
On Finding Randomly Planted Cliques in Arbitrary
Graphs
Francesco Agrimonti # Ñ

Parma, Italy

Marco Bressan #Ñ

Department of Computer Science, University of Milan, Italy

Tommaso d’Orsi #Ñ

Department of Computing Sciences, Bocconi University, Milan, Italy

Abstract
We study a planted clique model introduced by Feige [18] where a complete graph of size c · n
is planted uniformly at random in an arbitrary n-vertex graph. We give a simple deterministic
algorithm that, in almost linear time, recovers a clique of size (c/3)O(1/c) · n as long as the original
graph has maximum degree at most (1− p)n for some fixed p > 0. The proof hinges on showing
that the degrees of the final graph are correlated with the planted clique, in a way similar to (but
more intricate than) the classical G(n, 1/2) + K√

n planted clique model. Our algorithm suggests a
separation from the worst-case model, where, assuming the Unique Games Conjecture, no polynomial
algorithm can find cliques of size Ω(n) for every fixed c > 0, even if the input graph has maximum
degree (1− p)n. Our techniques extend beyond the planted clique model. For example, when the
planted graph is a balanced biclique, we recover a balanced biclique of size larger than the best
guarantees known for the worst case.

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography; Mathematics of computing → Discrete mathematics; Mathematics of computing →
Approximation algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases Computational Complexity, Planted Clique, Semi-random, Unique Games
Conjecture, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2025.11

Category APPROX

Related Version Previous Version: https://arxiv.org/abs/2505.06725

1 Introduction

Finding large cliques in a graph is a notoriously hard problem. Its decision version was
among the first problems shown to be NP-complete [31]. In fact, it turns out that for any
ε > 0 it is NP-hard to find a clique of size nε even in graphs containing cliques of size n1−ε

[26, 39, 32].
A large body of work [14, 25, 2, 30, 17, 9, 29] focused on designing polynomial time

algorithms to find large cliques given an n-vertex graph containing a clique of size cn . When
c < 1/ log n, the best algorithm known only returns a clique of size Õ(log(n)3) [17]. For
larger values of c it is possible to find a clique of size O(cn)O(c), which is of order nΩ(1)

when the largest clique in the graph contains a constant fraction of the vertices [9, 2]. The
current algorithmic landscape further suggests a phase-transition phenomenon around c = 1

2 .
For sufficiently small ε > 0 and c = 1

2 − ε there exists an algorithm finding a clique of size
n1−O(ε) [30]. Instead, when c = 1

2 + ε, one can efficiently find a complete graph of size 2εn

via a reduction to the classical 2-approximation algorithm for vertex cover. Finally, finding a
clique of size Ω(εn) for c = 1

2 − ε was shown to be UGC-hard in [33, 7].
© Francesco Agrimonti, Marco Bressan, and Tommaso d’Orsi;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2025).
Editors: Alina Ene and Eshan Chattopadhyay; Article No. 11; pp. 11:1–11:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francesco.agrimonti@gmail.com
https://francescoagrimonti.netlify.app
https://orcid.org/0009-0003-0659-7709
mailto:marco.bressan@unimi.it
https://sites.google.com/view/marco-bressan/home
https://orcid.org/0000-0001-5211-2264
mailto:tommaso.dorsi@unibocconi.it
https://tommasodorsi.github.io/
https://orcid.org/0009-0008-9808-6354
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2025.11
https://arxiv.org/abs/2505.06725
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

11:2 On Finding Randomly Planted Cliques in Arbitrary Graphs

Table 1 Performance of state-of-the-art efficient algorithms for clique when a clique of size cn

exists in the graph (note that c can depend on n).

Regime Output clique References

c ≥ 1
2 + ε 2ϵn [14]

c ≥ Ω(1) (cn)Ω(c) [2]

c ≥ 1/ log n Ω
(

nc

c

)
[9, 25]

any c > 0 Ω
(

log3(cn)
log2 log(cn)

)
[17]

Given the grim worst-case picture, a substantial body of work has focused on designing
algorithms that perform well under structural or distributional assumptions on the input
graph. One research direction has investigated clique and related problems on graphs
satisfying expansion or colorability properties [4, 15, 34, 6]. Another line of work has explored
planted average case models [31, 27, 35, 3, 20, 19, 13, 22]. In the planted clique model, the
input graph is generated by sampling a graph from the Erdős-Rényi distribution ER(n, 1

2)
and then embedding a clique of size cn by fully connecting a randomly chosen subset of
vertices. Here, basic semidefinite programming relaxations [20, 21], as well a simple rounding
of the second smallest eigenvector of the Laplacian [3], are known to efficiently recover the
planted clique whenever c ≥ 1/

√
n . Lower bounds against restricted computational models

further provide evidence that these algorithmic guarantees may be tight [23, 8].
In an effort to bridge the worst-case settings and the average-case settings, Feige and

Kilian [19] introduced a semi-random model in which the above planted clique instance is
further perturbed by: (i) arbitrarily removing edges between the planted clique K and the
remainder of the graph G \K, and (ii) arbitrarily modifying the subgraph induced by G \K.
The randomness of this model lies in the cut (K, G \K) which separates the clique from
the rest of the graph. A flurry of works [12, 37, 10] led to an algorithm that, leveraging the
randomness of this cut, can recover a planted clique of size n

1
2 +ε in time nO(1/ε) . This picture

suggests that, from a computational perspective, this semi-random model may be closer to
the planted average case model than to worst-case graphs. (Information theoretically the
semi-random model differs drastically from the planted clique model [38].)

To better understand the role of randomness in the clique problem, Feige [18] proposed
another model in which a clique is randomly planted in an arbitrary graph, and asked what
approximation guarantees are efficiently achievable in this setting. In comparison to the
aforementioned semi-random case, here the randomness only affects the location of the clique
but not the topology of the rest of the graph.

Investigating this model is the main focus of this paper. We provide a first positive answer
to Feige’s question, showing that a surprisingly simple deterministic algorithm achieves
significantly stronger guarantees than those known for the worst-case settings, for a wide
range of parameters. Our results suggest that this model may sit in between the average
case and the worst case regimes.

1.1 Results
To present our contributions we first formally state our random planting model. In fact, as
our results extend beyond clique, the model we state is a generalization of the one in [18].

F. Agrimonti, M. Bressan, and T. d’Orsi 11:3

▶ Definition 1 (Random planting in arbitrary graphs). Let G and H be graphs with |V (H)| ≤
|V (G)|. G(G, H) describes the following distribution over graphs:

1. Sample a random uniform injective mapping ϕ : V (H)→ V (G).

2. Return Ĝ with V (Ĝ) = V (G) and E(Ĝ) = E(G) ∪ {{ϕ(u), ϕ(u′)} : {u, u′} ∈ E(H)} .

When H is the cn-sized complete graph Kcn, Definition 1 corresponds to the planted clique
model of [18]. In this specific setting we obtain the following result.

▶ Theorem 2 (Simplified version). There exists a deterministic algorithm A with the following
guarantees. For every c ∈ (0, 1) and every n-vertex graph G, if Ĝ ∼ G (G, Kcn) then A(Ĝ)
with probability at least 1− 1

n2 returns a clique of size at least:

n

5 ·
(c

3

) 4
c log 2

p

where p = 1− ∆
n and ∆ is the maximum degree of G. Moreover A runs in time Õ

(
∥Ĝ∥

)
.

To appreciate the guarantees of Theorem 2 consider the setting p = Ω(1), so that ∆ = (1−p)n
is bounded away from n. In this case, for every fixed c > 0 the algorithm of Theorem 2
finds with high probability a clique of size Ω(n). In the worst case, however, this is not
possible unless the Unique Games Conjecture fails. More precisely, assuming UGC, no
polynomial-time algorithm can find a clique of size ε · n even when one of size

(1
2 − ε

)
· n

exists [33, 7]; indeed, state-of-the-art algorithms [2, 9, 25] are only known to return cliques
of size nO(c). By adding n p

1−p isolated vertices to the graph, it also follows that under UGC
one cannot efficiently find a clique of size ε · n even when one of size

(1−p
2 − ε

)
· n exists

and the input graph has degree ∆ ≤ (1 − p)n, as in the statement of Theorem 2. Thus,
unless UGC fails, we cannot expect Theorem 2 to hold in the worst case. We remark that
Theorem 2 also guarantees to recover cliques of size nΩ(1) for c ≥ Ω

(
log log n

log n

)
, a regime in

which worst-case algorithms are only known to find cliques of size poly log(n). Finally, as one
can expect, the failure probability can be actually made smaller than n−a for any desired
a ≥ 1; see the full formal version of Theorem 2 in Section 5.

Note that the performance of our algorithm deteriorates as p approaches 0; that is, as the
maximum degree approaches n. While it remains an open question whether some assumption
on the degree is inherently necessary, we provide some preliminary evidence in Theorem 5,
see Section 2 and Section 7.

Our results extend beyond the case where the planted graph is a complete graph. To
illustrate this, we also consider the balanced biclique problem, where the goal is to find a
largest complete balanced bipartite subgraph. The balanced biclique problem has a long
history [24, 28, 1] and a strong connection to clique [11]. Assuming the Small Set Expansion
Hypothesis, there is no polynomial-time algorithm that can find a balanced biclique within a
factor n1−ε of the optimum for every ε > 0, unless NP ⊆ BPP [36]. Remarkably, in the worst
case, the bicliques that existing algorithms are known to return are significantly smaller than
the complete graphs found in the context of clique. In fact, the best algorithm known [11]
works through a reduction to clique which constructs an instance with a complete graph of
size O(c2 · n) from a balanced biclique instance with a biclique of size c · n .

In comparison, under Definition 1, we obtain the following guarantees.

APPROX/RANDOM 2025

11:4 On Finding Randomly Planted Cliques in Arbitrary Graphs

▶ Theorem 3 (Simplified version). There exists a deterministic polynomial-time algorithm
A with the following guarantees. For every c ∈ (0, 1) and every n-vertex graph G, if
Ĝ ∼ G

(
G, K cn

2 , cn
2

)
then A(Ĝ) with probability at least 1− 1

n2 returns a balanced biclique of
size at least:

c

48 · 2
√

c log n
2 .

Moreover A(Ĝ) runs in time Õ(∥Ĝ∥).

The main point of Theorem 3 is again the difference with the worst case bounds. In the worst
case, existing algorithms are known to find a biclique of size (log n)ω(1) only if there exists

one of size c · n ≥ ω

(
log log n√

log n

)
· n in the input graph. In contrast, Theorem 3 states that

in typical instances from G
(
G, K cn

2 , cn
2

)
we can efficiently find a biclique of size (log n)ω(1)

whenever there exists one of size c ·n ≥ ω
(

(log log n)2

log n

)
·n; that is, for value of c up to log log n√

log n

times smaller than for the worst case. Furthermore, unlike the bounds of Theorem 2, the
ones of Theorem 3 are insensitive to the structure of G, and in particular to its maximum
degree.

2 Techniques

This section gives an intuitive description of our techniques, using the planted clique problem
as a running example. Let G be an arbitrary n-vertex graph, and let Ĝ ∼ G(G, Kcn). For
simplicity, we suppose that c > 0 and p > 0 are fixed constants, and that G has maximum
degree ∆ ≤ (1 − p)n. Let ϕ : V (Kcn) → V (G) be the injective mapping sampled in the
process of constructing Ĝ . Because we have almost no knowledge of the global structure of
G , it appears difficult to recover the planted clique via the topology of Ĝ without running
into any of the barriers observed in worst-case instances.

On the other hand, since the clique is planted randomly, we can expect certain basic
statistics to change in a convenient and somewhat predictable way between G and Ĝ . Our
approach focuses on perhaps the simplest such statistic – the degree profile – guided by
the intuition that vertices with higher degree in Ĝ are more likely to belong to the planted
clique than those with lower degree. For notational convenience we use the degree in the
complement graph, which we call slack. To be precise, for a vertex v ∈ V (G), the slack of v

in G is sv = (n− 1)− dv where dv is the degree of v in G. In the same way we define the
slack of v in Ĝ as ŝv = (n− 1)− d̂v, where d̂v is the degree of v in Ĝ.

To formalize the intuition above, suppose G contains a subset V ′ ⊆ V such that (i) the
vertices of V ′ have approximately the same slack, in the sense that if s := minv∈V ′ sv, then
any v ∈ V ′ satisfies

sv

(
1− c

2
)

< s ,

and (ii) the set V<s(G) of vertices in G with slack smaller than s has size at most, say,
c

10 · |V
′| . Because the map ϕ is chosen uniformly at random, we expect a c fraction of V ′

will be in the image of ϕ . Furthermore, every v ∈ V ′ in the image of ϕ acquires csv new
neighbors in expectation, which by (i) gives:

Eϕ [ŝv] ≤ sv · (1− c) < s .

In fact, as long as |V ′| and s are large enough (roughly Ω(c−1 log n)), by standard concentra-
tion bounds at least c

2 |V
′| vertices of V ′ will be in the image of ϕ, and all those vertices v will

satisfy ŝv < s. Under these circumstances, by (ii) we conclude that, in Ĝ, the set |V<s(Ĝ)|

F. Agrimonti, M. Bressan, and T. d’Orsi 11:5

of vertices having slack smaller than s has size at least c
10 |V

′|, and moreover a fraction at
least 1/2

1/2+1/10
> 0.8 of those vertices form a clique. We can then immediately recover a clique

of size Ω(c|V ′|) via the standard reduction to vertex cover applied to the subgraph of Ĝ

induced by |V<s(Ĝ)| .
The above discussion suggests our intuition is correct whenever a sufficiently large set

satisfying (i) and (ii) exists.1 While arbitrary graphs may not contain such a set, it turns
out that the only obstacle towards the existence of a linear size set V ′ is the presence of a
large set of vertices of slack strictly smaller than s. Choosing V ′ so that s ≤ p · n we deduce
that such a V ′ must exists.

▶ Remark 4. The above reasoning works beyond the parameters regime of our example and,
in fact, does not require the planted graph to be a clique. In the context of balanced
biclique the existence of a large set with slack < s makes the problem easier. Therefore, we
are able to drop the assumption on the maximum degree in G .

We complement the intuition above with a lower bound on the performance of degree profiling.
Essentially this states that, if we have no guarantees on the maximum degree of G, then the
degree profile of Ĝ ∼ G(G, Kcn) is uncorrelated with Kcn. Formally:

▶ Theorem 5. For every c ∈ (0, 1
2) and n ≥ 3 there exists an n-vertex graph G such that

Ĝ ∼ G(G, Kcn) satisfies what follows with probability at least 1 − 1
n . For every ordering

v1, . . . , vn of the vertices of Ĝ by nonincreasing degree, and for every j ∈ [n], the largest
clique in the induced subgraph Ĝ[{v1, . . . , vj}] has size at most

O

(√
n ln n

c
+ c j

)
. (1)

To appreciate Theorem 5 let t = Ω(c−2
√

n ln n). Then the theorem says that, if one takes
the first t vertices of Ĝ in order of degree, the largest clique therein has size O(ct) with
high probability. In other words, for all t not too small compared to n, the t vertices of
highest degree have roughly the same clique density of the entire graph. This suggests that,
using degree statistics alone, one has little hope to find cliques larger than Õ(

√
n) even for

constant c. Note that there is no contradiction with the upper bounds of Theorem 2: those
bounds become trivial for large ∆, and the graph behind the proof of Theorem 5 has indeed
a large ∆.

3 Preliminaries

Let G be a graph. We let V (G) be its set of vertices and E(G) its set of edges. For
V ′ ⊆ V (G) we let G[V ′] be the subgraph induced by V ′ . We often use n = |V (G)|. We let
∥G∥ = |V (G)|+ |E(G)|. For v ∈ V (G) , let dv be its degree and sv := n− 1− dv its slack.
For V ′ ⊆ V (G) , let sV ′ := minv∈V ′ sv . We write V<s(G) := {v ∈ V (G) | sv < s} . We do
not specify the graph when the context is clear and we define V<s(Ĝ) as V̂<s. We let Kn

be the complete graph of size n and Ka,b be the biclique with sides of size a and b. We let
[n] := {1, . . . , n} , log = log2 and ln = loge.

The computational model is the standard RAM model with words of logarithmic size.
Unless otherwise stated, all our graphs are given as adjacency list. By performing a O(n)
preprocessing we henceforth assume the adjacency lists are sorted, so that one can perform
binary search and check the existence of any given edge in time O(log n).

1 We remark that our algorithm does not need to find this set.

APPROX/RANDOM 2025

11:6 On Finding Randomly Planted Cliques in Arbitrary Graphs

The following theorem says that, for every fixed c > 1
2 , one can efficiently find a clique of

size Ω(n) in an n-vertex graph that contains one of size cn.

▶ Theorem 6. There exists an algorithm, DenseCliqueFinder, with the following guaran-
tees. For every ε > 0, if A is given in input an n-vertex graph G = (V, E) that contains a
clique of size (1

2 + ε)n, then A finds in deterministic Õ(n2)-time a clique of size 2εn.

The proof is folklore – take the complement of G, find a 2-approximation of the smallest
vertex cover through a maximal matching, and return its complement. See also [14].

4 Slackness profile and densification

In this section we prove our structural results on the degree and slackness profile of graphs
from Definition 1. We start with a definition.

▶ Definition 7 (Bulging set). Let G = (V, E) be a graph and α, β > 0. A set U ⊆ V is
(α, β)-bulging if:
1. sv < sU

1−β for all v ∈ U .

2. |V<sU
| < 1

α |U | .

The next statement characterizes the existence of (α, β)-bulging sets in any graph based
on the value of α and β and the slackness of its vertices.

▶ Lemma 8. Let G = (V, E) be an n-vertex graph. Then for every β ∈ (0, 1/2), α ≥ 2, and
s ∈ R>0 at least one of the following facts holds:

(i) |V<s| ≥ n

α
2+ 1

β
log n

s
.

(ii) G contains an (α, β)-bulging set U such that |U | ≥ n

α
1+ 1

β
log n

s
and sU ≥ s.

Proof. Let η = β
1−β > 0 and h =

⌈
log1+η

n
s

⌉
. We define a partition of V into h + 1 possibly

empty sets, as follows:

V0 := V<s (2)
Vj := V<s(1+η)j \ V<s(1+η)j−1 =

{
v ∈ V

∣∣ s(1 + η)j−1 ≤ sv < s(1 + η)j
}

j ∈ [h] (3)

It is immediate to see that this is indeed a partition of V , since 0 ≤ sv < n for every v ∈ V .
We prove the statement by contradiction. Suppose (ii) does not hold. Then it must be that
for j ≥ 1:

|Vj | <
n

α2+ 1
β log n

s

· αj , (4)

Indeed, if this was not the case, then one can check that for the smallest j ∈ [h] violating
Equation (4) the set Vj would be (α, β)-bulging, and moreover every vertex in Vj would have
slack at least s (since j ≥ 1). Suppose further (i) is not verified. Then as the sets Vj form a
partition of V , and as α ≥ 2,

n =
h∑

j=0
|Vj | <

n

α2+ 1
β log n

s

·
h∑

j=0
αj <

n

α2+ 1
β log n

s

· αh+1 (5)

Now observe that

h ≤ 1 +
log n

s

log(1 + η) ≤ 1 + 1 + η

η
log n

s
= 1 + 1

β
log n

s
(6)

F. Agrimonti, M. Bressan, and T. d’Orsi 11:7

where we used the facts that log(1 + x) ≥ x
1+x for all x ≥ 0, and that η

1+η = β. Substituting
this bound in Equation (5) yields the absurd n < n. Thus at least one among (i) and (ii)
holds. ◀

Our next key result states that the subgraph of Ĝ induced by the set of vertices v with slack
ŝv < sU , where U ⊆ V is the bulging set that exists in G for Lemma 8, will contain a large
number of vertices of H with high probability.

▶ Lemma 9 (Densification Lemma). Let G be an n-vertex graph, α ≥ 2 and c ∈ (0, 1) .

Let H be a regular graph with |V (H)| ≤ n and minimum degree at least cn ≥ 10. Let U

be an (α, c
2)-bulging set of G with min{sU , |U |} ≥ 12+29a ln n

c for some a ≥ 1. Finally, let
Ĝ ∼ G(G, H), and let Ĥ be the image of H in Ĝ. Then, with probability at least 1− n−a the
set V̂<sU

satisfies:

(i)
∣∣V̂<sU

∩ Ĥ
∣∣ > c

2 · |U |.
(ii)

∣∣V̂<sU
∩ Ĥ

∣∣ > cα
2 ·
∣∣V̂<sU

\ Ĥ
∣∣.

Proof. First, we claim that Ĥ ∩ U ⊆ V̂<sU
with high probability. Consider any v ∈ U , and

note that v /∈ V̂<sU
means ŝv ≥ sU . Now, if v ∈ Ĥ, then ŝv = sv −X, where X =

∑sv

i=1 Xi

is the sum of non-positively correlated Bernoulli random variables of parameter c′ = c− 1
n .

The event ŝv ≥ sU is therefore the event X ≤ sv − sU ; since sv − sU ≤ c
2 sv, as v ∈ U

and U is (α, c
2)-bulging, this implies the event X ≤ c

2 sv. Now, as cn ≥ 10, then c′ ≥ 9
10 c,

and c
2 sv ≤ 5

9 c′sv. Since moreover EX = c′sv, we conclude that ŝv ≥ sU implies the event
X ≤ (1− 4/9)EX. We then use Lemma 16 with ε = 4/9. To this end note that:

EX = c′ sv ≥
9
10c sU > 10 + 26a ln n ≥ 13 (ln 2 + (1 + a) ln n) = 13 ln

(
2na+1) (7)

Therefore:

Pr
[
v /∈ V̂<sU

]
= Pr[ŝv ≥ sU] ≤ Pr[X ≤ (1− 4/9)EX] ≤ e

− (4/9)2

2+4/9 EX
< e− EX

13 <
1

2na+1 (8)

By a union bound over all v ∈ U we conclude that Pr
[
Ĥ ∩ U ̸⊆ V̂<sU

]
≤ 1

2 n−a.

Next, consider |Ĥ ∩ U |. Note that |Ĥ ∩ U | = X where again X =
∑|U |

i=1 Xi is the sum of
non-positively correlated Bernoulli random variables of parameter c. Using again Lemma 16
with ε = 4/9, and noting as done above that EX = c′|U | > 13 ln

(
2na+1), we obtain:

Pr
[∣∣Ĥ ∩ U

∣∣ ≤ c

2 |U |
]

= Pr
[
X ≤

(
1− 4/9

)
EX
]

<
1

2na+1 <
1
2n−a (9)

Finally, let S := V̂<sU
. The bounds above show that, with probability at least 1− n−a,

we have U ∩ Ĥ ⊆ S ∩ Ĥ and |U ∩ Ĥ| > c
2 |U |, which implies |S ∩ Ĥ| > c

2 |U |, that is, (i).
Moreover S \ Ĥ ⊆ V<sU

, which implies |S \ Ĥ| < 1
α |U | as U is (α, c

2)-bulging. Together
with (i) we conclude that:

|S ∩ Ĥ|
|S \ Ĥ|

>
cα

2 (10)

which proves (ii). ◀

APPROX/RANDOM 2025

11:8 On Finding Randomly Planted Cliques in Arbitrary Graphs

5 Application to clique

In this section we prove Theorem 2, which we restate in a fully formal way and with more
general probabilistic guarantees.

▶ Theorem 10. There exists a deterministic algorithm A with the following guarantees. Fix
any a ≥ 1. Let c := c(n) ∈ ω

(
1

log n

)
, and define:

K(n, c, p) := n

5 ·
(c

3

)2+ 2
c log 2

p
.

Then for every n large enough and every n-vertex graph G what follows holds. Letting
p = 1− ∆

n where ∆ is the maximum degree of G, if K(n, c, p) ≥ 1 + 2a ln n, then A on input
Ĝ ∼ G (G, Kcn) returns a clique of Ĝ whose size is at least K(n, c, p) with probability at least
1− n−a. Moreover A(Ĝ) runs in time Õ(∥Ĝ∥) for every input graph Ĝ.

Proof. We start by proving that Algorithm 1 runs in time Õ(n3) and guarantees a clique
of size 7

5 K(n, c, p) with the prescribed probability. We then show how to lower the running
time to Õ(∥Ĝ∥) while reducing the clique size to K(n, c, p).

Algorithm 1 CliqueFinder(Ĝ).

1: S ← ∅
2: v1, . . . , vn ← vertices of Ĝ in nonincreasing order of degree
3: for 1 ≤ i ≤ n: do
4: T ← DenseCliqueFinder

(
Ĝ [{v1, . . . , vi}]

)
5: if |T | > |S|: then
6: S ← T

7: end if
8: end for
9: return S

The inequalities we are going to claim assume n is indeed sufficiently large (formally,
larger than some n0 that may depend on a). To begin with, observe that if c ≤ 1

log n or
p ≤ n−1/2 then K(n, c, p) ≤ 1 and therefore our algorithm certainly satisfies the bound of
Theorem 10. Indeed, if c ≤ 1

log n then the second multiplicative term in the expression of
K(n, c, p) satisfies:

(c

3

)2+ 2
c log 2

p ≤
(

1
3 log n

)2+2 log n

< 9− log n ≤ 5
n

(11)

If instead p ≤ n−1/2 then the same term satisfies:

(c

3

)2+ 2
c log 2

p ≤
(

1
3

)2 log
√

n

= 3− log n ≤ 5
n

(12)

Thus we may assume cp ≥ 1√
n log n

, and therefore:

cp ≥ 13 + 29a ln n

n
≥ 12 + 29a ln n

n
+ c

n
(13)

F. Agrimonti, M. Bressan, and T. d’Orsi 11:9

Now let s = pn− 1. Then s = (n− 1)−∆; hence all vertices of G have slack at least s, and
therefore |V<s| = 0. Now apply Lemma 8 with α = 3

c and β = c
2 . Note that item (i) fails,

thus item (ii) holds. Therefore G contains a (3
c , c

2)-bulging set U such that:

|U | ≥ n(3
c

)1+ 2
c log n

s

= n ·
(c

3

)1+ 2
c log n

s ≥ n ·
(c

3

)1+ 2
c log 2

p ≥ 15
c
·K(n, c, p) (14)

where we used the fact that p ≥ 1√
n

and that n is large enough to obtain that n
s ≤

2
p . Thus,

when K(n, c, p) ≥ 1 + 2a ln n we have |U | ≥ 12+29a ln n
c .

Moreover sU ≥ s = pn; using Equation (13) this yields sU ≥ 12+29a ln n
c , too. We can then

apply Lemma 9. It follows that, with probability at least 1−n−a, we have
∣∣V̂<sU

∩H
∣∣∣∣V̂<sU

\H
∣∣ > cα

2 > 3
2 .

We deduce that G[V̂<sU
] contains a clique whose density is at least:∣∣V̂<sU

∩H
∣∣∣∣V̂<sU

∣∣ =
∣∣V̂<sU

∩H
∣∣∣∣V̂<sU

∩H
∣∣+
∣∣V̂<sU

\H
∣∣ >

∣∣V̂<sU
∩H

∣∣(2
3 + 1

)∣∣V̂<sU
∩H

∣∣ = 1
2 + 1

10 . (15)

With the same probability we have simultaneously that
∣∣V̂<sU

∣∣ ≥ c
2 |U | > 7 ·K(n, c, p). Now

consider the invocation of DenseCliqueFinder on G[V̂<sU
]. By Theorem 6, that invocation

finds a clique of size at least:

7 ·K(n, c, p) ·
(

2 · 1
10

)
= 7

5 ·K(n, c, p) (16)

Next, we bring the running time in Õ(n2) while ensuring an output clique of size K(n, c, p). To
this end, change the loop at line 3 so as to iterate only over i in the form i = (1+η)j for some
η > 0. For the smallest i = (1 + η)j such that V<sU

⊆ {v1, . . . , vi} the subgraph Ĝ[v1, . . . , vi]
will then have clique density

1
2 + 1

10
1+η and will contain V̂<sU

plus at most η
∣∣V̂<sU

∣∣ other vertices.
By choosing η > 0 sufficiently small one can then ensure that DenseCliqueFinder when
ran on Ĝ[v1, . . . , vi] returns a clique of size at least K(n, c, p). The total number of iterations
is in O(log1+η n) = O(log n), and by Theorem 6 every iteration takes time Õ(n2), giving a
total time of Õ(n2) too.

To finally bring the running time in Õ(∥Ĝ∥), upon receiving Ĝ we check whether ∥Ĝ∥ ≤(
n/ log n

2
)
. If that is the case then c ≤ 1

log n and K(n, c, p) ≤ 1 as shown above; in this case we
return any vertex of Ĝ. Otherwise, we run the algorithm above. In both cases the bounds
are satisfied and the running time is in Õ(∥Ĝ∥). ◀

6 Application to balanced biclique

In this section we restate and prove a more formal and general version of Theorem 3:

▶ Theorem 11. There exists a deterministic polynomial-time algorithm A with the following
guarantees. Fix any a ≥ 1. Let c := c(n) ∈ ω

(
1

log n

)
. For every n large enough and every

n-vertex graph G, when given Ĝ ∼ G
(
G, K cn

2 , cn
2

)
in input, A with probability at least 1−n−a

returns a balanced biclique of size at least:

c

48 · 2
√

c log n
2 .

Moreover A(Ĝ) runs in time Õ(∥Ĝ∥) for every input graph Ĝ.

APPROX/RANDOM 2025

11:10 On Finding Randomly Planted Cliques in Arbitrary Graphs

The algorithm behind the theorem, Algorithm 2, is based on the following intuition. Observe
that our main technical result, Lemma 8, essentially says that every graph G contains either
(i) a large number of vertices of small slack (and thus large degree), or (ii) a large bulging set.
If (i) holds, then we can hope to find a large biclique by just intersecting the neighborhoods
of those vertices (namely, of the k vertices with largest degree for some suitable value of
k). If (ii) holds, then we can hope to find a large biclique by exploiting the “densification”
phenomenon used by our clique algorithm (see Section 5). The structure of the algorithm
follows this intuition, with a first phase that finds a large biclique if (i) holds and a second
phase that finds a large biclique if (ii) holds.

Algorithm 2 BalancedBicliqueFinder(Ĝ).

1: v1, . . . , vn ← vertices of Ĝ in non-increasing order of degree
2: L, R← ∅
3: for 1 ≤ i ≤ n: do ▷ Phase 1
4: L′ ← {v1, . . . , vi}
5: R′ ←

⋂
v∈L′ Nv

6: if min{|L′|, |R′|} > min{|L|, |R|} then
7: L, R← L′, R′

8: end if
9: end for

10: for 1 ≤ i < j ≤ n: do ▷ Phase 2
11: L′, R′ ← BicliqueExtractor(Ĝ, {vi, . . . , vj})
12: if min{|L′|, |R′|} > min{|L|, |R|} then
13: L, R← L′, R′

14: end if
15: end for
16: return L, R

Before delving into the proof, we need a certain subroutine that “extracts” a large balanced
biclique of a graph G when given a subset S of vertices of some (larger) balanced biclique of
G. This is the subroutine BicliqueExtractor appearing at line 11 of Algorithm 2, and it
plays a role similar to the one played by DenseCliqueFinder in the case of clique.

▶ Lemma 12. There exists a deterministic algorithm A with the following guarantees. Let
G = (V, E) be an n-vertex graph containing a balanced biclique with sides A and B. Given
in input G and S ⊆ A ∪ B, algorithm A returns a biclique of G with sides L, R such that
min(|L|, |R|) ≥ |S|

3 . The running time of A is O(|S| · n log n).

Proof. We prove that Algorithm 3 satisfies the statement.

Algorithm 3 BicliqueExtractor(G, S).

1: compute the complement Ḡ[S] of G[S]
2: compute G1, . . . , Gr, the connected components of Ḡ[S] in nonincreasing order of vertex size
3: if |V (G1)| > |S|

3 then
4: return L = V (G1) and R = ∩u∈V (G1)NG(u)
5: else
6: compute the smallest i ∈ [r] such that

∑i

j=1 |V (Gi)| > |S|
3

7: return L =
⋃i

j=1 V (Gj) and R =
⋃r

j=i+1 V (Gj)
8: end if

F. Agrimonti, M. Bressan, and T. d’Orsi 11:11

First, let us prove that the algorithm returns sets L, R that are sides of a complete
biclique and such that min(|L|, |R|) > |S|

3 . We begin by noting the following crucial fact:
for each i = 1, . . . , r we have V (Gi) ⊆ A or V (Gi) ⊆ B. Suppose, in fact, that there exist
u ∈ V (Gi) ∩A and v ∈ V (Gi) ∩B. Since Gi is connected, along any path from u to v in Gi

there must exist an edge whose vertices belong to A and B, respectively. Without loss of
generality we can thus assume that u and v are such vertices. By definition of Gi this means
that u and v are not adjacent in G, a contradiction. Now we distinguish the two cases on
which the algorithm branches.
1. |V (G1)| > |S|

3 .
In this case, as V (G1) ⊆ A or V (G1) ⊆ B, by construction of R we have R ⊇ B or R ⊇ A.
Therefore:

|R| ≥ |A| = |A ∪B|
2 ≥ |S|2 ≥

|S|
3 (17)

Hence, min(|L|, |R|) > |S|
3 . Moreover note that L, R are sides of a biclique by construction

of R.
2. |V (G1)| ≤ |S|

3 . Then by the ordering of G1, . . . , Gr we have |V (Gi)| ≤ |S|
3 for all

i = 1, . . . , r. Note how this implies that the index i computed by the algorithm satisfies:∣∣∣∣∣∣
i−1⋃
j=1

V (Gj)

∣∣∣∣∣∣ ≤ |S|3 (18)

Therefore:

|S|
3 <

∣∣∣∣∣∣
i⋃

j=1
V (Gj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
i−1⋃
j=1

V (Gj)

∣∣∣∣∣∣+ |V (Gi)| ≤
|S|
3 + |S|3 = 2|S|

3 (19)

This implies again min(|L|, |R|) ≥ |S|
3 . Moreover L, R form again the sides of a biclique;

this is because G1, . . . , Gr are connected components of Ḡ[S], hence in G all edges are
present between V (Gj) and V (Gj′) for every distinct j, j′.

We now analyze the running time of the algorithm. Computing Ḡ[S] takes time O(|S|2 log n)
by checking for each of the edges in the sorted adjacency lists of G. Computing and sorting
the connected components G1, . . . , Gr takes time O(|S|2 +|S| log |S|). The case |V (G1)| > |S|

3
requires time O(|V (G1)| · n) = O(|S| · n) if the intersection of the neighborhoods is done
using a bitmap indexed by V (G). The case |V (G1)| ≤ |S|

3 takes time O(|S|). We conclude
that the algorithm runs in time O(|S|2 log n + |S| · n) = O(|S| · n log n). ◀

We are now ready to prove Theorem 11.

Proof of Theorem 11. We prove the biclique size guarantees and the running time bounds
separately.

Guarantees. Let β = c
2 , and define:

f(α, n, s) := n

α2+ 1
β log n

s

(20)

We begin by showing that, whenever s ≤ n
f(α,n,s) and α ≥ max(2, f(α, n, s)),

1. If item (i) of Lemma 8 holds, then the first phase of Algorithm 1 finds a biclique with at
least ⌊ 2

3 · f(α, n, s)⌋ vertices per side.

APPROX/RANDOM 2025

11:12 On Finding Randomly Planted Cliques in Arbitrary Graphs

2. If item (ii) of Lemma 8 holds, then the second phase of Algorithm 1 finds with high
probability a biclique with at least c

6 · f(α, n, s) vertices per side.
Since by Lemma 8 itself at least one of items (i) and (ii) holds, the algorithm finds with high
probability a balanced biclique of size Ω(c · f(α, n, s)). We will then choose α, s that satisfy
the constraints above while (roughly) maximizing f(α, n, s).

We prove 1. To ease the notation let f = f(α, n, s). If item (i) of Lemma 8 holds, then
|V<s| ≥ f , hence in G (and thus in Ĝ) there are at least f vertices of slack smaller than
s ≤ n/f. By a simple counting argument, any k of those vertices have at least n− k(s + 1)
neighbors in common. Choosing k = ⌊ 2f

3 ⌋, and using the fact that s ≤ n/f, the common
neighbors are at least n− 2f

3 (n/f + 1) = n−2f
3 . Now observe that, since α ≥ 2, then n ≥ 4f ,

hence n−2f
3 ≥ 2f

3 . We conclude that the loop at line 3 of Algorithm 2 eventually returns a
biclique whose smallest side has at least ⌊ 2f

3 ⌋ vertices.
We prove 2. If item (ii) of Lemma 8 holds, then G contains an (α, c/2)-bulging set U of

size at least αf . Let S = V̂<sU
. Leveraging Lemma 9 through the same arguments used in

the proof of Theorem 10, as long as αf and s are in Ω(c−1a log n) and sufficiently large, with
probability at least 1− n−a we have |S ∩H| > c

2 |U | and |S ∩H| > cα
2 |S \H|, where H is

the set of vertices of the planted biclique. Now consider any ordering of S (in particular the
one given by the degrees). If |S \H| = ∅, then the ordering itself is a sequence of elements of
H of length |S| = |S ∩H| > c

2 |U | ≥
cαf

2 . If instead |S \H| ≠ ∅, as |S ∩H| > cα
2 |S \H| the

pigeonhole principle implies that the ordering contains a contiguous sequence of vertices of
H of length at least cα

2 , and therefore are least cf
2 as we are assuming α ≥ f . We conclude

that in any case the ordering of S contains a contiguous sequence of vertices of H of length
min

(
cf
2 , cαf

2

)
= cf

2 . By construction Algorithm 2 eventually runs BicliqueExtractor on
that sequence and thus, by Lemma 12, finds a biclique with at least cf

6 vertices per side.
It remains to choose suitable values of α, s so as to approximately maximize f subject

to the constraints s ≤ n
f(α,n,s) and α ≥ max(2, f(α, n, s)). The argument above then yields

with probability 1− n−a a biclique with Ω(cf(α, n, s)) vertices per side. We set:

s = n

f
(21)

α = f (22)

This yields the equation:

α = f(α, n, s) = n

α2+ 1
β log n

s

= n

α2+ 1
β log α

(23)

Recalling that β = c/2, rearranging, and taking logarithms yields:
2
c

log2 α + 3 log α− log n = 0. (24)

Solving for log α gives:

log α =
−3 +

√
9 + 8 log n

c

4
c

=
√

9
16c2 + c

2 log n− 3
4c >

√
c

2 log n− 1 (25)

We conclude that:

α > 2
√

c
2 log n−1 (26)

Notice that by definition s, α satisfy the constraint α ≥ max(2, f(α, n, s)) as long as α = f ≥ 2.
Since we are assuming that c ∈ ω

(1
log n

)
, Equation (26) guarantees that f = α ≥ 2 holds for

large enough n.

F. Agrimonti, M. Bressan, and T. d’Orsi 11:13

Finally, the lower bound above on the size of each side of the biclique is thus:

cf

6 = cα

6 >
c

12 · 2
√

c
2 log n (27)

Running time. We describe a variant of BalancedBicliqueFinder that runs in time
Õ(∥Ĝ∥) and finds a biclique of size at least 1/4-th of that of the original algorithm. As a first
thing, we compute |E(Ĝ)|. If |E(Ĝ)| <

(
cn
2
)2, then necessarily c ≤ 1

log n , and the bound of
Theorem 11 is smaller than 1. In this case we immediately return any edge of G, satisfying
the bounds. If instead |E(Ĝ)| ≥

(
cn
2
)2 then we run the Õ(n2)-time variant of Algorithm 2

described below. This makes the running time in Õ(∥Ĝ∥) in every case. As a byproduct, the
lower bound on the biclique size will shrink by a factor 4

5 .
The variant of Algorithm 2 is as follows. First, observe that the loop of line 3 can be

implemented in Õ(n2) total time by computing R′ incrementally (this can be done either via
a bitmap or using binary search over the sorted adjacency lists). For the loop at line 10, we
reduce the running time by coarsening. Instead of iterating over all 1 ≤ i < j ≤ n, for each
h = 1, . . . , ⌈log n⌉ we iterate over all subsequences vi, . . . , vj with i = k2h and j = k2h +k−1,
for k = 0, 1, 2, Clearly, for every contiguous subsequence S of v1, . . . , vn, we will iterate
over some subsequence S′ ⊆ S with |S′| ≥ |S|/4. The bound on the size of the biclique thus
decreases by a factor of 4. The running time can be easily bounded by noting that, for every
h = 1, 2, . . ., the total cost of invoking BicliqueExtractor on all the subsequences of size
2i is in Õ(n2) by Lemma 12. As the loop iterates over O(log n) values of i, we conclude that
the second phase takes Õ(n2) time overall. ◀

7 A lower bound on densification

In this section we prove Theorem 5. This shows that, whenever c < 1/2, there exist arbitrarily
large graphs G such that the high degree profiles of typical instances from G(G, Kcn) are
essentially uncorrelated with the planted clique.

Throughout the section, for a graph G we let κ(G) be the size of the largest clique in G .

We start by defining a graph H that has between one and two vertex for every degree (or,
equivalently, every slack) from 1 to n− 1. Let H = (V, E) where V = [n] for n ≥ 3, and

E =
{
{u, v} : u, v ∈ V, u ̸= v, u + v ≤ n + 1

}
. (28)

Note that NH(u) = [1, n− u + 1] \ {u}; hence

su =
{

u− 1 u ≤ n+1
2

u− 2 u > n+1
2

(29)

This implies that, for every 0 ≤ s ≤ n− 1,

V≤s ∈ [s + 1, s + 2] . (30)

The graph G of Theorem 5 is a perturbation of H as given by the next result.

▶ Lemma 13. Let G be an n-vertex graph, let η ∈ [0, 1], and let G′ be obtained from G by
deleting each edge independently with probability η. For every a > 1, with probability at least
1− 2n1−a:
1. κ(G′) < 2a ln n

η + 1.
2. |V≤s| ≤ |V ′

≤s′ | for all s ≥ 0, where s′ = s + ηn +
√

an ln n.

APPROX/RANDOM 2025

11:14 On Finding Randomly Planted Cliques in Arbitrary Graphs

Proof. Item 1. Fix U ⊆ V on k ≥ 2a ln n
η + 1 vertices. Then:

Pr[G′[U] is a clique] ≤ (1− η)(
k
2) < e−η(k

2) = e−k·η k−1
2 ≤ e−ka ln n = n−ak . (31)

Taking a union bound over all U yields Pr[κ(G′) ≥ k] < n(1−a)k ≤ n1−a.
Item 2. Fix u ∈ V . Then s′

u = su +
∑du

i=1 Xi, where the Xi are independent Bernoulli
random variables with parameter η. By Hoeffding’s inequality, for every t ≥ 0,

Pr[s′
u ≥ su + ηn + t] ≤ Pr[s′

u ≥ su + ηdu + t] ≤ e− t2
du < e− t2

n (32)

For t =
√

an ln n we obtain Pr[s′
u ≥ su + ηn +

√
an ln n] ≤ n−a. This implies that, for every

s ≥ 0, every v ∈ V≤s satisfies v ∈ V ′
≤s′ with probability 1−n−a, where s′ = s+ηn+

√
an ln n.

By a union bound we conclude that, with probability 1− n1−a, we have |V ′
≤s′ | ≥ |V≤s| for

all s ≥ 0. ◀

As a corollary we get the graph G used in the proof of Theorem 5:

▶ Corollary 14. For every η ∈ [0, 1] and every n ≥ 3 there exists an n-vertex graph G such
that:
1. κ(G) ≤ 4 ln n

η + 1.
2. s− ηn−

√
2n ln n ≤ |V≤s| ≤ s + 2 for all s ≥ 0.

Proof. Apply Lemma 13 to the graph H defined above for a = 2, noting that 1− 2n1−a >

0. ◀

The next result bounds the number of vertices of the planted clique that end up having a
certain slack in Ĝ.

▶ Lemma 15. Let c ∈ (0, 1), let G be any graph, and let Ĝ ∼ G(G, Kcn). With probability at
least 1− 3

n we have simultaneously for all s ≥ 0:

c · |V≤s| −
√

2n ln n ≤
∣∣K ∩ V̂≤s

∣∣ ≤ c · |V≤s∗ |+
√

2n ln n. (33)

where s∗ = s+
√

2n ln n
1−c .

Proof. Lower bound. Note that |K ∩ V̂≤s| ≥ |K ∩V≤s|, and |K ∩V≤s| =
∑|V≤s|

i=1 Xi where the
Xi are non-positively correlated Bernoulli random variables of parameter c. By Hoeffding’s
inequality, then, the probability that the lower bound of the claim fails is at most 1

n2 for any
given s ≥ 0. By a union bound, thus, the lower bound holds fails for some s with probability
at most 1

n .
Upper bound. Let v /∈ V≤s∗ , so sv > s∗. Note that ŝv = sv −

∑sv

i=1 Xi, with the Xi non-
positively correlated Bernoulli random variables of parameter c. Therefore E[ŝv] = (1− c)sv,
and:

s = (1− c)s∗ −
√

2n ln 2n < (1− c)sv −
√

2n ln n = E[ŝv]−
√

2n ln 2n (34)

By Hoeffding’s inequality we then get Pr
[
ŝv ≤ s

]
≤ 1

n2 . By a union bound this implies that,
with probability at least 1− 1

n ,

K ∩ V̂≤s ⊆ K ∩ V≤s∗ ∀s = 1, . . . , n− 1 (35)

F. Agrimonti, M. Bressan, and T. d’Orsi 11:15

Consider then |K∩V≤s∗ |. Note that this is a sum of |V≤s∗ | non-positively correlated Bernoulli
random variables of parameter c. Another application of Hoeffding’s inequality yields with
probability at least 1− 1

n2 :∣∣K ∩ V≤s∗
∣∣ ≤ c · |V≤s∗ |+

√
2n ln n (36)

A final union bound over all s ≥ 0 and the three events above concludes the proof. ◀

We are now ready to prove Theorem 5.

Proof of Theorem 5. Let η = a · c−1
√

ln n
n for some a > 0 to be defined. Let G be the

corresponding graph given by Corollary 14, and let Ĝ ∼ G(G, Kcn). We begin by observing
that it is sufficient to prove Theorem 5 for the case {v1, . . . , vj} = V̂≤s for some s ≥ 0.

Consider indeed any ordering v1, . . . , vn of the vertices of Ĝ by nonincreasing degree.
Observe that for every j = 1, . . . , n there exists s ≥ 0 and Ŝ ⊆ V̂≤s \ V̂≤s−1 such that

{v1, . . . , vj} = V̂≤s−1 ∪̇ Ŝ (37)

Now suppose the bound of Lemma 15 holds. We claim that |Ŝ| ≤ (2 + a)
√

n ln n
c . Indeed:

|Ŝ| ≤ |V̂≤s| \ |V̂≤s−1| (38)

≤ |V̂≤s| \ |V≤s−1| V≤s−1 ⊆ V̂≤s−1 (39)

≤

(
c · s +

√
2n ln n

1− c
+
√

2n ln n

)
−
(
s− 1− ηn

) Lemma 15 and
Corollary 14 (40)

=
(

c · s +
√

2n ln n

1− c
+
√

2n ln n

)
−
(
s− 1− a

√
n ln n

c

)
definition of η (41)

≤ (2 + a)
√

2n ln n

c
(42)

where in the last inequality we used c ≤ 1
2 . Now notice that the upper bound of Theorem 5

has an O
(√

2n ln n
c

)
additive term. Therefore, as said, it is sufficient to prove the theorem

for the case {v1, . . . , vj} = V̂≤s for some s ≥ 0.
Consider then any 0 ≤ s ≤ n− 1. If

∣∣V̂≤s

∣∣ ≤ a · c−1
√

n ln n then Equation (1) is trivially
true. Suppose then

∣∣V̂≤s

∣∣ > a · c−1
√

n ln n. We have:∣∣K ∩ V̂≤s

∣∣ ≤ c · |V≤s∗ |+
√

2n ln n Lemma 15 (43)

≤ c · (s∗ + 2) +
√

2n ln n item 2 of Corollary 14 (44)

= O
(

cs +
√

n ln n
)

definition of s∗ and c ≤ 1
2 (45)

By item 1 of Corollary 14, and since V≤s ⊆ V̂≤s, we have s ≤
∣∣V̂≤s

∣∣. As
∣∣V̂≤s

∣∣ > a·
√

c−1 n ln n,
we have

√
n ln n < c

a

∣∣V̂≤s

∣∣. Plugging these bounds in the inequality above gives
∣∣K ∩ V̂≤s

∣∣ =
O(c|V̂≤s

∣∣). To conclude, observe that:

κ
(

Ĝ
[
V̂≤s

])
≤ κ(G) +

∣∣K ∩ V̂≤s

∣∣ (46)

and that κ(G) ≤ ln n
η = a c

√
n ln n by Corollary 14 and our choice of η. Together with our

bound on
∣∣K ∩ V̂≤s

∣∣ this gives the claim. ◀

APPROX/RANDOM 2025

11:16 On Finding Randomly Planted Cliques in Arbitrary Graphs

8 Conclusions and Future Work

In this paper, we considered Feige’s semi-random planted clique model, where the input graph
is obtained by planting uniformly at random a clique of size c · n in an arbitrary n-vertex
graph. We presented a simple, deterministic, almost-linear-time algorithm that successfully
recovers a clique of size (c/3)O(1/c) · n under the mild assumption that the original graph has
maximum degree at most (1− p)n for some constant p > 0. This result suggests a separation
from worst-case scenarios: assuming the Unique Games Conjecture, no polynomial-time
algorithm can recover cliques of size Ω(n) in general graphs, even when the maximum degree
bound holds. Our technique also extends to the case of planting balanced bicliques. Overall,
our results show that even the limited randomness provided by planting a clique or biclique
in an arbitrary graph can be successfully harnessed by rather simple algorithms.

We leave open three main questions. The first one had already been posed by Feige in
the original formulation of the problem: is it possible to prove any hardness result under any
complexity assumption? The main obstacle seems to be the presence of randomness in the
formulation of the problem, which makes the design of suitable reductions a non-trivial task.
The second one concerns removing the degree constraint: is it possible to retain guarantees
similar to our, but without any constraint on the maximum degree of the original graph? If
this the case, the results in Section 7 suggest that different techniques are required. The
third question is whether our results can be extended or generalized to other kinds of planted
subgraphs, beyond cliques and balanced bicliques. This may include dense or multipartite
graphs, potentially shedding light on how randomly planting a subgraph alone affects the
complexity of this kind of problems.

References
1 Noga Alon. The algorithmic aspects of the regularity lemma. In Proceedings., 33rd Annual

Symposium on Foundations of Computer Science, pages 473–481, October 1992. doi:10.1109/
SFCS.1992.267804.

2 Noga Alon and Nabil Kahale. Approximating the independence number via the ϑ-function.
Mathematical Programming, 80:253–264, February 1998. doi:10.1007/BF01581168.

3 Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in a
random graph. Random Structures & Algorithms, 13(3-4):457–466, 1998. doi:10.1002/(SICI)
1098-2418(199810/12)13:3/4<457::AID-RSA14>3.0.CO;2-W.

4 Sanjeev Arora and Rong Ge. New tools for graph coloring. Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, pages 1–12, 2011. doi:10.1007/
978-3-642-22935-0_1.

5 Anne Auger and Benjamin Doerr. Theory of Randomized Search Heuristics. WORLD
SCIENTIFIC, 2011. doi:10.1142/7438.

6 Mitali Bafna, Jun-Ting Hsieh, and Pravesh K. Kothari. Rounding large independent sets
on expanders. In Proceedings of the 57th Annual ACM Symposium on Theory of Computing,
STOC ’25, pages 631–642, New York, NY, USA, 2025. Association for Computing Machinery.
doi:10.1145/3717823.3718137.

7 Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In Proceedings
of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’09,
pages 453–462, USA, 2009. IEEE Computer Society. doi:10.1109/FOCS.2009.23.

8 Boaz Barak, Samuel B. Hopkins, Jonathan Kelner, Pravesh Kothari, Ankur Moitra, and
Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. In
Proceedings - 57th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2016,
pages 428–437, United States, 2016. IEEE Computer Society. doi:10.1109/FOCS.2016.53.

9 Ravi Boppana and Magnús Halldórsson. Approximating maximum independent sets by
excluding subgraphs. BIT Numerical Mathematics, 32:13–25, January 2006. doi:10.1007/
3-540-52846-6_74.

https://doi.org/10.1109/SFCS.1992.267804
https://doi.org/10.1109/SFCS.1992.267804
https://doi.org/10.1007/BF01581168
https://doi.org/10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.0.CO;2-W
https://doi.org/10.1002/(SICI)1098-2418(199810/12)13:3/4<457::AID-RSA14>3.0.CO;2-W
https://doi.org/10.1007/978-3-642-22935-0_1
https://doi.org/10.1007/978-3-642-22935-0_1
https://doi.org/10.1142/7438
https://doi.org/10.1145/3717823.3718137
https://doi.org/10.1109/FOCS.2009.23
https://doi.org/10.1109/FOCS.2016.53
https://doi.org/10.1007/3-540-52846-6_74
https://doi.org/10.1007/3-540-52846-6_74

F. Agrimonti, M. Bressan, and T. d’Orsi 11:17

10 Rares Darius Buhai, Pravesh K. Kothari, and David Steurer. Algorithms approaching the
threshold for semi-random planted clique. In STOC 2023 - Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, pages 1918–1926, 2023. doi:10.1145/3564246.3585184.

11 Parinya Chalermsook, Wanchote Po Jiamjitrak, and Ly Orgo. On finding balanced bicliques via
matchings. In Graph-Theoretic Concepts in Computer Science: 46th International Workshop,
WG 2020, Leeds, UK, June 24–26, 2020, Revised Selected Papers, pages 238–247, Berlin,
Heidelberg, 2020. Springer-Verlag. doi:10.1007/978-3-030-60440-0_19.

12 Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, pages 47–60, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3055399.3055491.

13 Amin Coja-Oghlan. Finding large independent sets in polynomial expected time. Combinatorics,
Probability and Computing, 15(5):731–751, 2006. doi:10.1017/S0963548306007553.

14 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

15 Roee David and Uriel Feige. On the effect of randomness on planted 3-coloring models. In
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC
’16, pages 77–90, New York, NY, USA, 2016. Association for Computing Machinery. doi:
10.1145/2897518.2897561.

16 Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, October 2009. doi:10.1017/
CBO9780511581274.

17 Uriel Feige. Approximating maximum clique by removing subgraphs. SIAM J. Discrete Math.,
18:219–225, October 2004. doi:10.1137/S089548010240415X.

18 Uriel Feige. Introduction to semirandom models. In Tim Roughgarden, editor, Beyond
the Worst-Case Analysis of Algorithms, pages 189–211. Cambridge University Press, United
Kingdom, January 2021. doi:10.1017/9781108637435.013.

19 Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. J. Comput. Syst. Sci.,
63(4):639–671, December 2001. doi:10.1006/jcss.2001.1773.

20 Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden clique in a
semirandom graph. Random Structures & Algorithms, 16(2):195–208, 2000. doi:10.1002/
(SICI)1098-2418(200003)16:2<195::AID-RSA5>3.0.CO;2-A.

21 Uriel Feige and Robert Krauthgamer. The probable value of the lovász–schrijver relaxations
for maximum independent set. SIAM Journal on Computing, 32(2):345–370, 2003. doi:
10.1137/S009753970240118X.

22 Uriel Feige and Eran Ofek. Finding a maximum independent set in a sparse random graph.
SIAM Journal on Discrete Mathematics, 22(2):693–718, 2008. doi:10.1137/060661090.

23 Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S. Vempala, and Ying Xiao. Statistical
algorithms and a lower bound for detecting planted cliques. J. ACM, 64(2), April 2017.
doi:10.1145/3046674.

24 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA, 1990.

25 Magnús M. Halldórsson. A still better performance guarantee for approximate graph coloring.
Information Processing Letters, 45(1):19–23, 1993. doi:10.1016/0020-0190(93)90246-6.

26 Johan Håstad. Clique is hard to approximate within n1−ε. In Proceedings of 37th Conference
on Foundations of Computer Science, pages 627–636, 1996. doi:10.1109/SFCS.1996.548522.

27 Mark Jerrum. Large cliques elude the metropolis process. Random Structures & Algorithms,
3(4):347–359, 1992. doi:10.1002/rsa.3240030402.

28 David S. Johnson. The NP-completeness column: An ongoing guide. J. Algorithms, 8(5):438–
448, 1987. doi:10.1016/0196-6774(87)90021-6.

29 George Karakostas. A better approximation ratio for the vertex cover problem. ACM Trans.
Algorithms, 5(4), November 2009. doi:10.1145/1597036.1597045.

APPROX/RANDOM 2025

https://doi.org/10.1145/3564246.3585184
https://doi.org/10.1007/978-3-030-60440-0_19
https://doi.org/10.1145/3055399.3055491
https://doi.org/10.1017/S0963548306007553
https://doi.org/10.1145/2897518.2897561
https://doi.org/10.1145/2897518.2897561
https://doi.org/10.1017/CBO9780511581274
https://doi.org/10.1017/CBO9780511581274
https://doi.org/10.1137/S089548010240415X
https://doi.org/10.1017/9781108637435.013
https://doi.org/10.1006/jcss.2001.1773
https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<195::AID-RSA5>3.0.CO;2-A
https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<195::AID-RSA5>3.0.CO;2-A
https://doi.org/10.1137/S009753970240118X
https://doi.org/10.1137/S009753970240118X
https://doi.org/10.1137/060661090
https://doi.org/10.1145/3046674
https://doi.org/10.1016/0020-0190(93)90246-6
https://doi.org/10.1109/SFCS.1996.548522
https://doi.org/10.1002/rsa.3240030402
https://doi.org/10.1016/0196-6774(87)90021-6
https://doi.org/10.1145/1597036.1597045

11:18 On Finding Randomly Planted Cliques in Arbitrary Graphs

30 David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidefinite
programming. J. ACM, 45(2):246–265, March 1998. doi:10.1145/274787.274791.

31 Richard Karp. Reducibility among combinatorial problems. Complexity of Computer Compu-
tations, 40:85–103, January 1972. doi:10.1007/978-3-540-68279-0_8.

32 S. Khot. Improved inapproximability results for maxclique, chromatic number and approximate
graph coloring. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science,
pages 600–609, 2001. doi:10.1109/SFCS.2001.959936.

33 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2− ε.
Journal of Computer and System Sciences, 74(3):335–349, 2008. Computational Complexity
2003. doi:10.1016/j.jcss.2007.06.019.

34 Akash Kumar, Anand Louis, and Madhur Tulsiani. Finding pseudorandom colorings of
pseudorandom graphs. In 37th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2017), volume 93 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 37:1–37:12, Dagstuhl, Germany, 2018.
doi:10.4230/LIPIcs.FSTTCS.2017.37.

35 Luděk Kučera. Expected complexity of graph partitioning problems. Discrete Appl. Math.,
57(2–3):193–212, 1995. doi:10.1016/0166-218X(94)00103-K.

36 Pasin Manurangsi. Inapproximability of maximum biclique problems, minimum k-cut and
densest at-least-k-subgraph from the small set expansion hypothesis. Algorithms, 11(1), 2018.
doi:10.3390/a11010010.

37 Theo McKenzie, Hermish Mehta, and Luca Trevisan. A new algorithm for the robust semi-
random independent set problem. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 738–746, 2020. doi:10.1137/1.9781611975994.45.

38 Jacob Steinhardt. Does robustness imply tractability? a lower bound for planted clique in the
semi-random model. arXiv e-prints, 2017. doi:10.48550/arXiv.1704.05120.

39 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’06, pages 681–690, New York, NY, USA, 2006. Association for Computing
Machinery. doi:10.1145/1132516.1132612.

A Concentration inequalities

The following bounds can be found in [5] or derived from [16]. Let X1, . . . , Xn be binary
random variables. We say that X1, . . . , Xn are non-positively correlated if for all I ⊆
{1, . . . , n}:

Pr (∀i ∈ I | Xi = 0) ≤
∏
i∈I

Pr (Xi = 0) (47)

and

Pr (∀i ∈ I | Xi = 1) ≤
∏
i∈I

Pr (Xi = 1) . (48)

Then:

▶ Lemma 16. Let X1, . . . , Xn be independent or, more generally, non-positively correlated
binary random variables. Let a1, . . . , an ∈ [0, 1] and X =

∑n
i=1 aiXi. Then, for any ε > 0,

we have:

Pr (X ≤ (1− ε)E [X]) ≤ e− ε2
2 E[X] (49)

and

Pr (X ≥ (1 + ε)E [X]) ≤ e− ε2
2+εE[X] (50)

https://doi.org/10.1145/274787.274791
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1109/SFCS.2001.959936
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.37
https://doi.org/10.1016/0166-218X(94)00103-K
https://doi.org/10.3390/a11010010
https://doi.org/10.1137/1.9781611975994.45
https://doi.org/10.48550/arXiv.1704.05120
https://doi.org/10.1145/1132516.1132612

	1 Introduction
	1.1 Results

	2 Techniques
	3 Preliminaries
	4 Slackness profile and densification
	5 Application to clique
	6 Application to balanced biclique
	7 A lower bound on densification
	8 Conclusions and Future Work
	A Concentration inequalities

