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Abstract
The concept of permutations is fundamental in computer science, and is useful for specifying and
reasoning about a variety of data structures and algorithms. This paper presents the implementation
of a fully automated tactic for proving complex permutation goals within the Rocq Prover (formerly,
Coq proof assistant). Our approach leverages proof by reflection and an iterative deepening search
procedure to establish permutation relations on arbitrary lists composed of concatenation operations.
We detail the construction of mapping/substitution environments, a unification algorithm, and
metaprogramming tactics to automate the proof process. The potential impact of the tactic for
goals involving permutations is demonstrated by significant reduction in proof script length for an
existing non-trivial development.
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1 Introduction

The concept of permutations of a list is intuitive, yet readily formalized, and is useful for
specifying and reasoning about the properties and behavior of a variety of data structures
and algorithms. The Rocq (formerly Coq) proof assistant Standard Library provides an
inductive definition of permutations as compositions of adjacent transpositions of elements of
a list.1 The library additionally provides quite a large set of derived properties for reasoning
about permutations. However, proving non-trivial permutation relationships between lists,
especially in the context of transitivity and premises involving permutations of sublists,
quickly turns into a tedious exercise of finding the right swapping order and transitive
substitutions to solve the goal.

In this paper, we present the implementation of a fully automated tactic for proving
complex goals involving permutations of lists (of arbitrary element type) described as the
concatenation of their constituent portions, where some or all of those portions may be
universally quantified variables (as opposed to concrete values of the element type). Figure 1
provides an example of a goal state that can be solved by the tactic.

1 https://rocq-prover.org/doc/V8.20.0/stdlib/Coq.Sorting.Permutation.html
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39:2 Automating Permutation Proofs in Rocq

A : Type
h : A
a, b, a’, t, a1, a2 : list A
...
H1 : Permutation (a ++ b) (h :: t) ++ is list concatentation
H2 : Permutation a (h :: a’) :: is ‘cons‘
H3 : Permutation (a’ ++ b) t
H4 : Permutation (a1 ++ a2) a’
...
-----------------------------------------
Permutation ((a1 ++ b) ++ h :: a2) (a ++ b)

Figure 1 Goal state solved automatically by perm_solver.

Our approach uses proof by reflection (see Section 2) and is implemented entirely within
the Rocq system itself. We first generate an environment mapping natural number labels to
distinct pieces of all lists formed by concatenation operations. For every list in the proof
context, a tree of natural numbers is constructed, such that substituting for the numbers
based on the mapping environment results in (i.e. reflects into) the original list. Then, we
implement a unification procedure on the sets of labels collected from the leaves, which takes
into account substitutions representing permutation facts that occur as hypotheses in the
context. The algorithm performs an iterative deepening search process to explore possible
substitutions in order to unify the values between the two label sets in question. Finally,
we prove that if the unification procedure succeeds, it means that the original two lists
(corresponding to the trees of numbers, under the mapping environment) are permutations
according to the standard library formulation.

In what follows, we review a few examples of permutation-based reasoning in existing
Rocq developments (including the particular context that motivated the tactic described
in this paper) and discuss related and prior work that inspired our tactic. We then present
details of the implementation and conclude with a discussion of future directions.

2 Background and Related Work

Sorting is perhaps the most obvious algorithmic process for which the property of the output
“having the same elements as” the input is crucial. Indeed, the initial textbook on the Rocq
system [2] presents the specification of a sorting program as a motivating example. Rather
than using the current standard library definition of Permutation, it introduces a relation
on lists that is based on counting the number of times any element appears in both lists. As
noted there, this definition is convenient for reasoning about properties, but actually “does
not provide a way to determine whether two [concrete] lists are permutations of each other.”

The Verified Functional Algorithms volume [1] of the Software Foundations series presents
additional algorithms and data structures for which proving correctness depends on reasoning
about whether two collections have the same contents. In this development, the standard
library’s inductive formalization of Permutation is adopted and used not only for sorting
algorithms, but also for verifying properties of abstraction relations and representation
invariants on data structures such as priority queues. As the formalization of these classical
data structures is fairly straightforward, it is only mildly tedious to work with the existing
standard library lemmas to manually guide proofs involving permutation relationships.
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In a more substantial development, [10] developed a formalization of k-d trees in Rocq,
utilizing the standard library definition of Permutation for specifying correctness properties
of procedures that involve sorting and partitioning input and intermediate data points. That
work noted that lack of automation for reasoning about Permutations resulted in significantly
complex and tedious proof effort. The goal in Figure 1, for example, is adapted from one
of the proof states in that development. Proving this goal using only the standard library
facilities requires a long set of lemma invocations to reorder list components, interspersed
with appeals to transitivity properties on sub-portions of the lists.

Reasoning about permutations also appears to be an important part of formalized Rocq
libraries related to rewriting theory, termination, and program transformation [6, 3, 7].
Contejean [6] notes that most of the formal proofs “actually concern the permutations of the
lists...” and “...the proofs are quite long since there are many subcases.”

As far as existing work towards automating reasoning about permutations, there are
only a few perfunctory developments that we are aware of. Braibant and Pous [5] describe a
general-purpose Rocq plugin for rewriting modulo associativity and commutativity with
some limited application to lists and permutations. The Rocq Reference Manual provides
an example of writing a tactic to prove that a list is a permutation of a second list, based
on an alternate inductive definition of the concept, but it only works on lists with concrete
individual elements.

An online GitHub repository [8] provides a tactic that transforms Permutation goals
into solving multiplicity calculation (an alternate, deprecated definition of the notion of
permutations based on multisets in the Rocq standard library). In its current form, this
tactic is limited to reasoning about lists of natural numbers, although in theory it could be
generalized to any type with decidable equality and would appear to be able to solve goals
with the same level of complexity as the tactic described in this paper. The requirement of
decidable equality for the domain of the list elements, however, introduces the need for “a
more complex apparatus,” which is unnecessary for our tactic. [8] relies on the omega (now
lia) tactic, a decision procedure for linear integer arithmetic, to trivially solve equations
over the group of natural numbers with addition once the permutation statements have all
been transformed into multiplicity equations. Preliminary comparisons on goals involving
lists of nat indicate that our tactic produces much smaller proof terms, reflected in the size
of compiled script files. It is unclear how the time to check the larger proof terms compares
to the computation time for our reflection-based tactic. Further analysis and comparison of
space and time efficiency of these two approaches remains as an item for future work.

Our tactic utilizes the technique of proof by reflection [4, 2], in which explicit reasoning
steps (i.e. on a permutation goal) are transformed into some implicit computation that is
carried out by the proof assistant. A theorem is then separately established that shows that
the result on the computational values is reflected as a property on the original terms (i.e.
that a pair of lists satisfies the Permutation predicate). We also adapt some inspirations
from prior approaches [9, 2] such as building binary trees of nat values, flattening, and using
the Ltac metalanguage to program a reification tactic, all described in the next section.

3 Implementation

In Section 3.1, we step through the overall approach of our tactic, perm_solver, on the
goal state of Figure 1, to give a general idea of how it operates. Section 3.2 describes
the computational “unification” algorithm, followed by an overview in Section 3.3 of the
metaprogramming tactics implemented to reify list objects and apply the reflective technique.

ITP 2025



39:4 Automating Permutation Proofs in Rocq

Inductive nattree := lf : nat -> nattree | br : nattree -> nattree -> nattree.
Fixpoint nattree_to_list {A} (nt:nattree) (menv:NatMap.t (list A)) : list A := ...

Theorem check_unify_permutation :
forall A (tenv: list (nattree * nattree)) (nt1 nt2: nattree) menv,
(forall t1 t2, List.In (t1, t2) tenv

-> Permutation (nattree_to_list t1 menv) (nattree_to_list t2 menv)) ->
check_unify (flatten_env tenv) (flatten nt1) (flatten nt2) = true ->
Permutation (nattree_to_list nt1 menv) (nattree_to_list nt2 menv).

Figure 2 Salient definitions for reflecting trees of labels into lists.

3.1 General Approach to Automating Permutation Proofs
To begin with, we build a mapping environment that assigns arbitrary labels to distinct
subterms of all concatenated list terms in the proof context. For Figure 1, this results in:

[6 |-> a2 , 5 |-> a1 , 4 |-> a’, 3 |-> t, 2 |-> [h], 1 |-> b, 0 |-> a]

We use a finite map data structure from the Rocq standard library, with keys ranging over
the data type of unary natural numbers, nat. Occurrences of cons (::) are rewritten into
concatenations (++) of a singleton list in this process (i.e. h::t becomes [h]++t).

With the mapping environment prepared, we now reify (to a first approximation) every
Permutation term into a pair of lists (treated as multisets) of numbers. Pairs corresponding
to the Permutation hypotheses are collected in a substitution environment, such as:

[ ([0; 1], [2; 3]), ([0] , [2; 4]), ([4; 1], [3]) , ([5; 6], [4]) ]

and the goal of Figure 1 would correspond to ([5; 1; 2; 6], [0; 1]). We now apply the
unification algorithm (Section 3.2) in order to equate the pair of sets in the goal, by searching
for a sequence of appropriate subset substitutions based on the substitution environment.
For example, replacing the 0 on the right with [2; 4], and then the 4 with [5; 6] results
in the set [2; 5; 6; 1] on the right, which contains the same elements as [5; 1; 2; 6].

In reality, we do not reify terms forming list concatenations directly into flat multi-
sets of nats, because that loses information about the grouping order of the operations
in the original. Instead, we define nattree (Figure 2), a data type of binary trees
with nat values at the leaves. The nattree_to_list function of Figure 2 reflects a
nattree back into a list of elements, under the mapping environment, menv. A term
like Permutation ((a1 ++ b) ++ h :: a2) (a ++ b) can now be rewritten into:

Permutation
( nattree_to_list (br (br (lf 6) (lf 2)) (br (lf 1) (lf 5))) M)
( nattree_to_list (br (lf 1) (lf 0)) M))

which is equivalent under Rocq’s conversion rules, for a properly constructed environment M.
Note that nattree_to_list swaps the order of the branches as the tree is flattened, for
convenience in the proof development.

With this reflection set up, and the check_unify function (see next section), we establish
the check_unify_permutation theorem in Figure 2. The tenv list is the substitution
environment introduced earlier, but maintained as a list of nattree pairs, rather than pairs
of lists. The first premise of the theorem expresses an obligation that for every pair of nattrees
in the substitution environment, there is a proof that the reflected lists are permutations
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Fixpoint CUD (d:nat) (env:list (list nat * list nat)) (lft rgt:list nat) (rpt:bool)
: bool := match d with | 0 => false (* hit depth limit *)
| S d’ => match (remove_common lft rgt) with

| (nil, nil) => true (* lft and rgt contain same elements *)
| _ => fold_left (* recurse through applicable_subs *)

(fun result i => result ||
let env’ := if rpt then env else (drop_nth i env) in
let (e1, e2) := nth i env (nil, nil) in

(is_sublist e1 lft && CUD d’ env’ (subst e1 e2 lft) rgt rpt)
|| (is_sublist e2 lft && CUD d’ env’ (subst e2 e1 lft) rgt rpt))

(applicable_subs env lft) (* list of indices *)
false (* default result *) end end.

Figure 3 Implementation of the unification algorithm.

of each other. The second premise expresses that running the unification algorithm on the
lists of nats resulting from flattening all trees (in the goal and the substitution environment)
succeeds with a result of true. The theorem is proven through lemmas showing that each
manipulation of the sets of numbers carried out by the unification algorithm (under the
appropriately constructed environments) is sound with respect to the permutation relation.

Now, given a goal like Figure 1, the perm_solver tactic invokes the tactic metapro-
grams described in Section 3.3 to construct the mapping environment, substitution envi-
ronment, and rewrite all Permutation terms using nattree_to_list. It then applies the
check_unify_permutation theorem and uses some helper tactics to satisfy the first premise.
The second premise is trivially satisfied as long as the carefully constructed arguments to
check_unify result in the entire term simplifying to true.

3.2 Unification Algorithm
Our “unification” algorithm takes two nat lists, a left and right, and attempts to transform
the left into the right through a backtracking process of applying substitutions from the
substitution environment. Each potential substitution is represented as a pair of nat lists,
and can be applied in either direction. The core of our unification algorithm is presented in
Figure 3. The recursion is limited to a fixed depth, and the rpt argument specifies whether
substitution pairs in env are retained as they are applied, so they may be applied multiple
times if it is true. Otherwise, once a substitution is applied, it is removed from env in the
subsequent recursive search. The remove_common function reduces its arguments to a pair
of lists where any common elements to both have been deleted from each. The expression
(subst a b lst) substitutes a for b in lst by appending b to the result of removing all
elements of a from lst. The is_sublist guard conditions are necessary before the recursive
calls to ensure that the substitution is valid in that direction.

As a concrete example, the following would compute to true:

let env := [([1; 0], [3; 2]); ([0] , [4; 2]); ([1; 2], [3; 3])]
in CUD 5 env [1; 4; 2; 1; 4; 2] [3; 2; 3; 2] true.

For this example, (applicable_subs env [1; 4; 2; 1; 4; 2]) results in the list [1; 2].
That is, only the second and third elements of env represent applicable substitution pairs
(one from right to left, and the other from left to right) for the list [1; 4; 2; 1; 4; 2].
In this example, applying false to CUD instead of true would cause the result to compute
to false overall, because there is no way to transform the elements of the left list into the
right without repeating the use of a substitution.

ITP 2025
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Table 1 Summary of helper tactics used by perm_solver.

Sub-tactic Purpose
normalize_append Normalize all hypotheses (convert cons to ++, etc.)
collect_hyps_perm_terms Collect a list of all “atomic” list terms separated by con-

catenations (++) in the goal and hypotheses
gen_map_all Generate the mapping environment
rewrite_hyp_perms Rewrite every Permutation term with convertible

nattree_to_list expressions, using a build_nattree
tactic to reify the original lists into nattrees

build_tenv Build the substitution environment
apply check_unify_permutation Invoke the reflection theorem
apply tenv_perm_forall Solve substitution environment subgoal introduced by

check_unify_permutation (the implication of Figure 2
involving List.in)

The full check_unify function that is mentioned in Section 3.1 generates a list of depths
that are quartiles of the length of the substitution environment. It invokes CUD with those
iteratively deepening values and a rpt argument of false. In the usage we have surveyed so
far, it appears that despite a large number of Permutation assumptions appearing in the
hypotheses of a goal, the number of substitutions that needs to occur is often less, within a
quarter of that number at most. Furthermore, other than contrived examples, it does not
appear that substitutions ever need to be applied more than once. In cases where these
norms do not hold, our library provides a “fixed-depth” variant of check_unify where the
user specifies an explicit depth limit and the rpt argument is supplied a value of true.

3.3 Metaprogramming Tactics
Based on the general approach and unification algorithm described in the preceding sections,
we now need to automate the construction of mapping and substitution environments, and
reify list terms into nattree objects. The top-level tactic, perm_solver, does this by invoking
several sub-tactics, outlined in Table 1. We developed perm_solver using Rocq’s Ltac
language, as opposed to its successor, Ltac2, due to being relatively more familiar with the
former and for relative paucity of documentation and examples with commentary for the
latter. The major awkwardness in implementing the various tactics in Table 1 is needing to
use continuation-passing style wholesale, since the language has no notion of return values
at the level of tactical metaprogramming. For space reasons, we omit further elaboration
and refer the interested reader to the actual implementation in the supplemental material.

4 Discussion and Conclusion

To date, we have utilized our perm_solver tactic to rewrite proofs from the k-d tree
verification proofs of [10]. The results appear to be significant, with some 707 lines (∼ 20%)
reduced out of 3277 lines of definitions and proof scripts – some of this due to refactoring of
the scripts supported by the incorporation of perm_solver. It thus seems promising that
the tactic would help speed up proof developments that use the Permutation definition. In
future work, we would like to validate its utility on a broader scale – seeking out existing
developments for which it could be adopted and/or promoting its use along with the standard
library’s notion of Permutation where appropriate.
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In the short term, we anticipate porting the implementation to Rocq’s Ltac2, in line with
recommended practice. Along with that, it would be interesting to incorporate support for
proving goals related to Permutation, such as the List.In predicate or length properties.

The unification algorithm as presented is certainly not complete. Since it is depth-limited,
it is straightforward to formulate contrived examples where it fails to successfully unify
lists when it should (i.e., a situation where the minimum number of substitutions needed
exceeds the maximum depth). In practice however, so far, we have found that the iterative
deepening approach works fine, even in pathological cases where there are a large number of
Permutation assumptions in the proof context. We have not profiled the algorithm, but we
did investigate the use of Rocq’s binary representation of numbers and the incorporation
of sorting lists into a canonical form. Since the reified lists of numeric labels are usually
short, neither of these optimizations was worth the effort – we found that implementing them
did not produce noticeable improvement in speed; and the sorting perhaps even introduced
additional overhead. Use of Rocq’s positive type speeds up comparison of numeric values,
but does not affect the recursion depth of any of the key functions which dominate the
run time. It would be ideal to discover a more sophisticated, efficient, and/or complete
decision procedure for the unification process. At a very minimum, future improvement
might focus on a pre-processing step to clear unrelated permutation facts/substitutions from
the environment before the main work of the tactic.
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