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Abstract
We present a polynomial-time (αGW + ε)-approximation algorithm for the Maximum Cut problem
on interval graphs and split graphs, where αGW ≈ 0.878 is the approximation guarantee of the
Goemans-Williamson algorithm and ε > 10−34 is a fixed constant. To attain this, we give an
improved analysis of a slight modification of the Goemans-Williamson algorithm for graphs in which
triangles can be packed into a constant fraction of their edges. We then pair this analysis with
structural results showing that both interval graphs and split graphs either have such a triangle
packing or have maximum cut close to their number of edges. We also show that, subject to the
Small Set Expansion Hypothesis, there exists a constant c > 0 such that there is no polyomial-time
(1 − c)-approximation for Maximum Cut on split graphs.
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1 Introduction

Given a graph G = (V, E), the Maximum Cut problem asks for a subset of vertices S ⊆ V

that maximizes the number of edges with exactly one endpoint contained in S. In this paper,
we study the approximability of the Maximum Cut problem on interval graphs and split
graphs.

A graph G = (V, E) is interval if there exists a collection of intervals on the real line
{Iv}v∈V such that uv ∈ E if and only if Iu ∩ Iv ̸= ∅. See Figure 1 for an example. Interval
graphs are used in the field of biology, where they model natural phenomena such as DNA
and food webs [13]. They have also been used in the study of register allocation, where
vertices correspond to variables and intervals correspond to “live ranges” [11]. Finally, they
have numerous desirable theoretical properties and have arisen as a natural class of graphs
to design algorithms for. For example, it is shown in [5] that a certain variant of the graph
homomorphism problem is polynomial-time solvable if and only if the label graph is interval.
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Figure 1 An interval graph. The left figure shows the interval representation. The right figure
shows the resulting graph.

A graph G = (V, E) is split if there exists a partition of V = K ⊔ I such that G[K],
the graph induced by K, is a clique and G[I], the graph induced by I, is independent. See
Figure 2 for an example. Split graphs and interval graphs are both important subclasses
of chordal graphs, which themselves are a subclass of perfect graphs. In particular, split
graphs are often the “simplest” subclass of perfect graphs in which problems are difficult
to approximate. Thus, considering split graphs is a natural first step when attempting to
characterize a problem on chordal or perfect graphs. In this paper, we show that, assuming
the Small Set Expansion Hypothesis, there is some constant c > 0 such that there is no
polynomial-time (1−c)-approximation for Maximum Cut on split graphs. To our knowledge,
this is the first known hardness of approximation result for Maximum Cut on perfect graphs.
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Figure 2 A split graph with K = {k1, k2, k3, k4} and I = {i1, i2, i3}.

Maximum Cut is one of the original 21 problems shown to be NP-Complete by
Karp [14] and has long been a staple problem among algorithm researchers. The seminal
work of Goemans and Williamson shows that there is a polynomial-time (αGW ≈ 0.878)-
approximation algorithm for Maximum Cut on all graphs [8]. The optimality of this
result was open until 2007, when Khot et al. showed that, subject to the Unique Games
Conjecture, there is no polynomial-time approximation algorithm for Maximum Cut with
an approximation ratio better than αGW [15].

Remarkably, there is relatively little known about Maximum Cut when the input graph
is restricted to graphs from some structured class. Even for subclasses of perfect graphs,
where problems such as Independent Set and Chromatic number admit polynomial-time
algorithms based on semidefinite programming, Maximum Cut, another flagship application
of semidefinite programming, remains mostly unexplored. In particular the extremely well-
structured classes of interval graphs and split graphs, two important subclasses of perfect
graphs, had no known approximation algorithm with a ratio better than αGW prior to this
work. Our main results provide the first improved approximation for these classes of graphs
since the work of Goemans and Williamson.

▶ Theorem 1. There is a polynomial-time (αGW + 10−34)-approximation algorithm for
Maximum Cut on interval graphs.
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Table 1 Known results for Maximum Cut. Our work appears in bold. Results marked with †

are subject to the Unique Games Conjecture. Results marked with ⋆ are subject to the Small Set
Expansion Hypothesis under randomized reductions.

lower bound upper bound

General graphs αGW [8] α†
GW [15]

Degree ≤ d graphs αGW + Ω( 1
d2 log d

) [12] αGW + O( 1√
d

)† [19]

Interval graphs αGW + 10−34 NP-Complete [1]

Split graphs αGW + 10−16 1 − c⋆

Planar graphs 1 [10]

Line graphs 1 [9]

▶ Theorem 2. There is a polynomial-time (αGW + 10−16)-approximation algorithm for
Maximum Cut on split graphs.

On the hardness side, it was shown by Bodlander and Jansen in 2000 that Maximum
Cut on split graphs is NP-Complete [3]. Maximum Cut on interval graphs has seen
further attention lately - it was shown only recently that Maximum Cut on interval graphs
is NP-Complete [1]. Further work refined this hardness for interval graphs which have at
most 4 interval lengths [4], and later at most 2 interval lengths [2]. Hardness for unit interval
graphs - interval graphs with only 1 interval length - remains open. We remark that none of
these hardness results imply any hardness of approximation. Our final main result is that,
subject to the Small Set Expansion Hypothesis of [17], Maximum Cut on split graphs is
hard to approximate to some constant factor.

▶ Theorem 3. There exists a constant c > 0 such that there is no polynomial-time (1− c)-
approximation algorithm for Maximum Cut on split graphs, subject to the Small Set
Expansion Hypothesis under randomized reductions.

1.1 Our Techniques
1.1.1 Analysis of the Perturbed Goemans-Williamson Algorithm
Our starting point is the Goemans-Williamson algorithm [8]. This algorithm first solves the
following semidefinite program (SDP)

maximize
{

1
2

∑
uv∈E

(1− xu · xv) | xv ∈ S|V |−1 ∀ v ∈ V

}
.

That is, the algorithm maps each vertex to a unit vector in a way that maximizes the sum
of 1− xu · xv = 1− cos θuv, where θuv is the angle between xu and xv. Next, the algorithm
samples a random Gaussian vector r ∼ N (0, 1)|V |, creates the set S = {v | r · xv ≥ 0}, and
returns the cut defined by S. This step is equivalent to sampling a random hyperplane and
taking S to be the vertices on one side of this hyperplane. It is a straightforward calculation
to see that the probability of an edge e ∈ E being cut by S is equal to θe/π. Thus, the
approximation guarantee of the Goemans-Williamson algorithm is equal to

αGW := min
θ∈[0,π]

2
π

θ

1− cos θ
≈ 0.878.

APPROX/RANDOM 2025
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Define θc := argminθ∈[0,π]
θ

1−cos θ ≈ 134◦ to be the “critical angle” at which this ratio
is minimized. We plot the performance guarantee over all angles in Figure 3. Any edge
e ∈ E with θe ≠ θc has approximation ratio strictly better than αGW . Intuitively, if at
least a constant fraction of edges have angle bounded away from θc, we should expect the
Goemans-Williamson algorithm to achieve a better approximation ratio. Unfortunately, this
is not exactly true.

0 0.5 1 1.5 2 2.5 3

0.8

1

1.2

1.4

θc ≈ 134◦

αGW ≈ 0.878

Figure 3 Plot of 2
π

θ
1−cos(θ) for θ ∈ (0, π).

Consider the graph P3, the path on 3 vertices. Suppose the SDP is solved suboptimally,
so that the first edge has angle θc and the second edge has angle 0. Even though half of the
edges have angle bounded away from θc, the expected size of the cut from rounding is still
only αGW times the optimal value of the SDP. To handle situations like this, we introduce a
“perturbed” version of the Goemans-Williamson algorithm. In this perturbed algorithm, any
vertex v ∈ V with |r · xv| < η for some small η will instead be included in S with probability
1
2 . The motivation behind this perturbation is to consider what happens when every xv is
“moved” by a small amount. If xu and xv are close together, then they are likely to move
further apart after this perturbation. Inversely, if xu and xv are far apart, they are likely to
move closer together after this perturbation.

Indeed, in Lemma 17, we show that the perturbed algorithm is more likely to cut any
edge e ∈ E with θe < π/2, and less likely to cut any edge with θe > π/2. Moreover, the
further away θe is from π/2, the more the results of the perturbed algorithm vary from the
unperturbed algorithm. Thus, if there are many edges with angle near 0, but few edges with
angle near π, the perturbed algorithm will achieve an approximation ratio above αGW , see
Lemma 19. On the other hand, if there are many edges with angle near π, then the Goemans-
Williamson algorithm itself will achieve an approximation ratio above αGW , see Lemma 15.
Thus, if we take the maximum result of the perturbed and unperturbed Goemans-Williamson
algorithm, we can ignore the case of having many 0 edges which contribute little to the
optimal. That is, as shown in Lemma 21, we can indeed assume that if at least a constant
fraction of edges have angle bounded away from θc, the Goemans-Williamson algorithm will
achieve an approximation ratio above αGW .
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Consider a single triangle T = {uv, vw, wu}. A straightforward analysis shows that

θuv + θvw + θwu ≤ 360◦,

regardless of the values of xu, xv, xw. Thus, there is some edge e ∈ T with θe ≤ 120◦ < θc.
That is, for every triangle in our graph, we can expect at least one of its edges to have an
angle bounded away from θc. This leads us into Section 2, where we show that every interval
graph and split graph either have a large edge-disjoint triangle packing, or have a cut with
at least 0.9|E| edges.

1.1.2 Finding an Edge-Disjoint Triangle Packing
Suppose G = (K ∪ I, E) is a split graph. If at least 0.1|E| of its edges are contained in the
clique K, then we can pack triangles almost perfectly into those edges. Otherwise, we have
that at least 0.9|E| edges are crossing between K and I, and so we have found a cut with
0.9|E| ≥ 0.9 ·mc(G) edges, where mc(G) is the size of a maximum cut of G. Thus, we find
ourselves in a “win-win” situation, where G either has an edge-disjoint triangle packing on
a constant fraction of its edges, or G is nearly bipartite, and we can find a large cut. This
analysis leads directly to an improved approximation for Maximum Cut on split graphs.

It turns out that the same “win-win” structural result also holds for interval graphs,
which we prove in Theorem 5. To show this, we employ a marking scheme, where each vertex
is classified as either “small” or “large” based on how it interacts with the rest of the graph.
We first show in Lemma 8 that the number of edges between large vertices is low compared
to |E|. The situation for small vertices is more complicated. We show in Lemmas 9 and 10
that one of the following conditions must always hold:
1. G has a bridge; or
2. there is a clique C in G such that the sum of degrees

∑
v∈C dv is not much more than

|C|2; or
3. the number of edges between small vertices is low compared to |E|.
If Condition 1 holds, we can essentially delete the bridge; because adding a bridge to a
bipartite graph does not create an odd cycle, we can always add back in the bridge after
finding a cut in the rest of the graph. If Condition 2 holds and |C| ≥ 3, then we can pack
edge-disjoint triangles into C and delete C from the graph. Because the sum of degrees is
not much more than |C|2, we have packed triangles into at least a constant fraction of the
deleted edges. The case of |C| ≤ 2 is more tricky, as one cannot pack triangles into one or
two vertices, and must be handled separately. If Condition 3 holds, then most of the edges
in G go between small and large vertices. If we have already packed triangles into a constant
fraction of edges via Condition 2, then we are done. Otherwise, “most” edges are remaining
in the graph, and we have found a cut on “most” of these remaining edges. For the right
definition of “most,” this is a large cut of at least 0.9|E| edges.

1.1.3 Hardness of Approximating Maximum Cut on Split Graphs
To show that Maximum Cut is hard to approximate on split graphs, we start from the
following hardness result that follows using standard techniques from [18]. Assuming the
Small Set Expansion Hypothesis holds under randomized reductions, for any sufficiently
small ε > 0, there is no polynomial time algorithm that, given a graph G = (V, E), can
distinguish between the following two cases.
1. There exists a cut S ⊆ V with |S| ≈ 0.5|V | such that |δ(S)| ≤ O(ε|E|).
2. For all cuts S ⊆ V with |S| ≤ 0.5|V |, either |S| ≤ 0.2|V | or |δ(S)| ≥ Ω(

√
ε|E|).

APPROX/RANDOM 2025
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That is, in Case 1, there is a cut with nearly half the vertices that cuts very few edges. In
Case 2, all cuts with at least a constant fraction of vertices must cut many more edges.
We transform G into a split graph G′ = (K ∪ I, E′) by turning V into a clique and setting
K := V , setting I := {ve | e ∈ E}, and adding an edge from ve to each endpoint of e. Any
cut of G can have at most 0.25|V |2 edges from those edges contained in K, and at most 2|E|
edges from those going between I and K. In Case 1, there exists a cut that does cut nearly
0.25|V |2 + 2|E| edges. In Case 2, any cut of G either cuts at most 0.2|V |2 edges from those
edges contained in K, or at most (2− Ω(

√
ε))|E| from those edges crossing between I and

K. After ensuring that |E| ≈ |V |2, this shows that Maximum Cut is hard to approximate
on split graphs.

1.2 Preliminaries
1.2.1 Graphs
We consider only finite graphs in this paper. Apart from Section 4, all considered graphs will
also be simple and unweighted. When the subject graph G is clear from context, we will use
V := V (G) to refer to the vertex set of G, E := E(G) to refer to the edge set of G, and n := |V |
to refer to the number of vertices in G. Let S ⊆ V be a subset of vertices of G. We define
G[S] := (S, {uv ∈ E | u, v ∈ S}) as the subgraph of G induced by S and E[S] := E(G[S])
as the set of edges in this subgraph. We define δG(S) := {uv ∈ E | u ∈ S, v ̸∈ S} to be
the cut induced by S and mc(G) := maxS′⊆V {|δG(S′)|} to be the maximum cut size of G.
We will often omit G and write only δ(S) when the graph G is clear from context. Let
v ∈ V be any vertex of G. We define δ(v) := δ({v}) as the set of edges adjacent to v,
N(v) := {u ∈ V | uv ∈ E} as the set of neighbors of v, and dv := |N(v)| as the degree of v.
We define a triangle of G as a set of edges {uv, vw, wu} ⊆ E forming a triangle. We say that
G has a triangle packing of size t if there exist t edge-disjoint triangles T1, T2, . . . , Tt ⊆ E.

1.2.2 Gaussians
We define N (0, 1) as the Gaussian distribution with mean 0 and variance 1. Moreover,
we define N (0, 1)n as the n-dimensional Guassian distribution, where a sampled vector
v ∼ N (0, 1)n has vi ∼ N (0, 1) for each i ∈ [n] and vi is independent of vj for i ̸= j. We make
use of the fact that sampling a vector in this way is equivalent to sampling a random direction;
that is, after normalizing, v becomes a uniformly random unit vector in n-dimensional space.
In particular, this means that N (0, 1)n is symmetric up to rotations, which we will exploit
frequently. We will also make use of the following lemma, which says that N (0, 1) is roughly
equivalent to a uniform distribution close to 0.

▶ Lemma 4. For a randomly sampled r ∼ N (0, 1), we have that
x

2 ≤ P[|r| ≤ x] ≤ x

for all x ∈ [0, 1].

The proof of Lemma 4 follows from direct calculation and is not instructive, so we omit it.

2 Triangle Packing and Maximum Cut Tradeoff

This section is devoted to proving the following structural result.

▶ Theorem 5. If G = (V, E) is an interval graph, then G either has a triangle packing of
size 10−8|E| or has a cut of size at least 0.9|E| that can be found in polynomial time.
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2.1 Warmup: Tradeoff for Split Graphs
As a warmup, we prove the following structural result that is essentially equivalent to
Theorem 5, except it is for split graphs instead of interval graphs.

▶ Theorem 6. If G = (V, E) is a split graph, then G either has a triangle packing of size
0.01|E| or has a cut of size at least 0.9|E| that can be found in polynomial time.

Before we prove this, we need the following helpful lemma.

▶ Lemma 7. The complete graph Kn on n ≥ 3 vertices has an edge-disjoint triangle packing
of size |E[Kn]|

10 = n(n−1)
20 .

Edge-disjoint triangle packings in complete graphs have been studied in the literature
before, with [6] giving an optimal bound. Lemma 7 is not very close to the optimal bound,
but it is sufficient for our purposes and substantially easier to prove.

Proof. Label the vertices of Kn with numbers 0, 1, 2, . . . , n − 1. Label each triangle
{uv, vw, wu} with (u + v + w) modulo n. Fix any edge uv ∈ E(Kn). Then we have
that, for each possible triangle label, there is only one triangle involving uv with that label.
So we may take all the triangles of any specific label and find an edge-disjoint triangle packing.
By the pigeon hole principle, some label has at least

(
n
3
)
/n triangles. Therefore, Kn has a

triangle packing of size
(

n
3
)
/n ≥ |E[Kn]|

10 , as wanted. ◀

With Lemma 7 in hand, we can now prove Theorem 6.

Theorem 6. Write V = K ⊔ I where K and I are the clique and independent portions of G,
respectively. Then we can partition E = δ(K) ⊔ E[K]. If |δ(K)| ≥ 0.9|E|, then we are done,
as we have constructed a cut of size at least 0.9|E| in polynomial time. Otherwise, we have
that |E[K]| ≥ 0.1|E|. Now, recalling that G[K] is the complete graph on |K| vertices, we
use Lemma 7 to find that G[K] (and thus G) has an edge-disjoint triangle packing of size at
least |E[K]|

10 ≥ 0.01|E|. ◀

2.2 Finding a Cut
The proof of Theorem 5 maintains a similar flavor as that of Theorem 6. While the proof
of Theorem 6 either finds a large cut or one large clique to pack triangles into, we need
to repeatedly apply Lemma 7 during the proof of Theorem 5, as there may be no single
large-enough clique. That is, at each stage, we either identify a clique that we may pack
triangles into and remove while being careful to bound the number of non-clique edges we
remove, or we conclude there is a large cut.

Given an interval graph G = (V, E), we proceed by partitioning the vertices into “small”
and “large” vertices V = S ⊔ L. At each step, we will either certify that the implied cut is
large |δ(S)| ≥ 0.9|E|, or find a way to expand a triangle packing on edges in E[S].

For any t ∈ R, define Bt := {v ∈ V | t ∈ Iv} to be the “bag” of vertices whose intervals
occupy position t. For a vertex v ∈ V , define Bv := mint∈Iv

|Bt| to be the size of the smallest
bag in v’s interval. Let T be a constant we will decide the value of later. We say that v is
“small” if dv ≤ T · Bv and “large” otherwise. In other words, if at least a constant fraction of
v’s edges “come from” Bv, then v is small. We define S as the set of small vertices and L as
the set of large vertices.

▶ Lemma 8. |E[L]| ≤ 8T −1 · |E|.

APPROX/RANDOM 2025
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Proof. Define an ordering ≺ on L by u ≺ v if Bu < Bv. If Bu = Bv we say u ≺ v if the
leftmost point of Iu is to the left of the leftmost point of Iv. For u, v ∈ V with Bu = Bv and
equal leftmost point, we break ties arbitrarily to extend ≺ into a total ordering.

Fix any v ∈ L. We will bound the number of edges uv ∈ E[L] with u ≺ v as a function of
dv. Consider any u ∈ L ∩N(v) such that Iu does not intersect either the leftmost point or
rightmost point of Iv. Then we must have that Iu ⊆ Iv and thus Bu ≥ Bv. Combined with
the fact that the leftmost bag of Iu is to the right of the leftmost bag of Iv this implies that
v ≺ u. Thus, we need only consider u ∈ L ∩N(v) such that Iu intersects either the leftmost
or rightmost bag of Iv.

Let Pv be the set of u ∈ L ∩N(v) such that Iu contains the leftmost point of Iv. Let
Lv ⊆ Pv be the first min{|Pv|,Bv} of these neighbors sorted by increasing leftmost point.
Similarly, let Rv ⊆ Pv be the last min{|Pv|,Bv} of these neighbors sorted by increasing
rightmost point. Now notice that all u ∈ Pv \ (Lv ∪Rv) have Bu > Bv and thus v ≺ u. This
is because every point of Iu either intersects all of Lv or all of Rv, which have size at least
Bv assuming Pv \ (Lv ∪Rv) is non-empty. See Figure 4 for an illustration. Thus, the number
of vertices u ∈ Pv such that u ≺ v is at most |Lv ∪Rv| ≤ 2Bv. We can similarly bound the
number of vertices u ∈ L ∩N(v) such that Iu contains the rightmost point of Iv and u ≺ v

by 2Bv.
Putting these bounds together with the fact that v ∈ L, we can bound the total number of

edges uv ∈ E[L] with u ≺ v by 4Bv ≤ 4T −1·dv. Thus, we find that |E[L]| ≤
∑

u∈L 4T −1·du ≤
8T −1 · |E|. ◀

Lv

Rv

Iv

Iu

Figure 4 Representation of Iu, Iv, Lv, Rv with Bv = 3. Every point of Iu is contained in either
all of Lv or all of Rv.

Unlike with large vertices, we cannot unconditionally bound |E[S]|. We instead introduce
a condition that, if unsatisfied, will allow us to make progress towards a triangle packing.

▶ Lemma 9. If, for some ε > 0, all t ∈ R have |Bt ∩ S| ≤ max{1, ε · |Bt|}, then |E[S]| ≤
4ε · |E|.

Proof. Fix any non-isolated v ∈ S. Let t denote the leftmost point of Iv. Let Pv ⊆ S ∩N(v)
denote the set of small neighbors of v whose intervals contain t. Note that

∑
u∈S |Pu| ≥ |E[S]|.

By the definition of Bt, we can bound |Pv| = |Bt ∩ S| − 1 ≤ ε · |Bt|. Additionally, we have
that dv ≥ |Bt| − 1 ≥ |Bt|/2 and thus |Pv| ≤ 2ε · dv. Now we can bound |E[S]| by iterating
over all small vertices u ∈ S

|E[S]| ≤
∑
u∈S
|Pu| ≤

∑
u∈S

2ε · du ≤ 4ε · |E|. ◀
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2.3 Building a Triangle Packing
▶ Lemma 10. If, for some ε > 0 and t ∈ R, |Bt ∩ S| ≥ max{2, ε · |Bt|}, then either
1. we can pack at least ε

30T ·
∑

u∈Bt∩S du edge-disjoint triangles into
⋃

u∈Bt∩S δ(u) or
2. G has a bridge.

Proof. Suppose |Bt ∩ S| ≥ 3. Then by Lemma 7, we can pack at least |Bt ∩ S|2/30
edge-disjoint triangles into Bt ∩ S. By the definition of S, we have that∑

u∈Bt∩S
du ≤

∑
u∈Bt∩S

T · Bu ≤ |Bt ∩ S| · T · |Bt| ≤ |Bt ∩ S|2 · T · ε−1.

This fulfills Condition 1.
Now suppose |Bt ∩ S| = 2. Label Bt ∩ S = {v1, v2}. If N(v1) ∩N(v2) = ∅, then v1v2 is

a bridge of G and thus Condition 2 is fulfilled. Otherwise, let u ∈ N(v1) ∩N(v2). We can
pack a single triangle into the edges v1v2, uv1, uv2. Further, we have that ε · |Bt| ≤ 2, and so
dv1 + dv2 ≤ 4T

ε . This fulfills Condition 1. ◀

This leads us to Algorithm 1. We will iteratively find a clique to pack triangles into, delete
the clique, and continue. If we reach a point where we have deleted at least 0.01|E| edges,
then we can finish as we have packed triangles into a constant fraction of the edges. Otherwise,
if we run out of cliques to pack triangles into, we certify that we have an almost-complete
cut on the remaining graph, which still contains most of the original edges of G. Finally,
whenever we identify a bridge, we can simply delete it from the graph and add it to our final
cut, as bridges can always be added to any cut.

Algorithm 1 IntervalMaxCut(G = (V, E), T, ε).

G0 ← G, T ← ∅, A← ∅, i← 0
while |T | ≤ 0.01|E| do

label V (Gi) = S ∪ L as defined
if Gi has a bridge e then

A← A ∪ {e}
Gi+1 ← (V (Gi), E(Gi) \ {e})

else if some t ∈ R has |Bt ∩ S| ≥ max{2, ε · |Bt|} then
T ← T ∪

⋃
u∈Bt∩S δGi

(u)
Gi+1 ← Gi[V (Gi) \ (Bt ∩ S)]

else
return cut δ(S) ∪A

end if
i← i + 1

end while
return PerturbGW(G)

Note that Algorithm 1 runs in polynomial time. There are at most |E| iterations of the
while loop, as each iteration either returns or removes at least one edge.

▶ Lemma 11. If IntervalMaxCut(G, T, ε) returns the set δ(S) ∪A from within the while
loop, then |δ(S) ∪A| ≥ 0.99 · (1− 4ε− 8T −1) · |E| and δ(S) ∪A is a valid cut.

Proof. Suppose that Algorithm 1 returns on the ith iteration of the while loop. By Lemmas 8
and 9, we have that |δ(S)| ≥ (1 − 4ε − 8T −1) · |Ei| edges. Note that E = Ei ∪ A ∪ T
and due to the while loop condition, we have that |T | ≤ 0.01|E|. Thus, |δ(S) ∪ A| ≥
0.99 · (1− 4ε− 8T −1) · |E|.
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To see that δ(S) ∪ A is a valid cut, note that adding a bridge to a bipartite graph
cannot introduce an odd cycle. Thus, we can iteratively add each edge of A to δ(S) without
invalidating our cut. ◀

▶ Lemma 12. If IntervalMaxCut(G) exits the while loop, then G has an edge-disjoint
triangle packing of size at least ε

3000T |E|.

Proof. At the conclusion of the while loop, we have that |T | ≥ 0.01 · |E|. Due to Lemma 10,
each time we expand T by x edges, we can pack an additional ε

30T x edge-disjoint triangles
into T . By iterating this process, there exists an edge-disjoint triangle packing of size at
least ε

30T |T | ≥
ε

3000T |E| in G. ◀

Now set ε = 0.01 and T = 200. Lemmas 11 and 12 imply that either G has a cut
of size at least 0.99 · 0.92|E| > 0.9|E| or an edge-disjoint triangle packing of size at least
1
6 · 10−7|E| > 10−8|E|, as wanted.

2.4 No Tradeoff for Chordal Graphs
In this subsection, we will show that there is no equivalent tradeoff for chordal graphs as
there are for interval graphs and split graphs. Thus, improving upon αGW for chordal graphs
will likely require new algorithmic insights.

▶ Theorem 13. For all c > 0, there exists a chordal graph G = (V, E) such that mc(G) <

αGW |E| and G has no edge-disjoint triangle packing of size c|E|.

Proof. Suppose we are given a chordal graph G′ = (V ′, E′) with |V ′| < c|E′| and no triangle
packing of size c|E′|. We will show later how to obtain such a G′. Construct G = (V, E) by
setting V := V ′ ∪ {w} ∪ {xe, ye | e ∈ E′} and E := E′ ∪ {xeu, yev | e = uv ∈ E′} ∪ {wv | v ∈
V \ {w}}. That is, for each edge e, we attach one fresh vertex to each endpoint of the edge,
and create a “universal” vertex w connected to all vertices in the graph.

We first note that G is chordal, as it is obtained from a chordal graph G′ by iteratively
adding simplicial vertices. By inspection, any triangle T ̸⊆ E′ must contain at least one
edge from {wv | v ∈ V ′}. Thus, the maximum number of edge-disjoint triangles in G is
at most |V ′| + c|E′| < 2c|E′| < c|E|. For each edge e = uv ∈ E′, G contains a 5-cycle
wxe, xeu, uv, vye, yew, and so G contains |E′| edge-disjoint 5-cycles. Thus, we have that
mc(G) ≤ |E| − |E′|. Note that |E| = 5|E′|+ |V ′| ≤ 6|E′|, so mc(G) ≤ 5

6 |E| < αGW |E|.
It remains to show that a chordal graph G′ with the desired properties exists. We give

the following interval graph construction for G′. Select k large enough. Create 2k− 1 vertices
in a “segment-tree” pattern as follows. In the first layer, create one vertex with interval (0, 1).
In the second layer, create two vertices with intervals (0, 0.5) and (0.5, 1) respectively. In
the third layer, create four vertices with intervals (0, 0.25), (0.25, 0.5), (0.5, 0.75) and (0.75, 1)
respectively. Then iterate this process for k total layers, see Figure 5 for an illustration.

Figure 5 The interval representation of G′ for k = 4.

We have that |V ′| = 2k − 1 and |E′| ≥ 2k−1 · (k− 1) > |V ′| · log2 |V ′|
2 by counting only the

edges adjacent to the bottom layer. Thus, for k sufficiently large, we have that |V ′| < c|E′|.
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To show that G′ has no edge-disjoint triangle packing of size c|E′|, it is sufficient to
show that mc(G′) > (1− c

3 ) · |E′|, as each triangle results in at least one un-cuttable edge.
Consider the cut of G′ obtained by taking the bottom t layers as one side of the cut. The
number of edges in this cut is (2k − 2k−t) · (k − t). Note also that |E′| ≤ 2k · k. Therefore,
we have that mc(G′) ≥ (2k−2k−t)·(k−t)

2k·k |E′|. As k tends to infinity, the term (2k−2k−t)·(k−t)
2k·k

tends to 1− 2−t. So, by setting t to be a sufficiently large constant based on c and letting
k be sufficiently large based on t, we have that mc(G′) > (1 − c

3 ) · |E′| and so G′ has no
edge-disjoint triangle packing of size c|E′|. Thus, G′ fulfills all the conditions we needed to
produce G. ◀

3 Analysis of the Perturbed Goemans-Williamson Algorithm

Our second main contribution is an improved approximation for Maximum Cut in graphs
with large triangle packings. Given a fixed triangle {uv, vw, wu}, it is impossible for all
angles θuv, θvw, θwu to be equal or very close to the critical angle θc. However, it is possible
for θuv = θvw = θc to achieve the critical angle and have θwu = 0. In this case, despite the
entire graph being a single triangle, the Goemans-Williamson rounding algorithm will not
perform beyond its worst-case guarantee. This is because the contribution of the edge wu

to the objective function is 0, and so rounding it “better” does not actually increase our
expected value.

To grapple with this issue, we introduce the “Perturbed Goemans-Williamson Algorithm.”
Intuitively speaking, this algorithm randomly “perturbs” each vector slightly. We will see
that edges with near-zero angle stand to gain much more in this perturbation process than
any other edges have to lose besides those with an angle of nearly π. Thus, any SDP solution
with many near-zero angle edges and few near-π angle edges can be rounded with a guarantee
better than αGW .

Before presenting the algorithm, we must first define the semidefinite program from which
we will round a solution.

maximize: 1
2

∑
uv∈E

(1− xu · xv) (SDP-GW)

subject to: xv ∈ Sn−1 ∀ v ∈ V

Algorithm 2 PerturbGW(G = (V, E), η).

Solve SDP-GW and obtain optimal solution {x∗
v}v∈V .

Sample a random n-dimensional vector r ∼ N (0, 1)n.
for all v ∈ V do

sv ← sign(r · x∗
v).

if |r · x∗
v| ≥ η then

s′
v ← sv.

else
Uniformly sample s′

v ∼ {−1, 1}.
end if

end for
S ← {v | sv = 1}, S′ ← {v | s′

v = 1}.
Return argmax{δ(S),δ(S′)}(|δ(S)|, |δ(S′)|).
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Note that Algorithm 2 runs in polynomial time, as solving SDPs and sampling from a
Gaussian distribution can be made to run in polynomial time.

▶ Theorem 14. If G has an edge-disjoint triangle packing of size at least t|E|, then∣∣∣∣PerturbGW(G, η := t2

104 )
∣∣∣∣ ≥ (αGW + 10−10t3) ·mc(G).

Theorem 14, when combined with Theorem 5 and Theorem 6, immediately shows that
there is a polynomial-time (αGW + 10−34)-approximation for Maximum Cut on interval
graphs and a polynomial-time (αGW + 10−16)-approximation for Maximum Cut on split
graphs.

Note that δ(S) is the result of running the original Goemans-Williamson algorithm, so
the result of Algorithm 2 is immediately at least E[|δ(S)|] ≥ αGW ·mc(G).

For an edge e ∈ E, let Ce := I[e ∈ δ(S)] and C ′
e := I[e ∈ δ(S′)] be the random variables

indicating that e is cut by S and S′, respectively. Define θe := arccos(x∗
u · x∗

v) as the angle
between u and v. For θ ∈ [0, π], let

Eθ := {e ∈ E | |θe − θ| ≤ √η}

be the set of edges with angle “close to” θ, where η is a parameter of Algorithm 2. We first
deal with the case where there are many edges in Eπ.

▶ Lemma 15. If η ≤ 0.01 and |Eπ| ≥ η3/2|E|, then E[|δ(S)|] ≥ (αGW + 10−2η3/2) ·mc(G).

Proof. Let SDP ∗ equal the value of SDP-GW at optimal solution {x∗
v}v∈V . Consider any

e = uv ∈ E. Recall that the contribution of e to SDP ∗ is 1−x∗
u·x∗

v

2 = 1−cos θe

2 . Also, by
simple calculation, we have that P[e ∈ δ(S)] = θe

π . We calculate

E[|δ(S)|] =
∑
e∈E

θe

π

=
∑
e∈E

1− cos θe

2 · 2θe

π(1− cos θe)

=
∑

e∈E\Eπ

1− cos θe

2 · 2θe

π(1− cos θe) +
∑

e∈Eπ

1− cos θe

2 · 2θe

π(1− cos θe)

≥ αGW

∑
e∈E\Eπ

1− cos θe

2 + (αGW + 10−2)
∑

e∈Eπ

1− cos θe

2

= αGW · SDP ∗ + 10−2
∑

e∈Eπ

1− cos θe

2

≥ αGW · SDP ∗ + 10−2 · |Eπ|
|E|
· SDP ∗.

The first inequality is by calculating 2
π

θe

1−cos θe
≥ αGW + 10−2 for θe > π −

√
0.01. The

second inequality follows from the fact that 1− cos θe is increasing on [0, π]. The lemma now
follows from the fact that SDP ∗ ≥ mc(G). ◀

Now we show that for edges not in Eπ, S′ is not much worse than S. For technical
reasons, our lemma statement also excludes edges in E0. We will see later that for all edges
with angle at most π

2 , S′ is no worse than S. Additionally, for edges with angle very close to
0, S′ is substantially better than S.
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▶ Lemma 16. For all e ̸∈ E0 ∪ Eπ, we have that P[C ′
e] ≥ P[Ce]− 10η3/2.

Proof. For any vertex v ∈ V , let Rv := I[|r · x∗
v| < η] be the random variable indicating that

s′
v is randomly selected. Fix any e = uv ̸∈ E0 ∪Eπ. We first note that P[C ′

e | ¬Ru ∧ ¬Rv] =
P[Ce | ¬Ru ∧ ¬Rv] and P[C ′

e | Ru ∨Rv] = 1
2 .

We now turn our attention to P[Ce | Rv]. Note that x∗
u and x∗

v lie on a single plane
through the origin, so by symmetry of Sn−1, we can assume without loss of generality
that x∗

v = (1, 0, . . . , 0) and x∗
u = (x, y, 0, . . . , 0) for y ≥ 0. Label the random variable

r = (r1, r2, . . . , rn). By symmetry of output, we can assume without loss of generality that
r1 ≥ 0. Note that these assumptions imply that Rv is independent of the value of r2.

Suppose that |r2| > η
y . Then we have that |r2·y| > η > |r1·x|, and so sign(r·x∗

u) = sign(r2).
That is, the sign of r · x∗

u is entirely determined by the sign of r2. This implies that, when
|r2| > η

y , Ce = I[sign(r2) < 0]. Thus, by independence of Rv and the value of r2,

P[Ce | Rv ∧ |r2| >
η

y
] = P[sign(r2) < 0 | Rv ∧ |r2| >

η

y
] = P[sign(r2) < 0] = 1

2 .

We then apply Lemma 4 to bound

P[Ce | Rv] ≤ 1
2 + P[|r2| ≤

η

y
| Rv] ≤ 1

2 + η

y
.

Let M := max{P[Ce | Ru],P[Ce | Rv]} ≤ 1
2 + η

y . We wish to bound P[Ce | Ru ∨ Rv] ≤
M + 4η

y . To this end, we manipulate probabilities

P[Ce ∧ (Ru ∨Rv)] ≤ P[Ce ∧Ru] + P[Ce ∧Rv]
= P[Ce | Ru]P[Ru] + P[Ce | Rv]P[Rv]
≤M(P[Ru] + P[Rv])
= M(P[Ru ∨Rv] + P[Ru ∧Rv]).

Now we find

P[Ce | Ru ∨Rv] = P[Ce ∧ (Ru ∨Rv)]
P[Ru ∨Rv] ≤M + P[Ru ∧Rv]

P[Ru ∨Rv] .

To bound the numerator of the error term, first consider P[Ru | Rv]. Recall that
Ru = I[|r1x + r2y| < η] and Rv = I[|r1| < η]. Thus, assuming Rv holds, in order for Ru to
hold, we must have that |r2y| < 2η. Using Lemma 4, we can bound

P[Ru | Rv] ≤ P[|r2y| ≤ 2η | Rv] = P[|r2| ≤
2η

y
] ≤ 2η

y
.

and using Lemma 4 again,

P[Ru ∧Rv] = P[Ru | Rv]P[Rv] ≤ 2η2

y
.

Applying this with yet another application of Lemma 4 gives

P[Ru ∧Rv]
P[Ru ∨Rv] ≤

4η

y
.

This yields the desired result, that P[Ce | Ru ∨Rv] ≤ 1
2 + 5η

y .
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Putting it all together, we find that

P[Ce] = P[Ce | ¬Ru ∧ ¬Rv] · P[¬Ru ∧ ¬Rv] + P[Ce | Ru ∨Rv] · P[Ru ∨Rv]

≤ P[Ce | ¬Ru ∧ ¬Rv] · P[¬Ru ∧ ¬Rv] + (1
2 + 5η

y
) · P[Ru ∨Rv].

and using Lemma 4,

P[C ′
e] = P[C ′

e | ¬Ru ∧ ¬Rv] · P[¬Ru ∧ ¬Rv] + P[C ′
e | Ru ∨Rv] · P[Ru ∨Rv]

= P[Ce | ¬Ru ∧ ¬Rv] · P[¬Ru ∧ ¬Rv] + 1
2 · P[Ru ∨Rv]

≥ P[Ce]− 5η

y
· P[Ru ∨Rv]

≥ P[Ce]− 10η2

y
.

Noting that y = sin θe ≥
√

η because e ̸∈ E0 ∪ Eπ completes the proof of the lemma. ◀

Lemma 16 allows us to bound the perturbation loss on all angles sufficiently bounded
away from 0 and π. However, we will not be able to guarantee that the angles we consider
are sufficiently bounded away from 0 to properly utilize Lemma 16. Thus, we strengthen
Lemma 16 to show that perturbation does not cause any loss on angles below π

2 .

▶ Lemma 17. For all e ∈ E with θe ≤ π
2 , we have that P[C ′

e] ≥ P[Ce].

Proof. Take any e = uv ∈ E such that θe ≤ π
2 . As in the proof of Lemma 16, restrict to two

dimensions, rotate, and reflect so we may assume x∗
v = (1, 0, . . . , 0), x∗

u = (x, y, 0, . . . , 0) for
y ≥ 0, and r1 ≥ 0. Due to our assumption on θe, we have that x = cos θe ≥ 0. As earlier,
define the event Rw := I[|r · x∗

w| < η] for w ∈ V . As in the proof of Lemma 16, our main
task is to bound P[Ce | Rv]. However this time, we will show P[Ce | Rv] ≤ 1

2 .
The event Rv is equivalent to I[|r1| < η]. Since x, y ≥ 0, if Ce happens, then we must

have r2 ≤ 0, so

P[Ce|Rv] = P[r1x + r2y < 0 | r1 ∈ [0, η)] ≤ P[r2 ≤ 0] = 1
2 .

We have that

Ru = I[|r1x + r2y| < η] = P[r2y ∈ (−η − r1x, η − r1x)].

Recall that x ≥ 0 and r1 ≥ 0, so | − η − r1x| > |η − r1x|. Thus, the event Ru contains a
larger portion of the negative space than the positive space and

P[r2y < 0 | ¬Ru] ≤ 1
2 .

Recalling that y > 0, and r1 and r2 are independent, we can now calculate

P[Ce | Rv ∧ ¬Ru] = P[r1x + r2y < 0 | r1 ∈ [0, η) ∧ ¬Ru]
≤ P[r2 < 0 | r1 ∈ [0, η) ∧ ¬Ru]
≤ P[r2 < 0 | ¬Ru]

≤ 1
2 .

and by symmetry, P[Ce | Rv ∧ ¬Ru] ≤ 1
2 . A similar computation as that in the proof of

Lemma 16 completes the proof. ◀
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▶ Lemma 18. For all e ∈ E, we have that P[C ′
e] ≥ η

4 .

Proof. Take any e = uv ∈ E and calculate, using Lemma 4,

P[C ′
e] ≥ P[C ′

e | Rv] · P[Rv] ≥ 1
2 ·

η

2 . ◀

Now notice that if θe < π
4 η, then P[C ′

e] ≥ η
4 > θe

π = P[Ce]. Thus, if a substantial fraction
of E has very small angle, then δ(S′) will be noticeably larger than δ(S). To this end, define

Ez := {e ∈ E : θe ≤
π

8 η}.

Note that for each e ∈ Ez, we have P[Ce] ≤ π
8 η · 1

π = η
8 ≤ 2P[C ′

e].

▶ Lemma 19. If |Ez| ≥ 96√η|E| and |Eπ| < η3/2|E|, then

E[|δ(S′)|] ≥ E[|δ(S)|] + η3/2|E| ≥ (αGW + η3/2) ·mc(G).

Proof. Calculate, using Lemmas 16, 17, and 18

E[|δ(S′)|] =
∑

e∈Ez

P[C ′
e] +

∑
e∈Eπ

P[C ′
e] +

∑
e∈E\(Eπ∪Ez)

P[C ′
e]

≥
∑

e∈Ez

η

4 +
∑

e∈E\(Eπ∪Ez)

P[Ce]− 10η3/2

≥
∑

e∈Ez

(P[Ce] + η

8 ) +
∑

e∈E\(Eπ∪Ez)

P[Ce]− 10η3/2

≥ E[|δ(S)|] + η

8 |Ez| − 10η3/2|E| − |Eπ|

≥ E[|δ(S)|] + η3/2|E|. ◀

We have shown that if either Ez or Eπ contain a constant fraction of E, then we can
improve upon Goemans-Williamson, so we may assume from now on that both of these sets
have negligible size. Now we will utilize the fact that G has an edge-disjoint triangle packing
of size t · |E| to show that there are many edges not near the critical angle θc. Define the set

E′ = {e ∈ E | θe ≤
2π

3 } \ Ez.

▶ Lemma 20. |E′| ≥ t · |E| − |Ez|.

Proof. Fix any triangle T = {uv, vw, wu}. We can bound the sum of angles θuv +θvw +θuw ≤
2π, and so at least one e ∈ T has θe ≤ 2π

3 . Thus, in any triangle T , we have that T ∩ (E′∪Ez)
is non-empty. Because G has t · |E| edge-disjoint triangles, there are at least t · |E| edges in
(E′ ∪ Ez). Subtracting out those edges in Ez completes the proof. ◀

We note that minθ∈[0, 2π
3 ]

2
π

θ
1−cos θ = 8

9 > αGW + 0.01, which motivates the following
lemma.

▶ Lemma 21. If t ≥ 97√η and |Ez| ≤ 96√η|E|, then

E[|δ(S)|] ≥ (αGW + 10−4η3/2) ·mc(G).
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Proof. The assumptions on t and |Ez| imply, through Lemma 20, that |E′| ≥ √η|E|. We
calculate

E[|δ(S)|] =
∑
e∈E′

θe

π
+

∑
e∈E\E′

θe

π

≥ 8
9

∑
e∈E′

1− cos θe

2 + αGW

∑
e∈E\E′

1− cos θe

2

≥ αGW · SDP ∗ + 0.01
∑
e∈E′

1− cos θe

2

≥ αGW · SDP ∗ + 10−3
∑
e∈E′

θe

π

≥ αGW · SDP ∗ + 10−4 · η · |E′|

≥ αGW · SDP ∗ + 10−4 · η3/2 · |E|

≥ (αGW + 10−4 · η3/2) ·mc(G). ◀

Now we can recall and prove Theorem 14.

▶ Theorem 14. If G has an edge-disjoint triangle packing of size at least t|E|, then∣∣∣∣PerturbGW(G, η := t2

104 )
∣∣∣∣ ≥ (αGW + 10−10t3) ·mc(G).

Proof. Note that the definition of η implies η < 0.01 and t > 97√η. If |Eπ| ≥ η3/2|E|, then
apply Lemma 15 to find that

E[|δ(S)|] ≥ (αGW + 10−2η3/2) ·mc(G) = (αGW + 10−8t3) ·mc(G).

If |Eπ| < η3/2|E| and |Ez| ≥ 96√η|E|, then apply Lemma 19 to find that

E[|δ(S′)|] ≥ (αGW + η3/2) ·mc(G) = (αGW + 10−6t3) ·mc(G).

Finally, if |Eπ| < η3/2|E| and |Ez| < 96√η|E|, then apply Lemma 21 to find that

E[|δ(S′)|] ≥ (αGW + 10−4η3/2) ·mc(G) = (αGW + 10−10t3) ·mc(G). ◀

4 Hardness of Approximating Maximum Cut on Split Graphs

In this section, we show that, subject to the Small Set Expansion Hypothesis, Maximum
Cut on split graphs is hard to approximate to some constant. Our starting point is hardness
of finding a small balanced cut on weighted graphs. Given a graph G = (V, E) with weights
we ∈ [0, 1] for e ∈ E, we define

µ(S) :=
∑

u∈S du∑
v∈V dv

as the normalized set size of S ⊆ V . Here, du :=
∑

e∈δ(u) we is defined as the weighted degree
of u. In an unweighted regular graph, we have that µ(S) = |S|

|V | . Also define

Φ(S) :=
∑

e∈δ(S) we∑
u∈S du

as the edge expansion of S ⊆ V . In an unweighted d-regular graph, we have that Φ(S) = |δ(S)|
d|S| .
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▶ Lemma 22 (Corollary 3.6 of [18]). There is a constant c1 > 0 such that for any sufficiently
small ϵ > 0, it is SSE-hard to distinguish between the following two cases for a weighted
graph G = (V, E):

Yes: There exists S ⊆ V such that µ(S) = 1
2 and Φ(S) ≤ 2ϵ.

No: Every S ⊆ V with µ(S) ∈ [ 1
10 , 1

2 ] satisfies Φ(S) ≥ c1
√

ϵ.

To utilize this hardness, we first create an unweighted instance as follows.

▶ Lemma 23. There is a constant c2 > 0 such that for any sufficiently small ϵ, η > 0, it is
SSE-hard to distinguish between the following two cases for an unweighted, non-simple graph
G = (V, E) with |E| ≤ |V |5:

Yes: There exists S ⊆ V such that µ(S) ∈ [ 1
2 − η, 1

2 + η] and Φ(S) ≤ 3ϵ.
No: Every S ⊆ V with µ(S) ∈ [ 1

10 + η, 1
2 ] satisfies Φ(S) ≥ c2

√
ϵ.

Proof. We begin with a gap instance G = (V, E) of the form in Lemma 22. We will create
a weighted instance G′ with the same vertex and edge set such that each edge has weight
in {1, 2, . . . , n3}. Duplicating edges according to their weight will then yield the desired
statement for unweighted graphs.

First, we may assume without loss of generality that the edges in G are scaled such that
the sum of degrees is

∑
v∈V dv = n3. This is because multiplying the weight of all edges by

an equal constant factor does not change the results of µ or Φ. Now produce the weights
{w′

e}e∈E by setting w′
e := ⌊we⌋. Note in particular that this implies w′

e ≤ |V |3 for all e ∈ E.
Define µ′, Φ′, and d′

v analogously to µ, Φ, and dv, except for weights {w′
e}e∈E . Note that

we ≥ w′
e > we − 1 for all e ∈ E and so dv ≥ d′

v > dv − n for all v ∈ V .
Suppose that G is in the Yes case of Lemma 22, and let S ⊆ V have µ(S) = 1

2 and
Φ(S) ≤ 2ϵ. Then we calculate

µ′(S) =
∑

u∈S d′
u∑

v∈V d′
v

≥
∑

u∈S du − n|S|∑
v∈V dv

= µ(S)− n|S|
n3 ≥

1
2 −

1
n

.

Thus, for sufficiently large n, we have that µ′(S) ≥ 1
2 − η. By a similar calculation, we have

that µ′(V \ S) ≥ µ(V \ S)− η = 1
2 − η and so µ′(S) = 1− µ′(V \ S) ≤ 1

2 + η. We now aim
to show that Φ′(S) ≤ 3ϵ. We calculate

Φ′(S) =
∑

e∈δ(S) w′
e∑

u∈S d′
u

≤
∑

e∈δ(S) we∑
u∈S du − n|S|

≤
∑

e∈δ(S) we

(1− 2/n)
∑

u∈S du

= 1
1− 2/n

Φ(S) ≤ 1
1− 2/n

2ϵ.

Here, the second inequality uses the fact that µ(S) = 1
2 and so

∑
u∈S du = n3

2 . Thus, for
sufficiently large n, we have that Φ′(S) ≤ 3ϵ. This establishes that the Yes case of G maps
to the Yes case of G′.

Suppose that G is in the No case of Lemma 22. Then any S ⊆ V with µ(S) ≤ 1
2 either has

µ(S) < 1
10 or Φ(S) ≥ c1

√
ϵ. Take any S ⊆ V . If µ(S) < 1

10 , then µ′(S) ≤ µ(S) + η < 1
10 + η.

So consider the case in which µ(S) ≥ 1
10 . Then we calculate

Φ′(S) =
∑

e∈δ(S) w′
e∑

u∈S d′
u

≥
∑

e∈δ(S) we − n2∑
u∈S du

= Φ(S)− n2∑
u∈S du

≥ Φ(S)− 10
n
≥ c1
√

ϵ− 10
n

.

If we set c2 = c1
2 , then for sufficiently large n, Φ′(S) ≥ c2

√
ϵ. This establishes that the No

case of G maps to the No case of G′. ◀
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Our final reduction to Maximum Cut requires our graph to be regular and |E| ∈ O(n2),
so before proceeding, we must first take a standard sparsification step.

▶ Lemma 24. There is a constant c3 > 0 such that for any sufficiently small ϵ, ζ > 0, it is
SSE-hard under randomized reductions to distinguish between the following two cases for an
unweighted, non-simple graph G = (V, E) with |E| ∈ Θ(|V |2) and maximum degree at most
(1 + ζ)d, where d is the minimum degree:

Yes: There exists S ⊆ V such that µ(S) ∈ [ 1
2 − ζ, 1

2 + ζ] and Φ(S) ≤ 4ϵ.
No: Every S ⊆ V with µ(S) ∈ [ 1

10 + ζ, 1
2 ] satisfies Φ(S) ≥ c3

√
ϵ.

Proof. We begin with a gap instance G = (V, E) of the form in Lemma 23. We randomly
create G′ = (V ′, E′) as follows. For each vertex u ∈ V , create du copies and add them to
G′. That is, we set V ′ = {u1, u2, . . . , udu | u ∈ V }. Let g : V ′ → V map copies ui ∈ V ′ to
their original vertex u ∈ V . For each edge uv ∈ E and copies u′ ∈ g−1(u), v′ ∈ g−1(v), let
puv := R

dudv
for a parameter R we will adjust later. Now add ⌊puv⌋ copies of u′v′ to E′ and

randomly add a final edge with probability puv − ⌊puv⌋. Note that the expected number of
u′v′ edges is equal to puv.

Let us consider the properties of G′. We have that |V ′| =
∑

v∈V dv = 2|E| and

E[|E′|] =
∑

uv∈E

puv · du · dv = R|E|.

Let qe be the random variable denoting the number of edges in G′ “produced” from e ∈ E.
By a standard application of Chernoff bounds and the union bound over 2V ′ and E, we can
show, for any constant α > 0, that
1. (1− α)E[|δG′(S)|] ≤ |δG′(S)| ≤ (1 + α)E[|δG′(S)|] for all S ⊆ V ′ and
2. (1− α)R ≤ qe ≤ (1 + α)R for all e ∈ E

with high probability, assuming R ∈ Ω(n). In particular, item 1 implies that d′
v ∈ [(1 −

α)R, (1 + α)R] for all v ∈ V ′, where d′
v is the degree of v in G′. Suppose from now on that

items 1 and 2 are both true. Now suppose G is a Yes instance of Lemma 23. That is, there
is a S ⊆ V such that µ(S) ∈ [ 1

2 − η, 1
2 + η] and Φ(S) ≤ 3ϵ. Let S′ := g−1(S), and µ′ be

defined for G′ as µ is defined for G. Then we calculate

µ′(S′) =
∑

u∈S d′
u∑

v∈V d′
v

≥ (R− α)|S′|
(R + α)|V ′|

= R− α

R + α

∑
u∈S du∑
v∈V dv

= R− α

R + α
µ(S) ≥ R− α

R + α
(1
2 − η).

Applying the same calculation for µ′(V ′ \ S′) yields the upper bound

µ′(S′) = 1− µ′(V \ S′) ≤ 1− R− α

R + α
(1
2 − η).

For sufficiently small α > 0, this implies that µ′(S′) ∈ [ 1
2 − ζ, 1

2 + ζ]. Let Φ′ be defined for
G′ as Φ for G. We calculate

Φ′(S′) = |δG′(S′)|∑
u∈S′ du

≤ (R + α)|δG(S)|
(R− α)

∑
u∈S du

= R + α

R− α
Φ(S) ≤ R + α

R− α
3ϵ.

For sufficiently small α > 0, we get the upper bound Φ′(S′) ≤ 4ϵ. This establishes that the
Yes case of G maps to the Yes case of G′ with high probability.

Now suppose that G is a No instance of Lemma 23. Consider any S′ ⊆ V ′ with
µ′(S′) ∈ [ 1

10 + ζ, 1
2 ]. Let f ∈ [0, 1]V be a vector defined by fv = |S′∩g−1(v)|

dv
. That is, f

indicates the proportion of each original vertex selected by S′. We calculate
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Φ′(S′) = |δG′(S′)|∑
v∈V ′ d′

v

≥ (1− α)E[|δG′(S′)|]
(R + α)|V ′|

= 1− α

R + α

∑
uv∈E puv · ((1− fu)dufvdv + fudu(1− fv)dv)

|V ′|

= R(1− α)
R + α

∑
uv∈E(1− fu)fv + fv(1− fu)

|V ′|

Let S ⊆ V be a random variable sampled by including v ∈ S with probability fv. Then we
have that

E[Φ(S)] = E[|δG(S)|]∑
v∈V dv

=
∑

uv∈E(1− fu)fv + fu(1− fv)
|V ′|

≤ R + α

R(1− α)Φ′(S′).

We can apply Chernoff bounds on |δG(S)| to find that Φ(S) < (1 + α)E[Φ(S)] with high
probability. We additionally calculate

E[µ(S)] =
∑

u∈V fudu∑
v∈V dv

= |S
′|

|V ′|
≥ R− α

R + α
µ(S) ≥ R− α

R + α
( 1
10 + ζ).

By setting α, η > 0 sufficiently small and applying Chernoff bounds, this implies that
E[µ(S)] > 1

10 + η with probability at least 1
2 . Thus, by the probabilistic method, there exists

some S ⊆ V such that µ(S) > 1
10 + η and Φ(S) < (1 + α)E[Φ(S)]. Applying Lemma 23, we

find that

Φ′(S′) ≥ R(1− α)
R + α

E[Φ(S)] >
R(1− α)

(R + α)(1 + α)Φ(S) ≥ R(1− α)
(R + α)(1 + α)c2

√
ϵ.

So, set c3 := R(1−α)
(R+α)(1+α) c2. This establishes that the No case of G maps to the No case

of G′ with high probability. ◀

We now convert the language of µ and Φ to the simpler language of cardinalities of sets.

▶ Lemma 25. There exists a constant c′ > 0 such that for all sufficiently small ε, η > 0, it
is SSE-hard under randomized reductions to distinguish between the following cases for an
unweighted graph G = (V, E) with |E| ∈ Θ(|V |2):

Yes: There exists a cut S ⊆ V with ( 1
2 − η)|V | ≤ |S| ≤ |V |

2 such that |δ(S)| ≤ 10ε|E|.
No: For all cuts S ⊆ V with |S| ≤ |V |

2 , either |S| ≤ |V |
5 or |δ(S)| ≥ c′√ε|E|.

Proof. We begin with a gap instance G = (V, E) of the form in Lemma 24. We will not need
to modify this instance to produce our desired result. Suppose that G is a Yes instance of
Lemma 24. Then there is some S ⊆ V with µ(S) ∈ [ 1

2 − ζ, 1
2 + ζ] and Φ(S) ≤ 4ϵ. Using that

every vertex v ∈ V has degree dv ≤ (1 + ζ)d, where d is the minimum degree of G, we can
bound

µ(S) =
∑

u∈S du∑
v∈V dv

≤ |S|(1 + ζ)d
|V |d

.

Thus, |S| ≥ 1/2−ζ
1+ζ |V |. For sufficiently small ζ > 0, we can then bound below |S| ≥ ( 1

2 −η)|V |.
Because µ(S) = µ(V \ S), we also bound |V \ S| ≥ ( 1

2 − η)|V |. If |S| > |V |
2 , then swap S

with V \ S, noting that δ(S) = δ(V \ S). This fulfills the ( 1
2 − η)|V | ≤ |S| ≤ |V |

2 condition.
Similarly, we can bound

Φ(S) = |δ(S)|∑
u∈S du

≥ |δ(S)|
|V |d(1 + ϵ) .

APPROX/RANDOM 2025
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With the bound of Φ(S) ≤ 4ϵ from Lemma 24, this implies that

|δ(S)| ≤ 4ϵ|V |d(1 + ζ) ≤ 10ϵ|E|

for sufficiently small ζ > 0. Thus, G being a Yes instance of Lemma 24 implies the Yes
conditions of this lemma.

Suppose that G is a No instance of Lemma 24. Consider any S ⊆ V . Suppose first that
µ(S) < 1

10 + ζ. Then we have that

µ(S) =
∑

u∈S du∑
v∈V dv

≥ |S|d
|V |(1 + ζ)d ,

and so |S| ≤ ( 1
10 + ζ)(1 + ζ)|V |. For ζ sufficiently small, this implies |S| ≤ |V |

5 . Suppose
otherwise, that µ(S) ≥ 1

10 + ζ. Then we have that

Φ(S) = |δ(S)|∑
u∈S du

≤ |δ(S)|
|V |d

,

and so |δ(S)| ≥ 3d
√

ϵ|V | ≥ 6
1+ζ

√
ϵ|E|. Setting c′ := 6

1+ζ finishes the proof. ◀

We now reduce from gap instances of the type in Lemma 25 to show hardness for
Maximum Cut on split graphs.

▶ Theorem 3. There exists a constant c > 0 such that there is no polynomial-time (1− c)-
approximation algorithm for Maximum Cut on split graphs, subject to the Small Set
Expansion Hypothesis under randomized reductions.

Proof. We reduce from a graph G = (V, E) of the form in Lemma 25 to a (simple) split
graph G′ = (V ′ = K ∪ I, E′) as follows. Let the clique portion of G′ be K := V , and let the
independent portion of G′ be I := {ve}. We define the edge set of G′ as E′ := {uve | u ∈
V, e ∈ u} ∪ {uw | u, w ∈ V }. That is, we place a copy of V in the clique portion of G′, and
place one vertex for each edge of E in the independent set portion, each connected to its two
endpoints in V .

Note that in a split graph, the maximum cut is defined solely by its intersection with the
clique portion K of the graph, as the decision for vertices in the independent set portion I

can be made greedily. Define δ′(S) for S ⊆ K = V to be the edges in the maximum cut of
G′ defined by S, breaking ties arbitrarily.

Suppose that G is a Yes instance as defined in Lemma 25. Then by direct counting, we
have that, in G′,

mc(G′) ≥ |δ′(S)| ≥ (0.25− η2)|V |2 + (2− 10ε)|E|.

Define ω := (0.25− η2)|V |2 + (2− 10ε)|E|. Suppose instead that G is a No instance and
consider any S ⊆ V with |S| ≤ 0.5|V |. We will show that, with the right choice of ε and η,
|δ′(S)| ≤ (1− c)ω for some constant c > 0. If |S| ≤ |V |

5 , then

|δ′(S)| ≤ |V |
2

5 + 2|E|.

Because |E| ∈ Θ(|V |2), and 1
5 < 0.25− η2 for sufficiently small η, this implies that |δ′(S)| <

(1− c)ω for some constant c > 0 when η and ε are sufficiently small. Otherwise, if |S| ≥ |V |
5 ,

then we must have that |δG(S)| ≥ c′√ε|E|. Then

|δ′(S)| ≤ 0.25|V |2 + (2− c′√ε)|E|.
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As above, because 2− c′√ε < 2− 10ε for sufficiently small ε, we have that |δ′(S)| < (1− c)ω
for some constant c > 0 when η and ε are sufficiently small. Thus, in the No case, we have
that mc(G′) ≤ (1− c)ω. Therefore, it is SSE-hard to distinguish between mc(G′) ≥ ω and
mc(G′) ≤ (1− c)ω. This implies SSE-hardness of approximating Maximum Cut to a factor
of 1− c on split graphs. ◀

It is critical that Lemma 25 allows for non-simple graphs. If G were simple, then our
reduction in the proof of Theorem 3 results in the relation mc(G′) = mc(Gc) + 2|E|, where
Gc = (V, Ec) is the complement of G. This is proved explicitly in [3]. Then, if |E| ∈ ω(|Ec|),
the value 2|E| is a good estimate for mc(G′). If |E| ∈ O(|Ec|), then |Ec| ∈ Ω(|V |2). In this
case, Gc is a dense graph and so there is a PTAS for mc(Gc) [7, 16]. In particular, these
cases imply that there is a PTAS for mc(G′) whenever G′ is a 2-split graph (i.e., all vertices
in I have degree 2) without any “duplicated” vertices of I that have the same neighborhood.
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