
A Verified Cost Model for Call-By-Push-Value
Zhuo Zoey Chen #

University of Melbourne, Australia

Johannes Åman Pohjola #

University of Gothenburg, Sweden

Christine Rizkallah #

University of Melbourne, Australia

Abstract
The call-by-push-value λ-calculus allows for syntactically specifying the order of evaluation as part
of the term language. Hence, it serves as a unifying language for embedding various evaluation
strategies including call-by-value and call-by-name. Given the impact of call-by-push-value, it is
remarkable that its adequacy as a model for computational complexity theory has not yet been
studied. In this paper, we show that the call-by-push-value λ-calculus is reasonable for both time and
space complexity. A reasonable cost model can encode other reasonable cost models with polynomial
overhead in time and constant factor overhead in space. We achieve this by encoding call-by-push-
value λ-calculus into Turing machines, following a simulation strategy by Forster et al.; for the
converse direction, we prove that Levy’s encoding of the call-by-value λ-calculus has reasonable
complexity bounds. The main results have been formalised in the HOL4 theorem prover.

2012 ACM Subject Classification Theory of computation → Lambda calculus

Keywords and phrases lambda calculus, formalizations of computational models, computability
theory, HOL, call-by-push-value reduction, time and space complexity, abstract machines

Digital Object Identifier 10.4230/LIPIcs.ITP.2025.7

Supplementary Material Software (Mechanised Proof): https://github.com/ZhuoZoeyChen/cbpv-
reasonable-HOL/ [5], archived at swh:1:dir:df18377e9fa5e35255f2687ad66ddbc2f010b934

Acknowledgements We thank Yannick and Fabian for taking the time to meet with us and discuss
their work on the weak call-by-value λ-calculus. We are also grateful to the anonymous reviewers
for their valuable feedback.

1 Introduction

The λ-calculus [7] is a fundamental model of computation that represents functions as
abstractions over variables. It provides a foundation for computability, mathematical logic,
and functional programming. Functional programming supports a concise, declarative style
of programming that is ideal for reasoning about functional correctness properties.

Besides functional correctness, another important property of a program is its computa-
tional complexity. It addresses the vital questions: How fast does my program produce an
output? How much space will my program use in order to produce that output?

In complexity analysis, we describe the asymptotic behaviour of cost functions that model
the cost of the program mathematically. But where do cost functions come from? In practice
they are often constructed in an ad hoc manner with no formal connection to any program
semantics. Cost models bridge that gap.

Creating cost models for functional programming languages is thus an essential topic.
It is also a significant challenge due to the abstract nature of functional programming. As
λ-calculus is the basis of functional programming languages, a vital question is whether we
can create cost models for the λ-calculus. There has been a large body of research [18, 8,
2, 1, 11, 12, 3] dedicated to solving this problem. An important parameter in a cost model

© Zhuo Zoey Chen, Johannes Åman Pohjola, and Christine Rizkallah;
licensed under Creative Commons License CC-BY 4.0

16th International Conference on Interactive Theorem Proving (ITP 2025).
Editors: Yannick Forster and Chantal Keller; Article No. 7; pp. 7:1–7:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhuochen3@student.unimelb.edu.au
https://orcid.org/0000-0002-0617-3434
mailto:pohjola@chalmers.se
https://orcid.org/0000-0002-6406-7875
mailto:christine.rizkallah@unimelb.edu.au
https://orcid.org/0000-0003-4785-2836
https://doi.org/10.4230/LIPIcs.ITP.2025.7
https://github.com/ZhuoZoeyChen/cbpv-reasonable-HOL/
https://github.com/ZhuoZoeyChen/cbpv-reasonable-HOL/
https://archive.softwareheritage.org/swh:1:dir:df18377e9fa5e35255f2687ad66ddbc2f010b934;origin=https://github.com/ZhuoZoeyChen/cbpv-reasonable-HOL;visit=swh:1:snp:9fefd6f03db3694a8bdc7e5ea8ff0f4a1fbde680;anchor=swh:1:rev:4e4f4692c9e6e1e23c566ec4730f81eafde32f3c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


7:2 A Verified Cost Model for Call-By-Push-Value

for the λ-calculus is the choice of evaluation strategy. One strategy is call-by-value, where
function calls are applied once the arguments are fully evaluated, as in Standard ML [23].
Another strategy is call-by-name, where the evaluation of arguments is deferred and the
function call happens first.

The call-by-push-value λ-calculus (CBPV) [19] is a variant of λ-calculus where the
evaluation strategy can be set on a call-by-call basis. In particular, CBPV has syntactic
constructs that enable delaying or forcing the evaluation of specific terms. Various evaluation
strategies, including call-by-value and call-by-name, can be encoded within this subsuming
paradigm.

This high expressive power of CBPV has resulted in a long line of work on the language
since its inception [10, 9, 24, 22, 13, 15, 6, 16]. Prior work has studied and extended the
calculus [16, 27, 22], related it to other calculi [10, 6, 14], and formalised it [24, 13]. The
fine-grained control CBPV provides has proved useful to verify compiler optimisations [24].

There are foundational results that demonstrate that CBPV aids in recurrence extraction,
which can in turn be used for analysing the complexity of functional programs, with various
evaluation strategies [15].

This demonstrates that CBPV can serve as a basis for further research on analysing the
complexity of functional programs with various evaluation strategies. As such, it is vital to
establish time and space cost models for CBPV. Naturally, such cost models must satisfy
some property that demonstrates that they are fit for purpose.

Reasonable Machines

Turing machines are the standard computational model for complexity theory. They have
obvious cost models for time (the number of steps) and space (the number of tape cells
used). Cost models are less obvious for λ-terms, but the readability and convenience of using
λ-terms are higher. Can cost analysis performed in one carry over to the other?

A reasonable cost model [26, 28] answers this question in the positive. Reasonableness is
a standard requirement for assessing the suitability of computational models for reasoning
about complexity, by relating them to Turing machines (which are considered reasonable by
definition). The invariance thesis [28] states that:

“Reasonable machines simulate each other with polynomially bounded overhead in time
and constant factor overhead in space”.

Hence the definition of standard complexity classes like P, PSPACE, and EXP are
independent of which (reasonable) substrate they are defined on.

Contribution

This paper contributes, to the best of our knowledge, the first reasonable time and space
cost models for CBPV. We further provide machine-checked proofs in HOL4 [25] for the core
parts thereof. In doing so we build on prior work on formally verified time and space cost
models for the weak call-by-value λ-calculus (WCBV) that was formalised in Coq [17, 11].

Related Work

In 1996, Lawall and Mairson [18] proved that the full λ-calculus is reasonable for both time
and space using the measures total ink used and maximum ink used. But the time measure of
total ink used is too general and hard to apply. In 2008, Dal Lago and Martini [8] provided a
different time measure for WCBV, which counts the number of β-steps while taking account
of the size of β-redexes. This was further strengthened by Accattoli and Dal Lago [2] in 2016,



Z. Z. Chen, J. Åman Pohjola, and C. Rizkallah 7:3

showing that counting (leftmost-outermost) β-steps makes the full λ-calculus reasonable for
time. Continuing on this line, Forster, Kunze, and Roth [11] proved in 2020 that WCBV
is reasonable with respect to natural measures, accompanied with a partial formalisation.
They define a natural measure to be the number of β-reductions for time, and the size of the
biggest intermediate term for space. They proved that WCBV is reasonable by interleaving
two evaluation strategies: a substitution-based strategy and heap-based strategy, which we
adapt and implement for CBPV in our paper. Forster, Kunze, Smolka, and Wuttke [12]
provided a complete formalisation in 2021, showing that WCBV is reasonable for time. The
complete formal verification of the space invariance thesis for the same calculus still remains
open. One limitation of this line of work, as well as ours, is that we do not consider sublinear
time or space classes. In contrast, Accattoli, Dal Lago, and Vanoni [3] presented a reasonable
space cost model for the λ-calculus that works for LOGSPACE by using a variant of the
Krivine abstract machine. It remains open whether this approach can be extended to CBPV.

CBPV, developed by Levy in 1999 [19], has been increasingly popular in recent decades.
There are also various extensions of CBPV, including with stacks [21], with probability [10]
and with call-by-need [22]. On the formalisation side, there is a formal equational theory [24]
for CBPV; there is another formalisation [13] that includes proofs for its operational, equa-
tional, and denotational theory. On the applied side, there are projects such as extracting
recurrences [15] using CBPV. There is a similar λ-calculus called the Bang-calculus [9], which
can be regarded as an untyped version of CBPV without any side-effects.

2 Overview

Our goal is to show that CBPV is reasonable. This section is a high-level overview of our
proof strategy, which is detailed in Section 6. The main theorems involved are:

▶ Theorem 1 (Turing Machines Simulating CBPV). Let T , S ∈ Ω(n). For a CBPV term
s, if s reduces to a normal form t in time n and space m, then one can construct a Turing
machine Ps simulating s that halts with output Pt simulating t, in time O(poly(T (n))) and
space O(S(m)).

▶ Theorem 2 (CBPV Simulating Turing Machines). Let T , S ∈ Ω(n). For a Turing machine Ps

that halts with output Pt in time n and space m, one can construct a CBPV term s simulating
Ps which can be reduced to a normal form t simulating Pt in time O(poly(T (n))) and space
O(S(n)).

That is, we must model the cost of CBPV using Turing machines and prove that the resulting
simulation is cost-bounded (Theorem 1). Moreover, we must show that CBPV provides
sufficient expressivity to reasonably simulate any Turing machine (Theorem 2).

Turing Machines Simulating CBPV

Inspired by the strategy used for proving that WCBV is reasonable [11], we verify that CBPV
can be simulated by Turing machines with reasonable overhead by using two intermediate
abstract machines: the substitution machine (Section 5.2) and the heap machine (Section 5.3).

It is well-known that the λ-calculus has the size explosion problem, where linear time can
lead to exponential growth in space [26]. That is, with O(n) β-reduction steps, the largest
intermediate term can be of size O(2n). Turing machines, by contrast, need at least one unit
of time to consume one unit of space, so space cost cannot exceed time cost. Hence, if one
adopts a substitution-based strategy alone, the overhead in time will be exponential. To
solve the size explosion problem, a shared memory structure is required to store values. This
motivates why the heap-based strategy is incorporated into our simulation.

ITP 2025



7:4 A Verified Cost Model for Call-By-Push-Value

But the heap-based strategy has a pointer explosion problem [26], which makes space over-
head non-constant. Luckily, size explosion and pointer explosion problems don’t overlap [11],
so we can use the heap-based strategy when a size explosion happens, and vice versa.

We formalise the simulation of CBPV by each of the two abstract machines, and verify
that it respects the desired bounds in terms of time and space overhead. The cost bounds
turn out to be similar to those for WCBV, enabling the adoption of an existing algorithm [11]
to obtain a Turing machine simulation by interleaving the substitution and heap machines.

CBPV Simulating Turing Machines

For this direction, we use WCBV as an intermediate model. We first formalise the translation
from WCBV to CBPV provided by Levy [19]. We then show that CBPV can simulate WCBV
with reasonable time and space overheads. Since WCBV can simulate Turing machines with
reasonable overheads [11, Theorem 5.1], we obtain our result for this direction as a corollary.

Formalisation

We verify in HOL4 that our time and space cost models for CBPV have the desired overheads.
The formalisation covers all material presented in Section 3, Section 4, Section 5 and
Section 6.2. An overview is given in Figure 6 in Section 6. The interleaving strategy, and the
connection between abstract machines and Turing machines is done using pen-and-paper
proofs adapted from the literature, in Section 6.

3 Call-By-Push-Value λ-Calculus

The CBPV λ-calculus [19, 20] allows encoding the order of evaluation as part of the syntax
of a program. Hence, it serves as a subsuming paradigm that enables studying evaluation
strategies, and combinations thereof, using a single set of reduction rules. Levy provides
semantic-preserving translations from call-by-name and call-by-value into CBPV [20].

For simplicity, we use a core fragment of CBPV that is sufficient for demonstrating
reasonability. As such we omit, for instance, the general pair types, and instead introduce a
simpler double sequencing operation that will be discussed later. Furthermore, while most
presentations of CBPV are typed, ours is untyped CBPV. We consider types an orthogonal
concern to cost: the well-typed CBPV terms are a strict subset of the untyped CBPV terms,
so a cost model for the latter immediately suggests a cost model for the former.

The CBPV terms are defined below as two mutually recursive sets: the values V and the
computations M. The mutual recursion adds some technical difficulties in our formalisation
as all relevant functions need to be mutually recursive too. For instance, the substitution
function for CBPV, and the compilation function for compiling CBPV terms into programs
are both defined mutually recursively, which complicates proofs. To simplify the presentation,
we will often use a single overloaded name for two such mutually recursive functions.

Values V := var x | thunk M

Computations M := λ. M | app M V | force V | ret V | seq M M | pseq M M M | let V. in M

Fine-grained control over evaluation can be achieved using the force and thunk operators.
thunk suspends a computation, and force resumes a suspended computation.

Note that we have an extra pseq that is absent in the standard presentation of CBPV.
An example of pseq computation is pseq m2 m1 n. It allows us to evaluate two computations
m1 and m2 and use the results in a third computation n. Note that the notation within pseq



Z. Z. Chen, J. Åman Pohjola, and C. Rizkallah 7:5

follows the convention and binds to the right. This can of course be encoded with nested seq,
but at the cost of higher binding depth: seq m2 (seq m1 n). Avoiding this higher binder depth
will turn out to be crucial for obtaining constant space overhead in Section 6.2. Including
pairs in the language would have solved the problem too, but pseq suffices for our purposes.

We then formalise the big-step cost semantics of closed CBPV provided by Levy [20];
that is, we only consider terms with no free variables at the top level. Similar to the change
we made in the syntax, we also add pseq as a special case of the pair type into our semantics.

In order to define the semantics for closed CBPV, we need to first provide a closed
substitution function for β-reductions. The following function mi

v substitutes all the variables
with de Bruijn index i by v in m by recursively visiting all the inner terms of m:

(λ. m)i
u = λ. (mi+1

u )
(app m v)i

u = app (mi
u) (vi

u)
(ret v)i

u = ret (vi
u)

(seq m n)i
u = seq (mi

u) (ni+1
u )

(pseq m2 m1 n)i
u = pseq (m2

i
u) (m1

i
u) (ni+2

u )

(var x)i
u = u (if x = i)

(var x)i
u = var x (if x ̸= i)

(thunk m)i
u = thunk (mi

u)
(force v)i

u = force (vi
u)

(let v. in m)i
u = let (vi

u). in (mi+1
u )

Note the special cases such as (λ. m)i
u, where we need to increment the targeted variable

index i accordingly because we are entering extra layers of abstractions. A more special case
is (pseq m2 m1 n)i

u, we increment i by two for this substitution because n needs to leave two
free variable names for the two computations m1 and m2.

We then define time cost and space cost semantics for CBPV. For the time cost semantics,
we use a judgement m ⇓k n to mean that the computation m reduces to n in k steps. The
rules are given in Figure 1.

λ. m ⇓0 λ. m ret v ⇓0 ret v

m ⇓k m′

force (thunk m) ⇓k+2 m′
m0

v ⇓k m′

let v. in m ⇓k+1 m′

m ⇓k1
λ. n n0

v ⇓k2
n′

app m v ⇓k1+k2+1 n′
m ⇓k1

ret v n0
v ⇓k2

n′

seq m n ⇓k1+k2+1 n′

m1 ⇓k1
ret v1 m2 ⇓k2

ret v2 (n0
v1

)1
v2

⇓k3
n′

pseq m2 m1 n ⇓k1+k2+k3+1 n′

Figure 1 The Rules Defining Big-Step Semantics of CBPV Terms with Time Cost.

For space, the judgement m ⇓s n says that m reduces to n with space cost s. Note that
the time and space cost semantics judgements coincide if the cost annotations are ignored.

We define a size function ∥m∥ for CBPV terms m as follows. Note that we account for
the size of a de Bruijn index x in the term size.

∥var x∥ = 1 + x ∥thunk m∥ = 1 + ∥m∥
∥force v∥ = 1 + ∥v∥ ∥let v. in m∥ = 1 + ∥v∥ + ∥m∥
∥λ. m∥ = 1 + ∥m∥ ∥app m v∥ = 1 + ∥m∥ + ∥v∥
∥ret v∥ = 1 + ∥v∥ ∥seq m n∥ = 1 + ∥m∥ + ∥n∥
∥pseq m2 m1 n∥ = 1 + ∥m2∥ + ∥m1∥ + ∥n∥

ITP 2025



7:6 A Verified Cost Model for Call-By-Push-Value

Figure 2 gives inference rules of the space cost semantics. It tracks the maximum
intermediate term size of an evaluation. For instance, for the pseq case, there are three
different evaluation stages: (1). Evaluating m1; (2). Evaluating m2 (3). Substituting results
v1 and v2 into n. The space cost is the maximum size among these stages.

λ. m ⇓∥m∥+1 λ. m ret v ⇓∥v∥+1 ret v

m ⇓s m′

force (thunk m) ⇓max(s, ∥m∥+2) m′

m0
v ⇓s m′

let v. in m ⇓max(s, ∥v∥+∥m∥+1) m′
m ⇓s1 λ. n n0

v ⇓s2 n′

app m v ⇓max(s1+∥v∥+1, s2) n′

m ⇓s1 ret v n0
v ⇓s2 n′

seq m n ⇓max(s1+∥n∥+1, s2) n′

m1 ⇓s1 ret v1 m2 ⇓s2 ret v2 (n0
v1

)1
v2 ⇓s3 n′

pseq m2 m1 n ⇓max(s1+∥m2∥+∥n∥+1, ∥v1∥+s2+∥n∥+1,s3) n′

Figure 2 The Rules Defining Big-Step Semantics of CBPV Terms with Space Cost.

4 Compiling CBPV Terms to Programs

As a first step in bridging the gap between CBPV and Turing machines, we define a flat data
structure to represent programs that correspond to CBPV terms. A program P is formed of
a list of tokens, Tok that are defined as follows:

t ∈ Tok := varT x | thunkT | endThunkT | lamT | endLamT | appT | forceT |
retT | endRetT | seqT | endSeqT | pseqT | endPseqT | letT | endLetT

▶ Definition 3 (Size of Tokens and Programs).

|varT x| = 1 + x |t| = 1 otherwise

∥P∥ = 1 +
∑

ti∈P |ti|

The de Bruijn index x counts towards the token size because larger indices require more tape
cells to store on Turing machines. The size of a program is simply the sum of the size of its
tokens plus 1 (which is the size of the empty program on a Turing machine).

Definitions 4 and 5 define compilation to the substitution and heap machines, respectively.

▶ Definition 4 (Compilation Function for Substitution Machine).

γ(var x) = varT x

γ(thunk m) = thunkT :: γ(m) ++[endThunkT ]
γ(force v) = γ(v) ++[forceT ]
γ(ret v) = retT :: γ(v) ++[endRetT ]
γ(λ. m) = lamT :: γ(m) ++[endLamT ]
γ(app m v) = γ(m) ++ γ(v) ++[appT ]
γ(seq m n) = γ(m) ++[seqT ] ++ γ(n) ++[endSeqT ]
γ(pseq m2 m1 n) = γ(m1) ++ γ(m2) ++[pseqT ] ++ γ(n) ++[endPseqT ]
γ(let v. in m) = γ(v) ++[letT ] ++ γ(m) ++[endLetT ]



Z. Z. Chen, J. Åman Pohjola, and C. Rizkallah 7:7

▶ Definition 5 (Compilation Function for Heap Machine). We define γ′ exactly as γ, except:

γ′(ret v) = γ′(v) ++[retT ]

We use pairs of delimiter tokens (like seqT and endSeqT ) when necessary, to preserve the
tree structure of the original term. The development of these compilers was fiddly, since the
right balance needs to be struck between including enough structure to prevent different
subterms from being conflated or evaluated prematurely, yet not too much structure, because
extra structure takes space, and must be accounted for in the space cost bound proofs. γ and
γ′ make slightly different tradeoffs in this respect. We could change the substitution machine
to use γ′, but the overall proof does not require the machines to use the same syntax.

The following lemma is useful for our space cost analysis. It states that the size of a
compiled program is linear wrt. term size. (Note that the same lemma also works for γ′.)

▶ Lemma 6 (Program Size Bounds). 1 ≤ ∥m∥ ≤ ∥γ(m)∥ + 1 ≤ 2 ∗ ∥m∥

We write P ≫ m to state that P is the corresponding program for m.

▶ Definition 7 (Program-Term Correspondence). P ≫ m holds if γ(m) = P .

5 Abstract Machines

Recall from Section 2 that our proof strategy relies on interleaving two simulation strategies
to achieve reasonability in time and space. The substitution-based strategy has reasonable
overhead for space, but not for time due to the size explosion problem. The heap-based
strategy has reasonable overhead for time, but not for space due to the pointer explosion
problem. These two explosion problems do not occur at the same time. Thus, by interleaving
the respective Turing machines for each of these two strategies, we can obtain a reasonable
simulation. In order to achieve this, we first implement two abstract machines that represent
these two strategies respectively in this section. We then construct the corresponding Turing
machines and finish the rest of the proofs in Section 6. Note that the size of intermediate
terms and the complexity differs between the abstract machines and their corresponding
Turing machines.

In this section, we first introduce an auxiliary extraction function that is used by both
abstract machines (Section 5.1). We then introduce the substitution machine (Section 5.2)
and the heap machine (Section 5.3), and investigate their cost in relation to CBPV.

5.1 Extraction Function
For each pair of delimiter tokens, we define a φ function to scan a program until the
corresponding end delimiter. To simplify the presentation, we overload φ to account for all
operands. The idea is that φP = (M, Q) strips the argument body out of P and returns
it as M , where Q is the rest of the program. We show the extraction function for lamT -
endLamT below. The intuition is similar to finding matching parentheses pairs. When φ is
applied to a well-formed P , we have φP = φ(M ::[endLamT ] ++ Q) = (M, Q), where M has
balanced lamT - endLamT pairs.

▶ Definition 8 (Extraction Function for lamT - endLamT ). φP = φ 0
[ ]P where:

φ 0
M (endLamT :: Q) = (M, Q) φ k

M (t :: Q) = φ k
M ++[t]Q

φ k
M (lamT :: Q) = φ k+1

M ++[lamT ]Q φ k
M [] = undefined

φ k+1
M (endLamT :: Q) = φ k

M ++[endLamT ]Q

ITP 2025



7:8 A Verified Cost Model for Call-By-Push-Value

5.2 Substitution Machine
In this section, we develop a machine that implements a substitution-based evaluation
strategy. Before diving into the transition rules, we need a helper function ::tc that is used
to prevent empty lists from accumulating on the stack. It is defined recursively as follows:

[ ] ::tc C = C c ::tc C = c ::tc C (c ̸= [ ])

The substitution machine performs substitutions immediately as they appear at the top of
the current stacks. The machine state consists of two stacks: the task stack and the value
stack. In the initial state, the value stack is empty and the task stack contains the γ(m)
for a CBPV computation m. On successful termination, a final value is produced on the
value stack, and the task stack is empty. Note that the value stack (despite its name) will
sometimes contain computations in non-final states. An alternative presentation would be to
add an extra stack for suspended computations, but we found no need for this.

Substitution on programs, written, P i
Q is similar to that for CBPV terms (Section 3); its

definition is elided. Figure 3 shows the transition rules for the substitution machine. The three
columns represent the task stack, the value stack, and the assumptions. Each ▷ represents
one transition step, where the row above ▷ represents the current state of the machine, and
the row on the same level as ▷ represents the next state of the machine after the transition.
For example, the transition rule for thunkT strips one layer of thunkT -endThunkT off the
task stack and places it on the value stack (thus suspending it). Note that the transition
rules for seqT and pseqT can strip retT components from the value stack directly without
the extraction function φ. For instance, in the seqT rule, retT :: U ++[endRetT ] is just the
first element on the value stack. We can strip it with a simple list operation. Furthermore,
since there is no extra subsequent programs after endRetT in retT :: U ++[endRetT ], we can
obtain U by removing retT and endRetT using simple list operations.

The transition rule for varT is not strictly necessary: we only consider closed terms, so
the rule will never be exercised when running the compilation output. Nonetheless, including
it appears to make the proofs more ergonomic, by making it unnecessary to carry around a
closedness side condition. For example, consider the useful technical lemma

((γ(v) :: P ) :: T, V ) ▷ (P ::tc T, γ(v) :: V )

which holds unconditionally when the varT rule is present in the substitution machine
semantics. If we remove the rule, it only holds when v is a thunk.

Multiple transitions are written (T, V ) ▷σ
k (T ′, V ′), where T is the current task stack and

V is the current value stack. We obtain a new state (T ′, V ′) after applying the transition
rules k times on the current state (T, V ), with the size of the biggest intermediate state
being ½σ. We elide σ or k when irrelevant. We write ▷∗ to represent 0 or more transition
steps.

The substitution machine simulates CBPV with constant time and space overhead:

▶ Lemma 9 (Substitution Machine Time Simulation). If m ⇓k n, then there exists k′ such
that (Pm, []) ▷k′ ([], Pn) where k′ ≤ 3 ∗ k + 1 and Pm ≫ m and Pn ≫ n.

Proof. By rule induction on the big-step semantics of CBPV. ◀

▶ Lemma 10 (Substitution Machine Space Simulation). If m ⇓s n then there exists σ such
that (Pm, []) ▷σ

∗ ([], Pn) , where s ≤ σ ≤ 9 ∗ s and Pm ≫ m and Pn ≫ n.

Proof. Similar to the time simulation proof, we induct on the structure of the big-step
semantics of CBPV and show that this theorem is true for all the transition rules. ◀



Z. Z. Chen, J. Åman Pohjola, and C. Rizkallah 7:9

Task Stack Value Stack Assumption
(varT n :: P ) :: T V

▷ P ::tc T varT n :: V

(thunkT :: P ) :: T V φP = (M, Q)
▷ Q ::tc T thunkT :: M ++[endThunkT ] :: V

(forceT :: P ) :: T (thunkT :: K) :: V φK = (M, [ ])
▷ (M ++ P ) ::tc T V

(lamT :: P ) :: T V φP = (M, Q)
▷ Q ::tc T (lamT :: M ++[endLamT ]) :: V

(appT :: P ) :: T Q ::(lamT :: M ++[endLamT ]) :: V

▷ M0
Q ::(P ::tc T ) V

(retT :: P ) :: T V φP = (U, Q)
▷ Q ::tc T (retT :: U ++[endRetT ]) :: V

(seqT :: P ) :: T (retT :: U ++[endRetT ]) :: V φP = (N, Q)
▷ N0

U ::(Q ::tc T ) V

(pseqT :: P ) :: T (retT :: U2 ++[endRetT ]) ::(retT :: U1 ++[endRetT ]) :: V φP = (N, Q)
▷ (N0

U1
)1
U2

::(Q ::tc T ) V

(letT :: P ) :: T K :: V φP = (M, Q)
▷ M0

K ::(Q ::tc T ) V

Figure 3 Transition Rules for the Substitution Machine.

5.3 Heap Machine
In this section, we introduce an environment-based abstract machine. Free variables are
interpreted as pointers into a heap that store their values. But first, some auxiliary definitions.

▶ Definition 11 (Closure). A closure ⟨P, a⟩ is a pair consisting of a program P and pointer
a. The pointer a binds the free variables in the program P to the values in the heap.

▶ Definition 12 (Heap). A heap is defined as a list of heap cells where each cell {C, a}
consists of a closure C and an additional pointer a. The pointer a points to the previous cell
in the heap, providing a linked list representation of the heap.

Let ++ be list concatenation, and len be the standard length function for lists.

▶ Definition 13 (Put and Lookup). In lookup, let H[a] = {C, a′}.

put H e = (H ++[e], len(H))

lookup H a 0 = C

lookup H a x = lookup H a′ (x − 1) (if x ̸= 0)

The states of the heap machine are triplets consisting of a task stack, a value stack and a
heap. We store values in the heap, and replace variables with pointers instead of directly
substituting values in-place.

The transition rules for the heap machine are shown in Figure 4. Compared to Section 5.2,
there are some minor differences that are not directly related to substitution, but are
convenient in the proofs. For example, we spell out the thunkT structure for the forceT case,
so this rule does not have to use the φ function.

In our proofs, we write heap machine transitions as (T, V, H) ▷σ
k (T ′, V ′, H ′), where

(T, V, H) is a triple representing the current task stack, value stack, and heap. We obtain a
new state (T ′, V ′, H ′) after applying the transition rules k times on the current state, with
the size of the biggest intermediate state being σ. We elide σ or k when irrelevant.

ITP 2025



7:10 A Verified Cost Model for Call-By-Push-Value

Task Stack Value Stack Heap Assumption
⟨varT x :: P, a⟩ :: T V H lookup H a x = g

▷ ⟨P, a⟩ :: T g :: V H

⟨thunkT :: P, a⟩ :: T V H φP = (M, Q)
▷ ⟨Q, a⟩ :: T ⟨thunkT :: M ++[endThunkT ], a⟩ :: V H

⟨forceT :: P, a⟩ :: T ⟨thunkT :: M ++[endThunkT ], b⟩ :: V H

▷ ⟨M, b⟩ ::⟨P, a⟩ :: T V H

⟨lamT :: P, a⟩ :: T V H φP = (M, Q)
▷ ⟨Q, a⟩ :: T ⟨lamT :: M ++[endLamT ], a⟩ :: V H

⟨appT :: P, a⟩ :: T Q ::⟨lamT :: M ++[endLamT ], b⟩ :: V H put H{Q, b} = (H ′, c)
▷ ⟨M, c⟩ ::⟨P, a⟩ :: T V H ′

⟨retT :: P, a⟩ :: T ⟨M, b⟩ :: V H

▷ ⟨P, a⟩ :: T ⟨M, b⟩ :: V H

φP = (N, Q)
⟨seqT :: P, a⟩ :: T ⟨M, b⟩ :: V H put H{⟨M, b⟩, a} = (H ′, c)

▷ ⟨N, c⟩ ::⟨Q, a⟩ :: T V H ′

φP = (N, Q)
put H{⟨M2, b2⟩, a} = (H1, c1)

⟨pseqT :: P, a⟩ :: T ⟨M2, b2⟩ ::⟨M1, b1⟩ :: V H put H1{⟨M1, b1⟩, a} = (H2, c2)
▷ ⟨N, c2⟩ ::⟨Q, a⟩ :: T V H2

φP = (M, Q)
⟨letT :: P, a⟩ :: T K :: V H put H{K, a} = (H ′, b)

▷ ⟨M, b⟩ ::⟨Q, a⟩ :: T V H ′

⟨[ ], a⟩ :: T V H

▷ T V H

Figure 4 Transition Rules for the Heap Machine.

Correspondence between programs and CBPV terms is here relative to an environment.
We therefore use the unfolding judgement, written (H, a| m1)⇝k m2, which takes as inputs
a heap H, a pointer a, a variable bound number k, and two CBPV terms m1 and m2. It
returns true when m2 is identical to m1 with all of its free variables replaced by their values
in H. A representative subset of the unfolding rules are shown in Figure 5. The two variable
rules are the interesting ones. The first variable rule unfolds a bound variable to itself. The
second variable rule (at the bottom) unfolds free variables to their value on the heap.

We define a heap-aware correspondence using the unfolding function as follows:
▶ Definition 14 (Closure-Term Correspondence with Heap). : For any closure ⟨P, a⟩ with heap
H and CBPV term n, ⟨P, a⟩ is the corresponding closure for n (written as ⟨P, a⟩ ≫H n) if
and only if there exists a CBPV term m such that (H, a| m)⇝0 n and γ′(m) = P .

We prove in HOL4 that the heap machine can simulate CBPV with constant overhead in
time:
▶ Lemma 15 (Heap Machine Time Simulation). If m ⇓k n then there exists k′ such that
(⟨Pm, 0⟩, [ ], [ ]) ▷k′ ([ ], ⟨Pn, a⟩, H), where k′ ≤ 10 ∗ k + 3 and ⟨Pm, 0⟩ ≫ m and ⟨Pn, a⟩ ≫H n.

Proof. By rule induction on the big-step semantics of CBPV. ◀

The space cost is unrelated to that of the CBPV reduction. Instead, the size of the kth state
is bounded by the size of the original CBPV term, and the number of steps:
▶ Lemma 16 (Heap Machine Space Simulation). If (Pm, [ ], [ ]) ▷k (T, N, H) and Pm ≫ m

then ∥T ++ N ++ H∥ ≤ (3k + 1) ∗ (4 ∗ k + 2 ∗ ∥m∥).
Proof. The proof proceeds by showing each stack’s length and that all elements in each stack
are bounded by the size of the original term m and the number of transitions taken k. ◀



Z. Z. Chen, J. Åman Pohjola, and C. Rizkallah 7:11

x < k

(H, a| var x)⇝k var x

(H, a| m)⇝k+1 m′

(H, a| λ. m)⇝k λ. m′
(H, a| v)⇝k v′

(H, a| ret v)⇝k ret v′

(H, a| m1)⇝k m′
1 (H, a| m2)⇝k m′

2 (H, a| n)⇝k+2 n′

(H, a| pseq m2 m1 n)⇝k pseq m′
2 m′

1 n′

k ≤ x lookup H a (x − k) = ⟨γ(thunk m), b⟩ (H, b| thunk m)⇝0 v

(H, a| var x)⇝k v

Figure 5 A Selection of Unfolding Rules.

Abstract Machines

Turing Machines CBPV

WCBV λ-Calculus

simulates simulates

simulatessimulates

• Mechanised in this paper [4].• Adapted from [10].

Figure 6 Simulation between Turing Machines and CBPV with Intermediate Models.

6 CBPV is Reasonable for Both Time and Space

In this section, we use the results from Section 5 to prove that CBPV is reasonable. We
achieve this by providing two simulations between CBPV and Turing machines, as elaborated
in Figure 6.

Section 6.1 describes how Turing machines can simulate CBPV with polynomial time
overhead and constant factor space overhead, fulfilling Theorem 1 in Section 2. Note that this
simulation goes through the abstract machines we implemented and formalised in Section 5.

Section 6.2 describes how CBPV can reasonably simulate WCBV. We adapt the result
that WCBV can reasonably simulate Turing machines from existing literature [11]. Together,
we have that CBPV can simulate Turing machines with polynomial time overhead and
constant factor space overhead, fulfilling Theorem 2 in Section 2.

6.1 Turing Machines Simulating CBPV
In this section we show that it is always possible to construct a Turing machine MCBPV
that simulates CBPV with polynomially bounded time overhead and constant factor space
overhead. The results from Section 5, specifically, Lemmas 9, 10, 15, and 16, will be used here.

ITP 2025



7:12 A Verified Cost Model for Call-By-Push-Value

Our proof is very similar to a proof from the literature [11], where similar heap and
substitution machines are interleaved to obtain a simulation of WCBV rather than CBPV.
Their proof relies on formalised results similar to our formalised results, and proves that the
interleaving strategy always obeys the required time and space bounds. We demonstrate that
their argument extends to the more general case of CBPV. While our abstract machines are
much more involved, they have similar time and space bounds, which simplifies adaptation.

We need to construct Turing machines Msubst and Mheap that simulate the respective
abstract machines. We must then prove that one can always construct a Turing machine
MCBPV that interleaves Msubst and Mheap such that they always obey the required bounds.

The substitution-based Turing machine Msubst is constructed by iterating over smaller
Turing machines each simulating an individual transition rule from Figure 3. Similarly,
the heap-based Turing machine Mheap is constructed by iterating over Turing machines
simulating the rules of Figure 4. In addition to the original CBPV term s, each of these
machines takes as input a number of steps k that they are meant to simulate. The Msubst
takes an additional input σ and aborts if the amount of space used is larger than σ. The
encoding of the machine transition rules in Turing machines is straightforward, where we use
13 symbols to represent the 13 constructors(tokens) in the substitution machine. Similarly,
we use 12 symbols to represent the 12 constructors(tokens) in the heap machine.

The algorithm then constructs MCBPV by interleaving the above two machines, Msubst
and Mheap. Provided an input s which has a normal form t, the algorithm starts by applying
Msubst over (the program equivalent of) s to reduce it. If a size explosion occurs during this
reduction, execution then switches to use Mheap before the explosion happens. In this case,
the heap-based strategy is guaranteed not to encounter the pointer explosion problem [11].
That is because the terms that cause size explosions result in a space cost of O(n2), which
easily accommodates the log n space cost for pointer storage in the heap machine. This
algorithm guarantees termination and reasonable time and space overhead.

Now let’s construct the Turing machines. In the following theorems, we write ∥s∥T for
the number of transition steps and ∥s∥S for size of the biggest intermediate term.

We first consider the substitution machine. Msubst takes as inputs a term s, two numbers
k and σ. s is the term to be reduced, k represents the number of transition steps to perform,
and σ represents the space threshold over which the machine should abort. We show that this
machine must satisfy one of the following three conditions: (1) it returns a desired value t

within k steps; (2) it reaches the space bound and halts; (3) it finishes k reductions and halts
(within both space and time bounds). This is formally stated below as Theorem 17.

▶ Theorem 17. There exists a Turing machine Msubst that takes as inputs k, σ and a term s.
It halts in time O(k· poly(min (σ, ∥s∥S))) and space O(min (σ, ∥s∥S) + log σ + log k) while
one of the following statements holds:

The machine outputs a term t, then s has normal form t and σ ≥ ∥s∥S and k ≥ 3·∥s∥T +1.
The machine halts in a state named space bound not reached and k ≤ 3 · ∥s∥T + 1 holds.
The machine halts in a state named space bound reached and σ ≤ 9 · ∥s∥S holds.

Proof. We can construct a Turing machine Msubst by looping Turing machines that implement
the individual steps of the abstract substitution machine. We add an extra rule where this
machine has to halt if it were to reach a state with size larger than σ. Note that the extra
rule requires Msubst to halt even if it is in the middle of execution, in order to avoid the size
explosion problem. With an initialisation function τ that converts s from a λ-term into a
program τ(s), we now have the desired Turing machine Msubst.



Z. Z. Chen, J. Åman Pohjola, and C. Rizkallah 7:13

The time and space cost from the substitution machine mostly carry over directly, but
the extraction functions φ cannot be implemented in constant time. For instance, φ k

QP

takes time and space O(∥Q∥ + ∥P∥ + k).
From Lemma 10, we know that if s ⇓∥s∥S t then there exists σ such that (Ps, []) ▷σ

∗ ([], Pt),
where ∥s∥S ≤ σ ≤ 9 ∗ ∥s∥S and Ps ≫ s and Pt ≫ t. Thus the size of all intermediate states
and the overall space consumption lie within 9 ∗ ∥s∥S .

From Lemma 9, we know that if s ⇓∥s∥T
t, then there exists k such that (Ps, []) ▷k ([], Pt)

where k ≤ 3 ∗ ∥s∥T + 1 and Ps ≫ s and Pt ≫ t. Thus there must exist a k that is large
enough to simulate the reduction while still lying within the bound 3 ∗ ∥s∥T + 1. ◀

The next step is to construct the heap-based Turing machine Mheap:

▶ Theorem 18. There exists a Turing machine Mheap that, given a number k and a closed
term s, halts in time O(poly(∥s∥,k)) and space O(∥s∥ · poly(k)). If s has a normal form t

and k ≥ 10 · ∥s∥T + 3, it computes a heap H and a closure g such that g ≫H t. Otherwise, it
halts in a distinguished final state (denoting “failure”).

Proof. We can implement the abstract substitution machine from Section 5.3 by looping
Turing machines that implement the individual steps of the abstract machine.

Time and space cost of the φ functions is as in Theorem 17. We also have to consider the
lookup function. lookup iterates through the heap for n indices using the heap headers (a in
this case) as pointers, resulting in at most O(n) time cost.

Thus each abstract step (T, V, H)▷(T ′, V ′, H ′) can be implemented in O(poly(∥(T, V, H)∥))
time and O(max(∥(T, V, H)∥, ∥(T ′, V ′, H ′)∥)) space. The space consumption of all involved
operations in Figure 4 is bounded by their input or output. Using Lemma 16, the size of all
intermediate (T, V, H) can be bound by k and ∥s∥ to derive the claimed resource bounds.
The successful computation of g and H for large enough k follows with Lemma 15. ◀

Before constructing MCBP V , we need a lemma to say that unfolding only changes
de Bruijn indices starting at k. In particular, closed terms are invariant under unfolding.

▶ Lemma 19. If s is bounded by k, then (s, a| H)⇝k s.

Proof. Induction on s ≤ k. ◀

We now combine everything together to form our final theorem.

▶ Theorem 20. There is a Turing machine MCBP V that, given a closed term s that has a
normal form t, computes a heap H and a closure g such that g ≫H t in time O(poly(∥s∥,
∥s∥T )) and space O(∥s∥S).

Proof. By using the interleaving algorithm (Algorithm 1) adapted from WCBV [11].

Algorithm 1 Interleaving Strategy Algorithm.
Let p be the polynomial such that the machine from Theorem 18 runs in space O(∥s∥ · p(k)).
1. Initialise k := 0 (in binary)
2. Compute σ := ∥s∥ · p(k) (in binary)
3. Run Msubst on s, k and σ.

a. If Msubst computes the normal form t, output (γ(t), 0) and an empty heap [ ] and halt.
b. If Msubst halts with space bound not reached, set k := k + 1 and go to 2
c. If Msubst halts with space bound reached, continue at 4.

4. Run Mheap on s and k.
a. If this computed a closure g and a heap H representing t, output H and g and halt.
b. Otherwise, set k := k + 1 and go to 2.

ITP 2025



7:14 A Verified Cost Model for Call-By-Push-Value

There are four things to prove about the algorithm. We will go through them one by one.

Halting states. MCBP V has only two halting states: when Msubst returns (state 3(a)
in Algorithm 1), and when Mheap returns (state 4(a)). In both cases, MCBP V returns a
closure-heap pair representing the normal form t of s. In the first case, Theorem 17 shows
that Msubst will return a normal form t of s and Lemma 19 shows that the closure-heap pair
we constructed in state 3(a) indeed represents t. The second case is immediate Theorem 18.

Termination. The machine will terminate for terminating terms s and diverge on non-
terminating CBPV terms. For the terminating case, we need to show two things: (1). for
all k, each iteration eventually finishes and goes to the next iteration; (2). there exists a k

such that the machine halts and returns a closure-heap pair. We consider (1) first, and fix k.
Time cost in step 1 is constant. Binary computation in Turing machines have polynomial
cost, thus the time cost in step 2 is O(poly(∥s∥, (k))). Using Theorem 17, step 3 takes time

O(k · poly(min(σ, ∥s∥S))) ⊆ O(k · poly(σ))
= O(k · poly(∥s∥ · p(k))) from step 2
⊆ O(k · poly(∥s∥, k)) p is a polynomial
⊆ O(poly(∥s∥, k))

If Step 4 is executed, this takes time O(poly(∥s∥, k)) by Theorem 18. Since each of
the four steps has at most time complexity O(poly(∥s∥, k)), one iteration has time cost
O(poly(∥s∥, k)), which suffices for (1). For (2), consider k = 10∥s∥T + 3, which is larger than
the two values required in Theorem 17 and Theorem 18. By Theorem 17, the machine does
halt during Step 3, unless σ ≤ ∥s∥S . In the latter case, 4 is tried. Then, by Theorem 18, as
k is large enough, we have that Mheap indeed halts with a closure-heap pair.

Time Complexity. We have proved the time cost for each iteration, so we just need to sum
up all the iterations for the overall time complexity for MCBP V :

O
(10∥s∥T +3∑

k=0
(poly(∥s∥, k))

)
⊆ O(∥s∥T · poly(∥s∥, ∥s∥T )) ⊆ O(poly(∥s∥, ∥s∥T ))

Space Complexity. We first analyse the space cost for one iteration with an arbitrary k.
Step 1 is constant. Step 2 takes O(log(σ)) space since the computation is in binary. By The-
orem 17, Step 3 takes space O(min(σ, ∥s∥S) + log σ + log k) ⊆ O(∥s∥S + log σ + log k). If
step 3(c) reaches the space bound (σ ≤ 3 · ∥s∥S), step 4 is tried. Together with Theorem 18
and definition of m, the space cost for step 4 is O(∥s∥ · p(k)) ⊆ O(σ) ⊆ O(∥s∥S).

Thus we have the space cost of one iteration:

O(∥s∥S + log σ + log k) = O(∥s∥S + log(∥s∥ · p(k)) + log k) (definition of σ)
⊆ O(∥s∥S + log ∥s∥ + log(p(k)) + log k)
= O(∥s∥S + log(p(k)) + log k) (as ∥s∥ ≤ ∥s∥S)
= O(∥s∥S + log(kc) + log k) (c const., p poly.)
= O(∥s∥S + c log(k) + log k)
⊆ O(∥s∥S + log k)

The space cost for all iterations is as follows, where the last equation is by Lemma 21:

O( max
0≤k≤10∥s∥T +3

(∥s∥S + log k)) ⊆ O(∥s∥S + log ∥s∥T ) = O(∥s∥S) ◀



Z. Z. Chen, J. Åman Pohjola, and C. Rizkallah 7:15

By combining our formalisation with results above, we obtain Theorem 2.
For terms with ∥s∥T /∈ O(∥s∥S) it is crucial that the machine tracks the step number k in

binary, because it would need Ω(∥s∥T ) space otherwise. This suffices because of Lemma 21:

▶ Lemma 21. log ∥s∥T ∈ O(∥s∥S).

Proof. As the vocabulary is finite, there are at most exponentially many terms for a given
size. A reduction from s cannot visit the same term twice since reduction is deterministic.
∥s∥S is the biggest intermediate term, which means that all the terms in the reduction for s

will be smaller than ∥s∥S . This implies that ∥s∥T will be at most equal to the total number
of terms smaller than ∥s∥S . Formally: ∥s∥T ≤ c∥s∥S for a constant c.

To see that the number of terms smaller than a given size σ is at most exponential,
note that #{t| ∥t∥ ≤ σ} = #{∥t∥ | ∥γ(t)∥ ≤ 2 · σ} by Lemma 6. Because γ is injective we
have #{∥t∥ | ∥γ(t)∥ ≤ 2 · σ} = #{P | ∥P∥ ≤ 2 · σ}, which is ≤ #{P | ∥P∥ ≤ 2 · σ}. Finally,
#{P | ∥P∥ ≤ 2 · σ} ≤ 5n − 1 follows by induction on n. The 5 is because there are four
different symbols a program can start with, and variables indices use a fifth symbol. ◀

6.2 CBPV Simulating WCBV
In this section, we prove that CBPV can simulate Turing machines with reasonable time
and space overhead. We achieve this by using WCBV as an intermediate model. There is
existing work showing WCBV can simulate Turing machines with reasonable time and space
overhead [11]. Thus what remains to be shown in this section is a reasonable simulation of
WCBV using CBPV. With prior work, this suffices to prove Theorem 2.

Let T denote the set of WCBV λ-terms constructed from the following grammar:

t, u ∈ T := var x | app T T | λ. T

WCBV does not allow reduction under λ. Time and space cost semantics are as in [11]:

λ. t ⇓̇0 λ. t

t ⇓̇k1
λ. t′ u ⇓̇k2

λ. u′ t′0
λ. u′ ⇓̇k3

t′

app t u ⇓̇k1+k2+k3+1 t′′

λ. t ⇓̇∥λ. t∥
λ. t

t ⇓̇s1
λ. t′ u ⇓̇s2

λ. u′ t′0
λ. u′ ⇓̇s3

t′′

app t u ⇓̇max(s1+1+∥u∥, ∥λ. t′∥+1+s2, s3)
t′′

The compilation function c(t) is then defined as follows:

c(var x) = var x c(λ. t) = ret thunk λ. c(t)
c(app t u) = pseq (c(u)) (c(t)) (app (force var 0) (var 1))

We prove that CBPV can simulate WCBV with constant overheads, by a routine induction:

▶ Theorem 22. For each closed WCBV term t, we have:
1. If t ⇓̇k u, then there exists k′ such that c(t) ⇓k′ c(u) and k′ ≤ 5 ∗ k; and
2. If t ⇓̇s

u, then there exists s′ such that c(t) ⇓s′
c(u) and s′ ≤ 6 ∗ s.

Note that the standard translation uses seq twice instead of pseq once, like this:

c′
η(var x) = var η(x) c′

η(λ. t) = ret thunk λ. c′
η⇑[0 7→0](t)

c′
η(app t u) = seq (c′

η(u)) (seq c′
η↑(t) (app (force var 0) (var 1)))

ITP 2025



7:16 A Verified Cost Model for Call-By-Push-Value

Some de Bruijn arithmetic is needed to account for the extra binder in the app case.
Environments η are (partial) functions from N to N. We define lifting operators as follows:

η↑ ≡ x 7→ η(x) + 1 η⇑ ≡ x 7→ η(x + 1) + 1

η[x 7→ y](z) ≡
{

y if x = z

η(z) otherwise

However, it turns out that c′ has linear space overhead, because there exists terms t such
that ∥c′(t)∥ = Ω(∥t∥2), as shown by the following example. Consider a term tn consisting of
n right-associated applications, followed by n occurrences of the variable 0. For example,
we’d have the following, where I denotes the identity function λ. var 0:

t1 ≡ app I (var 0)
t2 ≡ app I (app I (app (var 0) (var 0)))
t3 ≡ app I (app I (app I (app (app (var 0) (var 0)) (var 0)))) . . .

We have size(tn) = O(n). But if we consider c′(tn), the n occurrences of var 0 in tn become
n occurrences of var n, and hence size(tn) = Ω(n2).

This technicality arises because de Bruijn indices count towards term size. We must
count like so because numbers are not representable in constant space on Turing machines.

Fortunately, the problematic additional bindings introduced by applications are vacuous
over the operand. Translating CBPV to WCBV requires introducing intermediary bindings,
and we cannot solve the issue by shuffling arguments: it is necessary for either the operator or
operand of an application to be in the scope of a vacuous binding. Based on this observation,
we conjecture that without pseq (or products), CBPV is not reasonable for space.

6.2.1 Do we need to go to Turing machines?
Since WCBV is known to be reasonable, the reader may wonder if we must go all the way to
Turing machines to prove Theorem 2. Wouldn’t going to WCBV be simpler? This turns
out to be straightforward for time cost, but unfortunately the natural encoding of CBPV in
WCBV has linear space overhead (cf. Section 6.2). Consider this compilation function:

d(var x) = var x d(thunk m) = λ. d(m)↑

d(force v) = app (d(v)) λ. var 0 d(ret v) = d(v)
d(λ. m) = λ. d(m) d(app m v) = app (d(m)) (d(v))
d(seq m n) = app (λ. d(m)) (d(n)) d(let v. in m) = app (λ. d(m)) (d(v))
d(pseq m2 m1 n) = app (app (λ. λ. d(n)) (d(m2))) (d(m1))

We flatten the distinction between values and computations, and to suspend computations
we use the one mechanism on offer: λ-abstraction. We have proved that this compilation
strategy is reasonable for time cost. Unfortunately, it does not yield a reasonable space cost
model. To see why, consider the following variation on the example from the previous section.

t1 ≡ app (force var 0) (var 0)
t2 ≡ force thunk app (app (force var 0) (var 0)) (var 0)
t3 ≡ force thunk force thunk app (app (app (force var 0) (var 0)) (var 0)) (var 0)
. . .

That is, term tn contains O(n) mentions of var 0 under O(n) layers of thunks. We have
size(tn) = O(n). But when we consider d(tn), the n occurrences of var 0 in tn become n

occurrences of var n, and hence size(d(tn)) = Ω(n2).
Clearly a reasonable encoding in this direction is impossible: the detour via Turing

machines would yield one. But the choice of encoding function would not be obvious.



Z. Z. Chen, J. Åman Pohjola, and C. Rizkallah 7:17

7 Conclusion and Future Work

In this paper, we establish the first time and space cost models for the CBPV λ-calculus and
formally verify that CBPV relates to intermediate abstract machines. These intermediate
machines are interleaved to maintain the desired time and space bounds in relation to Turing
machines by extending known results about weak call-by-value [11, 12]. Together, this gives
the first proof that CBPV is a reasonable model of computation. Hence, CBPV can serve as
a basis for reasoning about the computational complexity of functional programs.

In future work we plan to investigate cost models for extensions to CBPV that support
call-by-need evaluation. Moreover, it is unclear how the Bang calculus [9] relates to CBPV
in terms of time and space cost, and whether the Bang calculus is reasonable. It would also
be interesting to consider sublinear complexity classes. Finally, it would be interesting to
extend our work into cost models for λ-calculus variants with different evaluation strategies,
thus laying the foundation for a unifying approach of complexity analysis for the λ-calculus.

References

1 Beniamino Accattoli. (in)efficiency and reasonable cost models. In Sandra Alves and Renata
Wasserman, editors, 12th Workshop on Logical and Semantic Frameworks, with Applications,
LSFA 2017, Brasília, Brazil, September 23-24, 2017, volume 338 of Electronic Notes in
Theoretical Computer Science, pages 23–43. Elsevier, 2017. doi:10.1016/j.entcs.2018.10.
003.

2 Beniamino Accattoli and Ugo dal Lago. (leftmost-outermost) beta reduction is invariant,
indeed. Log. Methods Comput. Sci., 12(1), 2016. doi:10.2168/LMCS-12(1:4)2016.

3 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. Reasonable space for the λ-
calculus, logarithmically. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022,
pages 47:1–47:13. ACM, 2022. doi:10.1145/3531130.3533362.

4 Zhuo Chen. cbpv-reasonable-hol, June 2025. URL: https://github.com/ZhuoZoeyChen/
cbpv-reasonable-HOL.

5 Zhuo Zoey Chen, Johannes Åman Pohjola, and Christine Rizkallah. cbpv-reasonable-HOL.
Software, swhId: swh:1:dir:df18377e9fa5e35255f2687ad66ddbc2f010b934 (visited on 2025-
09-11). URL: https://github.com/ZhuoZoeyChen/cbpv-reasonable-HOL/, doi:10.4230/
artifacts.24718.

6 Jules Chouquet and Christine Tasson. Taylor expansion for call-by-push-value. In Maribel
Fernández and Anca Muscholl, editors, 28th EACSL Annual Conference on Computer Science
Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain, volume 152 of LIPIcs, pages 16:1–
16:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.CSL.
2020.16.

7 Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics,
33(2):346–366, 1932. URL: http://www.jstor.org/stable/1968337.

8 Ugo dal Lago and Simone Martini. The weak lambda calculus as a reasonable machine. Theor.
Comput. Sci., 398(1-3):32–50, 2008. doi:10.1016/j.tcs.2008.01.044.

9 Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus
generalizing call-by-name and call-by-value. In James Cheney and Germán Vidal, editors,
Proceedings of the 18th International Symposium on Principles and Practice of Declarative
Programming, Edinburgh, United Kingdom, September 5-7, 2016, pages 174–187. ACM, 2016.
doi:10.1145/2967973.2968608.

10 Thomas Ehrhard and Christine Tasson. Probabilistic call by push value. CoRR, abs/1607.04690,
2016. arXiv:1607.04690.

ITP 2025

https://doi.org/10.1016/j.entcs.2018.10.003
https://doi.org/10.1016/j.entcs.2018.10.003
https://doi.org/10.2168/LMCS-12(1:4)2016
https://doi.org/10.1145/3531130.3533362
https://github.com/ZhuoZoeyChen/cbpv-reasonable-HOL
https://github.com/ZhuoZoeyChen/cbpv-reasonable-HOL
https://archive.softwareheritage.org/swh:1:dir:df18377e9fa5e35255f2687ad66ddbc2f010b934;origin=https://github.com/ZhuoZoeyChen/cbpv-reasonable-HOL;visit=swh:1:snp:9fefd6f03db3694a8bdc7e5ea8ff0f4a1fbde680;anchor=swh:1:rev:4e4f4692c9e6e1e23c566ec4730f81eafde32f3c
https://github.com/ZhuoZoeyChen/cbpv-reasonable-HOL/
https://doi.org/10.4230/artifacts.24718
https://doi.org/10.4230/artifacts.24718
https://doi.org/10.4230/LIPICS.CSL.2020.16
https://doi.org/10.4230/LIPICS.CSL.2020.16
http://www.jstor.org/stable/1968337
https://doi.org/10.1016/j.tcs.2008.01.044
https://doi.org/10.1145/2967973.2968608
https://arxiv.org/abs/1607.04690


7:18 A Verified Cost Model for Call-By-Push-Value

11 Yannick Forster, Fabian Kunze, and Marc Roth. The weak call-by-value λ-calculus is reasonable
for both time and space. Proc. ACM Program. Lang., 4(POPL):27:1–27:23, 2020. doi:
10.1145/3371095.

12 Yannick Forster, Fabian Kunze, Gert Smolka, and Maximilian Wuttke. A mechanised proof of
the time invariance thesis for the weak call-by-value λ-calculus. In Liron Cohen and Cezary
Kaliszyk, editors, 12th International Conference on Interactive Theorem Proving, ITP 2021,
June 29 to July 1, 2021, Rome, Italy (Virtual Conference), volume 193 of LIPIcs, pages
19:1–19:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
ITP.2021.19.

13 Yannick Forster, Steven Schäfer, Simon Spies, and Kathrin Stark. Call-by-push-value in coq:
Operational, equational, and denotational theory. In Assia Mahboubi and Magnus O. Myreen,
editors, Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, pages 118–131. ACM, 2019.
doi:10.1145/3293880.3294097.

14 Dmitri Garbuzov, William Mansky, Christine Rizkallah, and Steve Zdancewic. Structural
operational semantics for control flow graph machines. CoRR, abs/1805.05400, 2018. arXiv:
1805.05400.

15 G. A. Kavvos, Edward Morehouse, Daniel R. Licata, and Norman Danner. Recurrence
extraction for functional programs through call-by-push-value. Proc. ACM Program. Lang.,
4(POPL):15:1–15:31, 2020. doi:10.1145/3371083.

16 Delia Kesner and Andrés Viso. The power of tightness for call-by-push-value. CoRR,
abs/2105.00564, 2021. arXiv:2105.00564.

17 Fabian Kunze, Gert Smolka, and Yannick Forster. Formal small-step verification of a call-
by-value lambda calculus machine. In Sukyoung Ryu, editor, Programming Languages and
Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2-6, 2018,
Proceedings, volume 11275 of Lecture Notes in Computer Science, pages 264–283. Springer,
2018. doi:10.1007/978-3-030-02768-1_15.

18 Julia L. Lawall and Harry G. Mairson. Optimality and inefficiency: What isn’t a cost model
of the lambda calculus? In Robert Harper and Richard L. Wexelblat, editors, Proceedings
of the 1996 ACM SIGPLAN International Conference on Functional Programming, ICFP
1996, Philadelphia, Pennsylvania, USA, May 24-26, 1996, pages 92–101. ACM, 1996. doi:
10.1145/232627.232639.

19 Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Jean-Yves Girard, editor,
Typed Lambda Calculi and Applications, 4th International Conference, TLCA’99, L’Aquila,
Italy, April 7-9, 1999, Proceedings, volume 1581 of Lecture Notes in Computer Science, pages
228–242. Springer, 1999. doi:10.1007/3-540-48959-2_17.

20 Paul Blain Levy. Call-by-Push-Value. PhD thesis, Queen Mary University of London, UK,
2001. URL: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233.

21 Paul Blain Levy. Adjunction models for call-by-push-value with stacks. In Richard Blute and
Peter Selinger, editors, Category Theory and Computer Science, CTCS 2002, Ottawa, Canada,
August 15-17, 2002, volume 69 of Electronic Notes in Theoretical Computer Science, pages
248–271. Elsevier, 2002. doi:10.1016/S1571-0661(04)80568-1.

22 Dylan McDermott and Alan Mycroft. Extended call-by-push-value: Reasoning about effectful
programs and evaluation order. In Luís Caires, editor, Programming Languages and Systems -
28th European Symposium on Programming, ESOP 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, volume 11423 of Lecture Notes in Computer Science, pages 235–262.
Springer, 2019. doi:10.1007/978-3-030-17184-1_9.

23 Robin Milner, Mads Tofte, and Robert Harper. Definition of standard ML. MIT Press, 1990.
24 Christine Rizkallah, Dmitri Garbuzov, and Steve Zdancewic. A formal equational theory for call-

by-push-value. In Jeremy Avigad and Assia Mahboubi, editors, Interactive Theorem Proving -
9th International Conference, ITP 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10895 of Lecture Notes in Computer
Science, pages 523–541. Springer, 2018. doi:10.1007/978-3-319-94821-8_31.

https://doi.org/10.1145/3371095
https://doi.org/10.1145/3371095
https://doi.org/10.4230/LIPIcs.ITP.2021.19
https://doi.org/10.4230/LIPIcs.ITP.2021.19
https://doi.org/10.1145/3293880.3294097
https://arxiv.org/abs/1805.05400
https://arxiv.org/abs/1805.05400
https://doi.org/10.1145/3371083
https://arxiv.org/abs/2105.00564
https://doi.org/10.1007/978-3-030-02768-1_15
https://doi.org/10.1145/232627.232639
https://doi.org/10.1145/232627.232639
https://doi.org/10.1007/3-540-48959-2_17
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369233
https://doi.org/10.1016/S1571-0661(04)80568-1
https://doi.org/10.1007/978-3-030-17184-1_9
https://doi.org/10.1007/978-3-319-94821-8_31


Z. Z. Chen, J. Åman Pohjola, and C. Rizkallah 7:19

25 Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aït Mohamed,
César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics, 21st
International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings,
volume 5170 of Lecture Notes in Computer Science, pages 28–32. Springer, 2008. doi:
10.1007/978-3-540-71067-7_6.

26 Cees F. Slot and Peter van Emde Boas. On tape versus core; an application of space efficient
perfect hash functions to the invariance of space. In Richard A. DeMillo, editor, Proceedings
of the 16th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1984,
Washington, DC, USA, pages 391–400. ACM, 1984. doi:10.1145/800057.808705.

27 Cassia Torczon, Emmanuel Suárez Acevedo, Shubh Agrawal, Joey Velez-Ginorio, and Stephanie
Weirich. Effects and coeffects in call-by-push-value (extended version). CoRR, abs/2311.11795,
2023. doi:10.48550/arXiv.2311.11795.

28 Peter van Emde Boas. Chapter 1 - machine models and simulations. In Jan Van Leeuwen,
editor, Algorithms and Complexity, Handbook of Theoretical Computer Science, pages 1–66.
Elsevier, Amsterdam, 1990. doi:10.1016/B978-0-444-88071-0.50006-0.

ITP 2025

https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1145/800057.808705
https://doi.org/10.48550/arXiv.2311.11795
https://doi.org/10.1016/B978-0-444-88071-0.50006-0

	1 Introduction
	2 Overview
	3 Call-By-Push-Value lambda-Calculus
	4 Compiling CBPV Terms to Programs
	5 Abstract Machines
	5.1 Extraction Function
	5.2 Substitution Machine
	5.3 Heap Machine

	6 CBPV is Reasonable for Both Time and Space
	6.1 Turing Machines Simulating CBPV
	6.2 CBPV Simulating WCBV
	6.2.1 Do we need to go to Turing machines?


	7 Conclusion and Future Work

