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Abstract
We consider the problem of covering multiple submodular constraints. Given a finite ground set N , a
cost function c : N → R+, r monotone submodular functions f1, f2, . . . , fr over N and requirements
b1, b2, . . . , br the goal is to find a minimum cost subset S ⊆ N such that fi(S) ≥ bi for 1 ≤ i ≤ r.
When r = 1 this is the well-known Submodular Set Cover problem. Previous work [8] considered
the setting when r is large and developed bi-criteria approximation algorithms, and approximation
algorithms for the important special case when each fi is a weighted coverage function. These are
fairly general models and capture several concrete and interesting problems as special cases. The
approximation ratios for these problem are at least Ω(log r) which is unavoidable when r is part
of the input. In this paper, motivated by some recent applications, we consider the problem when
r is a fixed constant and obtain two main results. When the fi are weighted coverage functions
from a deletion-closed set system we obtain a (1 + ϵ)( e

e−1 )(1 + β)-approximation where β is the
approximation ratio for the underlying set cover instances via the natural LP. Second, for covering
multiple submodular constraints we obtain a randomized bi-criteria approximation algorithm that
for any given integer α ≥ 1 outputs a set S such that fi(S) ≥ (1 − 1/eα − ϵ)bi for each i ∈ [r] and
E[c(S)] ≤ (1 + ϵ)α · OPT. These results show that one can obtain nearly as good an approximation
for any fixed r as what one would achieve for r = 1. We also demonstrate applications of our results
to implicit covering problems such as fair facility location.
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1 Introduction

Covering problems are ubiquitous in algorithms and combinatorial optimization, forming
the basis for a wide range of applications and connections. Among the most well-known
covering problems are Vertex Cover (VC) and Set Cover (SC). In SC the input consists of a
universe U of n elements and a family S of subsets of U . The objective is to find a minimum
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25:2 Covering a Few Submodular Constraints and Applications

cardinality sub-collection S ′ ⊂ S such that the union of the subsets in S ′ is (i.e. covers) U .
VC is a special case of SC where U corresponds to the edges of a given graph G = (V, E),
and the sets correspond to vertices of G. In the cost versions of these problems, each set or
vertex is assigned a non-negative cost, and the objective is to find a covering sub-collection
with the minimum total cost. A significant generalization of SC is the Submodular Set Cover
(SubmodSC) problem where the input includes a normalized monotone submodular function
f : 2N → Z+, and the goal is to find a min-cost subset S of N such that f(S) = f(N). Recall
that a real-valued set function f is submodular iff f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

The aforementioned covering problems are known to be NP-Hard, but classical approxim-
ation algorithms offer strong guarantees. For SC, the well-known Greedy algorithm proposed
by Johnson [14] achieves a (1 + ln n)-approximation and has also been shown to achieve a
(1 + ln(maxi f(i))-approximation for SubmodSC by Wolsey [21]. These results are essentially
tight, assuming P ̸= NP [11]. Nevertheless, VC admits a 2-approximation, and many other
special cases of SC and SubmodSC also admit constant-factor approximations. Moreover,
settling for bi-criteria approximations allows for additional flexibility and improvements.
For SubmodSC, a slight modification to the standard Greedy algorithm yields the following
tradeoff: for any integer α ≥ 1, we may obtain a set S ⊆ N such that f(S) ≥ (1− 1

eα )f(N)
and c(S) ≤ αOPT.

Another related covering problem of importance is the Partial Set Cover (PartialSC)
problem, in which the input includes an additional integer b, and the goal is to find a
minimum-cost collection of sets that cover at least b elements. A similar formulation extends
to the submodular setting where the goal is to find a set S such that f(S) ≥ b. Partial
covering problems are particularly useful as they naturally model outliers for various settings,
and approximation algorithms for these problems have been well studied. It is straightforward
to show that PartialSC is equivalent to SC in terms of approximation. In the submodular
case, this equivalence is even clearer: we can consider the truncated submodular function
fb where fb(S) = min{f(S), b}. In contrast, understanding the approximability of Partial
Vertex Cover (PartialVC) is more nuanced. While a 2-approximation for PartialVC is known
[4], it is not straight forward to see this.

In recent years, emerging applications and connections, particularly to fairness, have
sparked interest in covering and clustering problems involving multiple groups or colors for
elements. The goal in these problems is to ensure that some specified number of elements
from each group or color are covered. The partial covering problems discussed above are
a special case where the number of groups is one. In the Colorful Vertex Cover problem
(ColorVC), multiple partial covering constraints are imposed. The input consists of a graph
G = (V, E) and r subsets of edges E1, E2, . . . , Er where Ei ⊆ E. Each subset represents the
edges of color i, and an edge can have multiple colors. Each color i has requirement bi ≤ |Ei|
and the objective is to find a minimum-cost set of vertices that covers at least bi edges from
each Ei. Bera et al. [2] were the first to consider (a generalization of) ColorVC, obtaining an
O(log r)-approximation. This result is essentially tight when r is large and part of the input,
and one can show that SC reduces to ColorVC (see [2]). More recently, Bandyapadhyay et
al. [1] considered ColorVC when r is a fixed constant and achieved a (2 + ϵ)-approximation
for any fixed ϵ > 0.

Chekuri et al. [8] explored a broader class of problems involving the covering of multiple
(submodular) functions and various special cases. Their general framework not only recovers
the O(log r)-approximation from [2] but also provides results for a variety of geometric
set cover problems, and combinatorial optimization problems such as facility location and
clustering. However, while powerful and general, their framework is designed for cases
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where r (i.e., the number of constraints) is part of the input. As a result, it is inherently
limited to Ω(log r)-approximation due to above mentioned reduction from SC to ColorVC. In
a recent work, Suriyanarayana et al. [16] considered the Joint Replenishment Problem (JRP),
a fundamental problem in supply chain optimization. JRP and its variants can be viewed as a
covering problems where the objective is to satisfy demands over a time horizon for multiple
items using orders that incur joint costs; readers can refer to [16] for the formal details of
the JRP problem. While constant-factor approximations for JRP are well-established [3],
Suriyanarayana et al. [16] introduced a colorful version of JRP (CJRP), similar in spirit to
ColorVC. In CJRP, demands are grouped by color, and the goal is to satisfy at least bi demands
from each color class. Chekuri et al. [8]’s framework can yield an O(log r)-approximation
for CJRP; however, [16] focused on the setting where r is a fixed constant. They developed
an intricate algorithm which achieves a (2.86 + ϵ)-approximation for any fixed ϵ > 0. Note
that the approximation ratio does not depend on r but the running time is exponential in r.
There are several settings in approximation for covering and packing problems where one
has a fixed number of constraints or objectives and one obtains similar trade offs.

These recent developments inspire us to explore whether the general framework in [8],
which applies to a wide variety of covering problems, can be adapted to the setting of a
fixed number of submodular covering constraints. The goal is to remove the dependence
of the approximation ratio on r. Specifically, we consider two settings: (1) the Multiple
Submodular Covering problem, and (2) Colorful Set Cover and a generalization.

Multiple Submodular Covering (MSC). The MSC problem generalizes the above ColorSC
problem. Formally, the input to the MSC problem consists of r monotone submodular
functions fi : 2N → Z+ over a finite ground set N (provided as value oracles), a non-negative
cost function c : N → R+, and non-negative integer requirements b1, b2, . . . , br. The objective
is to find a minimum-cost set S ⊆ N such that fi(S) ≥ bi for each i ∈ [r]. Note that when
r = 1, this corresponds to SubmodSC. The Greedy algorithm (modified slightly) yields the
following trade off for SubmodSC: for any integer α ≥ 1 the algorithm outputs a set S such
that f(S) ≥ (1− 1/eα)b and c(S) ≤ αOPT. We note that this trade off is essentially tight
for any fixed α via the hardness result for SC [11]. It is easy to reduce multiple submodular
covering constraints to a single submodular covering constraint [12, 8], but in doing so one is
limited to Ω(log f(N)) approximation to the cost to satisfy all constraints exactly – it is not
feasible to distinguish the individual constraints via this approach. In contrast, Chekuri et
al.[8] obtained the following bi-criteria approximation result for MSC: there is an efficient
randomized algorithm that outputs a set S ⊆ N such that f(S) ≥ (1− 1/e− ϵ)bi for each
i ∈ [r] and E[c(S)] ≤ O( 1

ϵ log r). In this paper we ask whether it is possible to achieve
bi-criteria bounds for MSC instances with a fixed number of constraints that match those
obtainable for single submodular constraint. We prove the following theorem and its corollary
which together affirmatively answers this (modulo a small dependence on ϵ).

▶ Theorem 1. There is a randomized polynomial-time algorithm that given an instance of
the MSC with fixed r and ϵ > 0 outputs a set S ⊆ N such that (i) fi(S) ≥ (1− 1/e− ϵ)bi for
all i ∈ [r] and (ii) E[c(S)] ≤ (1 + ϵ)OPT (where OPT is the cost of the optimal solution to
the instance).

▶ Corollary 2. For any fixed integer α > 1 and ϵ, Algorithm 1 (from Theorem 1) can be
used to construct a solution S ⊆ N such that f(S) ≥ (1 − 1/eα − ϵ)bi for all i ∈ [r] and
E[c(S)] ≤ α(1 + ϵ)OPT.

APPROX/RANDOM 2025



25:4 Covering a Few Submodular Constraints and Applications

We remark that the underlying algorithms give additive guarantees. In terms of running
time, the most expensive part is to convert this additive guarantee into a multiplicative
guarantee by guessing sufficiently many elements from some fixed optimum solution. The
additive guarantees provide useful insights and are often sufficient if one assumes that the
optimum value is large.

Colorful Set Cover (ColorSC) and generalizations. Prior work of Inamdar and Varadarajan
[13] showed a general setting when positive results for SC can be extended to PartialSC
(r = 1). We describe the setting first. A class of SC instances (i.e. set systems), F , is
called deletion-closed if for any given instance in the class, removing a set or an element
of the universe results in an instance that also belongs to F . Many special cases of SC
are naturally deletion-closed. For example, VC instances are deletion-closed as are many
geometric SC instance (say covering points by disks in the plane). Suppose one can obtain a
β-approximation to SC on instances from F via the natural LP relaxation. For example, VC
has β = 2 and there are many geometric settings where β = O(1) or o(log n) [6, 13]. Inamdar
and Varadarajan [13] additionally formalized the concept of deletion-closed set systems and
obtained a 2(β +1)-approximation for PartialSC on a set system from deletion-closed F . Their
framework gave a straightforward way to approximate geometric partial covering problems
by building on existing results for SC. Chekuri et al. [8] extended this framework to address
deletion-closed instances of ColorSC problem (which is analogous to the previously discussed
ColorVC). Formally, the input for ColorSC consists of a set system from F , costs on the sets,
and r sets U1, . . . ,Ur where each Ui is a subset of the universe U , and non-negative integer
requirements b1, . . . , br. The objective is to find a minimum-cost collection of sets such that
for each i ∈ [r], at least bi elements from Ui are covered. In this setting, Chekuri et al. [8]
achieved two key results. First, when r = 1, they improved the approximation bound from
[13] to e

e−1 (β + 1). Second, for general r they obtained an O(β + log r)-approximation which
generalized [2] for ColorVC. Here we consider this same setting but when r is a fixed constant
and obtain the following result.

▶ Theorem 3. For any instance of ColorSC with fixed r from a β-approximable deletion-closed
set system, and any fixed ϵ > 0, there is a randomized polynomial-time algorithm that yields
a

(
e

e−1

)
(1 + β)(1 + ϵ)-approximate feasible solution.

Chekuri et al. [8] prove a more general result that applies to covering integer programs
induced by deletion-closed set systems (this is similar to the context considered by Bera et
al. [2] for ColorVC). This generality is significant in applications such as facility location and
clustering. We obtain the preceding result also in this more general setting (see Theorem 15);
we defer the formal description of the problem setting to Section 2, and prove the theorem
in Section 5.

Implications and Applications. At a high level, our two main theorems show that approx-
imation results for covering problems with a single submodular constraint, i.e. where r = 1,
can be extended to the case with a fixed number of constraints. We believe that these results,
in addition to being independently interesting, are broadly applicable and valuable due to the
modeling power of submodularity and set covering. However, one should expect additional
technical details in applying these results to certain applications such as facility location,
clustering, JRP, and others. In this paper, we prove our main technical results and lay down
the general framework. We also demonstrate how the framework can be applied and adapted.
We discuss these applications next.
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Colorful covering problems: Recall that ColorVC admits a (2 + ϵ)-approximation for fixed r [1].
Now consider the problem of covering points in plane by disks with costs. This well-studied
geometric set cover problem admits an O(1) approximation via the natural LP [6, 18]. [13, 8]
obtained a

(
e

e−1

)
(1 + β) approximation for PartialSC version of this problem (r = 1) and [8]

obtained an O(β + log r)-approximation for the colorful version of this problem (arbitrary r).
In this paper we obtain a

(
e

e−1

)
(1 + β)(1 + ϵ) approximation for any fixed r. In effect all

the PartialSC problems considered in [13, 8] for various geometric settings admit essentially
the same approximation for the colorful versions with fixed r. The colorful problems capture
outliers and fairness constraints, and thus, as long as the number of such constraints is small,
the approximation ratio is independent of r. Our bi-criteria approximation for MSC, in a
similar vein, allows tight trade offs in cost vs coverage for any fixed number of constraints.
See [12, 8] for an application to splitting point sets by lines where a bi-criteria approximation
is adequate.
Facility location with multiple outliers: Facility location and clustering problems have long
been central in both theory and practice, with a wide variety of objective functions studied
in the literature. At a high level, the goal in facility-location problems is to select a subset
of facilities and assign clients to them in a way that balances assignment cost with facility
opening cost. Several objectives and variants are studied in the literature. Motivated by
robustness considerations there is also extensive work on these problems when there are
outliers. The goal in such problems is to solve the underlying clustering or facility location
problem where certain number of points/clients can be omitted; equivalently the goal is
to connect/cluster at least a given number of points. These problems do not fall neatly in
the framework of (partial) covering problems. Nevertheless it is possible to view them as
implicit covering problems; in some settings one needs to consider an exponential sized set
system. Thus, although the problems cannot be directly cast in as MSC or CCF, some of
the ideas can be transferred with additional technical work. [8] used this perspective and
additional ideas to obtain O(log r)-approximation for two facility location problems with
multiple outlier classes. In this paper, we consider these two problems when r is a fixed
constant and obtain constant factor approximations. The first one involves facility location
to minimize the objective of sum of radii; it is easier to adapt the ideas for CCF to this
problem and we discuss this in the full version of our paper.

Our main new technical contribution is the second problem related to the outlier version
of the well-known uncapacitated facility location problem (UCFL). In UCFL the input consists
of a facility set F and a client set C that are in a metric space (F ∪C, d). Each facility i ∈ F

has an opening cost fi ≥ 0 and connecting a client j to a facility i costs d(i, j). The goal is
to open a subset of the facilities S ⊆ F to minimize

∑
i∈S fi +

∑
j∈C d(j, S) where d(j, S) is

the distance of j to the closest open facility. This classical problem has seen extensive work
in approximation algorithms; the current best approximation ratio is 1.488 [15]. Charikar et
al. [7] studied the outlier version of this problem (under the name robust facility location)
and obtained a 3-approximation; in this version the goal is to connect at least some specified
number b ≤ |C| of clients, and this corresponds to having a single color class to cover. In [8],
the generalization of this to r outlier classes was studied under the name Facility Location
with Multiple Outliers (FLMO). In this paper we prove the following result.

▶ Theorem 4. Let β be the approximation ratio for UCFL via the natural LP relaxation.
Then there is a randomized polynomial-time algorithm that given an instance of FLMO with
fixed r and ϵ > 0 yields a e

e−1 (β + 1 + ϵ)-approximate solution.

APPROX/RANDOM 2025



25:6 Covering a Few Submodular Constraints and Applications

We remark that we use LP-based algorithms for UCFL as a black-box and have not
attempted to optimize the precise ratio. Using β = 1.488 from [15] we get an approximation
factor of 3.936(1 + ϵ). We also note that the case of r being fixed requires new technical
ideas from those in [8]. We recall the non-trivial work of [16] who consider CJRP for fixed
r by adapting the ideas from [8] for an implicit problem. One of our motivations for this
paper is to obtain a general framework for CCF for fixed r, and to showcase its applicability
to concrete problems.

Summary of Technical Contributions. Our algorithms follow a streamlined framework
(outlined in Section 3.2) that builds upon the ideas in [8], while introducing additional new
ingredients to obtain improved approximations when r is fixed. The framework consists of
four stages; at a high level, these stages can are: guess high-cost elements, solve a continuous
relaxation, randomly round the fractional relaxation, and greedy fix in a post-processing
step to ensure that constraints are appropriately satisfied. The main new ingredient is the
rounding procedure employed in the third stage, which is centered around a rounding lemma
(Lemma 10). The lemma is based on the concentration bound for independent rounding of a
fractional solution to the multilinear relaxation of a submodular function. The improved
approximation for fixed r is based on obtaining a strong concentration bound. In order
to obtain this we need to ensure that the underlying submodular function has a Lipschitz
property. Our new insight is that one can use a greedy procedure to select a small number of
elements to ensure the desired Lipschitz property. However this means that the algorithms
will incur an additive approximation for selecting a constant number (that depends only on r

and 1/ϵ) of elements. We are able to convert this additive approximation into a multiplicative
approximation by guessing a sufficiently large number of elements in the first stage. We note
that several packing and covering problems with a fixed number of constraints follow this
high-level template. Typically one uses properties of basic feasible solutions to underlying
LP relaxations for packing and covering problems. We cannot use standard methods because
our constraints are submodular and hence non-linear. Our fractional solutions come from
solving non-linear programs or auxiliary LPs with many constraints. This is the reason for
relying on our rounding approach. The high-level overview suppresses several non-trivial
technical details in the algorithms, some of which are inherited from [8]. There are important
differences in the details for the two problems, and are explained in the relevant sections.

Organization. Section 2 provides the formal definitions for MSC and CCF, as well as some
relevant background on submodularity. In Section 3 we describe the Rounding Lemma
(Lemma 10), which is our key ingredient. In the same section, we provide an overview of
our algorithmic framework. Section 4 describes our algorithm for Theorem 1, and Section 5
describes our algorithm for CCF which generalizes Theorem 3. Finally, in Section 6, we
discuss the application of CCF to Facility Location. We sketch the analysis of the algorithms
in the respective sections and defer the reader to the full version for complete details.

2 Notation and Preliminaries

2.1 Problem Definitions

Below we provide the formal problem statements for Multiple Submodular Covering Con-
straints (MSC) and Covering Coverage Functions (CCF) problems [8].
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▶ Definition 5 (MSC). Let N be a finite ground set, and we are given r monotone submodular
functions fi : 2N → R+ for i ∈ [r] each with corresponding demands bi ∈ R+. Additionally,
we are given a non-negative cost function c : N → R+. The goal is to find a subset S ⊆ N

that solves the following optimization problem:

min
S⊆N

c(S) s.t. fi(S) ≥ bi ∀i ∈ [r].

▶ Definition 6 (CCF). The CCF problem consists of a set system (U ,S) where U is the
universe of n elements, S = {S1, . . . , Sm} is a collection of m subsets of U . Each set S ∈ S
has a cost associated with it and we are given a set of inequalities Az ≥ b where A ∈ Rr×n

≥0 .
The goal is to optimize the integer program given in IP-CCF.

min
∑

i∈[m] cixi

s.t.
∑

i:j∈Si
xi ≥ zj

Az ≥ b

zj ≤ 1 for all j ∈ [n]

xi ∈ {0, 1} for all i ∈ [m]

(IP-CCF)

min
∑

i∈[m] cixi

s.t.
∑

i:j∈Si
xi ≥ zj

Az ≥ b

zj ≤ 1 for all j ∈ [n]

xi ∈ [0, 1] for all i ∈ [m]

(LP-CCF)
In this program, the variables xi for i ∈ [m] represent the indicator variable for whether

the set i is selected. The variables zj for j ∈ [n] are indicators for whether the element j is
covered. If entries of A are in {0, 1} then we obtain ColorSC as a special case.

CCF as a special case of MSC. We view the constraints as submodular functions as follows:
for the ith constraint, given by the ith row of matrix, we define a submodular function
fi(·) : 2S → R+

≥0 as follows: fi(S) =
∑

j∈[n] Ai,jzj where zj is a variable indicating whether
j ∈ ∪S∈SS i.e., whether j is covered by a set in the collection S of sets, and Ai,j is the entry
in ith row and jth column of matrix A. This is a submodular function since it is a weighted
coverage function with weights coming from the matrix A. In Section 5, we will use either
the matrix form or the submodular function form as convenient.

In this paper we assume that input instances of each problem will have a fixed number of
constraints, i.e., r is taken to be some positive fixed constant.

2.2 Submodularity
For a submodular function, f(·) defined on ground set N , we will use f|A(·) to denote the
submodular function that gives marginals of f on set A ⊆ N i.e., f|A(S) = f(S ∪A)− f(A).
Further, for any A ⊆ N and e ∈ N , we will use f(e | A) to denote the marginal value of e

when added to A.

Multilinear Extensions of Set Functions. Our main rounding algorithm (discussed in
Section 3) makes use of the multilinear extension of set functions. Here are some relevant
preliminaries.

▶ Definition 7 (Multilinear extension). The multilinear extension of a real-valued set function
f : 2N → R, denoted by F , is defined as follows: For x ∈ [0, 1]N

F (x) =
∑

S⊆N

f(S)
∏
i∈S

xi

∏
j∈N\S

(1− xj).

Equivalently, F (x) = E[f(R)] where R is a random set obtained by picking each i ∈ N

independently with probability xi.

APPROX/RANDOM 2025



25:8 Covering a Few Submodular Constraints and Applications

Lipschitzness and Concentration Bounds. One benefit of utilizing the multilinear extension
that is relevant to our algorithm is a concentration bound. Before we state that bound, we
define Lipschitzness of a submodular function.

▶ Definition 8 (ℓ-Lipschitz). A submodular function f : 2N → R+ is ℓ-Lipschitz if ∀i ∈ N

and A ⊂ N : |f(A ∪ {i})− f(A)| ≤ ℓ. When f is monotone, this amounts to f({i}) ≤ ℓ.

▶ Lemma 9 (Vondrák [20]). Let f : 2N → R+ be an ℓ-Lipschitz monotone submodular
function. For x ∈ [0, 1]N , let R be a random set where each element i is drawn independently
using the marginals induced by x. Then for δ ≥ 0,

Pr[f(R) ≤ (1− δ)F (x)] ≤ e− δ2F (x)
2ℓ .

Discretizing costs and guessing. Our problems involve minimizing the cost of objects.
Via standard guessing and scaling tricks, if we are willing to lose a (1 + o(1)) factor in the
approximation, we can assume that all costs are integers and are polynomially bounded
in n. In particular this implies that there are only poly(n) choices for the optimum value.
We will thus assume, in some algorithmic steps, knowledge of the optimum value with the
implicit assumption that we are guessing it from the range of values. This will incur a
polynomial-overhead in the run-time, the details of which we ignore in this version.

3 High-Level Algorithmic Framework and Rounding Lemma

Our algorithms for approximating MSC and CCF share a unified framework. The framework
relies on a Rounding Lemma (Lemma 10), which provides a method to convert a fractional
solution to an integral one in a way that preserves key properties of the original fractional
solution while incurring only a minimal additive cost. In this section, we begin by presenting
and proving our Rounding Lemma (Section 3.1). We then provide a high-level overview of
the algorithmic framework (Section 3.2) built upon this Rounding Lemma.

3.1 Rounding Lemma
A key step in our framework is the ability to round fractional solutions to integral ones while
maintaining important guarantees. Our Rounding Lemma (stated below) provides a formal
method for achieving this. It shows that for r submodular functions (r ∈ O(1)), a fractional
solution satisfying certain constraints with respect to their multilinear extensions can be
(randomly) rounded in polynomial time to an integral solution. This rounding incurs only a
small (constant sized) additive increase in cost and ensures that the values of the submodular
functions are sufficiently preserved with high probability.

▶ Lemma 10 (Rounding Lemma). Let N be a finite set, c : N → R+ be a non-negative cost
function and let cmax = maxj∈N cj. Let f1, . . . , fr be monotone submodular functions over
N . For each fi, let Fi be its corresponding multilinear extension. Suppose we are given a
fractional point x ∈ [0, 1]N such that

∑
j cjxj ≤ B and Fi(x) ≥ bi for each i ∈ [r]. Then,

for any fixed ϵ > 0 there is a randomized algorithm that outputs a set S ⊆ N such that (i)
E[c(S)] ≤ B + r⌈ 2 ln(r/ϵ) ln(1/ϵ)

ϵ2 ⌉cmax, and (ii) ∀i ∈ [r] fi(S) ≥ (1 − ϵ)bi with probability at
least 1− ϵ/r.

To prove this lemma, we first establish the following helpful claim, which ensures that
after selecting a subset of elements, a monotone function becomes Lipschitz continuous
(Definition 8), with a Lipschitz constant ℓ that depends on the number of elements chosen.
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▷ Claim 11. Let N be a finite set and f be a non-negative monotonic1 function over N .
For any ϵ > 0, b > 0 and ℓ > 0, there exists a polynomial time algorithm that returns a set
S ⊆ N of cardinality at most ⌈ 1

ℓ ln( 1
ϵ )⌉ such that one of the following conditions hold: (i)

f(S) ≥ (1− ϵ)b, or (ii) ∀e ∈ N \ S, f(e | S) < ℓ · (b− f(S)).

Proof. Consider the following greedy procedure to construct S: Initialize S as the empty set.
While there exists an element e ∈ N \S satisfying f(e | S) ≥ ℓ ·(b−f(S)) and f(S) < (1−ϵ)b,
add e to S. Finally, return S.

We prove that in at most ⌈ 1
ℓ ln 1

ϵ ⌉ iterations of the while loop, the set S must satisfy (i)
or (ii). Note that trivially, the returned set S satisfies one of these conditions. In the rest of
the proof we will bound the cardinality of S.

Suppose that we never satisfy (ii) in ⌈ 1
ℓ ln 1

ϵ ⌉ iterations. We will show using induction
that we must then satisfy (i). In particular, let S(t) denote the set S after t iterations of the
while-loop in the given procedure (where S(0) = ∅), and let st+1 be the element that is to be
added to S in the (t + 1)-th iteration. Now, using induction on t, we will show that for all
t ≥ 0 the following inequality will hold

f(S(t)) ≥ (1− (1− ℓ)t)b.

For t = 0, S is the empty set, hence f(S(0)) = 0, and (1 − (1 − ℓ)0)b = 0. Assume
f(S(t)) ≥ (1 − (1 − ℓ)t)b for some fixed t. We will show that the inequality must hold for
t + 1. To see this, observe that if (ii) does not hold, then there exists an element, st+1 such
that f(st+1 | S(t)) ≥ ℓ(b− f(S(t))). Therefore we will have,

f(S(t+1)) = f(st+1 | S(t)) + f(S(t))

≥ ℓ(b− f(S(t)) + f(S(t))

= ℓb + (1− ℓ)f(S(t))
≥ ℓb + (1− ℓ)(1− (1− ℓ)t)b
= (1− (1− ℓ)t+1)b.

Therefore, for t = ⌈ ln ϵ
ln(1−ℓ)⌉, (1− (1− ℓ)t)b ≥ (1− ϵ)b holds. Thus, we are guaranteed that

after selecting ln ϵ
ln(1−ℓ) ≤ ⌈

1
ℓ ln 1

ϵ ⌉ elements, if (ii) is not met (i) holds. ◁

Using Claim 11, we prove the Rounding Lemma.

Proof of Rounding Lemma (Lemma 10). Consider the following algorithm. For a value of ℓ

that we will determine later, for each i ∈ [r], create a set Si according to the greedy algorithm
in Claim 11. We are therefore guaranteed that for each constraint i ∈ [r] fi(Si) ≥ (1− ϵ)bi

or fi(e | Si) ≤ ℓ(bi − f(Si)) for all e ∈ N \ Si. Note that Si’s may not be disjoint. Next,
perform independent randomized rounding with marginal probabilities given by x to find a
set S′. Let S = ∪i∈[r]Si ∪ S′.

We first prove that each constraint is satisfied to a (1− ϵ) approximation with probability
1− ϵ/r. Fix any constraint i ∈ [r]. Suppose the set Si returned from Claim 11’s algorithm
satisfies fi(Si) ≥ (1 − ϵ)bi, then we are done. Otherwise, we know that for all e ∈ N \ Si,
f(e | Si) < ℓ(b − fi(Si)). Denote by fi|Si

the submodular function that is defined by
fi|Si

(X) := fi(X | Si). Let b′
i = bi − fi(Si). We have that for all e ∈ N \ Si, fi(e | Si) ≤ ℓb′

i

and therefore, fi|Si
(e) ≤ ℓb′

i for all e ∈ N \ Si. Then, when we (independently) randomly
round using marginal probabilities given by x, we get using Lemma 9 for the function fi|Si

2,

1 Note that we do not need submodularity in this claim.
2 Note that the Lemma 9 applies when we round elements in N \ Si. Here we round all elements in

N and, since fi is monotone, this is guaranteed to have a higher value than rounding some of them,
therefore we can safely apply the concentration bound.
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Pr[fi|Si
(S′) ≤ (1− ϵ)Fi|Si

(x)] ≤ e
−

ϵ2Fi|Si
(x)

2ℓb′
i (1)

Now, b′
i = bi − fi(Si) ≤ Fi(x)− fi(Si) = Fi(x)− Fi(Si). Furthermore,

Fi(x)− fi(Si) =
∑
S∼x

fi(S) Pr[S]− fi(Si) (By Definition 7)

=
∑
S∼x

fi(S) Pr[S]−
∑
S∼x

fi(Si) Pr[S] (Since the probabilities sum to one)

=
∑
S∼x

(fi(S)− fi(Si)) Pr[S]

≤
∑
S∼x

(fi(S ∪ Si)− fi(Si)) Pr[S]

=
∑
S∼x

fi|Si
(S) Pr[S] = Fi|Si

(x) (Using monotonicity of fi and Definition 7)

Therefore, b′
i ≤ Fi|Si

(x). Substituting this in Equation 1, Pr[fi|Si
(S′) ≤ (1− ϵ)Fi|Si

(x)] ≤

e
−

ϵ2b′
i

2ℓb′
i Now, choosing ℓ = ϵ2

2 ln(r/ϵ) , we have Pr[fi|Si
(S′) ≤ (1−ϵ)Fi|Si

(x)] ≤ e− ϵ2
2ϵ2 ·2 ln(r/ϵ) = ϵ

r .

Therefore, with probability at least 1− ϵ/r,

fi(S) = fi(Si) + fi(S′ | Si) ≥ fi(Si) + (1− ϵ)Fi|Si
(x)

≥ (1− ϵ)Fi(x) = (1− ϵ)bi.

Now, we will look at the cost of the sets chosen. To get the required probability bound,
we need to choose ℓ = ϵ2

2 ln(r/ϵ) . Therefore, following claim 11, the size of set Si for each
i ∈ [r] is at most ⌈ 1

ℓ ln 1
ϵ ⌉ = ⌈ 2 ln(r/ϵ) ln(1/ϵ)

ϵ2 ⌉. Therefore, together the total cardinality of
∪i∈[r]Si is bounded by r⌈ 2 ln(r/ϵ) ln(1/ϵ)

ϵ2 ⌉. Finally, the expected cost of S′ is B. Together, we
get E[c(S)] ≤ B + r⌈ 2 ln(r/ϵ) ln(1/ϵ)

ϵ2 ⌉cmax.
It is easy to see that the algorithm runs in polynomial time. ◀

3.2 Overview of Algorithmic Framework
Our algorithmic framework consists of four stages. Let N denote the initial set of objects,
and let r denote the number of covering constraints.

Stage 1: Guessing Highest-Cost Objects from the Optimal Solution. First, we
“guess” Spre as the L highest-cost objects from the optimal solution, where L is chosen
to be some sufficiently large constant number that depends on r and ϵ. By guessing we
mean enumerating all possible L-sized subsets of objects from N . We use this subset to
construct a residual instance in which all objects with costs higher than any object in
Spre are discarded.
Stage 2: Constructing a Fractional Solution. Let N ′ denote the set of objects that
remain after Stage 1. We solve a continuous relaxation to obtain a a fractional solution
x ∈ [0, 1]N ′ to the residual instance.
Stage 3: Rounding the Fractional Solution. x is rounded into an integral solution
S ⊆ N ′ using Rounding Lemma (Lemma 10). S satisfies each covering constraint with
adequate probability while incurring a small additive cost.
Stage 4: Fixing S. Finally, since S only satisfies the constraints probabilistically,
additional adjustments are needed to ensure all constraints are satisfied. This is done in
a simple way by fixing each constraint individually by greedy methods.
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While our algorithms for MSC (Section 4) and CCF (Section 5) follow the high-level
framework described above, the execution of stages have several different aspects that are
covered in the next two sections.

4 Multiple Submodular Cover

We prove Theorem 1 (restated below). In the full version, we show how this algorithm can
be extended to prove Corollary 2.

We will use J to denote the input instance of MSC, which consists of a finite ground set
N , a non-negative cost function c : N → R+, and ∀i ∈ [r] monotone submodular functions fi

with associated requirement bi. Recall that we assume r is fixed. We will assume (without
loss of generality) that fi(N) = bi for all i ∈ [r].

▶ Theorem 1. There is a randomized polynomial-time algorithm that given an instance of
the MSC with fixed r and ϵ > 0 outputs a set S ⊆ N such that (i) fi(S) ≥ (1− 1/e− ϵ)bi for
all i ∈ [r] and (ii) E[c(S)] ≤ (1 + ϵ)OPT (where OPT is the cost of the optimal solution to
the instance).

4.1 Algorithm Preliminaries
4.1.1 Constructing residual MSC instances
Recall that Stage 1 of our algorithmic framework (Section 3.2) constructs a residual instance
after guessing a subset of elements from the optimal solution. Below is a definition which
describes how to construct a residual and cost-truncated residual MSC instances.

▶ Definition 12 (Residual and Cost-Truncated Residual MSC Instances). Given an MSC instance
J = (N, {fi, bi}i∈[r], c) and a set A ⊆ N , a residual instance of J with respect to A is
J ′ = (N ′, {f ′

i , b′
i}i∈[r], c) where N ′ := N\A, for all i ∈ [r], f ′

i(·) := fi|A(·) and b′
i := bi−fi(A).

We do not change c since the cost values remain unchanged, but assume its domain is restricted
to N ′. A cost-truncated residual instance of J with respect to A is a residual instance
J ′ = (N ′, {f ′

i , b′
i}i∈[r], c) in which elements in N ′ that have a higher cost than any element

in A are also removed. More precisely, N ′ = {e | e ∈ N \A and s.t. ∀e′ ∈ A c(e) ≤ c(e′)}.

4.1.2 Continuous relaxation of MSC and approximation results
To construct the desired fractional x in Stage 2, we use the continuous relaxation of MSC,
stated below as a feasibility program in MSC-Relax. For an instance J = (N, {fi, bi}i∈[r], c),
the objective of MSC-Relax is to find a fractional point x ∈ [0, 1]N whose cost is at most C

and where the value of the multilinear extension of each constraint fi, denoted by Fi, at x
satisfies the demand bi.

Note that for C ≥ OPT, where OPT is the cost of the optimal solution to the MSC
instance, MSC-Relax is guaranteed to be feasible.∑

j cjxj ≤ C

s.t. Fi(x) ≥ bi ∀i ∈ [r]

x ≥ 0

(MSC-Relax)

Finding a feasible solution to the above continuous optimization problem is NP-Hard.
The following result can be used to get an approximate solution.
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▶ Theorem 13 (Chekuri, Vondrák, and Zenklusen [10] and Chekuri, Jayram, and Vondrák [9]).
For any fixed ϵ > 0, there is a randomized polynomial-time algorithm that, given an instance
of MSC-Relax and a value oracle access to the submodular functions f1, ..., fr, with high
probability, either correctly outputs that the instance is not feasible or outputs an x such that
(i)

∑
j cjxj ≤ C and (ii) Fi(x) ≥ (1− 1/e− ϵ)bi ∀i ∈ [r].

4.1.3 Algorithm to fix MSC constraints

In Stage 4 of our MSC algorithm, we need to fix unsatisfied constraints, and for this we can
focus on a single submodular covering constraint. The relevant optimization problem is the
following:

min c(T ) s.t. f(T ) ≥ b

Suppose the optimum cost for this is C∗. Our goal is to show that we can find a set S

such that f(S) ≥ (1− 1/e)b and c(S) ≤ C∗. For this purpose we guess C∗ and recast the
problem as a submodular function maximization problem subject to a knapsack constraint
with budget C∗.

max f(T ) s.t. c(T ) ≤ C∗

Note that there is a feasible solution to this maximization problem of value at least b. We
can now use the following result. It is based on slight modification of the standard greedy
algorithm.

▶ Lemma 14 (Sviridenko [17]). There is a (1− 1/e)-approximation for monotone submodular
function maximization subject to a knapsack constraint.

4.2 Algorithm for MSC

We provide pseudo-code for our algorithm in Algorithm 1 and demarcate the various steps
involved in each of the framework stages outlined in Section 3.2. We additionally provide more
detailed descriptions of how each of the four stages in the context of our MSC approximation.

Stage 1: Choosing L and constructing J ′. In the first stage we guess sufficiently many
(i.e. L) high-cost elements from the optimal solution, denoted by S∗. To properly set L, we
define ϵ′ and ϵ′′ such that 0 < ϵ′, ϵ′′ ≤ ϵ and (1− ϵ′′)(1− 1/e− ϵ′) ≤ (1− 1/e− ϵ). Next, we
define ℓ := (ϵ′′)2

2 ln r/ϵ′′ . With this, we finally set L := r · ⌈ 1
ϵ′′ ( 1

ℓ ln 1
ϵ′′ )⌉. All these choices become

clear in the analysis. We additionally assume that |S∗| > L, otherwise we can simply return
Spre as our final solution.

Now, upon guessing (i.e. enumerating) Spre, we construct a cost-truncated residual
instance of J with respect to Spre called J ′ per Definition 12, in which N ′ will not contain
any element whose cost is higher than elements in Spre.

Stage 2: Constructing a fractional solution x using the continuous relaxation of J ′. To
construct our fractional solution x, we use the continuous relaxation of J ′, as defined in
Section 4.1.2. Let OPT′ denote the cost of an optimal solution to J ′. Using Theorem 13 we
obtain a vector x s.t.

∑
j cjxj ≤ OPT′ and ∀i ∈ [r] F ′

i (x) ≥ (1− 1/e− ϵ′)b′
i.
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Algorithm 1 Pseudocode for Bi-criteria Approximation for MSC.

Input : An instance of MSC problem denoted by J = (N, {fi, bi}r
i=1, c), ϵ

Output : Solution S ⊆ N that satisfies Theorem 1

1 Spre ← guess the L highest cost elements from an optimal solution to J
2 Eliminate all elements with higher costs than those of Spre, and create a

cost-truncated residual instance of J with respect to Spre called
J ′ := (N ′, {f ′

i , b′
i}r

i=1, c). // Stage 1
3 Using the algorithm from Theorem 13, obtain vector x ∈ {0, 1}N ′ as an approximate

solution of MSC-Relax for instance J ′. // Stage 2
4 Using Lemma 10, round x to obtain a set R ⊆ N ′. // Stage 3
5 for i ∈ [r] do
6 Ti ← ∅ // Stage 4
7 if f ′

i(R) < (1− 1/e− 2ϵ)b′
i then

8 Ti ← Elements using Greedy Algorithm by [17] s.t. f ′
i(Ti) ≥ (1− 1/e)b′

i.

9 Let T :=
⋃

i∈[r] Ti

10 return Spre ∪R ∪ T

Stage 3: Rounding x to construct set R. Now we use our Rounding Lemma (Lemma 10)
to round x to an integral solution R. The precise usage of the Rounding Lemma for this
algorithm is as follows: Given N ′, c, {f ′

i}r
i=1 and their corresponding multi-linear extensions

{F ′
i}r

i=1, our fractional point x ∈ [0, 1]N ′ satisfies
∑

j cjxj ≤ OPT′ and for all i ∈ [r],
F ′

i (x) ≥ b′′
i (where b′′

i := (1 − 1/e − ϵ′)b′
i). Rounding Lemma thus outputs an R ⊆ N ′ s.t.

(i) E[c(R)] ≤ OPT′ + r⌈ 2 ln(r/ϵ′′) ln(1/ϵ′′)
(ϵ′′)2 ⌉cmax (where cmax is the cost of the most expensive

element in N ′) and (ii) ∀i ∈ [r] f ′
i(R) ≥ (1− ϵ′′)b′′

i with probability at least 1− ϵ′′/r. Note
that this is at least (1− 1/e− ϵ)b′

i per our choice of ϵ′ and ϵ′′.

Stage 4: Greedily fixing unsatisfied constraints. For each constraint f ′
i that has yet to

be sufficiently satisfied by R, i.e., f ′
i(R) < (1 − 1/e − 2ϵ)b′

i, use the procedure outlined in
Section 4.1.3 to reformulate the problem of finding a corresponding Ti to “fix” (i.e. satisfy) it
as a submodular maximization problem subject to a single knapsack constraint. The budget
for the knapsack constraint will be OPT′. Using the greedy procedure from Lemma 14 we
obtain, for each unsatisfied f ′

i , a set Ti s.t. c(Ti) ≤ OPT′ and f ′
i(Ti) ≥ (1− 1/e)b′

i.
Letting T :=

⋃
i∈[r] Ti, our algorithm returns the elements in Spre∪R∪T . In the following

subsection, we show how this output will satisfy the coverage and cost bounds in Theorem 1

Analysis overview. We defer the formal analysis to the full version and give a brief overview
here. The analysis is not difficult modulo the powerful technical tools that we used along
the way. Let OPT be the optimum value of J ; the residual instance after picking Spre has
a feasible solution of cost OPT′ = OPT − c(Spre). Stage 2 solves a continuous relaxation
for the problem which outputs a fractional solution x that satisfies the residual constraints,
f ′

i , to a factor of (1− 1/e− ϵ)b′
i with c(x) ≤ OPT′. Then we apply our Rounding Lemma

to round x to a solution that satisfies each constraint with probability at least 1 − ϵ/r

while incurring an additive cost that we can bound as ϵc(Spre). This is because we guessed
sufficiently many high-cost elements for Spre. Since the probability of a constraint remaining
unsatisfied after rounding is at most ϵ/r, the expected cost of fixing it is at most ϵ

r OPT′ and
hence the total expected cost of fixing the constraints is ϵ · OPT′. Thus the total expected
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cost is c(Spre) + ϵc(Spre) + OPT′ + ϵOPT′ ≤ (1 + ϵ)OPT. Each constraint i is satisfied to
fi(Spre) + (1− 1/e− ϵ)b′

i ≥ (1− 1/e− ϵ)bi. The running time is dominated by the time to
guess the elements in Spre, which is polynomial since with r fixed, L is a constant.

5 Covering Coverage Functions

In this section, we prove Theorem 15 (stated below). Recall that the CCF problem (Defini-
tion 6) is a useful general problem that can model problems such as ColorVC, ColorSC, various
facility location and clustering problems, to name a few. As such, Theorem 15 subsumes
Theorem 3, which we discussed in the introduction.

We begin by discussing some technical components that are needed for our algorithm,
before proceeding with its description. We conclude the section with a brief overview of the
algorithm analysis. Again, complete details of the analysis and proof of Theorem 15 can be
found in the full version.

For the remainder of this section, we use I = (U ,S, A, b) to denote an instance of the
CCF problem with set system (U ,S), constraint matrix A, and requirements bi for i ∈ [r],
where r is assumed to be fixed.

▶ Theorem 15. Given an instance of the CCF problem such that the underlying set cover
problem has a β approximation via the natural LP, and for a deletion closed set system, for
any ϵ > 0, there exists a randomized polynomial time (in |U|, |S|) algorithm that returns a
collection A ⊆ S such that (i) A is a feasible solution that satisfies all the covering constraints
and (ii) E[c(A)] ≤

(
e

e−1

)
(1 + β)(1 + ϵ)OPT.

5.1 Algorithm Preliminaries

5.1.1 Operations on constraints

At times, we will restrict our instance to a subset of elements of the universe. We define this
as follows.

▶ Definition 16 (Restricting the Universe). Given an instance I = (U ,S, A, b) of the CCF
problem, and a subset of elements, Usub ⊆ U , we define restricting the Universe to
elements of Usub as follows: For each set S ∈ S, S ← S ∩ Usub and update the Universe
U ← Usub. For each j ∈ [n] such that j /∈ Usub, delete jth column of matrix A.

Since we assume that the underlying set system of our initial CCF instance is deletion closed,
the restricted instance is a valid CCF instance. Next, our algorithm chooses sets to be a
part of the solution in multiple stages. Accordingly, we update the instance to reflect this
selection. This is defined as follows.

▶ Definition 17 (Residual Instance-CCF). Given an initial instance I = (U ,S, A, b) and
a collection F ⊆ S of sets we define a residual instance of I with respect to F as
follows: For all j ∈ ∪S∈F S and i ∈ [r], set Aij = 0. For all i ∈ [r], set bi ← bi − fi(F). In
addition, for all i ∈ [r], let fi|F (·) denote the submodular function that corresponds to the ith

constraint.
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5.1.2 Greedy algorithm to fix CCF constraints
Recall that our framework requires us to have the ability to satisfy a single constraint. For
the CCF problem, we use the following from [8]. Consider a universe of size n with a collection
of m subsets of the universe. Each element j ∈ [n] has a weight wj and each set i ∈ [m] has
a cost ci. Suppose we want to pick a sub-collection of sets with maximum weighted coverage
such that a budget constraint is satisfied. We can write the following LP for this problem.

max
∑

j∈[n] wjzj

s.t.
∑

i:j∈Si
xi ≥ zj∑

i∈[m] cixi ≤ B

zj ≤ 1 for all j ∈ [n]

0 ≤ xi ≤ 1 for all i ∈ [m]

(LP-MBC)

This is called the Max-Budgeted-Cover problem. One can run the standard greedy
algorithm for this problem and [8] shows the following guarantee.

▶ Lemma 18 (Chekuri et al. [8]). Let Z be the optimum value of (LP-MBC) for a given
instance of Max-Budgeted-Cover with budget B. Suppose Greedy Algorithm is run till
the total cost of sets is equal to or exceeds B for the first time. Then the weight of elements
covered by greedy is at least (1− 1

e )Z.

▶ Remark 19. The proof of the above lemma yields a stronger result: the Greedy algorithm
achieves the same guarantee even when restricted to the support of the fractional solution.
This will be useful in implicit settings.

5.2 Algorithm for CCF
Stage 1: Guess the high cost elements. Following the framework, we guess ( r

ℓ ln 1
ϵ + r)

high cost elements from some fixed optimal solution (Line 1). The number ℓ is chosen to be
ϵ2

2 ln r/ϵ
. After this, we construct a residual instance to reflect this selection and work with the

residual instance for remaining stages.

Stage 2: Construct Fractional Solution x using the LP Relaxation. Recall that the
objective in CCF is to solve the integer program IP-CCF. To obtain a fractional solution,
in Line 3 we solve the linear relaxation of this program LP-CCF for the residual instance
obtained after Stage 1 and obtain a solution (x∗, z∗).

Stage 2′: Obtain a slack in covering. We divide the elements into two categories: The
heavy elements (He) are those for which z∗

j ≥ (1− 1
e )(1− ϵ), while the shallow elements are

the remaining non-heavy elements.
We will first cover the heavy elements completely (in Line 4). This is done by restricting

the universe to He, using (x∗, z∗) restricted to He as a solution for canonical LP of the
canonical set cover problem and then using the β-approximation promised in the problem to
obtain an integral covering. Here we use the fact that the instance is deletion closed. We
then scale the shallow elements by

(
e

e−1

) (
1

1−ϵ

)
to obtain a corresponding slack in covering.

Stage 3: Round fractional solution. We take the scaled fractional covering of shallow
elements and round it using a call to Lemma 10 (Line 5).
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Algorithm 2 Pseudocode for Covering Coverage Functions.

Input : An instance of CCF problem denoted by I = (U ,S, A, b)
Output : A subset, A ⊆ S of the sets satisfying the claims in Theorem 15

1 With ℓ = ϵ2

2 ln r/ϵ
construct Spre by guessing the r · ⌈ 1

ℓ ln 1
ϵ ⌉+ r highest cost sets from

a fixed optimal solution of I. // Stage 1
2 Eliminate all sets with cost higher than any set in Spre and then create I ′ as residual

instance of I with respect to Spre

3 Compute (x∗, z∗) as the optimal solution to linear program relaxation for the
instance I ′, given in LP-CCF // Stage 2

4 Define He := {j | z∗
j ≥ (1− 1

e ) · (1− ϵ)}. Restrict the U to He, use(
e

e−1

) (
1

1−ϵ

)
(x∗, z∗) as solution for the canonical set covering LP and use the

corresponding algorithm to cover all elements in He. Call the sets selected here She

// Stage 2’

5 Restrict U to U \He and use
(

e
e−1

) (
1

1−ϵ

)
· (x∗, z∗) as solution to fairness

constrained LP-CCF for the instance I ′. Round this using Lemma 10 and call the
sets chosen here Ssh // Stage 3

6 For i ∈ [r] if fi is not satisfied, create Gi by choosing greedily (with respect to
marginal value) sets from S till it is satisfied. // Stage 4

7 return Spre ∪ She ∪ Ssh ∪
( ⋃

i∈[r] Gi

)

Stage 4: Greedy fixing of the solution. For any constraint i ∈ [r] that is not satisfied, we
will fix it via a greedy algorithm. Following the greedy fix for Max-Budgeted-Cover in
5.1.2, this works as follows: From the collection of sets not picked, pick the sets greedily in
order of decreasing bang-per-buck (ratio of marginal value of the set and its cost).

Analysis overview. We defer the formal analysis to the full version and give a brief overview
here. First, we define, OPT′ = OPT− c(Spre), where OPT and OPT′ are the optimal values
for I and I ′ (the residual instance of I with respect to Spre), and Spre is the set of elements
guessed in Stage 1. In Stage 2 we solve an LP relaxation to obtain a fractional solution x
that satisfies all the constraints exactly with c(x) ≤ OPT′.

Following our framework, we want to use our key lemma to round x. However, the lemma
is based on the multilinear relaxation F ′

i of the residual function f ′
i while x satisfies the

constraint based on the LP. Hence, we must address the issue of the correlation gap [5, 19],
since working with F ′

i (x) loses a factor of (1− 1/e) in covering the constraint and our goal is
to cover it exactly. To address this, we scale up the LP solution by a factor of e

e−1 . Note
that in doing so, there will be some points that are already covered beyond (1 − 1/e) and
their coverage should not exceed 1. Following [13, 8], we first separate out the points that are
covered already to more than (1− 1/e). Scaling covers them in the LP to 1, and we can cover
all those points via the LP-based Set Cover algorithm promised to us by the deletion-closed
set system. The cost of covering them is β e

e−1 OPT′. For points that are covered less than
(1 − 1/e) the scaling increases their coverage by a factor of e

e−1 , allowing us to work with
the multilinear relaxation and avoid the (1− 1/e) correlation gap. This allows us to use the
Rounding Lemma on these points to fully cover them. A minor technicality to note is that
the Rounding Lemma loses a (1− ϵ)-factor in the coverage so we actually must scale up the
LP by

(
e

e−1

) (
1

1−ϵ

)
. Thus, the expected cost of the random rounding is (1 + O(ϵ)) e

e−1 OPT′

plus the additive cost which we bound as an ϵ-fraction of c(L) as in MSC analysis.



T. Bajpai, C. Chekuri, and P. Kulkarni 25:17

To fix the unsatisfied constraints, and achieve exact coverage, we do the analysis with
respect to the scaled up LP solution and take advantage of Lemma 18. The expected cost of
fixing can be bound by ϵ(1 + O(ϵ)) e

e−1 OPT′ since each constraint is satisfied with probability
ϵ/r in the random rounding. Thus the total cost is

c(Spre) + ϵc(Spre) + (1 + O(ϵ))β e

e− 1OPT′ + (1 + O(ϵ)) e

e− 1OPT′ + ϵ(1 + O(ϵ)) e

e− 1OPT′

≤ (1 + O(ϵ)) e

e− 1(β + 1)OPT.

Each constraint i is satisfied fully as per the discussion. The running time of our algorithm
is dominated by guessing Spre. With r fixed, the size of Spre is a constant and the running
time is polynomial.

6 Applications to Facility Location with Multiple Outliers

In this section, we give an overview for applying the CCF framework to the problem of
Facility Location with Multiple Outliers (FLMO). For complete details and an application to
facility location to minimize sum of radii, we refer the reader to full version of the paper.
FLMO is a generalization of the classical facility location problem, in which clients belong
to color classes, and the objective is to cover a required number of clients from each class.
Specifically, we are given a set of facilities F , a set of clients C, where each client belongs to
at least one of r color classes Ck (i.e. C = ∪k∈[r]Ck), and a metric space (F ∪ C, d). Each
facility i ∈ F has an associated non-negative opening cost fi, and each client j ∈ C can be
served by assigning it to an open facility i, incurring connection cost d(i, j). For each color
class Ck, we are given a required demand bk (where 1 ≤ bk ≤ |Ck|). The goal is to open
facilities and assign clients to facilities such that at least bk clients from Ck are serviced by
a facility, and where the total facility and connection costs of opened facilities and their
assigned clients is minimized.

FLMO can be naturally expressed as an instance of the CCF problem over an exponentially
large set system, where the universe of elements is C and where each set corresponds to a
star (i, S) defined by a facility i ∈ F and a subset of clients S ⊆ C assigned to it. The goal is
to select a collection of such stars to cover at least bk clients from each color class Ck, while
minimizing the total cost, where the cost of a star is given by c(i, S) := fi +

∑
j∈S d(i, j).

We can capture this problem via the following exponentially sized CCF-esque IP.

min
∑
i∈F

∑
S⊆C

c(i, S) · x(i, S)

s.t.
∑
i∈F

∑
S⊆C
j∈S

x(i, S) ≥ zj ∀j ∈ C

∑
j∈Ck

zj ≥ bk ∀k ∈ [r]

x(i, S), zj ∈ {0, 1} ∀i ∈ F, S ⊆ C, j ∈ C

(IP-FLMO)

Since there are exponentially many stars to be considered, we apply a refined version of
the CCF framework that avoids explicitly enumerating all possible stars. The key change is
that instead of guessing the high cost stars, we guess certain high-cost components of the
optimal solutions.

We now describe each stage of our refined CCF-based algorithm for FLMO, beginning
with a pre-processing step (Stage 0) that enables efficient guessing and separation oracle.
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Stage 0: Scaling and pruning facility and connection costs. As is standard, we assume
that the value of the optimal solution OPT is guessed up to a (1 + o(1)) factor (we overload
OPT to denote both the true and guessed optimal cost). This introduces only a polynomial
overhead in runtime and at most a (1 + o(1)) loss in the approximation ratio. In addition to
guessing OPT, we define a polynomial scaling factor B := n3.

Using the guessed OPT and B, we can now eliminate any unnecessary or negligible facility
and connection costs. First, we disallow (i.e. remove from the instance) any facilities i for
which fi > OPT since we know they will never be selected in the optimal solution. We also
disallow any connections between facilities i and clients j for which d(i, j) > OPT. Next, for
any facility i with fi ≤ OPT/B, we define its scaled cost f̄i := 0; for any client-facility pair (i, j)
where d(i, j) ≤ OPT/B, we define the scaled connection cost d̄(i, j) := 0. For the remaining
facility and connection costs, we scale them as follows: f̄i := ⌈B/OPT · fi⌉ , d̄(i, j) :=
⌈B/OPT · d(i, j)⌉ . This will guarantee that all scaled facility costs will be integer-values in
[0, B]. Thus, the scaled cost of each star c̄(i, S) := f̄i +

∑
j∈S d̄(i, j) will be some polynomially

bounded integer. The discretized distances d̄(i, j) may no longer form a metric (since they
may violate triangle inequality), however, this is fine since our CCF framework did not require
set costs to satisfy such properties. The metric property for distances will only be required
in Stage 2’, when we must solve the canonical facility location problem to cover heavy clients.
For that stage, we will show that we can viably revert back to using the original metric d.

This pre-processing step will incur at most an additive O(OPT/B) term per cost term, and
thus will result in a 1 + o(1) multiplicative increase in the total cost of the solution, but this
can be absorbed into our final approximation factor. In the rest of the section we assume
that we have guessed OPT correctly to within a (1 + o(1)) factor.

Stage 1: Guessing high-cost components. This stage consits of two parts: (1) Guess some
high cost components (2) Create a residual instance accounting for the guess.

Guess high-cost components. In the CCF framework, we needed to guess the L :=(
r
ℓ ln 1/ϵ + r

)
most expensive stars from the optimal solution. This is because our rounding

procedure in Lemma 10 and the greedy fix step later choose these many extra sets to satisfy
the constraints and we account for these sets via the initial guesses. For the FLMO setting
explicitly guessing a a star (i, S) would require exponential time. To circumvent this we
instead guess partial information about many stars. However, we must now guess more
information due to this partial knowledge.

Specifically, we guess tuples of the form (ih, Sh, gh) for h ∈ [T ] with T = ⌈L/ϵ⌉, where ih

is a facility from one of the T highest cost stars, Sh ⊆ C is a set of the L farthest clients
assigned to ih in the optimal solution, and gh is the total cost of the full optimal star at
facility ih, i.e., c̄(ih, S∗

h), where S∗
h denotes the full client set served by ih. We note that if

there are fewer than T stars in the optimum solution, the problem becomes simpler; in that
case we would have guessed all the optimum’s facilities. This will be clear after a description
of the remaining analysis and we give a remark at the end of Stage 3 as to how to deal with
that case. Let OPTguess be the cost of the guessed portion of the solution.

Create residual instance. Let Spre := {(ih, Sh, gh)}h∈[L] denote the collection of guessed
partial stars. We define Fpre := {ih | (ih, Sh, gh) ∈ Spre} as the set of guessed high-cost
facilities, and Cpre :=

⋃
h∈[L] Sh as the set of clients guessed to be served by those stars. Let

G := minh∈[L] gh be the smallest guessed star cost across all tuples.
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Now, to describe the residual instance with respect to these guessed components, first
update the color demands bk to b′

k := bk − |Ck ∩ Cpre|. Next, restrict attention to clients in
C \ Cpre and define for each facility i ∈ F a restricted family of allowable stars, denoted by
Si, and updated star costs, denoted by c̄′, as follows:

For i ∈ Fpre, we allow only singleton stars (i, {j}) with j ∈ C \ Cpre and d̄(i, j) ≤
minj′∈Sh

d̄(i, j′) (for the corresponding tuple (i, Sh, gh) ∈ Spre). For these stars, we define
the updated cost as c̄′(i, {j}) := d̄(i, j), since after guessing Spre, we account f̄i to open
facility i and the connection costs for the clients in Sh.
For i /∈ Fpre, we allow any star (i, S) with S ⊆ C \ Cpre and total cost at most G. For
these stars, the cost remains as c̄′(i, S) := f̄i +

∑
j∈S d̄(i, j).

Restricted Primal (LP-FLMO)

min
∑
i∈F

∑
(i,S)∈Si

c̄′(i, S) · x(i, S)

s.t.∑
i∈F

∑
(i,S)∈Si:

j∈S

x(i, S) ≥ zj ∀j ∈ C \ Cpre

∑
j∈Ck\Cpre

zj ≥ b′
k ∀k ∈ [r]

zj ≤ 1 ∀j ∈ C \ Cpre

0 ≤ x(i, S) ≤ 1 ∀i ∈ F, (i, S) ∈ Si

0 ≤ zj ∀j ∈ C \ Cpre

Dual

max
r∑

k=1
b′

k · βk −
∑

j∈C\Cpre

γj

s.t.∑
j∈S

αj ≤ c̄′(i, S) ∀i ∈ F, (i, S) ∈ Si

αj − γj ≤ βk ∀j ∈ Ck \ Cpre, ∀k ∈ [r]

αj , βk, γj ≥ 0 ∀j ∈ C \ Cpre, k ∈ [r]

(LP-FLMO Primal & Dual)

Stage 2: Constructing a fractional solution via the dual. We now solve an LP relaxation
for the residual instance defined in Stage 1. This may still contain exponentially many
variables. To solve this LP efficiently, we apply the ellipsoid method to its dual (see LP-
FLMO Primal & Dual), which has polynomially many variables but exponentially many
constraints. This requires a polynomial-time separation oracle which, given a candidate
dual solution (α, β, γ), either certifies feasibility or returns a violated constraint. That is, it
identifies residual star (i, S) ∈ Si such that

∑
j∈S αj > c̄′(i, S). Again, since facility costs f̄i

and distances d̄(i, j) are integral and polynomially bounded (from pre-processing in Stage 0),
we can design such an oracle. We formalize this as the following lemma.

▶ Lemma 20. Assuming that all distances d̄(i, j) and facility costs fi are integral and
polynomially bounded, there exists a polynomial-time separation oracle for the dual LP given
in LP-FLMO Primal & Dual.

Note that the LP may not be feasible if our guess was incorrect. In this case we can discard
the guess. For a correct guess, we denote the cost of this LP solution by OPTLP. Note that
OPTLP ≤ OPT− OPTguess.

Stage 2’: Handling Heavy vs. Shallow Clients. Given the fractional solution (x∗, z∗) to
the residual LP, we now have a polynomial-sized support of stars. We begin by partitioning
the clients into heavy clients Che and shallow clients Csh based on their fractional coverage:
let Che := {j ∈ C \ Cpre | zj > τ} and Csh := {j ∈ C \ Cpre | zj ≤ τ}, where we set
τ := (1 − 1/e)(1 − ϵ) as in the CCF framework. To cover the heavy clients, we prove the
following lemma.
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▶ Lemma 21. Given (x∗, z∗), a feasible solution to the residual LP with cost OPTLP, there
is an efficient algorithm to cover the heavy clients Che with cost at most βFL ·

(
e

e−1

)
·
(

1
1−ϵ

)
·

OPTLP, where βF L is the approximation factor of the underlying LP-based approximation
algorithm for UCFL.

Now, to proceed with Stages 3 and 4 for the shallow clients, we perform the following steps.
Restrict the instance to shallow clients. In our fractional solution for the primal in
LP-FLMO Primal & Dual, we update the stars to only have shallow clients and remove all
the heavy clients. The variables x(i, S) remain unchanged. The z variables are restricted
to only shallow clients. We also update the covering requirements to reflect that heavy
clients have already been selected: b′

k := b′
k − |Ck ∩ Che| for each color class k ∈ [r].

Scale the solution. We scale the solution by
(

e
e−1

) (
1

1−ϵ

)
. Note that the new scaled

solution is a feasible solution for the primal in LP-FLMO Primal & Dual with a cost(
e

e−1

) (
1

1−ϵ

)
·OPTLP and each color’s residual requirement is over-covered by a factor of

e
(e−1)(1−ϵ) .

Stage 3: Rounding the fractional solution. We work with the residual instance restricted
to shallow clients and scaled as mentioned in the previous stage. We now want to apply
Lemma 10 to round this fractional solution. The algorithm in the lemma potentially picks
L stars to ensure that randomized rounding satisfies the constraints with high probability.
Algorithmically, we still perform the same step. For each color class k ∈ [r], we select (up to)
the top 1

ℓ ln(1/ϵ) stars from the support of the fractional solution x∗. The proof of Lemma 10
easily extends to only picking from the support. Finally, we randomly round the remaining
stars with probabilities given by x∗. Suppose the set of stars chosen in this stage is S(Csh).
We can prove the following key lemma.

▶ Lemma 22. After selecting the stars S(Csh), each constraint is satisfied with probability
at least 1− ϵ/r and the expected cost of S(Csh) is bounded by

(
e

e−1

) (
1

1−ϵ

)
OPTLP + ϵOPT +

OPTguess.

Stage 4: Greedily fixing remaining unsatisfied constraints. If any color class constraint
remains unsatisfied after Stage 3, we fix it by greedily selecting stars until the constraint
becomes satisfied. As in the original CCF framework, we can employ the greedy fix from
the Max-Budgeted-Cover heuristic. The LP-MBC for this problem is to select a subset
of stars that cover the maximum number of clients at a cost bounded by e

(e−1)(1−ϵ) OPTLP.
Further, as per the remark after Lemma 18, this Greedy can be executed by only looking at
the support of the LP solution. Therefore the step can be performed in polynomial time.
Similar to the analysis in CCF, this greedy fix is applied to the rth covering class with a
probability bounded by ϵ/r. Further we can show that the total expected cost to fix all
constraints is bounded by ϵ · OPT + rcmax where cmax is the cost of highest cost star in the
support. Each star in the support has cost at most ϵOPT/r due to the guessing in Stage 1
(as discussed in proof of Lemma 22). Hence the expected fixing cost is (1 + O(ϵ))OPT.

Putting together, we obtain the following result. The analysis is similar to that of CCF.
The running time is polynomial in nO(r/ϵ2).

▶ Theorem 4. Let β be the approximation ratio for UCFL via the natural LP relaxation.
Then there is a randomized polynomial-time algorithm that given an instance of FLMO with
fixed r and ϵ > 0 yields a e

e−1 (β + 1 + ϵ)-approximate solution.
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