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Abstract
In the DAG Edge Deletion problem, we are given an edge-weighted directed acyclic graph and a
parameter k, and the goal is to delete the minimum weight set of edges so that the resulting graph
has no paths of length k. This problem, which has applications to scheduling, was introduced in
2015 by Kenkre, Pandit, Purohit, and Saket. They gave a k-approximation and showed that it is
UGC-Hard to approximate better than ⌊0.5k⌋ for any constant k ≥ 4 using a work of Svensson from
2012. The approximation ratio was improved to 2

3 (k + 1) by Klein and Wexler in 2016.
In this work, we introduce a randomized rounding framework based on distributions over vertex

labels in [0, 1]. The most natural distribution is to sample labels independently from the uniform
distribution over [0, 1]. We show this leads to a (2 −

√
2)(k + 1) ≈ 0.585(k + 1)-approximation. By

using a modified (but still independent) label distribution, we obtain a 0.549(k + 1)-approximation
for the problem, as well as show that no independent distribution over labels can improve our
analysis to below 0.542(k + 1). Finally, we show a 0.5(k + 1)-approximation for bipartite graphs and
for instances with structured LP solutions. Whether this ratio can be obtained in general is open.
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1 Introduction

Given an edge-weighted directed acyclic graph G = (V, A) and a parameter k, the DAG Edge
Deletion problem of k, or DED(k), is to delete a minimum weight set of edges so that the
resulting graph has no paths with k edges. DED(k) was first introduced by Kenkre, Pandit,
Purohit, and Saket [9], who gave a simple k-approximation and showed it was UGC-Hard to
approximate better than ⌊ k

2 ⌋ for any constant k using a result on the vertex deletion version
of the problem by Svensson [17]. Kenkre et al. also studied the maximization version of
DED(k), known as Max k-Ordering, which can be studied on general directed graphs. In
Max k-Ordering, we want to keep as many edges as possible so that there are no paths of
length k remaining. They gave a 2-approximation for Max k-Ordering. Max k-Ordering and
DED(k) are NP-Hard for k ≥ 2 [13, 12].

For DED(k), it is important that the input is a DAG. Otherwise, it becomes impossible to
approximate when k depends on n (which it may), as it can encode the Directed Hamiltonian
Path problem, and requires prohibitive running time when k is large.1 However, on a DAG,

1 Although, somewhat surprisingly, one can find a path of length k in time 2k · poly(n, k) [19].
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18:2 A Randomized Rounding Approach for DAG Edge Deletion

finding paths of arbitrary length is polynomial time solvable using a dynamic program. For
Max k-Ordering, it is not necessary to assume the input is a DAG since one can still obtain
an approximate solution by comparing to an optimal solution that may keep all the edges. In
this work we will focus on the regime in which our running time cannot depend exponentially
on k and k may depend on n.

DED(k) is identical to the following problem: find a partition V1, . . . , Vk of G such that
the weight of edges that do not go from a smaller indexed component to a larger one is
minimized. This was observed by [9], and follows from the fact that a DAG with no paths of
length k has a topological ordering with at most k layers. This gives a natural scheduling
(or parallel computing) application for DED(k): if the vertices represent tasks and the edges
represent constraints that task i must occur before task j, DED(k) is equivalent to finding
the minimum weight set of constraints to violate such that all the tasks can be completed
within k serial steps. DED(k) is also motivated by a problem in VSLI design, similar to the
DAG vertex deletion version (DVD(k)) introduced by Paik [15] in the 90s. For DVD(k), we
are given a circuit as input and the goal is to upgrade the nodes of the circuit so that no
electrical signal has to travel through k consecutive un-upgraded nodes. DED(k) can be
motivated identically, except here we upgrade the wires instead of the nodes. DVD(k) also
has been studied for its applications to secure multi-party computation, see for example [4].

After the work of Kenkre et al. introducing DED(k), giving a linear program for it, and
showing a k-approximation, Klein and Wexler [12] showed a 2

3 (k + 1)-approximation using a
combinatorial rounding approach, as well as improved results for small values of k. They
also showed an integrality gap of at least k+1

2 for the natural LP using a construction of
Alon, Bollobás, Gyárfás, Lehel, and Scott [2]. In Section 2, we show the following improved
approximation ratio and integrality gap:

▶ Theorem 1. There is a randomized approximation algorithm for DED(k) with approxim-
ation ratio 0.549(k + 1). In particular, given a solution x to the natural LP (1), there is a
randomized algorithm producing a solution of expected cost at most 0.549(k + 1) · c(x), where
c(x) is the cost of the LP. Therefore, the integrality gap of LP (1) is at most 0.549(k + 1).

Note that it is easy to derandomize our algorithm up to an arbitrary loss in precision
using the method of condition expectation. We will not discuss this as it is standard.

Our algorithm rounds using a distribution over vertex labels in [0, 1]. The most natural
distribution to pick is uniform over the interval [0, 1], which leads to an approximation ratio
of (2 −

√
2)(k + 1) ≈ 0.585(k + 1). The above theorem, giving a factor of 0.549(k + 1), is

obtained using a distribution which has more mass near 0 and 1. A natural question is
what the optimal distribution over labels is. While we are unable to answer this question
precisely, in Section 3, we show that there is no independent distribution obtaining better
than 0.542(k + 1) using our framework. The lower bound has some similarity to recent work
in additive combinatorics on Sidon sets, where one needs a lower bound on the supremum of
the probability density function of autoconvolutions [5, 14].

We also show a 0.5(k + 1)-approximation for bipartite DAGs using a correlated labeling
distribution. As the UGC-Hardness result of Kenkre et al. [9] holds for bipartite graphs,
this rounding is optimal up to constants under the UGC. Finally, we show a 0.5(k + 1)-
approximation for structured LP solutions using an independent label distribution. In
particular, if x is an optimal LP solution for an instance and there exists some c > 0 so that
xe ∈ {0, c} for all e ∈ A, then we show a randomized 0.5(k + 1)-approximation. (In reality,
we show something slightly stronger than this, see Section 4 for more details.) This rounding
is optimal, as the integrality gap example in [12] has this property.
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1.1 Hardness Results and Other Related Work
In 2012, Svensson [17] gave lower bounds for DAG Vertex Deletion. In particular, he
showed that for any constant k, it is hard to approximate DVD(k) with a ratio better
than k assuming the UGC. A k-approximation for this problem is easy to obtain, so the
approximability of DVD(k) is completely understood (assuming the UGC) for all constants k.
When k may depend on n, however, the problem is still not fully understood, even under the
UGC, as the lower bound no longer holds. The vertex deletion version has also been studied
on undirected graphs for small k [3, 18]. As for NP-Hardness, there is an approximation
preserving reduction from Vertex Cover to DVD(2) and to DED(4), so DVD(k) is NP-Hard
to approximate better than

√
2 for k ≥ 2, as is DED(k) for k ≥ 4. NP-Hardness of

√
2

for Vertex Cover was shown by Khot, Minzer, and Safra [11] in 2017, improving upon the
classical result of Dinur [8].

Notice that the NP-Hardness result works for any k ≥ 2 for DVD(k) and any k ≥ 4 for
DED(k), where k may depend on n, as given hardness for parameter c, one can add paths of
length k − c with infinite weight vertices or edges to every vertex. This reduction works for
the UGC-Hardness results as well, meaning that for any constant k and any k′ ≥ k (where
k′ may depend on n), DED(k′) is still UGC-Hard to approximate better than ⌊ k

2 ⌋ (or k for
DVD(k′)). In other words, both problems do not become easier as k grows.

As noted in [9], DED(k) is related to the well-studied Maximum Acyclic Subgraph
Problem (MAS). Here we are given a directed graph (which is not a DAG) and asked to find
an acyclic subgraph with as many edges as possible. Note that the maximization version
of DED(k), Max k-Ordering, is a generalization of MAS, recovering this problem when k

is set to n. Guruswami, Manokaran, and Raghavendra showed that MAS is UGC-Hard to
approximate better than 2 − ϵ for any ϵ > 0 [7], and Kenkre et al. [9] note that this implies
UGC-Hardness of 2 − ok(1) for Max k-Ordering. Also related is the Restricted Maximum
Acyclic Subgraph (RMAS) problem, where each vertex has a finite set of possible integer
labels, and the goal is to pick a valid labeling that maximizes the number of edges going from
a smaller to a larger label in the assignment. This problem was introduced by Khandekar,
Kimbrel, Makarychev, and Sviridenko [10] and its approximability was studied by Grandoni,
Kociumaka, and Włodarczyk [6], who gave a 2

√
2-approximation. RMAS clearly generalizes

MAS. To the best our knowledge, a minimization version of RMAS on DAGs has not been
studied.

A more general setting is the k-hypergraph vertex cover problem for which a simple
rounding gives a k-approximation. For the setting where the underlying hypergraph is also
k-partite, a theorem of Lovász (see [1]) gives a 0.5k-approximation.

1.2 Formulation as a CSP
DED(k) can easily be stated as a constraint satisfaction problem. In particular, one can
create a variable xv for each vertex v ∈ V and allow xv ∈ {1, 2, . . . , k}. Then, we have a set
of constraints given by the edges: for each e = (u, v) we create a constraint that xu < xv.
Max k-Ordering is then the problem of maximizing the number of satisfied constraints,
and DED(k) is the problem of minimizing the number of unsatisfied constraints. So, both
problems fall under the purview of Raghavendra’s UGC-optimal algorithm for CSPs [16]
whenever k is an absolute constant. However, the approximation ratio of this algorithm for
constant k is not known, and the runtime of the rounding step depends exponentially on k.
(In addition, for DED(k), the objective function is negative, and there is an additive error in
Raghavendra’s algorithm which could produce issues for this approach.) So, while this is an
important view on the problem, it does not give satisfactory guarantees as k → ∞ or when
k depends on n.

APPROX/RANDOM 2025
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1.3 Organization of the Paper

In Section 2, we show our improved approximation algorithm. Our approach is to assign
labels ℓ(v) ∈ [0, 1] to each vertex v independently and cut edges e = (u, v) for which ℓ(v)−ℓ(u)
is small compared to xe. By choosing an appropriate definition of small, the feasibility of the
LP solution then implies cutting these edges results in a feasible solution to DED(k). We
first show that drawing labels ℓ(v) ∼ Uniform(0, 1) results in a (2−

√
2)(k +1) ≈ 0.585(k +1)-

approximation, and then show a modified distribution that results in an algorithm with ratio
slightly below 0.549(k + 1).

In Section 3, we show that no independent labeling distribution can improve the approx-
imation ratio of our algorithm to below 0.542(k + 1), at least within our analysis framework,
which bounds the probability each edge is cut by αxe to obtain an approximation ratio of α.

Finally, in Section 4, we give our two additional results showing 0.5(k + 1)-approximation
algorithms for bipartite DAGs and instances with structured LP solutions.

2 Improved Approximation Algorithm

The following is the LP from Kenkre et al. [9] which they used to achieve a k-approximation
for edge-weighted DAGs, where ce gives the cost of the edge e and xe denotes the relaxation
of the decision variable on whether edge e is cut.

min
∑
e∈A

ce xe,

s.t.
∑
e∈P

xe ≥ 1, ∀ paths P of length k,

xe ≥ 0, ∀ e ∈ A.

(1)

Although there are an exponential number of constraints, a separation oracle can be imple-
mented in polynomial time, as the input graph is a DAG. Therefore by the ellipsoid method,
this LP can be solved in polynomial time. Note we will use c(x) to denote

∑
e∈A cexe and

for a set of edges S ⊆ A, c(S) =
∑

e∈S ce.

2.1 Algorithmic Framework

Our algorithm is as follows, and depends on a label distribution µ : [0, 1]V → R≥0 over label
sets ℓ ∈ [0, 1]V . We will use ℓ(v) to denote the label of vertex v.

First we solve (1) to obtain an optimal solution x. Then we draw a label set ℓ according
to µ, and delete all edges e = (u, v) with ℓ(v) − ℓ(u) ≤ (k + 1)xe − 1.

We will focus on upper and lower bounds for distributions in which the label of every
vertex is drawn independently from the same fixed distribution over [0, 1]. However, in
Section 4 we will use a distribution that is not independent. Before analyzing the performance
of two label distributions, we show now that it results in a feasible solution.

▶ Lemma 2. For any solution x to (1) and any set of labels ℓ ∈ [0, 1]V , deleting all the edges
with ℓ(v) − ℓ(u) ≤ (k + 1)xe − 1 results in a feasible solution.
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Proof. Let P be a path of length k beginning at vertex u and ending at v. By way of
contradiction, suppose no edges in the path are deleted. Then:

ℓ(v) > ℓ(u) +
∑
e∈P

[(k + 1)xe − 1]

≥
∑
e∈P

[(k + 1)xe − 1] Since ℓ(u) ≥ 0

=
∑
e∈P

(k + 1)xe − k Since P is of length k

≥ (k + 1) − k Since x is a feasible solution
= 1.

This gives a contradiction because ℓ(v) ∈ [0, 1]. Note the first inequality is strict because we
keep an edge e = (a, b) only if ℓ(b) − ℓ(a) > (k + 1)xe − 1. ◀

To bound the approximation ratio of our algorithm, we will use the following.

▶ Lemma 3. Let µ be a labeling distribution and α ≥ 1
2 . If for any edge e = (u, v) and any

t ∈ [−1, 1] we have

P[ℓ(v) − ℓ(u) ≤ t]
t + 1 ≤ α,

then using µ in the above algorithm produces a solution of expected cost at most α(k+1)·c(x)
and results in a randomized α(k + 1)-approximation.

Proof. Let e = (u, v) be an edge. We will show that

P [ℓ(u) − ℓ(v) ≤ (k + 1)xe − 1] ≤ (k + 1)α · xe. (2)

So long as we have this, the claim follows, because if S is the set of edges cut by the algorithm,
then:

E[c(S)] =
∑

e=(u,v)∈A

P [ℓ(u) − ℓ(v) ≤ (k + 1)xe − 1] ce

≤ α(k + 1)
∑
e∈A

cexe = α(k + 1) · c(x).

To obtain (2), set t = (k + 1)xe − 1. Clearly, t ≥ −1. If t ≥ 1, then xe ≥ 2
k+1 , but then (2)

is trivially satisfied. So, t = (k + 1)xe − 1 ∈ [−1, 1] and by the assumption,

P[ℓ(v) − ℓ(u) ≤ (k + 1)xe − 1]
(k + 1)xe

≤ α.

Rearranging gives (2). ◀

2.2 Uniform Distribution
Here we consider the most natural label distribution: for every vertex, we simply assign it a
label uniformly at random from the interval [0, 1], independent of all other vertices. First we
show the following lemma:

APPROX/RANDOM 2025



18:6 A Randomized Rounding Approach for DAG Edge Deletion

▶ Lemma 4. Consider the labeling distribution µ which independently assigns every vertex a
label uniformly at random from [0, 1]. Then, for all u, v ∈ V , t ∈ [−1, 1],

P[ℓ(v) − ℓ(u) ≤ t]
t + 1 ≤ 2 −

√
2.

Proof. Let ℓ(u), ℓ(v) be draws from Uniform(0, 1). Then, the CDF F (x) of ℓ(v) − ℓ(u) is as
follows:

F (t) =
{

1
2 t2 + t + 1

2 −1 ≤ t < 0
− 1

2 t2 + t + 1
2 0 ≤ t ≤ 1

If −1 ≤ t < 0, then

F (t)
t + 1 =

(t + 1)( 1
2 t + 1

2 )
t + 1 = 1

2(t + 1) ≤ 1
2 .

If 0 ≤ t ≤ 1, then

F (t)
t + 1 =

− 1
2 t2 + t + 1

2
t + 1 .

Computing the derivative of this expression with respect to t, we obtain − 1
2 t2−t+ 1

2
(t+1)2 , and

setting this to 0, we know that the maximizer must be either −1 −
√

2, −1 +
√

2, or an
endpoint t = 0 or t = 1. Of the two roots, only −1 +

√
2 is in the range t ∈ [0, 1]. When

evaluated this is 2 −
√

2. Evaluating at t = 0 or t = 1 we obtain 1
2 , so the maximizer is

2 −
√

2. ◀

Using Lemma 3, we obtain the following as a corollary:

▶ Theorem 5. Assigning ℓ(v) to each vertex v independently and uniformly from [0, 1] results
in a solution with expected cost at most (2 −

√
2)(k + 1) · c(x) ≈ 0.585(k + 1) · c(x). By using

an optimal solution x, we obtain a (2 −
√

2)(k + 1) ≈ 0.585(k + 1)-approximation.

2.3 Improving Upon Uniform
While using the uniform distribution is a natural candidate, it is (perhaps somewhat surpris-
ingly) not optimal. If we wanted to obtain an 0.5(k + 1) approximation using our framework,
it is not difficult to see that the CDF of ℓ(v) − ℓ(u) must be equal to Uniform(−1, 1) for all
u, v with an edge between them with xe > 0. If this were obtainable, we would have:

P [ℓ(v) − ℓ(u) ≤ (k + 1)xe − 1] = k + 1
2 xe,

for all values of xe ∈ [0, 2
k+1 ]. (Edges of value greater than 2

k+1 are cut with probability 1
for any label distribution.)

So, in some sense, our goal is to design an independent distribution over labels
so that the CDF of ℓ(v) − ℓ(u) is “closer” to Uniform(−1, 1). Using numerical
verification and exhaustive search, we arrived at the probability distribution D over [0, 1]
with density p(x) = 2

3 + 23
3 (1 − 2x)22. If X, Y are sampled independently from D, we obtain

a CDF for which X − Y is closer to Uniform(−1, 1) in the relevant respect. We show that
using this distribution yields a better approximation ratio than uniform labels. Due to the
complexity of the resulting expressions, we use numerical verification. Figure 1 shows the
comparison of the densities of D and Uniform(−1, 1).
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Figure 1 Densities of D and Uniform(−1, 1).

▶ Theorem 6. Assigning labels ℓ to all vertices from the interval [0, 1] independently according
to the density p(x) = 2

3 + 23
3 (1 − 2x)22 results in an a solution with expected cost below

0.549(k + 1) · c(x). This results in a randomized < 0.549(k + 1)-approximation for DED(k).

Proof. As in the uniform case, to obtain the theorem it is sufficient to prove the following
claim and apply Lemma 3.

▷ Claim 7. Suppose X, Y are independent random variables sampled from D, then
P[X−Y ≤t]

t+1 < 0.549 for all t ∈ [−1, 1].

Proof. This is verified by Mathematica. See Section A for the code used and an execution.
The maximum of P[X−Y ≤t]

t+1 occurs at approximately t = 0.27 with value slightly below 0.5482.
See Figure 3. ◁

◀

3 Lower Bound

An interesting problem is to find the function that minimizes the approximation ratio when
using an independent distribution over labels:

▶ Problem 8. Let P denote the set of probability distributions supported on [0, 1]. Find

α := inf
D∈P

sup
t∈[−1,1]

Pℓ(u),ℓ(v)∼D[ℓ(u) − ℓ(v) ≤ t]
t + 1 .

While this problem does not capture the possibility of correlated label distributions
(which we exploit in the bipartite case in Section 4), we find it quite interesting on its own.
While some related questions have been studied in additive combinatorics, for example by
Cloninger and Steinerberger [5] and Matolcsi and Vinuesa [14], we were unable to find a
resolution of this question in the literature. We have been able to bound:

0.542 < α < 0.549,

where the upper bound is from Section 2. Here, we show a complete proof of a lower bound
of 0.539.

APPROX/RANDOM 2025



18:8 A Randomized Rounding Approach for DAG Edge Deletion

▶ Lemma 9. α > 0.539.

Proof. Let D be a distribution supported on [0, 1] and X, Y be independent samples from
D. Suppose that

P[X − Y ≤ x] ≤ α(x + 1) for all x ∈ [−1, 1].

Denote Z := X − Y . First note that symmetry of Z gives the complementary lower bound

P[Z ≤ x] = P[Z ≥ −x] = 1 − P[Z ≤ −x] ≥ 1 − α(1 − x), for all x ∈ [−1, 1].

These inequalities imply

−(α − 1
2 )(1 − x) ≤ P[Z ≤ x] − x + 1

2 ≤ (α − 1
2 )(1 + x) for all x ∈ [−1, 1]. (⋆)

Fix some t ∈ (π, 2π) that we choose later (so sin t < 0) and observe that

E[cos(tZ)] = E[cos(t(X − Y ))]
= E[cos(tX)]E[cos(tY )] + E[sin(tX)]E[sin(tY )]
= E[cos(tX)]2 + E[sin(tX)]2 ≥ 0.

Integration by parts gives

E[cos(tZ)] = cos t + t

∫ 1

−1
sin(tx)P[Z ≤ x] dx.

For U ∼ Uniform(−1, 1) (whose CDF is x+1
2 ), we have EU∼Uniform(−1,1)[cos(tU)] = sin t

t ,
therefore

sin t

t
= cos t + t

∫ 1

−1
sin(tx) ·

(
x + 1

2

)
dx.

Using E[cos(tZ)] ≥ 0 and subtracting the two formulas above yields

− sin t

t
≤ E[cos(tZ)] − sin t

t
= t

∫ 1

−1
sin(tx)

(
P[Z ≤ x] − x + 1

2

)
dx.

By symmetry, we have∫ 1

−1
sin(tx)

(
P[Z ≤ x] − x + 1

2

)
dx = 2

∫ 1

0
sin(tx)

(
P[Z ≤ x] − x + 1

2

)
dx.

Since sin(tx) has only one root π/t in (0, 1), we may use (⋆) to upper bound the integral

1
α − 1

2

∫ 1

0
sin(tx)

(
P[Z ≤ x] − x + 1

2

)
dx ≤

∫ π/t

0
sin(tx)(1 + x) dx −

∫ 1

π/t

sin(tx)(1 − x) dx,

which evaluates to 3t+sin t
t2 . It follows that

α ≥ 1
2 + sup

t∈(π,2π)

− sin t

6t + 2 sin t
≥ 1

2 + − sin 4.5
27 + 2 sin 4.5 > 0.539. ◀

We remark that using the function cos(4.4X) + 0.29 cos(8.9X) instead of cos(4.5X) in the
above proof shows a slightly stronger lower bound α > 0.542.

From the Lemma 9 it follows that every distribution D ∈ P has a corresponding CDF
of D − D which significantly exceeds the CDF of Uniform(−1, 1) at some point. Therefore
we cannot attain a ratio of 1

2 . However, this may still be possible for correlated label
distributions, and indeed, depending on the structure of the graph such distributions can
exist. In the next section we show they can be constructed easily for bipartite graphs.
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4 Optimal Rounding for Special Cases

In this section, we show how to obtain our desired bound of 0.5(k + 1) for two special cases.
The result for bipartite graphs is tight up to constants, while the second result is tight as
there is a matching integrality gap on a point with xe = 1

k for all edges.

4.1 Bipartite Graphs
Here we show that for any bipartite DAG there exists a distribution over labels so that the
randomized algorithm from above achieves an approximation ratio of 0.5(k + 1). Notably,
the instances from Kenkre et al. used to obtain UGC hardness of ⌊0.5k⌋ are bipartite, so
this is tight up to constants assuming the UGC.

▶ Theorem 10. Let G = (V, A) be bipartite with bipartition (A′, B′) and x be a feasible
solution to (1). Then, there is an algorithm that produces a DED(k) solution with expected
cost at most (0.5)(k + 1) · c(x).

Proof. Our algorithm is identical to before, except now we produce a correlated distribution
over labels. To produce the labeling ℓ : V → [0, 1], we first sample y ∈ [0, 1] uniformly. Then,
with probability 1

2 , assign ℓ(v) = 0 for all v ∈ A′ and ℓ(v) = y for all v ∈ B′. Otherwise,
assign ℓ(v) = y for all v ∈ A′ and ℓ(v) = 0 for all v ∈ B′.

For every edge a = (u, v) ∈ A, the distribution over ℓ(v) − ℓ(u) is now uniform over
[−1, 1], as with probability 1

2 we obtain a uniformly random number between 0 and 1 and
otherwise a uniformly random number between −1 and 0. Therefore, if we now run the same
algorithm as before, we have:

P[a is cut] = P[ℓ(v) − ℓ(u) ≤ (k + 1)xe − 1]

= (k + 1)xe − 1 + 1
2 As ℓ(v) − ℓ(u) ∼ Uniform(−1, 1)

= 0.5(k + 1)xe,

as desired. ◀

It is unclear whether correlated distributions can be used to improve the approximation ratio
in the general case.

4.2 Instances with Structured LP Solutions
Here we show that an independent distribution over labels exists when we have a structured
LP solution. It implies, for example, that if our LP solution has the property that xe ∈ {0, c}
for all e ∈ E for some fixed value c, we can obtain a 0.5(k + 1)-approximation, but is slightly
more general (for example, we can obtain the same ratio if all edges have value at least 1.5

k+1 ).

▶ Theorem 11. If x is a feasible solution to (1), and for every edge e with xe > 0 we have:

1 + 1
r+1

k + 1 ≤ xe <
1 + 1

r

k + 1 ,

for some integer r ≥ 1, then there is an algorithm that produces a solution of expected cost at
most k+1

2 c(x). In the case that r = 1, the upper bound is not necessary as we may simply cut
all edges with value at least 2

k+1 and round the remaining edges.
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Proof. Let µr be the uniform distribution over labels in the set {0, 1
r , 2

r , . . . , 1}. We claim
applying our framework by selecting each label independently from µr proves the theorem.
We cut an edge e = (u, v) if

ℓ(v) − ℓ(u) ≤ (k + 1)xe − 1 <
1 + 1

r

k + 1 (k + 1) − 1 = 1
r

.

Therefore, since ℓ(u) − ℓ(v) is either negative, 0, or at least 1
r , we cut an edge exactly when

ℓ(v) ≤ ℓ(u). So, the probability we cut any edge with xe > 0 is:

P[ℓ(v) ≤ ℓ(u)] = 1 − P[ℓ(v) > ℓ(u)]

= 1 −
r∑

i=0
P

[
ℓ(v) = i

r

]
· P

[
ℓ(u) <

i

r

]

= 1 −
r∑

i=0

1
r + 1 · i

r + 1 = 1 − r

2(r + 1) = r + 2
2(r + 1) .

Now, the probability we cut an edge compared to xe (our approximation ratio) is:

r + 2
2(r + 1) · 1

xe
≤ r + 2

2(r + 1) · k + 1
1 + 1

r+1
= k + 1

2 .

As desired. ◀

5 Conclusion

The main open question remaining is whether it is possible to obtain an algorithm with
approximation ratio 0.5(k+1), or whether this is UGC-Hard. We are unaware of any instances
with integrality gap above 0.5(k + 1), so improving this bound is also of interest. Another
open problem is whether it is NP-Hard to obtain an O(1) approximation for DED(k).
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A Automated Verification

Here we include a copy of a high precision run in Mathematica showing a worst case ratio of
slightly below 0.5482.

Figure 2 Execution of upper bound code.
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B Figure 3

(a) P [X − Y ≤ t].

(b) P[X−Y ≤t]
t+1 .

Figure 3 Figure 3a and Figure 3b compare the behavior of the difference X − Y , where X, Y are
sampled independently from two candidate label distributions: Uniform(0, 1) (red), and the refined
distribution D with density p(x) = 2

3 + 23
3 (1 − 2x)22 (green). As a reference, we also include the

random variable Z ∼ Uniform(−1, 1) (blue), which represents a target distribution that would yield
a 0.5-approximation if realizable. While Section 3 proves that no independent label distribution
over [0, 1] can make X − Y ∼ Uniform(−1, 1), the behavior of Z remains a useful benchmark. In
both subfigures, the distribution D yields a difference distribution that more closely mimics Z than
Uniform(0, 1) does. In particular, as established in Lemma 4 and Claim 7, the maximum of P [X−Y ≤t]

t+1
occurs at t = 2 −

√
2 ≈ 0.4147 for Uniform(0, 1) and at t = 0.2666 for D, with corresponding values

0.5858 and 0.5482, respectively.
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