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Abstract
The advertisement placement problem involves selecting and scheduling ads within a timeline that
has capacity constraints to maximize profit. Each task is characterized by its height, width, and
profit, and must be fully scheduled across multiple time slots. This problem models practical
scenarios such as internet advertising and energy management, and it also generalizes classical
combinatorial optimization problems like the knapsack and bin packing problems.

We present a simple (2 + ε)-approximation algorithm for any ε > 0, which improves upon
the state-of-the-art 3 + ε factor established by Freund and Naor twenty years ago. Our approach
combines rounding techniques with dynamic programming and an efficient extension of list scheduling.
Furthermore, we enhance this method with linear programming techniques to provide an almost
optimal (1 + ε)-approximation algorithm under resource augmentation, which allows for a slight
increase in time slot capacities.
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1 Introduction

In the advertisement placement problem, the goal is to efficiently select and schedule a set of
ads to attract a wider variety of customers, for example, when they visit a specific website
or a place. Formally, we are given a set of n tasks, each one characterized by a height, a
width and a nonnegative profit, and also a timeline of length T with a fixed capacity C on
each time slot. The goal is to select a subset of the tasks with maximum total profit to be
scheduled into the timeline while respecting the capacity constraints. Here, scheduling a task
means allocating a number of slices or copies of the task equal to its width into different time
slots, and the profit of the task is accounted for only if all its copies are correctly allocated.

This problem was first introduced by Adler, Gibbons, and Matias [1], motivated by
space-sharing in internet advertising. In this context, a space exists where ads will be
displayed that has capacity C, and each ad i has a size hi and a display frequency requirement
wi. Consequently, a natural goal is to use the space as effectively as possible, which can be
modeled by defining profits as pi = hiwi; indeed, this is the case considered originally by
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10:2 Improved Approximation Guarantees for Advertisement Placement

Adler et al. and the main focus of this work. Recently, the advertisement placement problem
has found applications in energy management; see, e.g., [2, 28, 30]. In this case, the tasks are
electric appliances characterized by their execution time and the energy they use to operate,
and the goal is to plan the electric consumption of a given journey while optimizing some
associated objective function, assuming that tasks can be interrupted and restarted later.
From a theoretical standpoint, advertisement placement can be thought of as a natural and
interesting two-dimensional generalization of classical combinatorial optimization problems
such as knapsack [25], makespan minimization [26], and bin packing [8], among others.

As observed by Adler et al. [1], the advertisement placement problem is NP-hard even
in very restricted settings, including the classical framework of divisible widths introduced
by Coffman et al. [22] in the context of bin packing. Later, Freund, and Naor [11] obtained
a (3 + ε)-approximation algorithm for the case with arbitrary widths and arbitrary profits.
Upon this work, this result is the best-known so far, even for the problem with profits equal
to the task areas.

1.1 Our Results
Our main result is the design of improved approximation algorithms for advertisement
placement. More specifically, we achieve a (2+ε)-approximation for the problem (Theorem 1),
improving the previously mentioned result due to Freund and Naor [11]. We also complement
this result with a (1+ε)-approximation algorithm under resource augmentation, meaning that
our algorithm might use a slight extra amount of capacity from each time slot (Theorem 7).

To achieve our (2 + ε)-approximation, we classify the tasks according to their heights into
tall and short, designing almost optimal algorithms for each case separately. For the case
of tall tasks, we show that one can efficiently select a subset of tasks that can be feasibly
scheduled and have almost optimal profit via rounding techniques and dynamic programming,
which then can be scheduled using known results for the makespan minimization variant of
advertisement placement. For the case of short tasks, we show that a simple extension of
list scheduling leads to an almost optimal efficient algorithm. Under resource augmentation,
we start by scheduling tall tasks precisely as before, but then use a linear programming
relaxation to schedule short tasks on top, which can be efficiently rounded to a feasible
schedule by adapting the classical scheme due to Lenstra, Shmoys and Tardos [26] while
possibly slightly overloading the time slots. This approach requires selecting which short
tasks go into the solution, which we do by further distinguishing short tasks into wide and
small according to their widths. For the case of wide tasks, we use rounding techniques as in
the (1 + ε)-approximation for tall tasks, while in the case of small tasks, we run a greedy
procedure.

1.2 Related Work
The advertisement placement problem was first introduced by Adler, Gibbons, and Matias [1].
They considered two different variants of the problem: makespan minimization, where the
goal is to schedule all the given tasks while minimizing the maximum load, and profit
maximization, the variant considered here. Their results concern mainly the special case
with divisible widths and profits being equal to the area of the tasks, where they provide a
2-approximation. For the case of the Makespan Minimization variant, Dean and Goemans
developed a 4

3 -approximation with running time poly(n), and an approximation scheme with
running time poly(n, T ) [9].
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Other two-dimensional generalizations of knapsack have also been studied in the past.
One such example is the two-dimensional geometric knapsack problem, where the input
consists of a rectangular knapsack in the two-dimensional plane, and n rectangular items,
characterized by their height, width and profit; the goal is to select and place a subset
of items with maximum total profit in such a way that they are axis-parallel and do not
overlap (which corresponds to advertisement placement when slices are restricted to go
into contiguous time slots and they all must use the same vertical space). In the case of
general profits, the best-known results for this problem are a (17/9 + ε)-approximation, and a
(1.717 + ε)-approximation in the case of uniform profits [13]. If the profit of the items is equal
to their area, then the problem admits a PTAS [4], and also improved results are known
for some special settings, including pseudo-polynomial time algorithms [14], and resource
augmentation [21], among others.

Another two-dimensional generalization of knapsack is the unsplittable flow on a path
problem, which is similar to advertisement placement with the difference that each task is
associated with a set of contiguous time slots where its slices must go in case the task is
chosen. After a series of improvements for the problem, Grandoni et al. [17] showed that
it admits a PTAS even with non-uniform capacities for the time slots. The setting where,
instead of specifying precisely into which time slots a task must go, we specify a longer
interval where its slices could go for each task, is known as time windows constrained. For the
case of unsplittable flow on a path with time windows constraints (i.e., where slices still must
go into contiguous time slots), the best known polynomial time approximation algorithm
has an approximation ratio of O(log(n)/ log log(n)) [16], and it was recently proved that the
problem is APX-hard but admits a (2 + ε)-approximation in quasi-polynomial time under
resource augmentation [3]. For advertisement placement with time windows constraints, Da
Silva et al. [7] provide a PTAS when the timeline length T is bounded by a constant, and a
9-approximation for windows of the form [ri, T ] [27].

Two-dimensional packing problems where all the given tasks must be placed (similar in
spirit to makespan minimization) include well-studied problems such as strip packing [18, 12,
19], demand strip packing [10, 20], two-dimensional variants of bin packing [5, 24], among
many others. We refer the reader to the survey by Christensen et al. [6] for further details.

Organization of the paper. In Section 2 we provide a formal definition of the problem
and some useful notation. Then, in Section 3 we present our (2 + ε)-approximation for the
problem, and in Section 4 we present our (1 + ε)-approximation with resource augmentation.

2 Preliminaries

In the advertisement placement problem, we are given a set of n tasks, where each task
i ∈ {1, . . . , n} is characterized by its height hi ∈ N, its width wi ∈ N, and its profit pi ∈ N;
we are also given a timeline defined by T ∈ N time slots, and a capacity C ∈ N. The goal
is to select a subset of tasks of maximum total profit that can be feasibly scheduled into
the timeline. In this context, a feasible schedule for a given set of tasks corresponds to an
allocation function that assigns, for each task i in the set, wi different time slots where a
slice of the task will be scheduled (i.e., a piece of the task that has height hi and width 1).
The allocation function must satisfy that the total load of each time slot e, denoted as ℓ(e)
and corresponding to the sum of the heights of tasks scheduled in the time slot, must be at
most C (see Fig. 1 for an example). Scheduling two or more slices of a task in the same time
slot is not allowed.

APPROX/RANDOM 2025



10:4 Improved Approximation Guarantees for Advertisement Placement

Figure 1 Example of an advertisement placement instance (left) and a corresponding feasible
schedule defined by three tasks (right). The load profile of the solution would be (h1 + h3, h1 +
h2, h1 + h2, h1, h2 + h3, h2 + h3).

Since a feasible schedule requires specifying where each task slice goes, we will assume
that T is polynomially bounded by n to ensure that the output can be returned in polynomial
time. Furthermore, unless otherwise stated, it is assumed that pi = hi · wi, and therefore,
the goal is to cover as much area from the region [0, T ] × [0, C] as possible; this objective
encodes the original formulation of the problem, as well as other interesting applications
(see, e.g., [1]). When referring to the case of general profits, we will denote the problem as
weighted advertisement placement.

Areas and Configurations. For a given task i, we define area(i) = hiwi, which naturally
extends to a subset S of tasks as area(S) =

∑
i∈S area(i); we use an analogous notation for

profits. Throughout this work, for a given instance I of the problem, OPT(I) will denote
a fixed optimal schedule for I (dependence on I will be dropped if clear from the context),
and area(OPT) will denote the total area of the tasks included in OPT; when working with
general profits, p(OPT) will denote the total profit of the tasks included in OPT. Given a
feasible schedule S, we define the load configuration of S as a vector of dimension T , where
each entry stores the total load of a time slot, and is sorted non-increasingly by load; see
Fig. 1 for an example.

3 A (2 + ε)-approximation for Advertisement Placement

In this section, we prove our first main result.

▶ Theorem 1. For any ε > 0, there exists a (2 + ε)-approximation for advertisement
placement.

To achieve this result, we split our proof into two steps. We start by categorizing the
tasks in the input according to their heights into tall and short, proving that an almost
optimal solution can be obtained efficiently for each case. In what follows, δ ≤ ε/2 is a
constant, and we say that a task i is tall if hi > δ · C, and short if hi ≤ δ · C. We denote by T
and S the sets of tall and short tasks from the instance, respectively; furthermore, we denote
by OPTT and OPTS the optimal solution restricted to tall and short tasks, respectively.

When focusing on tall tasks, we rely on several rounding procedures. First, by adapting
the linear grouping technique from bin packing [8, 23], we reduce the possible number of
heights in the instance to a constant number, and then we round down the total width of
each group (classified according to the rounded height) to know which tasks will be included
in our solution. After this, it is possible to apply the results from Dean and Goemans [9] for
makespan minimization in the context of advertisement placement, yielding a PTAS for the
tall tasks.
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For the case of short tasks, we show that a slight variation of the shortest size least
full first (SSLF) algorithm, studied by Freund & Naor [11], yields a PTAS. Since, in any
optimal solution, either the tall tasks or the short tasks have total area at least area(OPT)/2,
running both algorithms and returning the best of the computed solutions yields a (2 + ε)-
approximation.

3.1 Linear Grouping for Tall Tasks
We start by devising the algorithm for tall tasks, where our goal is to compute an almost
optimal solution efficiently. Interestingly, the solution we construct will exhibit the extra
property of having a load configuration upper bounded by the load configuration of OPTT
(coordinate-wise), which is a structural property of independent interest. To do so, we first
reduce the possible number of heights to a constant number by adapting a linear grouping
technique; see, e.g., [8, 23].

Our goal is to select a subset of tasks of total area at least (1 − ε)area(OPTT ) that can
be feasibly scheduled. Observe that, if OPTT is defined by at most 8/(ε2δ2) tasks, we can
guess precisely such a set in polynomial time and conclude this part. Thus, from now on, we
assume that OPTT has more than 8/(ε2δ2) tall tasks. The outline of our procedure is the
following:

(I) Suppose that T = {1, . . . , t} with h1 ≥ h2 ≥ · · · ≥ ht. We guess a set of at most
8/(ε2δ2) tall tasks, that we call the guessed tasks; the rest are non-guessed tasks. Out
of the guessed tasks, we first guess a subset of at most 2/(εδ) tasks, that we call the
rounding tasks, and a second (disjoint) subset of at most 2/(εδ2) tasks, that we call
the shifted tasks. We discard both sets, meaning that they will not be included in our
solution.

(II) The set of non-guessed tasks that have a smaller index than the rounding task with
smallest index is discarded.

(III) For any remaining non-guessed task i, round hi up to hi′ , with i′ < i being the closest
larger height among the rounding tasks (breaking ties in favor of smaller indices).

See Fig. 2 for a depiction of the procedure. Let Gi be the set of non-guessed tasks whose
heights were rounded according to the i-th rounding task (sorted non-increasingly by height).
As the following lemma shows, there exists a set of guessed tasks with a subset of rounding
and shifted tasks that allows to bound the total area of discarded tasks from OPTT by
ε · area(OPTT ), while still having a feasible solution for the rounded tasks from OPTT that
were not discarded.

▶ Lemma 2. Let I be a set of tall tasks, and I ′ be the output of the previous rounding
procedure. There exists a set Ĩ ⊆ I ′ of rounded tall tasks such that:

(i) The number of distinct heights in Ĩ is constant.
(ii) The total area of Ĩ is at least (1 − ε)area(OPT(I)).
(iii) There exists a feasible schedule for Ĩ.

Proof. Suppose we place all the tasks in OPT(I) one next to the other, sorted non-increasingly
by height. Since there is a feasible schedule for them and their height is at least δC, the
total width of tasks in OPT(I), say W , is at most T/δ. Starting from the tallest slice in
the pile, we partition the slices of the tasks into groups G1, . . . , Gg of total width exactly
(εδ/2)W each, except possibly for the last one, which can have a smaller width. We have at
most 2/(εδ) groups.

APPROX/RANDOM 2025
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Figure 2 Description of the rounding of tall tasks from Lemma 2. (Top) Grey tasks correspond
to rounding tasks, while the other slices are rounded up according to the closest rounding task.
(Bottom) Slices from each group are rearranged according to the positions of the previous group.
Some tasks are discarded either because they belong to G1 or because they could not get scheduled
in a feasible manner, but their total area is ensured to be negligible.

Our tentative set of rounding tasks from the rounding procedure will initially be defined
by taking the task of smallest height from each group Gi, for each i ∈ {1, . . . , g − 1} (this
set may contain less than g − 1 tasks due to repetitions), and our set of shifted tasks will
initially be empty. At this point, the set of rounding tasks and guessed tasks is the same,
and tasks with smaller index than the rounding task with smallest index are not part of
OPT (I), so they can be discarded.

Consider the feasible schedule for OPT(I). Since the first group on the left (i.e., G1) is
discarded, we will use the empty space due to this removal to place the slices from G2 in the
following way: we iteratively place the slices from G2 into the leftmost time slot that had a
slice from G1 and does not have any slice from the same corresponding task; if some slice
cannot be placed, we skip and continue. We claim that the number of tasks whose slices
were not placed entirely by this procedure is at most 1/δ − 1. Indeed, if there were more,
since there must be some time slot that had some slice from G1 that did not get replaced by
a slice from G2, this means that slices that could not get assigned into that space already
have another slice from the same job there. However, since all the heights are at least δC,
there can be at most 1/δ − 1 other slices in that time slot, meaning that some task could
have used that space in our procedure. This leads to a contradiction.

The set of tasks that could not get assigned by this procedure will be added to the set of
shifted tasks. Now that the slices from G2 were either reassigned or removed, we can use
that space to place the slices from G3 via the same procedure, and continue until placing the
slices from Gg. We obtain a set of at most 2/(εδ2) shifted tasks that were discarded.
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If these sets of rounding and shifted tasks have total area at most (ε/2)area(OPT(I)),
we end here as all the requirements from the lemma would be fulfilled; otherwise, we remove
the sets of rounding and shifted tasks from the initial pile (still considering them as guessed
tasks, which will later be scheduled just as they originally were), and redo the procedure
with the remaining tasks with respect to the width of the surviving tasks, until finding a
set of rounding tasks of total area at most (ε/2)area(OPT(I)). Since the sets of rounding
and shifted tasks from each iteration are disjoint, the procedure must end after at most 2/ε

iterations as the total area of the tasks is at most area(OPT(I)); consequently, the number
of guessed tasks at the end of this procedure is at most 2

ε

( 2
εδ + 2

εδ2

)
≤ 8

ε2δ2 .
Let Ĩ be the outcome of the aforementioned procedure. By construction, the number

of possible heights in Ĩ is at most 8/(ε2δ2), corresponding to the number of guessed tasks.
We can also observe that the total area of G1 is at most (ε/2)area(OPT(I)); to see this,
observe that, since every height is at least δC, it holds that area(G1) ≤ (1/δ)area(Gi) for
any i ∈ {2, . . . , g − 1}, and since there are 2/(εδ) groups with exactly (εδ/2)W slices each,
we can charge the total area of G1 to 2/ε disjoint sets of 1/δ groups from G2, . . . , Gg. Thus,
the total area of discarded tasks, corresponding to tasks in G1 plus the rounding tasks, is
at most (ε/2)area(OPT(I)) + (ε/2)area(OPT(I)) ≤ ε · area(OPT(I)). In conclusion, the
obtained schedule for Ĩ is feasible and has total area at least (1 − ε)area(OPT(I)). ◀

3.2 Computing a schedule for rounded Tall tasks
Thanks to Lemma 2 applied to T , it is possible to reduce ourselves to instances where tall
tasks only have a constant number of possible heights, paying a negligible price on the
approximation factor. Now, we need to retrieve a schedule for tall tasks. Suppose we had
already selected the tasks included in the solution. In that case, this step can be done using a
result due to Dean and Goemans in the context of advertisement makespan minimization [9].
In the latter, we are given a set of tasks and a timeline as in our problem, but the goal is to
schedule all the given tasks while minimizing the maximum load in the schedule. The authors
show that, when tasks have heights at least εM (where M is the optimal makespan) and
have constant possible heights, the set of possible schedules can be explored in polynomial
time. The following lemma presents guarantees in line with this result but also allows us to
check whether a feasible schedule exists respecting the capacity constraints for a given set of
tasks, which is required in our context.

▶ Lemma 3. Let I be a set of tasks having a constant number of possible heights that can
be scheduled so that each time slot e ∈ {1, . . . , T} has total load at most C(e) and contains
a constant number of slices scheduled. Then, there exists a polynomial-time algorithm that
computes a polynomial-sized set of solutions containing that solution, even if the values C(e)
are not given.

Proof. Let K ∈ O(1) be the number of possible heights in the instance, and t ∈ O(1)
be the maximum number of slices scheduled on any time slot. Similar to the classical
dynamic program for makespan minimization (see, e.g., [29]), a configuration is a vector
in {0, 1, . . . , t}K specifying, for each possible height, how many slices of that height are
scheduled in a given time slot; in particular, the number of possible configurations is at most
(t + 1)K ∈ O(1).

Consider now any feasible schedule for I such that at most t slices are scheduled into
each time slot. The number of possible load configurations (i.e., vectors specifying in each
coordinate how many time slots follow a given configuration) is at most T (t+1)K , and therefore,
we can efficiently enumerate all possible load configurations. To conclude, we provide a way

APPROX/RANDOM 2025
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Figure 3 Exchange argument in the proof of Lemma 3. If two tasks i, j with wi > wj are
scheduled such that j goes to the leftmost time slot and i does not (left), there is a way to swap
without losing feasibility. After all such possible exchanges, the inductive hypothesis can be applied
to the remaining time slots (right).

to verify whether a given load configuration is feasible, i.e., if the tasks in I can be scheduled
such that the solution follows the given load configuration. To see this, we prove that the
following greedy algorithm correctly decides whether a load configuration is feasible:
(a) For each possible height, sort the time slots non-decreasingly according to the total load

of slices of that height.
(b) For a fixed height, and considering the time slots from left to right, iteratively assign

a slice from a compatible task (i.e., that has not been assigned yet to that time slot)
having the largest remaining width.

If a feasible schedule exists for the tasks, we prove that this procedure computes such a
schedule via a simple induction on the number of time slots in the load configuration. As a
base case, if there is one time slot, since there is a feasible schedule, every task must have
width 1 and hence the greedy procedure computes the solution. Consider now an instance
with k + 1 time slots, k ≥ 1, where a feasible schedule exists. Consider the set of tasks whose
slices are scheduled into the leftmost time slot. If these tasks have the largest widths in the
instance (i.e. they are scheduled exactly as in the greedy procedure), then we can simply
apply the inductive hypothesis to the remaining k time slots and the remaining slices. If it
is not the case, then there exists some tasks i, j, with wi > wj , such that a slice of j was
scheduled into the leftmost time slot but i was not. Since wi > wj , there must be some time
slot where a slice of i was scheduled into but j was not, and hence we can swap them (see
Fig. 3). Consequently, we can again apply the inductive hypothesis, concluding the proof. ◀

To apply Lemma 3, we need to define precisely which tasks we want to include in our
solution. The following lemma shows that we can select a set of tasks whose total area
is roughly the total area of tall tasks in the optimal solution, and that admits a feasible
schedule.

▶ Lemma 4. For any instance of the problem I, and any ε ∈ (0, 1/4), there exists a subset
of tall tasks Î that can be selected in polynomial time, such that the following holds:

(i) area(Î) ≥ (1 − ε)area(OPTT ).
(ii) Î admits a feasible schedule whose load profile is upper bounded by the load profile of

OPTT .
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Proof. Let Ĩ be the set of rounded tall tasks from Lemma 2. Let h1, h2, ..., hK be the possible
heights of tall tasks after rounding, and let C1, ..., CK be the sets of tasks in Ĩ of height hi, for
each i ∈ {1, ..., K}, respectively. For each i ∈ {1, . . . , K}, let Wi be the total width of tasks
from Ci. We will approximately guess Wi, and then select tasks for our solution according to
these widths.

We round Wi according to the following procedure. We guess t ≤ 1/(εδ) + 1 tasks from
Ci, say {i1, . . . , it} and consider a value of the form

∑t−1
j=1 wij

+ q · wit
, with q ∈ {0, 1, . . . , n}.

Wi will then be rounded down to the closest value W ′
i of that form. As this requires guessing

a constant number of tasks and a number that ranges from zero to n, this can be done in
polynomial time.

We now prove that there exists a subset of tasks satisfying the requirements of the lemma
such that, for each class Ci, their total width is at most W ′

i . If |Ci| ≤ 1/(εδ) + 1, then
Wi = W ′

i and the proof follows. If not, consider the widest 1/ε + 1 tasks in Ci (say i1, . . . , it),
remove it from the set (which is the task of smallest width out of them), and then consider
the largest possible value of the form

∑t−1
j=1 wij + q · wit that is not larger than Wi. Since it

is the task of smallest width out of the widest ones, its total area is at most ε · δ · area(Ci),
proving the claim.

Since Ĩ is not known, instead of guessing it exactly we do the following: As before, we
guess the 1/(εδ) + 1 widest tasks in Ci, say {i1, . . . , it}, discard it, and greedily complete the
set until reaching total width W ′

i using tasks whose width is at most wit that are not part of
the guessed tasks. Observe that the total width of selected tasks from the group is at least
W ′

i − w(it) ≥ (1 − εδ)W ′
i . The union of the selected tasks will be our set Î.

For each group, suppose now that the guessed tasks are assigned as in the schedule for
Ĩ, and the remaining tasks are iteratively scheduled into the leftmost time slot where they
fit (i.e., where there is no slice from the same task already scheduled), using the time slots
where original slices of that group were scheduled. Similarly to the proof of Lemma 2, this
procedure schedules all the guessed tasks, and every considered task except for at most 1/δ

many, and hence the total width of scheduled tasks from the group is at least

(1 − ε)W ′
i − εW ′

i ≥ (1 − 2ε)W ′
i ≥ (1 − 3ε)Wi.

In conclusion, the total area of scheduled tasks is at least (1 − 4ε)area(OPTT ) thanks to
the guarantees from Lemma 2, the load profile is upper bounded by the load profile of the
optimal solution restricted to tall tasks, and the set Î can be computed in polynomial time
as required. ◀

We can now put the pieces together to obtain our algorithm for tall tasks.

▶ Lemma 5. For every ε ∈ (0, 1/4), there exists a polynomial time algorithm that computes
a solution for tall tasks with total area at least (1 − ε)area(OPTT ).

Proof. Thanks to Lemma 4, we now have a set of tall tasks with roughly the same total
area as OPTT , that furthermore can be scheduled respecting its load profile. By means of
Lemma 3, this solution can actually be computed, proving the result. ◀

3.3 PTAS for Short Tasks
In this section, we show the second component of our approximation algorithm, which is the
PTAS for short tasks. We remark that our approximation guarantee for short tasks holds
even for the case of general profits, i.e., weighted advertisement placement. We consider two
main ideas:

APPROX/RANDOM 2025
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Knapsack relaxation. We can define a relaxation of the problem through an instance of the
classical one-dimensional knapsack problem. We define a knapsack instance with capacity
T ·C and, for each task i, we create an item whose size is hi ·wi and profit is pi. If we solve this
instance, we obtain a set of tasks, say I∗, that maximizes its total profit while maintaining
its total area below T · C. The set I∗ might not admit a feasible schedule, but it satisfies
that p(I∗) ≥ p(OPT). If we run the PTAS for knapsack due to Lawler [25] on this relaxation,
we obtain in polynomial time a set of tasks I ′ satisfying that p(I ′) ≥ (1 − ε)p(OPT).

Least-Full (LF) algorithm. We consider an adaptation of Graham’s list scheduling al-
gorithm [15] for makespan minimization. The algorithm considers the tasks in any arbitrary
but fixed order and iteratively places the slices of the tasks in the time slot with the lowest
current load that does not have a copy of that task. The algorithm continues until a task
cannot be included, or until scheduling every task in the instance.

Freund and Naor [11] prove that, if tasks obtained from the knapsack relaxation are
sorted non-decreasingly by height and then scheduled according to LF, the solution obtained
is (3 + ε)-approximate even in the presence of general profits. More in detail, the set I∗

can be partitioned into three subsets such that each one of them can be feasibly scheduled
according to LF; the best of the three corresponds to the desired solution. We prove now
that a similar scheme leads to a PTAS for short tasks under general profits. Our procedure
works as follows:
1. We compute I∗ by approximately solving the knapsack relaxation restricted to short

tasks.
2. We sort the tasks in I∗ non-increasingly according to pi/(hi · wi).
3. We run the LF algorithm with respect to the previous order, and return the computed

solution.

▶ Lemma 6. For every ε ∈ (0, 1/20), the previous procedure computes a feasible schedule
with profit at least (1 − ε)p(OPTS) for the weighted advertisement placement problem.

Proof. Observe first that, if the algorithm schedules the whole set I∗, we directly obtain
the desired guarantee since p(I∗) ≥ (1 − ε)p(OPTS). On the other hand, if our algorithm
did not schedule all the tasks in I∗, we use the following result due to Freund and Naor:
Suppose tasks are placed according to the LF algorithm (regardless of the order in which
the tasks are considered), let hmax be the maximum height of a task considered so far. At
any given moment during the assignment, it holds that ℓ(e) − ℓ(e′) ≤ hmax for any time
slots e, e′ ∈ {1, . . . , T}. This implies that for each pair of time slots e, e′ ∈ {1, . . . , T},
|ℓ(e) − ℓ(e′)| ≤ δC, and therefore the total area of the tasks included in the solution is greater
than or equal to (1 − 2δ)CT , since maxe∈{1,...,T } ℓ(e) > (1 − δ)C (otherwise, we would have
enough space to include the task that does not fit) and mine∈{1,...,T } ℓ(e) ≥ (1 − 2δ)C. This
already proves the claim for the case of profits being equal to the area (assuming δ ≤ ε/2)
because area(OPT) ≤ CT ; we will show that this works even for general profits.

Let ALG be the obtained solution. We use the previous facts to show that p(ALG) ≥
p(I∗) · (1 − ε) ≥ (1 − 2ε) · p(OPTS). Let 1, . . . , n∗ be the tasks of I∗ sorted non-increasingly
according to pi/(wihi). Let also k′ be the last task that ALG included. We partition ALG
into groups of total area at least εCT and at most (1 + ε)εCT by iteratively taking tasks
until attaining total area at least εCT . The number of groups that we obtain is at least

(1 − δ)CT

(1 + ε)εCT
− 1 = 1 − δ

ε(1 + ε) − 1 = 1 − ε − ε2 − δ

ε(1 + ε) ≥ 1
10ε

,
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where the last inequality holds for every ε ≤ 0.4 and δ ≤ ε/2. Let G1, ..., Gg be the obtained
groups, and let Gg+1 be the tasks in I∗ \ ALG. For each i ∈ {1, ..., g}, we have that
p(Gi) ≥ p(Gg+1); indeed, thanks to the order of the tasks, it holds that:

p(Gi) =
∑

j∈Gi

pj

hjwj
· hjwj

≥
∑

j∈Gi

pk′+1

hk′+1wk′+1
· hjwj

≥ εCT · pk′+1

hk′+1wk′+1
≥

∑
j∈Gg+1

pk′+1

hk′+1wk′+1
· hjwj ≥

∑
j∈Gg+1

pj = p(Gg+1),

where the third inequality holds since the total area of Gg+1 is at most εCT , and the first
and the last inequality follow from the tasks being sorted in non-increasing order according
to pi/(hiwi). We now compare the total profit of ALG and OPTS . First, we have that
p(I∗) − p(ALG) = p(Gp+1). Since p(Gi) ≥ p(Gp+1) for every i ∈ {1, . . . , g}, we have that
p(Gg+1) ≤ (p(I∗) − p(Gg+1))/g, which implies that (g + 1)p(Gg+1) ≤ p(I∗), and hence that
p(Gg+1) ≤ p(I∗)/(g + 1) ≤ 10ε · p(I∗). In conclusion,

p(ALG) ≥ (1 − 10ε)p(I∗) ≥ (1 − 10ε)(1 − ε)p(OPTS) ≥ (1 − 20ε)p(OPTS). ◀

We now have all the ingredients required to prove Theorem 1.

Proof of Theorem 1. We partition the given instance into short and tall tasks as described
in the beginning of Section 3.1, using δ = ε/2. We then run the algorithm for tall tasks from
Lemma 5 on the tall tasks, and the algorithm for short tasks from Lemma 6 on the short
tasks, and return the best of the two solutions. One of them must be a (2 + ε)-approximate
solution for the problem. ◀

4 A PTAS under Resource Augmentation

The results from Section 3 provide an almost optimal way to schedule tall tasks and also
a separate way to schedule short tasks; unfortunately, although the schedule for tall tasks
leaves enough space for short tasks on top, our methods do not allow to construct a solution
that merges both kinds of tasks. The main obstacle comes from the fact that slices of short
tasks may be small in some time slots and large in others, requiring to treat parts of the
same task in different ways.

To overcome this difficulty, we describe how to obtain almost optimal solutions under
resource augmentation, meaning that our algorithm may overload the time slots up to capacity
(1+ε)C, while the optimal solution cannot. In this case, as we show, it is possible to schedule
short tasks on top of tall tasks via linear programming rounding techniques.

▶ Theorem 7. For any ε > 0, there exists a (1 + ε)-approximation for advertisement
placement under resource augmentation.

Given constants δH , δW > 0, we classify the tasks as follows (see Fig. 4): A task i is tall if
hi ≥ δHC; a task i is wide if hi < δHC and wi ≥ δW T ; and a task i is small if hi < δHC and
wi < δW T . We denote by T , W , and S the sets of tall, wide, and small tasks in the instance,
respectively. Also, we define OPTT , OPTW , and OPTS to be the optimal solution restricted
to tall, wide, and small tasks, respectively. As mentioned before, we select and schedule tall
tasks using Lemma 5; this ensures that the total area of tall tasks in the solution is at least
(1 − ε)area(OPTT ), and also that the load profile of the computed solution is upper bounded
by the load profile of OPTT (in particular, no time slot is overloaded at the moment).

APPROX/RANDOM 2025
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Figure 4 Left: Classification of the tasks for the proof of Theorem 7. Right: Structure of
the computed solution from Theorem 7. While the schedule for tall tasks respects the capacity
constraints, the placement of wide and small tasks may overload the time slots up to (1 + ε)C.

Let ALGT be the solution computed so far. To include wide tasks, we slightly adapt
the classical LP rounding procedure developed by Lenstra, Shmoys, and Tardos [26] for
makespan minimization on unrelated machines. Given a set Q of tasks that can be feasibly
scheduled, this procedure computes a feasible solution that includes all the given tasks while
possibly overloading the time slots by at most maxi∈Q{hi} ≤ δHC. Thus, we first need a
way to decide what tasks to include in the solution, which will be done again by rounding the
coordinates of the tasks using linear grouping. Here, an instance is horizontally segmented if
each task i of height hi and width wi is replaced by hi tasks of height 1 and width wi.

▶ Lemma 8. For any instance of the problem I, there exists a subset of wide tasks Î that
can be selected in polynomial time, such that the following holds:

(i) area(Î) ≥ (1 − ε)area(OPTW).
(ii) Î horizontally segmented admits a feasible schedule whose load profile is upper bounded

by the load profile of OPTW .

In what follows, we show how to prove Lemma 8. Observe first that, if OPTW is defined
by at most 4/(ε2δW ) tasks, we can guess exactly such a set in polynomial time. Thus, from
now on, we assume that OPTW has more than 4/(ε2δW ) wide tasks. We will also assume
that the tasks are horizontally segmented, meaning that each task i of height hi and width
wi is replaced by hi tasks of height 1 and width wi. It is not difficult to see that the optimal
profit achieved with the horizontally segmented instance is an upper bound for the original
optimal profit. We round up the widths of the wide tasks in the instance as follows:

(I) Suppose that W = {1, . . . , t} with w1 ≥ w2 ≥ · · · ≥ wt. We guess a set of at most
4/(ε2δW ) wide tasks, denoted as guessed tasks (the rest are non-guessed tasks). Out
of the guessed tasks, we guess at most 2/(εδW ) tasks, denoted as rounding tasks. We
discard the latter.

(II) The set of non-guessed tasks with a smaller index than the rounding task with smallest
index is discarded.

(III) For any remaining non-guessed task i, round wi up to wi′ , i′ < i, the closest width
among the rounding tasks (breaking ties in favor of smaller indices).
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Let Gi be the set of non-guessed tasks whose widths were rounded according to the
i-th rounding task (sorted non-increasingly by width). As the following proposition shows,
there exists a set of guessed tasks with a subset of rounding tasks that allow to bound the
total area of discarded tasks by ε · area(OPTW), while still having a feasible solution for the
rounded tasks that were not discarded.

▶ Proposition 9. Let I be a set of wide tasks, and I ′ be the output of the previous rounding
procedure. There exists a set Ĩ ⊆ I ′ of rounded wide tasks such that::

(i) The number of distinct widths in Ĩ is constant.
(ii) The total area of Ĩ is at least (1 − ε)area(OPT(I)).
(iii) There exists a feasible schedule for Ĩ horizontally segmented.

Proof. Suppose we place all the tasks in OPT(I) one on top of the other, sorted non-
increasingly by width. Since there is a feasible schedule for them and their width is at
least δW T , the total height of tasks in OPT(I), say H, is at most C/δW . From now on, we
work with OPT(I) horizontally segmented. Starting from the widest horizontal segment
in the pile, we partition them into groups G1, . . . , Gg of total height exactly (εδW /2)H
each, except possibly for the last one, which can have a smaller height. Observe that we
have at most 2/(εδW ) groups. Our tentative set of rounding tall tasks from the rounding
procedure will initially be defined by taking the task of smallest width from each group
Gi, with i ∈ {1, . . . , g − 1} (this set may contain less than g − 1 tasks due to repetitions).
Observe that, at this point, the set of rounding tasks and guessed tasks is the same, and
tasks with smaller index than the rounding task with smallest index are not part of OPT(I),
so they can be safely discarded.

We now prove that there is a feasible schedule for these (horizontally segmented) rounded
tasks. Consider a feasible schedule for OPT(I). Since the first group, G1, is discarded,
we use the space due to this removal to place the horizontal segments from G2 by simply
replacing them one by one. Since the original schedule was feasible for G1, it must be as well
for the horizontal segments in G2. Now that the slices from G2 were reassigned, we can use
that space to place the slices from G3 in the same way, and continue until placing the slices
from Gg. If this set of rounding tasks has total area at most (ε/2)area(OPT(I)), we end
the argument here as all the requirements from the lemma would be fulfilled; otherwise, we
remove the set of rounding tasks from the initial pile (still considering these tasks as guessed
tasks, which will later be scheduled just as they originally were), and redo the procedure
with the remaining tasks with respect to the width of the surviving tasks, until finding a set
of rounding tasks of total area at most (ε/2)area(OPT(I)). Since the sets of rounding tasks
from each iteration are disjoint, the procedure must end after at most 2/ε iterations as the
total area of the tasks is at most area(OPT(I)); consequently, the number of guessed tasks
at the end of this procedure is at most 4/(ε2δW ).

Let Ĩ be the outcome of the previous procedure. By construction, the number of possible
heights in Ĩ is at most 4/(ε2δW ), corresponding to the number of guessed tasks. We can
also observe that the total area of G1 is at most (ε/2)area(OPT(I)); to see this, observe
that, since every width is at least δW T , it holds that area(G1) ≤ area(Gi)/δW for any
i ∈ {2, . . . , g − 1}, and since there are 2/(εδW ) groups with exactly (εδW /2)H slices each,
we can charge the total area of G1 to 2/ε disjoint sets of 1/δW groups from G2, . . . , Gg.
Thus, the total area of discarded tasks, corresponding to tasks in G1 plus the rounding tasks,
is at most (ε/2)area(OPT(I)) + (ε/2)area(OPT(I)) ≤ ε · area(OPT(I)). As argued before,
the obtained schedule for Ĩ horizontally segmented is feasible and has total area at least
(1 − ε)area(OPT(I)), which concludes the proof. ◀
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We now have the ingredients to prove Lemma 8.

Proof of Lemma 8. Let Ĩ be the set of rounded wide tasks from Proposition 9. Let
h1, h2, ..., hK be the possible widths of wide tasks after rounding. Let C1, ..., CK be the
sets of tasks in Ĩ of width wi, for each i ∈ {1, . . . , K} respectively. For each i ∈ {1, . . . , K},
let Hi be the total height of tasks from Ci. We will approximately guess Hi, and then select
tasks to include in the desired solution according to these rounded total widths.

We round Hi according to the following procedure. We guess t ≤ 1/(εδW ) + 1 tasks from
Ci, say {i1, . . . , it} and consider a value of the form

∑t−1
j=1 hij + q · hit , with q ∈ {0, 1, . . . , n}.

Hi will then be rounded down to the closest value H ′
i of that form. As this requires guessing

a constant number of tasks and a number that ranges from zero to n, this can be done in
polynomial time. We now prove that there exists a subset of tasks satisfying the requirements
of the lemma such that, for each class Ci, their total height is at most H ′

i, by simply running
the known PTAS for the one-dimensional knapsack problem [25]. For each task, we define an
item of size and profit equal to hi, and consider a knapsack of capacity H ′

i. Since Ci \ {it} has
total height at most H ′

i, the PTAS on the created knapsack instance will find a set of tasks
with total height at least (1 − ε)H ′

i, which can be feasibly scheduled (horizontally segmented)
where Ci originally was, defining our set Î. ◀

Now that we have our set of wide tasks, we show how to efficiently schedule them, but
possibly overloading the time slots by at most δHC.

▶ Lemma 10. Let I ′ be a set of horizontally segmented tasks that can be feasibly scheduled
so that each time slot e has total load ℓ(e). There exists a polynomial time algorithm that
computes a schedule for I ′ without horizontally segmenting such that, for each time slot e,
the total load of tasks scheduled in it is at most ℓ(e) + maxi∈I′ hi.

Proof. We consider the following feasibility program for scheduling I ′:∑T
e=1 xie = wi for every i ∈ I ′,∑

i∈I′ xiehi ≤ ℓ(e) for every e ∈ {1, . . . , T},

xie ∈ {0, 1} for every i ∈ I ′ and e ∈ {1, . . . , T}.

Here, xie is a binary variable encoding whether a slice of task i is scheduled into time slot e

or not. Since I ′ horizontally segmented can be scheduled in such a way that each time slot e

has total load ℓ(e), the linear relaxation of this program is feasible.
Let y be a feasible solution for the LP formulation. We can now round this solution by

adapting the classical rounding scheme by Lenstra, Shmoys, and Tardos [26] (see also [9]).
We construct a bipartite graph with nodes representing tasks on one side, and time slots on
the other, and we have an edge from a task i to a time slot e if 0 < yie < 1. We can assume
that these edges form a forest; if there were alternating cycles, we can augment the flow in the
cycle appropriately, preserving the amount assigned to any time slot, maintaining feasibility,
until one of the values becomes either zero or one, breaking the cycle. The outdegree of
each task must be at least 2 since the widths are integral, implying that we can always find
an alternating path with endpoints at two different time slots e and e′, such that both of
them have indegree 1. We can again augment the flow along this path until every pair (i, e)
involved becomes integral, which only increases the flow entering the endpoints of the path,
by at most hi ≤ maxi∈I′ hi. In conclusion, this rounding procedure returns a feasible integral
schedule that increases the load of each time slot by at most maxi∈I′ hi. ◀

We now have all the ingredients required to prove Theorem 7.
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Proof of Theorem 7. Consider δH , δW ≤ ε/2. By applying Lemmas 8 and 10, we can
schedule wide tasks on top of ALGT in a way that the load of each time slot is at most
C + δHC ≤ (1 + ε/2) C. Let ALGT ∪W be the solution constructed so far. Consider the
small tasks in any arbitrary but fixed order, which will be scheduled according to the LF
algorithm, i.e., scheduling each slice into the least loaded time slot that does not contain
slices of the same task, until the first time the load of a time slot becomes larger than
(1 + ε)C (or until scheduling all the small tasks). If all the small tasks are scheduled, the
proof is finished; if not, this means that at least (1 − δW )T time slots have total load
at least (1 + ε/2)C, and thus the total area of tasks scheduled so far would be at least
(1+ε/2)(1−δW )TC ≥ (1−ε)TC ≥ (1−ε)area(OPT), concluding the proof of Theorem 7. ◀
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