of the CVM algorithm
	6 Formalization of a Library for Negative Association
	7 Transformation-Based Proof
	7.1 A Bridging Transformation
	7.2 Eager to Lazy Coin Flips

	8 Related Work
	8.1 Algorithms for the Distinct Elements Problem
	8.2 Probabilistic Invariants and Formalization

	9 Conclusion

