Abstract, Compositional Consistency:
Isabelle/HOL Locales for Completeness a la Fitting

Asta Halkjser From =24
Department of Computer Science, University of Copenhagen, Denmark

Anders Schlichtkrull 284

Department of Computer Science, Aalborg University Copenhagen, Denmark

—— Abstract

Smullyan and Fitting have used abstract consistency properties to great effect in unifying meta-
theoretical results in logic. In this paper, we generalize these developments with the help of
Isabelle/HOL. We use locales to decompose abstract consistency into general parts, and provide the
textbook variants as special cases. Users can assemble their own consistency property for a given
logic. The compositionality alleviates the absence of dependent types in Isabelle/HOL. We use our
development to mechanize completeness of calculi for three logics: (1) first-order logic where we only
instantiate universal quantifiers with already occurring terms, (2) second-order logic over general
models, and (3) a recently developed strong hybrid logic with propositional quantification.

2012 ACM Subject Classification Theory of computation — Proof theory; Theory of computation
— Higher order logic

Keywords and phrases Logic, completeness, abstract consistency property, Isabelle/HOL, locales
Digital Object Identifier 10.4230/LIPIcs.ITP.2025.8

Supplementary Material Software (Mechanization): https://github.com/astahfrom/Analytic_
Completeness [23], archived at swh:1:dir:1bea24a089edbdbc233081a23b0dc45963bf6c8E

Funding Asta Halkjer From: This work is supported by a Novo Nordisk Fonden Start Package
grant (NNF200C0063462).

Acknowledgements We thank the anonymous reviewers and Jgrgen Villadsen for their comments.

1 Introduction

We often raise the question of completeness: do we have the necessary syntactic machinery
to prove all semantic validities? One key technique for such proofs is the construction of a
canonical model that falsifies underivable formulas, contradicting their validity. Such models
can be built, in the Lindenbaum-Henkin tradition [26], by extending consistent sets into
mazimal consistent sets which include every formula consistent with them. We can define
consistency with respect to a specific calculus, e.g., by saying that no contradiction can be
derived via the rules of the proof system. However, Smullyan [39] gave what he called a
“unifying principle in quantification theory” with his abstract consistency properties that
open the door to more results than only completeness.

1.1 Abstract Consistency

The concept relies on Smullyan’s unifying notation [39], introduced in the same paper, where
formulas and their negations are classified as either a-, 8-, v- or -forms. The different forms
relate to their respective sub-forms in different ways. The a-forms act conjunctively: ¢ A 1)
has a-form with sub-forms a3 = ¢ and as = v, but =(¢ V) also has a-form, with ay = —¢
and as =). The S-forms act disjunctively: ¢ V 1, ¢ — 1, and —(¢ A) all have S-form.
The ~-forms act universally, as exemplified by the universal quantifier Vz. ¢(z) or the negated

© Asta Halkjeer From and Anders Schlichtkrull;

licensed under Creative Commons License CC-BY 4.0
16th International Conference on Interactive Theorem Proving (ITP 2025).
Editors: Yannick Forster and Chantal Keller; Article No. 8; pp. 8:1-8:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:asfr@di.ku.dk
https://asta.boserup.eu
https://orcid.org/0000-0002-3601-0804
mailto:andsch@cs.aau.dk
https://people.cs.aau.dk/~andsch/
https://orcid.org/0000-0001-9212-6150
https://doi.org/10.4230/LIPIcs.ITP.2025.8
https://github.com/astahfrom/Analytic_Completeness
https://github.com/astahfrom/Analytic_Completeness
https://archive.softwareheritage.org/swh:1:dir:1bea24a089edbdbc233081a23b0dc45963bf6c8f;origin=https://github.com/astahfrom/Analytic_Completeness;visit=swh:1:snp:1c9ea048be7f3b4c9f6ed573e2d87ba0b8480717;anchor=swh:1:rev:cd6a06dd8478287763c6e820e51581322faa7f2c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

8:2

Abstract, Compositional Consistency

existential =(3z. #(z)), where the sub-forms (t) are (possibly negated) instances of the
quantified formulas. Finally, the d-forms act existentially: Jz. ¢(z) and —(Vz. ¢(z)), again
with instances, d(t), as sub-forms.

The unified notation allows Smullyan to state consistency abstractly and succinctly by
introducing consistency properties. Intuitively, a consistency property C' is a family of
sets of formulas S € C closed under conditions that ensure that each member set S is
non-contradictory when understood as a (possibly infinite) conjunction. For instance, at most
one of a propositional letter, A, and its negation, - A, can appear in a member set S € C.
Likewise, the consistency of a conjunction in a member set, p A € S € C, must be evidenced
by the consistency of the conjuncts together with the member set, {¢,9} US € C. The idea
is that the member set S € C is justified by another member set, namely {¢,)} US € C. In
this way, consistency is eventually justified at the level of atomic formulas. The following
formulation is adapted from Fitting’s textbook [15] on first-order logic.

» Definition 1 (Abstract Consistency). A family of formula sets C' is a first-order consistency
property given that all sets S € C satisfy the following kinds of conditions.

conflict for any propositional letter A, not both A € S and -A € S.

banned | ¢ S; =T ¢ 5.

double negation if -—=Z € S then {Z}US € C

alpha if o € S then {aq, a2} US € C

beta if f € S then {1} US € C or {f}US e

gamma if v € S then {y(t)} US € C for every closed term t of LP*"

deltag if § € S then {6(p)} US € C for some parameter p of LP*"

Given the above, Smullyan [39, 40] and Fitting [15] each prove variations of the key model
existence theorem: Given a first-order consistency property C' (over L) any set S € C of
sentences is satisfiable (in a Herbrand model over LP%"). The proof relies crucially on imposing
finite character on the family C, i.e.,, VS. S € C < (VS' C S. finite S’ — S’ € C).

Given the axiom of choice, which we assume when working in Isabelle/HOL, finite
character guarantees the existence of a maximal element with respect to set inclusion. We
want to build our canonical model from exactly this maximal consistent set, by showing
that it has various Hintikka properties. A Hintikka set H justifies its own consistency. For
example, the Hintikka property corresponding to alpha says that if « € H, then oy € H and
ag € H as well. For beta, we have that if 5 € H, then 31 € H or f; € H.

Unfortunately, imposing finite character does not necessarily preserve the deltag kind as
given above. Instead, we must use the following alternate kind that quantifies universally
over all new parameters:
deltap if 6 € S then {d(p)} US € C for every parameter p new to S

The idea is then to recover satisfaction of the original deltag kind by manually inserting
witnesses during the construction of the maximal consistent set with Lindenbaum’s lemma.

1.2 Applications

The applications of the model existence theorem are many, which is why Smullyan called
it a unifying principle. Goédel’s completeness theorem for a given (first-order) proof system
follows immediately by proving that the concrete consistency of the proof system constitutes
an abstract consistency property. The same model existence result can be reused for different
proof systems. Notably, the conditions in Definition 1 all obey the sub-formula property, so

! The language LP*" extends the original language L with infinitely many parameters (constant symbols).

A. H. From and A. Schlichtkrull

we do not need to include cut rules in the proof systems. This is why Smullyan also called
these analytic consistency properties [40]. Gentzen’s Hauptsatz, the cut-elimination theorem,
is an immediate consequence. The compactness theorem follows by constructing a consistency
property from all sets of sentences where every finite subset is satisfiable [15]. A weak version
of the downward Léwenheim-Skolem theorem follows by restricting ourselves to a countable
language, building a consistency property from all satisfiable sets of sentences, and noticing
that the domain of the Herbrand model is also countable [15]. Craig’s interpolation theorem
follows by proving that the sets with an interpolant-free partition constitute a consistency
property [15]. In all cases, we need to restrict ourselves to sets that leave enough parameters
new, so that we can always witness J-forms.

1.3 Isabelle/HOL

Approximately 5000 nonblank lines of formal text in Isabelle/HOL 2025 supplement this paper.

We include parts of it here via Isabelle/HOL’s LaTeX export (which renders underscores as
hyphens). We use the following symbols to denote different kinds of snippets:
A Triangle denotes a term by its assumed type or given definition.
o C(lircle denotes the assumption of a lemma or theorem.
Three dots denote the corresponding conclusion.
x The asterisk denotes a proof obligation in a given context, typically a locale.

We write type variables as ‘a and function types with =>. We annotate types with ::. We
often prefer Isabelle’s meta-logical universal quantifier, A, and implication, =, to their
object-logic counterparts V and —. We apply functions and predicates without parentheses,
e.g., [= y, and make ample use of anonymous functions Ax. e. The range of a function is
its image. The image of a function f on a set S is denoted f * S. We write lists enclosed in
square brackets, [...], and use map to apply a function to every element, and set to get the
set of elements. Sets are potentially infinite, and we write union (U), membership (€), etc.,
as usual. The polymorphic term UNIV denotes the set of all elements of a type. We refer to
Nipkow et al’s book [34] for a thorough introduction.

We make heavy use of Isabelle/HOL’s locales [2]. Locales allow us to abstract over
definitions subject to various properties and to build a hierarchy of these. They are key to
generalizing consistency without losing user friendliness. For all their benefits, locales are

still subject to the limitations of HOL and do not give us quantification over type variables.

But, as we show, we can instead compose locales instantiated at the types we care about.

1.4 Contributions

Fitting [16] extended the notion of abstract consistency property to cover term-modal logics
with the following kind of condition:
modal if O € S then {¢p} U{y | Owp € S} € C

The details here are not important. However, the condition has a different shape to
Smullyan’s original ones: Fitting does not just extend the set S with a sub-formula but
transforms S entirely with a set comprehension. Fitting [14] uses similar conditions to handle
intuitionistic logics. This raises a central question of this paper:

How abstract can we make abstract consistency properties?

The kinds of conditions we have seen so far have several flavors: conflict outlaws certain
formulas conditionally, while banned forbids them outright; double negation and alpha

8:3

ITP 2025

8:4

Abstract, Compositional Consistency

postulate that certain larger sets must also be consistent; beta postulates that at least one
of two larger sets are consistent; gamma has an infinitary character; deltag and deltay draw
on a set of parameters and are intimately tied to the construction of the maximal set; finally
modal transforms the given set entirely. In the end, what matters is that these properties
are preserved when we give the family of sets finite character.

In this paper, we mechanize an abstract consistency kind that generalizes all of the above,
and build consistency properties over any finite set of such kinds. We implement the textbook
definitions as special cases with the following generalizations:

Some proof systems use gadgets such as labels. To accommodate this, we let the user

choose what their “formulas” look like.

We do not restrict ourselves to sentences.

We do not restrict ourselves to conditioning on single formulas, but can treat finite sets

of formulas as a-, 8-, and so on, -forms. This makes it easier to work with proof systems

with rules contingent on multiple formulas.

We generalize gamma to any notion of quantifier and any notion of term, including

formulas themselves. Our second-order and hybrid logic examples rely crucially on this.

We let the universe of terms that gamma quantifies over depend on the set of formulas

that contains the y-form. Our first-order example demonstrates that we only need to

instantiate quantifiers with terms that already occur in the derivation.

We support uncountable languages.

All of this is enabled by the locale feature [2] of Isabelle/HOL, which allows us to work
very abstractly. In particular, we support as varied clauses as the following. For first-order
logic (FOL), we evidence the universal quantifier by its instances over the terms at hand:
A [Vp] -~y (terms, At [(t)p])

Here, V p binds de Bruijn variable 0 and (¢)p instantiates it with the term ¢.

For second-order logic (SOL), we can quantify over first-order terms, function symbols,
and predicate symbols, and have three clauses to match, each with its own instantiation:
A [Vp]~y (AL [{t/0)p])

A [Veplreyr (s [(s/0)F p)
A [Vpplryp (As [(s/0)pp])

Again, V p binds de Bruijn variable 0 and (t/0)p instantiates it with the term t¢.

For Prior’s Ideal Language (PIL) [4], a strong hybrid logic with propositional quantification,
we use labels i, k to name the point of evaluation, and these participate freely in our kinds:
A [(i, Op), (4, O(ek)) | ~a [(k, p)]

A [(i Ap)]~qi (AR [(K p)])

The first clause states that if p holds everywhere we look, and we can see world k, then p
holds at k. The second clause states that if p holds globally, then p holds at all labels k.

The ability to include more than one gamma kind at a time alleviates the absence of
dependent types: each gamma can only quantify over one type of terms, but we can simply
build our consistency property from multiple gammas. This once again demonstrates that
simple type theory is not too simple [9].

In total, our contributions are:

Abstract machinery for building maximal consistent sets with a wide range of applications.

Generalized versions of the textbook consistency kinds, pre-defined as special cases using

Isabelle/HOL’s locales.

A. H. From and A. Schlichtkrull

Completeness proofs for various proof systems for three different logics: first-order logic,
second-order logic, and hybrid logic with propositional quantification.
Compactness for first-order logic over a language of any cardinality.

However, we cannot use different type variables to represent, say, first-order constant
symbols and second-order function symbols if we want deltag kinds for both.

2 Abstract Consistency

We outline the overall strategy before diving into its mechanization. We seek to characterize
the consistency of families of sets, build a maximal element, and guarantee properties useful
for constructing a model. Smullyan [39, 40] and Fitting [15, 16] have already developed the

theory of abstract consistency properties (cf. Definition 1), and we can build on their work.

We follow Fitting’s [15] strategy for building the maximal element. Notably, we have not
fixed a semantics, so we cannot actually construct a model (we leave this to our examples),
but we can provide all the structure needed for doing so.

Lindenbaum’s lemma will do most of the work, but we first need to give the family of sets
C finite character to guarantee that the maximal element exists. That is, a set that satisfies:
A mazimal CS +— VS e C.S5C S — §=25

We cannot impose full finite character on a consistency property without disrupting
the deltag kind, but we can actually close it under subsets without issues. This motivates
Fitting’s three-step process for imposing finite character on a family of sets C' [15]:

1. Subset close the family (giving it downward finite character).
2. Satisfy deltaa by adding all sets that have a consistent parameter substitution.
3. Give the family (upward) finite character.

Step 3 destroys satisfaction of the existential deltag kind, but preserves it for the deltan
kind satisfied by step 2. Fitting [15, 16] thus proves, for his notions of consistency, that the
above process results in an alternate consistency property of finite character.

To construct his model, Fitting notes that the maximal consistent set H has a number of
Hintikka properties corresponding to the consistency conditions in Definition 1. The conflict
and banned conditions simply apply to H, but, say, alpha now simplifies to the property
that if « € H then {ay, s} C H, since H is a maximal element. Similarly for the rest of the
conditions (for modal [16] it depends on the logic in question). These Hintikka properties of
the maximal element of H are exactly what make it so suitable for constructing a model.

2.1 Parameter Substitutions

The outline above tells us that parameter substitutions are essential to our development.

» Definition 2 (Parameter Substitutions). We work with any type 'z of parameters and 'fm
of formulas given the following operations. Formulas must have finite sets of parameters, the
identity substitution must be the identity function, and substitutions must act equally on a
formula when they agree on the parameters of that formula:

map-fm :: ('z = ') = 'fm = 'fm

params-fm :: 'fm = 'z set

A\p. finite (params-fm p)

map-fm id = id

Nfgp. (V& € params-fm p. fx = g x) = map-fm fp = map-fm g p

In many instances, Isabelle/HOL’s datatype package [6] can automatically generate such
operations. By building all our locales on top of this locale, we use the same parameter

substitution throughout the development, and users need only prove these properties once.

8:5

ITP 2025

8:6

Abstract, Compositional Consistency

2.2 Abstract Kinds

We want to generalize properties as varied as those we saw in Definition 1: conflict, alpha,
beta, etc., and modal too. At the same time, we need to be able to impose finite character
on any set subject to these different kinds of conditions.

We note that each kind of condition in a consistency property only applies to a set S € C
when S contains a specific type of formula, and that when it does, this imposes a restriction
on S and C specific to that formula. For example, the alpha kind associates a-forms with
conditions {a, a2} US € C, and says nothing about sets without a-forms. However, it does
specialize to a Hintikka property on the maximal set. We also need the ability to interpret
the (user’s choice of) §-forms in two different ways: existentially as in deltag, and universally
as in deltap. This motivates our datatype of kinds.

» Definition 3 (Abstract Kinds). A kind K is a datatype (of type ('z, 'fm) kind) with two
variants. Variant Cond consists of two predicates of types 'fm list = ('fm set set = 'fm set
= bool) = bool and 'fm set = bool, respectively. Variant Wits consists of a function of type
"fTm = 'z = 'fm list.

Conditions have two components: (1) a relation between lists of (contained) formulas
and conditions on C and S € C, and (2) a Hintikka property. Witnessings take a formula
and a parameter and produce a (possibly empty) list of witnesses. With this definition, we
see that a family of sets C can satisfy a kind in three different ways.

» Definition 4 (Kind Satisfaction). Take a family of sets C' and a kind K. We define satg of
type ('z, 'fm) kind = 'fm set set = bool, sata of type ('z, 'fm) kind = 'fm set set = bool
and saty of type ('z, 'fm) kind = 'fm set = bool as follows.

The family C satisfies K existentially when (Cond) any condition @ imposed by a list of
formulas ps from S € C holds for C and S, and (Wits) some parameter is used as witness:
A (NSpsQ.Se€C = setpsCS = Pps Q= Q CS) = satg (Cond P H) C
A (ASp.SeC=pelS= Fz.set (Wpz)US € C)) = satg (Wits W) C

The family C satisfies K universally (or alternately) when (Cond) as above, and (Wits)
all new parameters are used as witnesses:
A (NSps Q. Se€eC = setpsCS = Pps@Q = Q CS) = saty (Cond P H) C
AN (NSpx.SeC=peS = z¢paramsS = set (Wpa)US e ()=
saty (Wits W) C

The set of formulas S satisfies K as a Hintikka kind when (Cond) the set fulfills the
Hintikka property given by the user, and (Wits) the witnesses for some parameter are included:
AN HS = saty (Cond P H) S
A (Ap.-pe S = (Fuz. set (Wpux)CJS)) = satyg (Wits W) S

» Remark 5. We use Isabelle/HOL’s inductive command to specify the various predicates
above. We could also have used the primrec command. However, we found that it takes very
little work with inductive, inductive-cases and judicious use of intro and elim attributes, to
make our abstractions “melt away” for concrete kinds, making our generality very cheap.

We lift the above interpretations to lists of kinds in the expected way.

» Definition 6 (Properties). The regular/existential consistency properties, alternate/univer-
sal consistency properties, and Hintikka properties characterized by a list of kinds are:

A propg Ks C =V K € set Ks. satgp K C

A propy Ks C =V K € set Ks. saty K C

A propg Ks S =V K € set Ks. saty K S

A. H. From and A. Schlichtkrull

As outlined earlier, not all kinds suit our needs: the following locale carves out the
consistency kinds that behave well with respect to giving the family of sets finite character.
To state it, we first need to mechanize the operations needed for the three-step strategy:

A close C={S. (35 € C.5CS8)} and subset-closed C =VS' € C.¥VSCS.SeC
A mk-alt-consistency C = {S. (3f. map-fm f S € C)}
A mk-finite-char C = {S. (VS' C S. finite S' — S’ € C)}

» Definition 7 (Consistency Kinds). A kind K is a consistency kind when it supports the
imposition of finite character, and when its Hintikka condition holds for the maximal set:

x NC. satg K C = satp K (close C)

x NAC. satg K C = subset-closed C = sata K (mk-alt-consistency C)
x NC. subset-closed C = satqa K C = sata K (mk-finite-char C)

x NCS.satg KC = S € C = maximal C S = satyg K S

» Lemma 8. All witnessing kinds trivially satisfy their Hintikka condition:
satgp (Wits W) C = S € C = maxzimal C S = saty (Wits W) S

We now have all the structure we need for our first central theorem.

» Theorem 9 (Consistency Kinds Respect Finite Character). Given a list of consistency
kinds Ks, we can transform any consistency property C into an alternate consistency property
of finite character that includes all sets from C':
A mk-alt-fin C = mk-finite-char (mk-alt-consistency (close C))

finite-char (mk-alt-fin C)

S e C = S € mk-alt-fin C

propg Ks C = propa Ks (mk-alt-fin C)

2.3 Model Existence

From here, Lindenbaum’s construction gives us a way to extend an element S of an alternate
consistency property C' of finite character into a maximal element. We need a well-ordering of
formulas and the assumption that there are enough parameters new to S to ensure consistency
of the witnessings. In this more abstract setting than Smullyan and Fitting’s countable
infinity, having enough new parameters means that the cardinality of new parameters is at
least the cardinality of our universe of formulas.

A enough-new S = |UNIV :: 'fm set| <o |— params S|

» Remark 10. For countable types, it suffices to have infinitely many new parameters available.

o 3Jto-nat :: 'fm = nat. inj to-nat
o infinite (— params S)

enough-new S

We want to be clear that the enough-new predicate gives a more fine-grained account
than extending the language with additional constants, but it does not preclude doing so.

We enumerate formulas by assuming an infinite cardinal order on their universe. Given
infinitely many formulas, we can always impose one using the axiom of choice. We use well
order recursion [7] to enumerate the consistent sets regardless of the language’s cardinality.

8:7

ITP 2025

8:8

Abstract, Compositional Consistency

» Definition 11 (Lindenbaum). The union of an enumeration of consistent sets gives us the
maximal extension of S € C. The enumeration, extend C S a, has three cases depending
on formula a’s place in the well order. For zero elements, take S; for successor elements,
extend S with a if this preserves consistency (and add witnesses for a); for limit elements,
take the union of all sets at strictly smaller elements:

A Extend C S =Ja. extend C S a

A extend C S a = worecZSL S (extendS C) (extendL C) a
A extendS C a prev = if ({a} U prev € C) then (witness a prev U {a} U prev) else prev
A extendL C rec a = b € underS a. rec b

We witness a formula p with respect to a list of kinds Ks by applying any witnessings in
Ks to p and a new parameter chosen by Hilbert’s choice operator.

» Lemma 12. Witnessing recovers the existential treatment of 6-forms:
Wits W € set Ks = 3. set (W p z) C witness p S

To build the maximal element, we apply the Lindenbaum construction at the transformed
consistency property:

A mk-mes C S = Extend (mk-alt-fin C) S

The maximal element is consistent, maximal, and witnessed (alternatively d-complete).
Inclusion in the (transformed) consistency property follows from its finite character. We can
prove maximality because we closed the consistency property under subsets. Finally, the
witnessing follows from the construction. These proofs are all available in the supplementary
material. The following theorem consolidates them.

» Theorem 13 (The Maximal Consistent Set is Hintikka). Assume that C' is a consistency
property, that S € C, and that there are enough parameters new to S to consistently construct
all witnesses. Then the maximal consistent set is Hintikka:

o propg Ks C
o Sed(
o enough-new S

propg Ks (mk-mes C' S)

3 Concrete Consistency

The previous section developed abstract consistency properties in the abstract. In this
section, we demonstrate that our abstractions are sound by showing that we can recover
Smullyan and Fitting’s original definitions. In fact, our foundation enables us to generalize
them, as described in the introduction, making them even more useful.

Again, we rely crucially on Isabelle/HOL’s locale feature. This time, we use sub-locales
to provide a more readily applicable interface to our development than our foundational
locale. Smullyan and Fitting have already identified a range of useful kinds, and we define
each of these as a specific instance of our consistency kinds. This gives users a choice: use
the base locale for maximal freedom at the cost of having to prove everything manually, or
use our sub-locales, with a more restricted interface, but where the proofs are already given.

A. H. From and A. Schlichtkrull

3.1 Conflicts, Alpha, and Beta

These first three kinds are very similar. Our flexible setup allows us to express conflict and
banned from Definition 1 in one notion. Our pre-defined kinds all build on a user-provided
relation between a list of formulas and its “consequence”, from which we derive the concrete
kind. For Confl, Alpha, and Beta, we simply relate two lists of formulas, and use the infix
notations: ~x, ~,, and ~g, respectively. The user must prove, as the only thing, that
parameter substitution preserves the relation. For instance for conflicts:

* Aps qs f. ps ~x qs => map (map-fm f) ps ~x map (map-fm f) gs

We can then define the kinds as follows, recalling that for the variant Cond cond hint of
Definition 3, the component cond relates two arguments: the list of formulas it is contingent
on, and the induced requirement on C' and the set S € C that contained the formulas.

A ps~x qs = cond ps (A- S. set gsN S = {})
A ps~q g8 = cond ps (AC' S. set gs U S € C)
A ps~opg gs => cond ps (AC' S. 3¢ € set ¢gs. {qg} US € C)

Conflicts are requirements only on the set S and state that none of the “consequence”

formulas can be present in the set. We can express banned by simply putting the disallowed
formula on both sides of the ~»x relation. The Alpha and Beta conditions look like the
original ones from Definition 1 with the notable exception that we generalize to lists.

The corresponding Hintikka conditions all follow from the above when the set is maximal:
A (Aps s q. ps~x g8 => set ps C H = q € set qs = q ¢ H) = hint H
A (A\ps gs q. ps ~q qs = set ps C H = q € set gs = q € H) = hint H
A (Aps gs. ps~p qs = set ps C H = Jq € set ¢s. ¢ € H) = hint H

In Isabelle/HOL concretely, we define each kind as a locale, say Confl, and prove it to be a
sub-locale of consistency kinds as given in Definition 7. The proofs follow Fitting’s work [15].
Users instantiate the sub-locale, prove the simpler obligations, and obtain a consistency kind
that they can build their consistency property with.

3.2 Gamma

Smullyan and Fitting only instantiate v-forms with closed terms (or for term-modal logic [16]
ground terms). In this paper, we leave the choice to the user, and work with any type of
"tm for which the user provides a parameter substitution map-tm. Due to this flexibility, the
user relation looks a bit different for Gamma than for the simpler kinds:

A~y 'fmolist = ('fmoset = tm set) x (“tm = 'fm list) = bool

Here, we are asking the user to relate a list of formulas to two things: a selection function
that turns a set of formulas into a set of terms, and a function that takes a term and
instantiates the desired output with that term. The derived kind clarifies the use:

A ps~oy (F, qgs) = cond ps (AC S. VYt e FS. set (gst)US e C)

We are bounding the considered terms to the output of the user-provided function on
the set S. Notably, the user can provide a function that simply ignores its argument and
returns whatever list of terms they want to quantify over. We use this function for two of our
examples: in first-order logic, we take only the terms of S, proving that instantiating with
terms that already occur in the derivations is sufficient for completeness; for hybrid logic, we
instantiate the propositional quantifiers with formulas that satisfy a specific predicate.

8:9

ITP 2025

8:10

Abstract, Compositional Consistency

The complementary Hintikka condition states that a single set contains all instances:
AN (Aps F gs. ps ~ (F, qs) = set ps C H = (Vt € F H. set (¢gst) C H)) = hint H

The added flexibility imposes extra requirements:
x Aps Fgsf.ps~ (F, ¢gs) = (3G rs. map (map-fm f) ps ~ (G, 1s) A
(VS. map-tm f “F'S C G (map-fm f < S)) A
(Vt. map (map-fm f) (gs t) = rs (map-tm f t)))
« ApsFqsSS. ps~y (F,q5) = SCS' = FSCFS’
* ApsFqstA ps~y (F,q5) = tc FA= 3IBC A finite BAt€ FB

The first one states that the user’s relation is compatible with parameter substitutions.
The middle requirement restricts the selection function to ensure it behaves well with subsets
closure. The last requirement states that selected terms always arise from finite subsets: we
need this when giving the family of sets finite character.

We also provide a sub-locale, Gamma-UNIV, that specializes the Gamma locale to the full
universe of terms. This simplifies the cases where the extra flexibility clutters the definitions.

3.3 Delta

The Delta locale is perhaps the simplest of them all, as we simply expose the Wits variant
from the base locale (Definition 3). We only ask for a witnessing function that respects
parameter substitutions:

AN 6 fm= e = fm list

x Ap fx. 6 (map-fm fp) (f) = map (map-fm f) (6 p z)

3.4 Modal

Our final specialization comes from Fitting’s paper on term-modal logic [16]. It remains
future work to use it for a concrete logic and proof system, but we have proved that the
locale constitutes a consistency kind as defined in Definition 7.

As the Hintikka property depends on the concrete logic, we make our locale parametric
over both that and the relation on formulas. The obligations are similar to those for Gamma.
A ~og o ifmlist = ('fmoset = 'fm set) x 'fm list = bool
A hint :: 'fm set = bool
A ps~g (F, gs) = cond ps (A\C' S. set gs U F S € C)

3.5 Discussion

We have chosen to let the user specify the Hintikka condition associated with their consistency
kind. Looking at the ones above, however, we see that they often closely resemble each
other. If we had given a more restricted definition of abstract kinds, we might have been
able to derive the Hintikka counterpart automatically. However, by using sub-locales, we
have provided an interface where they are effectively pre-defined. As such, we have opted for
the extra degree of freedom in our base locales. We have also made use of a compositionality
that Smullyan and Fitting never seem to spell out explicitly: these kinds are all independent
of each other. We do not have to fix a consistency property in advance, as in Definition 1,
and provide one big, multi-case proof that we can impose finite character. Instead, we can
prove the required properties of each kind separately and assemble the whole afterwards.

A. H. From and A. Schlichtkrull

4 Derivational Consistency

We set out to prove completeness by falsifying underivable formulas. The abstract consistency
properties split this process in two: (1) build a model from a maximal consistent set and
(2) prove that underivability is an abstract consistency property. So far, we have focused on
part one, but our development also provides machinery for part two: the derivational kinds.

» Definition 14 (Derivational Kinds). A consistency kind K (cf. Definition 7) is a derivational
kind with respect to a derivational consistency predicate = - when K is satisfied on the family
of consistent sets that leave enough parameters new (given infinitely many formulas):

A - fmoset = bool

« infinite (UNIV :: 'fm set) = satp K {A. enough-new A N+ A}

A list of derivational kinds constitutes a consistency property, paving the way for com-
pleteness. All the sub-locales we presented above can be shown to be derivational kinds,
subject to a few requirements on the user’s calculus:

x ASpsqsz. setpsC S = ps~xqgs=zE€setqgs=—=zr€S=-FS

x ASpsgs setps CS = ps~yqgs=—FS=FsetgsUS

x ASpsgs setps CS = ps~pgqgs=FS = 3JgecsetgsF{qtUS

* NSpsFqst setps CS = ps~y (F,qs) =teFS=FS=1Fset(¢gst)US
x NSpx.pe S = xz¢ params S =F S =1t set (0px)US

x NS ps Fqgs. set ps CS = ps~pg (F, q5) =+ S =1FsetqsUFS

For Confi, any set that contains conflicting formulas is inconsistent. For Alpha, the sub-
forms together preserve consistency. For Beta, at least one sub-form preserves consistency. For
Gamma, any instance preserves consistency. For Delta, any instance from a new parameter
preserves consistency. For Modal, the transformation preserves consistency.

» Remark 15. The above proof obligations arise from unfolding and simplifying definitions.
They are what satisfaction of the various kinds specialize to on the family of derivation-
ally consistent sets. However, we find that simplifying them on the library side makes
Isabelle/HOL’s automation work better on the user side: in many cases the “sledgehammer”
tool [5] can piece together the concrete proof rules needed to prove the obligation.

5 Completeness Proofs for Three Logics

In this section we apply our development to three case studies: first-order logic with a
restricted instantiation rule, second-order logic, and Prior’s Ideal Language. For first-order
logic we have proved compactness, and strong completeness for natural deduction and tableau
systems. For second-order logic, we have proved weak completeness of an axiomatic system
and strong completeness for natural deduction. Finally, for hybrid logic we have proved
strong completeness for a natural deduction system. We cover the most pertinent aspects
here, and refer to the supplementary material for the full details.

5.1 Bounded First-Order Logic

We call our first-order logic “bounded” in the sense of From and Jacobsen [22]: the instanti-
ation rule for the universal quantifier only applies to already occurring terms, and we build
the model over this bounded domain of terms.

8:11

ITP 2025

8:12

Abstract, Compositional Consistency

A [L]~x[L] A [p—ql~sl[-pa]

A [(+Pts)]~x]|Pts] A [Vp] -~y (terms, At. [(t)p])

Al=lp—d]~alp 4] A d(nVp)z=[2(xa)p]
Figure 1 Bounded first-order logic consistency property.

A peAd= Ak p A {ptUAkrqg= Ak (p —)

AN A L= At p AN AF(p— ¢ = At p= Akt ¢

A Al (xa)p = a ¢ P.params ({p} UA) = AFVp

A AFVp=teterms ({p} UA) = Ak (t)p

A {p—qgUAtp= Ak p

Figure 2 Bounded natural deduction for first-order logic.

We evaluate our first-order logic on models Model U E F' G consisting of a domain U ::
‘a set, represented explicitly as a set, an environment F :: nat = ’a that maps (de Bruijn)
variables to elements of the domain, a function denotation F :: 'f = ‘a list = ’a and a
predicate denotation G :: 'p = ‘a list = bool. We only consider well formed models where
the environment and function denotations respect the domain:
A wf-model (Model UE F G) «— (Yn. Ene€ U) AN (Nfts. Fftse U)

Higher-order logic makes the semantics straightforward to express. Note that bolded
connectives, e.g. —, belong to the embedded logic (here first-order logic).
A (- L) = False
A (Model - EF G |=-Pts) = G P (map ((E, F)) ts)
A (Model UEF GEp— q) = (Model UEF G = p— Model UEF G k= q)
A (Model UEF GE=Vp)=(Mze U. ModelU (x> E) FG Ep)

The map (-) evaluates terms to elements of the domain. Terms are either variables or
function symbols applied to a list of terms. The operation z > F shifts environment E by
mapping variable 0 to x and every other variable n 4+ 1 to F n.

From these semantics, we write out the abstract consistency property in Figure 1 using
the pre-defined kinds. Falsity conflicts with itself and negated predicates conflict with their
non-negated counterparts. Negated implication has an a-form, while implication itself has
[B-form. For the positive quantifier, we only instantiate with the terms of the given set, and
for the negative quantifier we simply instantiate with a constant (denoted by the star). The
declarations in Figure 1 are valid Isabelle/HOL code, and, in our opinion, almost as readable
as the textbook declarations that we started from in Definition 1.

We use a Herbrand model with a small twist as our canonical model:

A canonical H =

Model (terms H) (An. #n €? terms H) (Afts. Of ts €? terms H) (AP ts. P ts € H)

Here, #£ and O form variables and composed terms, respectively. The domain consists
only of the terms of the given (maximal consistent) set H. To guarantee well formedness,
we guard the denotations with € ¢, which returns the left-hand side if the right-hand side
contains it, and an arbitrary element of the right-hand side otherwise. Assuming at least
one term, we prove a truth lemma for the canonical model by induction on the size of the
formula, using the Hintikka properties of the set to discharge each case.

A. H. From and A. Schlichtkrull

A [Vp]y (A [(E/0)p]) A b (=Vp)e=[=(xz/0)p]
A (Ve plogr (As [(s/0)F p) Ao (= VPP)I:[(O2 2/0)p p]
A Ve plroye (s [{s/0)pp]) A 6(Vepp)r=[-(022/0)rp]

Figure 3 Second-order logic consistency property (partial).

Figure 2 shows a natural deduction system for first-order logic with two notable details:
we are using sets of formulas, and we can only eliminate the universal quantifier with a term
from the derivation. Proving completeness directly for this restricted calculus is a stronger
result than typically found. We prove soundness over well formed models by rule induction.
For strong completeness, we show that the sets from which we cannot derive falsity (and
which leave enough parameters new) form a consistency property. Concretely we instantiate
the derivational locales, benefitting from the close correspondence between Figures 1 and 2.

» Theorem 16 (FOL Completeness). If the set of formulas A leaves enough parameters new,
and all well formed models that satisfy A also satisfy formula p, then we can derive p from A:

o A(U :: 'ftm set) E F G. wf-model (Model UE F G) =
(Vg€ A. Model UEF G = q) = Model UEF G = p

o P.enough-new A
Al p

If we prefer lists of assumptions to sets, we can easily modify the proof system in Figure 2
to use lists instead. Strong completeness of the resulting system (if p follows from a set A
then we can derive p from a list of elements from A) follows by noticing that each proof rule
in Figure 2 relies only on a finite kernel of formulas. Rule induction lets us go from a set
derivation to derivation from a list of formulas, reusing the completeness result.

The supplementary material contains strong completeness for a tableau system whose
elimination rule is limited to the already occurring terms. Since we can reuse model existence,
we can define this system and prove its soundness and completeness in less than 150 lines of
Isabelle/HOL. Reusing model existence to prove compactness takes around 200 lines. The
first-order logic example in total consists of around 1000 lines.

5.2 Second-Order Logic

We use the framework to obtain the, to our knowledge, first formalization in Isabelle/HOL
of second-order logic and a natural deduction system for it. We also use the framework to
obtain the, to our knowledge, first formalization in a proof assistant of an axiomatic system
for second-order logic. The formalization of the syntax and semantics of second-order logic
generalizes a formalization of first-order logic by From [18, 24]. The generalization consists
of three steps. (1) defining predicate and function symbols as being either proper symbols or

variables. (2) Using these symbols in the definition of predicate and function applications.

(3) Introducing two new quantifiers — one, V g, that binds variables to functions and another,
Y p, that binds variables to predicates. Second-order logic is famously incomplete for standard

models [33] where the quantifiers range over all functions and predicates over the universe.

However completeness holds when considering general models, i.e., models that include the

sets of predicates and functions over which the quantifiers can range. We formalize the latter.

Note that we do not consider frugal models [1]; we do not know the sizes of the models.

8:13

ITP 2025

8:14

Abstract, Compositional Consistency

. A [(i, @k p) | ~q [(k,)]
Lo B el P A (i, ~ @k p) | ~a [(k = p)
[(Z,ﬂo)]vx[(Z,.O)]' A [, 4 p)] ~a [(4 ()i p)]
A [(Zap/\Q)}Ma [(%p)a'(za CI)}) A [(Z,ﬁip)]“ﬁa[(i,_‘<i>1p)]
ﬁ [(Za - (p A q } Mﬁ [(Za - p)’ (Zv - Q)} A [(Z', Dp), (i, <>(.k))] ~a [k7 p)]
[(4, = = p) | ~a [(4, p)] A [(4, Ap)]~y (k[(K p)])
A (4, Y p) | ~ap (M- {q. softgdf g}, Ag. [(4, (q)p p)])
A]~ (ML] (1, @)]) A 6 (i, ~ Op) k= [(Ok, = p), (i, © (e (O k)))]
A [(i, ok) | ~q [(k, @1)] A 5 (i,nAp)k=[(Ok —p)]
AN [(i, ok), (i, p) | ~a [(K, p)] A (i, =V p) P=[(i, = (-(OP))p p) |

Figure 4 Consistency property for Prior’s Ideal Language.

A general model for our second-order logic is a tuple (E, Er, Ep,C, F,G, PS, F'S), where
E :: nat = 'a is the environment for variables over elements, 'a is the type representing the
domain or universe, Er :: nat = (‘a list = ’a) is the environment for function variables,
Ep :: nat = (‘a list = bool) is the environment for predicate variables, C' :: 'b = ‘a is
the constant denotation, F :: 'b = (‘a list = 'a) is the function denotation, G :: 'b =
("a list = bool) is the predicate denotation, PS :: (‘a list = bool) set is the predicate
universe and F'S :: (“a list = bool) set is the function universe. A model is well formed when
its predicate/function environments and denotations stay within the defined universes:

A wf-model (E, Er, Ep, C, F, G, PS, FS) +—
range G C PS A range Ep C PS A range F C FS A range Ep C FS

Since the universe of elements is represented by the type ‘a, the typing of F and C already
ensures that these stay within the universe.

The conflict, alpha, and beta kinds are the same as for bounded first-order logic in
Figure 1. Figure 3 defines gamma and delta rules for second-order logic that correspond
to the three universal quantifiers of the language. Notably, we can use the framework with
both single-point substitution (here) and simultaneous substitution (for FOL and PIL). We
again build a Herbrand model over the resulting maximal consistent set. We do not care
about distinguishing open and closed formulas, though such a distinction could easily be
made by tweaking the consistency property and canonical model. Model existence follows
almost immediately from the Hintikka properties.

Our axiomatic system for second-order logic generalizes From’s work [18, 24] by introducing
axioms and rules for the second-order quantifiers. The rules are generalization rules for
introducing universal quantifications over predicates and functions, respectively. The axioms
are instantiation axioms stating that universal quantifications, over respectively predicates
and functions, imply their immediate sub-formula with the quantified variable substituted
with any symbol. Our natural deduction system is a variant of the natural deduction system
for the first-order logic above without the elimination limitation, but with introduction
and elimination rules for the second-order quantifiers. We prove weak completeness for the
axiomatic system and strong completeness for the natural deduction system. The entire
development consists of under 1200 lines.

A. H. From and A. Schlichtkrull

5.3 Prior’s Ideal Language

We have mechanized the completeness of a recently developed [4] strong hybrid logic with
propositional quantification. The combination of Kripke semantics and propositional quanti-
fication gives some second-order expressibility, resulting in a system of significant strength.
The mechanization of this example consists of just under 1800 lines.

We interpret the logic on Kripke models with explicit sets of admissible propositions.
This set must be closed under relative complement, finite intersection and modal projection,
corresponding to negation, conjunction and the box modality. The three most interesting cases
for the semantics are the global modality, downarrow binder, and propositional quantification:

A ((M,-)EAp) = veWM. (M v)[p)
A (M, w) Edp)=((M(N:=(w>N M), w) = p)
A (M, w) =Y p)= (VP eIl M. (M(U := (P > U M)), w) = p)

Figure 4 demonstrates the flexibility of our abstract consistency properties. Our formulas
are labelled by nominals i, k, a special sort of propositional symbol. A nominal is true at
exactly one world in a frame, allowing it to name that world. The first two lines of the
consistency property state conflicts for propositions and nominals, respectively. The next
three lines characterize the conjunction and negation operators.

The satisfaction operator, @, shifts evaluation to the world named by the given nominal.
We represent this by changing the label with an alpha kind. Likewise, the downarrow binder,
J, names the current point of evaluation, and again alpha kinds suffice: an instance at the
current label gives evidence for the downarrow. For the box modality, O, we take advantage
of the ability to condition on multiple formulas. Naively, we could characterize the box
modality with a gamma property, but this modality is decidedly local: it talks only about
worlds we can see (here k), so alpha suffices. We define the diamond modality as usual: < p
= = (O (— p)). The global modality, A, on the other hand, is decidedly global, and can only
be captured by a gamma property. Here we instantiate the label rather than the formula
itself, making full use of our flexible setup.

The middle gamma property instantiates the propositional quantifier with every softqdf
formula: the quantifier- and downarrow-free formulas with no nominals in formula position [4].
Intuitively, these are the formulas that “stay inside” the admissible propositions and the
mechanization helped clarify that the downarrow binder should be excluded from this class.

The next three lines state that our nominals are reflexive, symmetric, and satisfy the
same formulas. Notice how we use an unconditional gamma kind to characterize reflexivity.
The three delta kinds are straightforward. The first one again demonstrates the locality of
the box modality: we can see the world where the formula does not hold.

We build the canonical model in the style of Braiiner [10] by using representatives of
equivalence classes of nominals as our worlds. Otherwise, we use the original paper’s model
construction [4]. Notably, however, we prove strong completeness of a natural deduction
system instead of the original axiomatic system. Moreover, the original paper tweaks the
Lindenbaum construction itself to ensure that the maximal consistent set has the properties
they need for their model. In contrast, we get the (Hintikka) properties we need from
the abstract consistency property, which, in a sense, acts as an interface to control the
Lindenbaum construction. We have proved the details of the Lindenbaum lemma for any
logic where our abstract consistency properties can express what we need, and for these
examples they can. Our proof system follows the consistency property in Figure 4 closely.

8:15

ITP 2025

8:16

Abstract, Compositional Consistency

6 Related Work

We are not the first to mechanize parts of Fitting’s textbook [15] in Isabelle/HOL. Berghofer [3]
does not make any of the generalizations we do, but mechanizes the (weak) completeness of a
natural deduction system and downward Léwenheim-Skolem results for (countable) first-order
logic. Michaelis and Nipkow [31, 32] make greater use of the applicability of the model
existence theorem and prove completeness for a range of proof systems in their propositional
development. They prove compactness, cut elimination and interpolation results. Suaréz et
al. [41, 38] have also mechanized propositional compactness using the same approach as us
and used it for combinatorial applications. Doty [13], on the other hand, used Zorn’s lemma
to construct their maximal consistent sets for any cardinality in their abstract mechanization
of classical propositional logic, including strong soundness and completeness. Harrison [25]
used HOL Light to mechanize compactness and the Léwenheim-Skolem theorem for first-order
logic. He used a similar method to extend a consistent set into a maximal one as we do,
but chose to assume a countable language. Tourret and Paulson [42] made the same choice
in their recent translation of Harrison’s work to Isabelle/HOL. Schléder and Koepke [37]
notably mechanized Gédel’s completeness theorem for uncountable languages in Mizar.

Blanchette et al. [8] used coinductive methods to develop a more operational Isabelle/HOL
framework for completeness proofs than ours. Where we seek to characterize maximal
consistent sets, they provide machinery for building derivation trees and constructing a model
out of those. This gives a direct connection to executable provers, and several entries in
the Isabelle Archive of Formal Proofs [11, 22, 19, 21] make use of this. From [20] recently
developed an Isabelle/HOL framework for synthetic completeness proofs (not to be confused
with the synthetic style of metatheory [27, 28] used in Rocq developments). That work also
mechanizes a construction of maximal consistent sets, but limits itself to a calculus-specific
notion of consistency and relies heavily on cut rules. Our flexibility allows for a wider
range of applications, including completeness proofs for analytic calculi like tableau, and
proofs of compactness, interpolation, etc. For their example proof systems, From [20] either
includes rules for weakening and cut or shows them to be admissible before being able to
apply the framework. We do not need to do so in our setting. Petria’s [35] “institutions”
give a category-theoretic alternative to abstract consistency properties for proving a general
completeness theorem, but this work has not yet been mechanized in a proof assistant.

Koch et al. [29, 30] mechanized undecidability, incompleteness, and completeness results
for second-order logic in Rocq. Their work significantly exceeds our second-order logic
completeness example. For one thing, they consider Henkin models that satisfy the com-
prehension axiom, whereas we only work with the cruder notion of general models. Our
example demonstrates that abstract consistency properties scale to second-order logic, but
our examples does not go beyond that. We do, however, believe it to be the first such result
in Isabelle/HOL specifically. Our mechanization of Prior’s Ideal Language [4] is certainly
the first of its kind, though completeness results for weaker hybrid logics do exist [17, 20].
Considering general models for higher-order logic itself, Diaz [12] and Schlichtkrull [36] have
both mechanized the soundness of Andrews’ Qg system [1], a formulation of Church’s Simple
Theory of Types.

7 Discussion

We have mechanized a very general formulation of Smullyan and Fitting’s abstract consistency
properties and used locales to recover the ease-of-use of the original version. Our three
case studies demonstrate the applicability of our development: what started as a unifying

A. H. From and A. Schlichtkrull 8:17

principle for first-order logic [39] proves to be just as useful for second-order and hybrid
logic. Our compositional, abstract consistency properties provide a declarative interface for
characterizing maximal consistent sets and free us from tinkering with the details of the
Lindenbaum lemma regardless of how many quantifiers we have, or what we consider to be
the “formulas” and “terms” of our logic. As such, we hope that these consistency properties
can be a unifying principle for more than just first-order logic.

To this effect, we want to develop our theory further, and especially find its limits. We
noted Smullyan and Fitting’s many applications, but have so far only mechanized completeness
and compactness. The rest remain future work. We have scaled to second-order logic for
general models, but we want to develop the example further by including the comprehension
axiom and considering Henkin models. We are also curious about higher-order logic itself.
Our gamma kinds apply to first-order logic terms, but also scale to hybrid logic formulas, so
maybe we can use lambda terms as well. Finally, we want to consider intuitionistic logics.
Kripke semantics for modal logic are obviously not an obstacle, but we would like to take it
further. We have built the consistency properties in this paper in the same style as Smullyan,
by considering formulas and their negations, but our generalization to lists might allow us to
be more ecumenical. Instead of characterizing implication by its classical interpretation as a
disjunction, we could perhaps consider a list of ¢ — ¥ and ¢ as an a-form with sub-form).
Our setup is certainly flexible enough, but we are yet to explore the consequences.

Looking at our existing examples, we are also wondering whether we can gainfully
characterize the connection between semantics and consistency property. Perhaps we can
apply some of our machinery to soundness proofs as well as completeness proofs. On the
more mundane scale, we are also interested in mechanizing resolution and sequent calculus.

We have exploited a compositionality of abstract consistency properties that we have not
seen Smullyan or Fitting spell out explicitly. This compositionality proves very useful when
we want to characterize logics with different kinds of ~-forms. If we tried to characterize
all these forms with the same Gamma kind, we would have to quantify over a universe
containing all the types of terms we are interested in. Instead, we compose separate Gamma
kinds, each with their own type of terms.

We are, however, somewhat unsatisfied with using a list of kinds to define our composition,
and wonder if there is a better way to do it. We define consistency kinds as a locale, a
very meta-logical mechanism, compose them in a list, a much more object-level notion, and
then try to work with the list inside another locale. We found that this stifles Isabelle/HOL
automation, and that to achieve reasonable performance, we need to specify, on the user side,
exactly which kind in our list we currently need. We wonder if there is a way to compose
a variadic number of kinds whilst staying in the meta-logical language of locales. Such
compositionality might have other uses than ours. Alternatively, we would be interested in
machinery for automatically specializing our lemmas to each element of the user-given list.

—— References

1 Peter B. Andrews. An introduction to mathematical logic and type theory - to truth through
proof. Computer science and applied mathematics. Academic Press, 1986.

2 Clemens Ballarin. Locales: A module system for mathematical theories. Journal of Automated
Reasoning,52(2)1237153,2014. do0i:10.1007/510817-013-9284-7.

3 Stefan Berghofer. First-order logic according to Fitting. Archive of Formal Proofs, 2007, August
2007. Formal proof development. URL: https://wuw.isa-afp.org/entries/FOL-Fitting.
shtml.

ITP 2025

https://doi.org/10.1007/S10817-013-9284-7
https://www.isa-afp.org/entries/FOL-Fitting.shtml
https://www.isa-afp.org/entries/FOL-Fitting.shtml

8:18

Abstract, Compositional Consistency

10

11

12

13

14

15

16

17

18

19

20

Patrick Blackburn, Torben Braiiner, and Julie Lundbak Kofod. Prior’s ideal language. Math-
ematical Structures in Computer Science, 35, 2025. doi:10.1017/S0960129525000076.
Jasmin Christian Blanchette, Sascha Béhme, and Lawrence C. Paulson. Extending Sledge-
hammer with SMT solvers. Journal of Automated Reasoning, 51(1):109-128, 2013. doi:
10.1007/S10817-013-9278-5.

Jasmin Christian Blanchette, Johannes Ho6lzl, Andreas Lochbihler, Lorenz Panny, Andrei
Popescu, and Dmitriy Traytel. Truly modular (co)datatypes for Isabelle/HOL. In Gerwin Klein
and Ruben Gamboa, editors, Interactive Theorem Proving - 5th International Conference,
ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
14-17, 2014. Proceedings, volume 8558 of Lecture Notes in Computer Science, pages 93-110.
Springer, 2014. doi:10.1007/978-3-319-08970-6_7.

Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Cardinals in Isabelle/HOL.
In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving - 5th International
Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 14-17, 2014. Proceedings, volume 8558 of Lecture Notes in Computer Science,
pages 111-127. Springer, 2014. doi:10.1007/978-3-319-08970-6_8.

Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Soundness and complete-
ness proofs by coinductive methods. Journal of Automated Reasoning, 58(1):149-179, 2017.
do0i:10.1007/s10817-016-9391-3.

Anthony Bordg, Lawrence C. Paulson, and Wenda Li. Simple Type Theory is not too
simple: Grothendieck’s schemes without dependent types. Ezp. Math., 31(2):364-382, 2022.
doi:10.1080/10586458.2022.2062073.

Torben Braiiner. Hybrid Logic and its Proof-Theory. Springer, 1st edition, 2011. doi:
10.1007/978-94-007-0002-4.

Joachim Breitner and Denis Lohner. The meta theory of the Incredible Proof Machine. Archive
of Formal Proofs, 2016, May 2016. Formal proof development. URL: https://www.isa-afp.
org/entries/Incredible_Proof_Machine.shtml.

Javier Diaz. Metatheory of Q0. Archive of Formal Proofs, 2023, November 2023. Formal proof
development. URL: https://www.isa-afp.org/entries/Q0_Metatheory.html.

Matthew Doty. Class-based classical propositional logic. Archive of Formal Proofs, 2022,
December 2022. Formal proof development. URL: https://www.isa-afp.org/entries/
Propositional_Logic_Class.html.

Melvin Fitting. Model existence theorems for modal and intuitionistic logics. Journal of
Symbolic Logic, 38(4):613-627, 1973. doi:10.2307/2271986.

Melvin Fitting. First-Order Logic and Automated Theorem Proving, Second Edition. Graduate
Texts in Computer Science. Springer, 1996. doi:10.1007/978-1-4612-2360-3.

Melvin Fitting, Lars Thalmann, and Andrei Voronkov. Term-modal logics. Studia Logica,
69(1):133-169, 2001. doi:10.1023/A:1013842612702.

Asta Halkjeer From. Synthetic completeness for a terminating Seligman-style tableau system.
In Ugo de’Liguoro, Stefano Berardi, and Thorsten Altenkirch, editors, 26th International
Conference on Types for Proofs and Programs, TYPES 2020, March 2-5, 2020, University of
Turin, Italy, volume 188 of LIPIcs, pages 5:1-5:17. Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2020. doi:10.4230/LIPIcs.TYPES.2020.5.

Asta Halkjeer From. Soundness and completeness of an axiomatic system for first-order
logic. Archive of Formal Proofs, 2021, September 2021. Formal proof development. URL:
https://www.isa-afp.org/entries/FOL_Axiomatic.html.

Asta Halkjeer From. A naive prover for first-order logic. Archive of Formal Proofs, 2022, March
2022. Formal proof development. URL: https://www.isa-afp.org/entries/FOL_Seq_Calc3.
html.

Asta Halkjeer From. An Isabelle/HOL framework for synthetic completeness proofs. In
Kathrin Stark, Amin Timany, Sandrine Blazy, and Nicolas Tabareau, editors, Proceedings of
the 14th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP

https://doi.org/10.1017/S0960129525000076
https://doi.org/10.1007/S10817-013-9278-5
https://doi.org/10.1007/S10817-013-9278-5
https://doi.org/10.1007/978-3-319-08970-6_7
https://doi.org/10.1007/978-3-319-08970-6_8
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1080/10586458.2022.2062073
https://doi.org/10.1007/978-94-007-0002-4
https://doi.org/10.1007/978-94-007-0002-4
https://www.isa-afp.org/entries/Incredible_Proof_Machine.shtml
https://www.isa-afp.org/entries/Incredible_Proof_Machine.shtml
https://www.isa-afp.org/entries/Q0_Metatheory.html
https://www.isa-afp.org/entries/Propositional_Logic_Class.html
https://www.isa-afp.org/entries/Propositional_Logic_Class.html
https://doi.org/10.2307/2271986
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1023/A:1013842612702
https://doi.org/10.4230/LIPIcs.TYPES.2020.5
https://www.isa-afp.org/entries/FOL_Axiomatic.html
https://www.isa-afp.org/entries/FOL_Seq_Calc3.html
https://www.isa-afp.org/entries/FOL_Seq_Calc3.html

A. H. From and A. Schlichtkrull

21

22

23

24

25

26

27

28

29

30

31

32

33

34

2025, Denver, CO, USA, January 20-21, 2025, CPP ’25, pages 171-186, New York, NY, USA,
2025. ACM. doi:10.1145/3703595.3705882.

Asta Halkjeer From and Frederik Krogsdal Jacobsen. A sequent calculus prover for first-order
logic with functions. Archive of Formal Proofs, 2022, January 2022. Formal proof development.
URL: https://www.isa-afp.org/entries/FOL_Seq_Calc2.html.

Asta Halkjeser From and Frederik Krogsdal Jacobsen. Verifying a sequent calculus prover for
first-order logic with functions in Isabelle/HOL. Journal of Automated Reasoning, 68(3):15,
2024. doi:10.1007/510817-024-09697-3.

Asta Halkjeer From and Anders Schlichtkrull. Analytic Completeness. Software, version 1.0., sw-
hld: swh:1:dir:1bea24a089edbdbc233081a23b0dc45963bf6c8f (visited on 2025-09-03). URL:
https://github.com/astahfrom/Analytic_Completeness, doi:10.4230/artifacts.23798.
Asta Halkjeer From. A succinct formalization of the completeness of first-order logic. In Henning
Basold, Jesper Cockx, and Silvia Ghilezan, editors, 27th International Conference on Types
for Proofs and Programs, TYPES 2021, June 14-18, 2021, Leiden, The Netherlands (Virtual
Conference), volume 239 of LIPIcs, pages 8:1-8:24. Schloss Dagstuhl — Leibniz-Zentrum fir
Informatik, 2021. doi:10.4230/LIPIcs.TYPES.2021.8.

John Harrison. Formalizing basic first order model theory. In Jim Grundy and Malcolm C.
Newey, editors, Theorem Proving in Higher Order Logics, 11th International Conference,
TPHOLs’98, Canberra, Australia, September 27 - October 1, 1998, Proceedings, volume 1479 of
Lecture Notes in Computer Science, pages 153—-170. Springer, 1998. doi:10.1007/BFb0055135.
Leon Henkin. The discovery of my completeness proofs. Bulletin of Symbolic Logic, 2(2):127—
158, 1996. doi:10.2307/421107.

Dominik Kirst and Marc Hermes. Synthetic undecidability and incompleteness of first-order
axiom systems in Coq. Journal of Automated Reasoning, 67(1):13, 2023. doi:10.1007/
S10817-022-09647-X.

Dominik Kirst and Benjamin Peters. Godel’s theorem without tears - essential incompleteness
in synthetic computability. In Bartek Klin and Elaine Pimentel, editors, 81st EACSL Annual
Conference on Computer Science Logic, CSL 2023, February 13-16, 2023, Warsaw, Poland,
volume 252 of LIPIcs, pages 30:1-30:18. Schloss Dagstuhl — Leibniz-Zentrum fir Informatik,
2023. doi:10.4230/LIPICS.CSL.2023.30.

Mark Koch. Mechanizing second-order logic in Coq. Bachelor’s thesis, Saarland University,
2021.

Mark Koch and Dominik Kirst. Undecidability, incompleteness, and completeness of second-
order logic in Coq. In Andrei Popescu and Steve Zdancewic, editors, CPP ’22: 11th ACM
SIGPLAN International Conference on Certified Programs and Proofs, Philadelphia, PA, USA,
January 17 - 18, 2022, pages 274-290. ACM, 2022. doi:10.1145/3497775.3503684.

Julius Michaelis and Tobias Nipkow. Propositional proof systems. Archive of Formal Proofs,
2017, June 2017. Formal proof development. URL: https://www.isa-afp.org/entries/
Propositional_Proof_Systems.shtml.

Julius Michaelis and Tobias Nipkow. Formalized proof systems for propositional logic. In
Andreas Abel, Fredrik Nordvall Forsberg, and Ambrus Kaposi, editors, 23rd International
Conference on Types for Proofs and Programs (TYPES 2017), volume 104 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 1-16, Dagstuhl, Germany, 2018. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik. Paper 5. doi:10.4230/LIPIcs.TYPES.2017.5.
Richard Montague. Reductions of higher-order logic. In J.W. Addison, Leon Henkin, and Alfred
Tarski, editors, The Theory of Models: Proceedings of the 1963 International Symposium at
Berkeley, Studies in Logic and the Foundations of Mathematics, pages 251-264. North-Holland,
1963. doi:10.1016/B978-0-7204-2233-7.50030-7.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.
doi:10.1007/3-540-45949-9.

8:19

ITP 2025

https://doi.org/10.1145/3703595.3705882
https://www.isa-afp.org/entries/FOL_Seq_Calc2.html
https://doi.org/10.1007/S10817-024-09697-3
https://archive.softwareheritage.org/swh:1:dir:1bea24a089edbdbc233081a23b0dc45963bf6c8f;origin=https://github.com/astahfrom/Analytic_Completeness;visit=swh:1:snp:1c9ea048be7f3b4c9f6ed573e2d87ba0b8480717;anchor=swh:1:rev:cd6a06dd8478287763c6e820e51581322faa7f2c
https://github.com/astahfrom/Analytic_Completeness
https://doi.org/10.4230/artifacts.23798
https://doi.org/10.4230/LIPIcs.TYPES.2021.8
https://doi.org/10.1007/BFb0055135
https://doi.org/10.2307/421107
https://doi.org/10.1007/S10817-022-09647-X
https://doi.org/10.1007/S10817-022-09647-X
https://doi.org/10.4230/LIPICS.CSL.2023.30
https://doi.org/10.1145/3497775.3503684
https://www.isa-afp.org/entries/Propositional_Proof_Systems.shtml
https://www.isa-afp.org/entries/Propositional_Proof_Systems.shtml
https://doi.org/10.4230/LIPIcs.TYPES.2017.5
https://doi.org/10.1016/B978-0-7204-2233-7.50030-7
https://doi.org/10.1007/3-540-45949-9

8:20

Abstract, Compositional Consistency

35

36

37

38

39

40

41

42

Marius Petria. An institutional version of Godel’s completeness theorem. In Till Mossakowski,
Ugo Montanari, and Magne Haveraaen, editors, Algebra and Coalgebra in Computer Science,
Second International Conference, CALCO 2007, Bergen, Norway, August 20-24, 2007, Pro-
ceedings, volume 4624 of Lecture Notes in Computer Science, pages 409-424. Springer, 2007.
doi:10.1007/978-3-540-73859-6_28.

Anders Schlichtkrull. Soundness of the QO proof system for higher-order logic. Archive of
Formal Proofs, 2023, November 2023. Formal proof development. URL: https://www.isa-afp.
org/entries/Q0_Soundness.html.

Julian J. Schléder and Peter Koepke. The Goédel completeness theorem for uncountable
languages. Formalized Mathematics, 20(3):199-203, 2012. doi:10.2478/v10037-012-0023-z.
Fabidn Fernando Serrano Sudrez, Mauricio Ayala-Rincén, and Thaynara Arielly de Lima.
Hall’s theorem for enumerable families of finite sets. In Kevin Buzzard and Temur Kutsia,
editors, Intelligent Computer Mathematics, pages 107121, Cham, 2022. Springer International
Publishing. doi:10.1007/978-3-031-16681-5_7.

Raymond M. Smullyan. A unifying principal in quantification theory. Proceedings of the
National Academy of Sciences, 49(6):828-832, 1963. doi:10.1073/pnas.49.6.828.
Raymond M. Smullyan. First-Order Logic. Springer, Berlin, 1968. doi:10.1007/
978-3-642-86718-7.

Fabidn Fernando Serrano Sudrez, Thaynara Arielly de Lima, and Mauricio Ayala-Rincén.
Compactness theorem for propositional logic and combinatorial applications. Archive of
Formal Proofs, 2024, August 2024. Formal proof development. URL: https://www.isa-afp.
org/entries/Prop_Compactness.html.

Sophie Tourret and Lawrence C. Paulson. Compactness theorem for first-order logic. Archive of
Formal Proofs, 2025, February 2025. Formal proof development. URL: https://wuw.isa-afp.
org/entries/FOL_Compactness.html.

https://doi.org/10.1007/978-3-540-73859-6_28
https://www.isa-afp.org/entries/Q0_Soundness.html
https://www.isa-afp.org/entries/Q0_Soundness.html
https://doi.org/10.2478/v10037-012-0023-z
https://doi.org/10.1007/978-3-031-16681-5_7
https://doi.org/10.1073/pnas.49.6.828
https://doi.org/10.1007/978-3-642-86718-7
https://doi.org/10.1007/978-3-642-86718-7
https://www.isa-afp.org/entries/Prop_Compactness.html
https://www.isa-afp.org/entries/Prop_Compactness.html
https://www.isa-afp.org/entries/FOL_Compactness.html
https://www.isa-afp.org/entries/FOL_Compactness.html

	1 Introduction
	1.1 Abstract Consistency
	1.2 Applications
	1.3 Isabelle/HOL
	1.4 Contributions

	2 Abstract Consistency
	2.1 Parameter Substitutions
	2.2 Abstract Kinds
	2.3 Model Existence

	3 Concrete Consistency
	3.1 Conflicts, Alpha, and Beta
	3.2 Gamma
	3.3 Delta
	3.4 Modal
	3.5 Discussion

	4 Derivational Consistency
	5 Completeness Proofs for Three Logics
	5.1 Bounded First-Order Logic
	5.2 Second-Order Logic
	5.3 Prior's Ideal Language

	6 Related Work
	7 Discussion

