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Abstract
Maxcut is a fundamental problem in graph algorithms, extensively studied for its theoretical and
practical significance. The goal is to partition the vertex set of a graph G = (V, E) into disjoint
subsets S and V \ S so as to maximize the number of edges crossing the cut (S, V \ S). The seminal
work of Goemans and Williamson [39] introduced a semidefinite programming (SDP) based algorithm
achieving a αGW ≈ 0.87856-approximation for general graphs, guaranteed to be optimal under the
Unique Games Conjecture [56, 57].

We revisit the Goemans–Williamson SDP and prove that the standard Maxcut SDP achieves
a (αGW + Ω(1))-approximation whenever the input graph contains Ω (|E|) edge-disjoint triangles.
Our analysis builds on classical rounding techniques studied in [39, 76] and introduces a refined
understanding of the SDP solution structure in regimes where the previous guarantees are tight.
Our result identifies a simple combinatorial property that may be satisfied by many natural graph
classes.

As applications, we show that unit ball graphs and graphs satisfying a spectral transitivity
condition (as studied in [40, 12]) meet our structural criterion, and therefore we get better than αGW

approximation guarantees for them. Our algorithm runs in nearly linear time Õ (|E|), offering a more
practical alternative to the PTAS of [48] for unit ball graphs, which has exponential dependence on
the approximation parameter.
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1 Introduction

We study the Maxcut problem, a fundamental problem in combinatorial optimization. We
are given a graph G = (V, E), and the goal is to partition the vertex set V into disjoint
subsets S and V \ S such that the number of edges crossing the cut (S, V \ S) is maximized.
Maxcut is one of Karp’s original NP-hard problems [53] and has been extensively studied
both for its theoretical depth and its wide range of applications, including areas such as
VLSI design [23], statistical physics [9], and image segmentation [15].
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A simple algorithm that outputs a random cut in the graph achieves a 0.5-approximation.
For a long time, this remained the best known algorithm for the problem, until the seminal
work of Goemans and Williamson [39] introduced a semidefinite programming (SDP) based
algorithm that achieves roughly 0.87856-approximation factor. The exact value of the
approximation ratio is known as the Goemans-Williamson constant αGW ≈ 0.87856. The
guarantee is also tight in the worst-case, due to an integrality gap construction [36], and is
guaranteed to be optimal assuming the Unique Games Conjecture [56, 57].

While the SDP achieves αGW-approximation ratio in the worst-case instances, it is
natural to ask whether stronger guarantees can be obtained on more structured inputs.
In this work, we identify a simple combinatorial property, namely the presence of many
edge-disjoint triangles, that suffices to improve the approximation ratio achieved by the
Goemans–Williamson SDP. We show that this property holds for several natural classes of
graphs, including unit ball graphs and certain real-world networks. Our results thus provide
provable guarantees explaining improved SDP performance on structured instances, offering
a step towards a broader understanding of approximation algorithms beyond the worst-case.

1.1 Our Results and Techniques
We start by presenting our main result about the Maxcut SDP,

▶ Theorem 1 (Informal Version of Theorem 18). Given a graph G = (V, E), having optimal
Maxcut value opt(G), there exists an algorithm Alg(G) running in Õ(|E|) time such that,

E[Alg(G)] ≥
(

αGW + Ω
(

∆(G)
|E|

)2
)

opt(G),

where ∆(G) denotes the number of edge-disjoint triangles in G.

Our approach involves a refined analysis of the standard Maxcut SDP. The original
analysis of Goemans and Williamson [39], and subsequent follow-up works [76, 35], already
show an Ω(1) improvement (over αGW) in certain regimes of sdpopt, the SDP optimum value.
We leverage these results as black-box components. Our main technical contribution is to
show that for the remaining regimes of sdpopt, those where there are no known guarantees,
the approximation ratio can still be improved by an additive factor of Ω(∆(G)/ |E|)2. This
yields a uniformly improved (αGW + Ω(1))-approximation ratio in graphs whenever the
number of edge-disjoint triangles ∆(G) = Ω(|E|).

Although SDP-based algorithms are often considered computationally expensive, recent
developments [3, 65, 68] have enabled fast implementations for these on a broad class of
constraint satisfaction problems (CSP), including Maxcut .

We then proceed to identify natural classes of graphs where this structural condition holds.
Combined with Theorem 1, this suffices to show an improved (αGW + Ω(1))-approximation
guarantees. Specifically, we give a constructive proof showing that unit ball graphs, including
unit interval graphs, unit disk graphs, and their higher-dimensional generalizations contain
Ω(|E|) edge-disjoint triangles.

▶ Proposition 2 (Informal Version of Theorem 31). For any geometric intersection graph of
unit balls in Sk−1 with degree d ≥ 6(2)3k, it has Ωk (|E|) many edge-disjoint triangles.

▶ Corollary 3. For any geometric intersection graph of unit balls in Sk−1 with average degree
at least 6(2)3k, there exists an algorithm achieving a (αGW + Ω(1))-approximation for the
Maxcut problem on G.
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We note that [48] previously gave a PTAS (Polynomial Time Approximation Schemes)
for Maxcut on unit disk graphs via a dynamic programming approach that partitions the
graph into dense components, which are then solved using the dense graph algorithm of [4].
They also note that their techniques extend to general unit ball graphs.
▶ Remark 4. We contrast our running time with that of the algorithm by the work [48],
which achieves a PTAS for Maxcut on unit ball graphs. When combined with the fast dense
graph algorithm of [60] as a subroutine, their overall running time becomes O(|E|+ 2O(1/υ2)).
The exponential dependence on υ makes the running time of their algorithm impractically
large even for values of υ as large as υ = 0.1.

Our work also considers Maxcut SDP on models inspired by real world networks
considered by [12] which satisfy a spectral criterion of τ(G) = Ω(1). We elaborate on the
spectral condition τ(G) in Section 4.2; intuitively, it captures a form of triadic closure
commonly observed in social networks and community-structured networks.

▶ Lemma 5 (Section 3 in [12]). For any regular graph G satisfying a spectral condition
τ(G) = Ω(1), the number of edge-disjoint triangles in graph is Ω(|E|).

▶ Remark 6. Some degenerate unit ball graphs, such as path graphs contain no triangles.
However, if the satisfy a mild constant lower bound on the average degree, they indeed have
high edge-disjoint triangle density. We also show that graphs satisfying the spectral criterion
in the work [12] have large number of edge-disjoint triangles. For graphs with low average
degree (|E| = O(|V |)), we can alternatively use the SDP-based algorithm of [44], which
achieves a (αGW + Ω(1))-approximation, albeit with higher running time due to additional
l2
2-triangle inequality constraints in their SDP

1.2 Related Work
Maxcut Problem

The problem has been extensively studied across various settings. As noted earlier, in the
worst-case graphs, a simple 0.5-approximation was known from [32, 66] which was best until
[39] gave an αGW-approximation algorithm. The SDP is also known to be tight due to an
integrality gap example of [36]. On the hardness front, Maxcut is APX-hard in general
graphs, and has a 16/17-hardness of approximation due to [46, 71]. Further, αGW is also
conjectured to be the optimal approximation ratio achievable assuming UGC [56, 57].

The work of [70] showed how to achieve a better than 0.5-approximation without using
SDP. They show that the eigenvector corresponding to the smallest eigenvalue of the graph’s
adjacency matrix could be used to obtain at least 0.531-approximation algorithm, the bound
was later improved to 0.614 by [67].

The problem has also been considered in various special graph classes. On the algorithmic
front, [43] shows that the problem can be solved for planar graphs. The work [41] shows
that the problem is polynomial time solvable for line graphs. The work [15] shows how to
solve the problem efficiently on bounded treewidth graphs. The work [19] gives an efficient
algorithm for co-bipartite chain graphs. The approximation guarantees also have been studied
extensively in works of [25, 52, 70]. The work [4] showed how LP relaxations can yield a
PTAS for the problem on dense graphs. The work [60] later showed that a greedy randomized
algorithm can give a PTAS for the problem, with a runtime of O

(
|E|+ 2O(1/υ2)

)
.

The work [13] shows that the problem remains NP-hard on cubic graphs. The work [41]
showed it is NP-hard for total graphs. The work [15] then showed that it remains NP-hard
for chordal graphs, split graphs, co-bipartite graphs, and tripartite graphs. Lower bounds on
opt(G) for the problem were also studied in the works of [32, 31, 22].

APPROX/RANDOM 2025
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Maxcut SDP

SDP algorithms are central to state-of-the-art solutions for a range of problems, such as graph
coloring [54], sparsest cut [5], correlation clustering (maximizing agreements version) [69],
maximizing cut norm of matrix [2], max bisection [6], maxcut in general graphs [39], among
others. While SDP algorithms are traditionally viewed as “slow”, recent developments [3, 68]
enable fast implementation of these algorithms for many Constraint Satisfaction Problems
(CSPs) such as the Maxcut problem.

The Maxcut SDP itself has received a lot of attention over the years. The SDP
formulation itself was originally proposed an earlier work of [29], and [39] gave a randomized
rounding algorithm which produced a cut having (in expectation) at least αGW fraction of
the edges in the optimal cut. The work [76] gave a rounding algorithm based on “outward
rotations”, which we review in Section 2.2. Later [35] further generalized this with the RPR2

rounding procedure; which they claim is at least as good as algorithm by [76] and potentially
better than [76] (Theorem 5.2 in [35]), though this improvement was formally demonstrated
only for particular values of opt(G). This culminated with the work of [64] that characterized
the entire approximability curve of the Maxcut SDP on general graphs.

For bounded degree graphs, the work of [34] showed that the Maxcut SDP combined
with a local algorithm achieves a αGW + Ω(1/d4)-approximation algorithm, which was later
improved to αGW + Ω

(
1/d3) in the work [37], and recently improved to αGW + Ω(1/d2 log d)-

approximation by the work [44], where d is the maximum degree of the graph. For dense
graphs and their spectral generalizations, the works of [10, 42] showed that one can obtain
a PTAS for this problem in time nO(1/ε) by using a higher-order SDP (degree O(1/ε) sum
of squares hierarchy). Combining these results with ideas from [48], one can also obtain a
PTAS for unit ball graphs (albeit with higher running time compared to [60]).

Fast SDP Solvers

The work [3] developed the framework of approximately solving SDPs using the Matrix
Multiplicative Weight Update method. The work [68] builds on this to develop a fast SDP
solver by designing an efficient separation oracle. When paired with the general rounding
algorithm of [65], it yields an algorithm for approximately solving a canonical SDP relaxation
for a CSP with n variables and m constraints (up to a (1− υ) factor for some υ > 0) in
running time O(m poly(logn)poly(1/υ)).

Geometric Intersection Graphs

Geometric intersection graphs are graphs where vertices represent geometric objects, such
as intervals, disks, rectangles, polygons etc., and there is an edge between vertices if the
corresponding objects overlap. These graphs have applications in wireless networks [45],
resource allocation [7], protein sequencing [50], VLSI design [23], statistical physics [9], and
image segmentation [15]. An important class of geometric intersection graphs are interval
graphs. It is well-known that many NP-hard problems become easy on interval graphs, such
as graph isomorphism [17], maximum clique/independent set problem [47], hamiltonian cycle
[55], maximum dominating set [24], graph coloring [75, 21], minimum vertex cover [59].

Maxcut in Geometric Intersection Graphs

One may conjecture that Maxcut problem follows a similar narrative, and this was posed
as an open question in [49]. Earlier works due to [16] and then [18] claimed a polynomial
time algorithm for the problem, however both proofs were subsequently reported to be
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incorrect due to the works of [14] and [58] respectively. The problem thus remained open for
a very long time, and the mystery was resolved only recently in [1] where they show that the
problem is NP-hard on general interval graphs.

An interval count of an interval graph is defined as the number of distinct interval lengths
in an interval graph, and thus unit interval graphs have interval count 1. The work of [28]
showed that the problems is NP-hard even if interval count is 4. More recently, [11] improved
upon this to show that Maxcut remains NP-hard even when interval count is 2. However,
whether the problem is NP-hard for unit interval graphs (interval count 1) remains an open
question. The work of [30] established that the problem is NP-hard on unit disk graphs.

On the algorithmic front, [48] proposed a PTAS (polynomial time approximation scheme)
for the problem on unit ball graphs. They give a graph partitioning algorithm that employs
a Dynamic Programming approach to partitions the graph into dense components such that
(1− υ)-fraction of edges lie inside these components. For dense components they apply the
dense graph Maxcut algorithm of [4] and obtain an (1−O(υ))-approximation with running
time O

(
|E|+ 2O(1/υ2)

)
, which is impractically large for even large values of υ (say υ = 0.1).

Real World Graphs

While the performance of Maxcut SDP on random Erdős–Rényi G(n, p) graphs has received
considerable attention [27, 62, 38, 61], such models fail to capture many key features of
real-world networks, such as community structure, heavy-tailed degree distributions, and high
clustering coefficients. There are various models proposed to mimic such real-world features
as: the Preferential Attachment Model due to [8], the small-world network model due to [74],
and more recently frameworks such as the combinatorial triangle-dense decompositions by [40]
and the “spectral triadic decomposition” by [12]. These capture the role of triangles and
higher-order motifs in capturing the nuanced community structure of real-world networks.
We will discuss real-world graphs in detail in Section 4.2.

2 Overview and Discussion

We start by setting up some notation in Section 2.1. We review the proof of the algorithm due
to [39] and the critical values where their analysis is tight. Then we discuss the improvement
by [76], followed by our algorithm. In Section 2.4, we present an overview of the proof and
our main result. The proof is in two parts, first we show (formally in Section 3) that proving a
certain structural property about the SDP can lead to an improved approximation algorithm.
Later, in Section 4 we show that the desired property holds for some natural class of graphs.

2.1 Notation
Let E(U, V ) denote the set of edges from set U to set V , and Kn denote the complete graph
on n vertices. We let T (G) denote the maximum number of triangles in a graph, and ∆(G)
denote the maximum number of edge-disjoint triangles in a graph G. We let N (0, 1)n denote
a multivariate normal distribution in Rn where each of the n components is an independent
standard normal random variable with mean 0 and variance 1.

2.2 Preliminaries
We recall the Maxcut SDP relaxation due to [29], typically presented in vector formulation,

APPROX/RANDOM 2025
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▶ SDP 7 (Maxcut SDP).

max
∑

{i,j}∈E

1
2 (1− ⟨vi, vj⟩)

subject to

∥vi∥2 = 1 ∀i ∈ V

The SDP was analyzed using a novel randomized rounding procedure by [39] where
they show how to obtain an αGW approximation algorithm (denoted AlgGW) for the Max-
cut problem. Their rounding algorithm samples a random hyperplane by sampling the
normal (a random n dimensional gaussian vector g ∼ N (0, 1)n) and computes the set
Sg = {i : ⟨vi, g⟩ ≥ 0}. They output the edges cut by the algorithm as E(Sg, V \ Sg). We
reproduce their analysis below. We let optMC = opt(G) denote the optimal value for the
Maxcut problem in G and sdpopt = opt (SDP 7) .

▶ Definition 8 (GW Critical Constants). We consider the functions hr(t) and gr(t) below
from the analysis in works of [39] and [76],

hr(t) = arccos (r (1− 2t))
π

and let gr(t) = hr(t)
t

where t ∈ (0, 1] and r ∈ [0, 1].

We define the unique minimum value of g1(t) as αGW (≈ 0.87856) which is obtained for
t = tc ≈ 0.84458. Also, we let θc = πh1(tc) = arccos (1− 2tc) ≈ 133.56345◦.

▶ Theorem 9 (Theorem 3.3 in [39]). For a graph G = (V, E) the following holds,

E
g∼N (0,1)n

[
|E(Sg, V \ Sg)|

]
≥ αGW optMC

Proof. Their proof is a term by term analysis of the edges cut by the rounding algorithm
and it’s contribution to the SDP objective value. Let θij

def= arccos (⟨vi, vj⟩) and we note,

E
g∼N (0,1)n

[
|E(Sg, V \ Sg)|

]
=

∑
{i,j}∈E

E
g∼N (0,1)n

[
1{i,j}∈E(Sg,V \Sg)

]
=

∑
{i,j}∈E

P
g∼N (0,1)n

[{i, j} ∈ E(Sg, V \ Sg)]

=
∑

{i,j}∈E

θij

π
(Look at the plane spanned by vi and vj)

=
∑

{i,j}∈E

(
2θij

π (1− cos(θij))

)(
1
2 (1− ⟨vi, vj⟩)

)

=
∑

{i,j}∈E

(
arccos(1− 2tij)

πtij

)(
1
2 (1− ⟨vi, vj⟩)

)
(Let tij = (1− cos (θij))/2)

≥
∑

{i,j}∈E

g1(tij)
(

1
2 (1− ⟨vi, vj⟩)

)
≥ αGW

∑
{i,j}∈E

(
1
2 (1− ⟨vi, vj⟩)

)

= αGW sdpopt ≥ αGW optMC ◀
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Since the above is an edge by edge analysis, it is tight when the function g1(t) has the
same value i.e., g1(te) = g1(tc) for all edges e ∈ E, which occurs when tij = tc,∀ {i, j} ∈ E

and θij = θc,∀ {i, j} ∈ E. We note that when this happens, sdpopt = tc |E|.
When the sdpopt value is strictly larger than tc |E|, there are edges for which te > tc. In

this case, for such edges we have that g1(te) > αGW. Then the work [39] gives an improved
approximation guarantee presented below,

▶ Theorem 10 (Theorem 3.1.1 in [39]). For a graph G = (V, E) and some εu > 0 such that
sdpopt ≥ (tc + εu) |E| we have that, E

g∼N (0,1)n

[
|E(Sg, V \ Sg)|

]
≥ g1(tc + εu) optMC.

▶ Remark 11 (Lemma 3.5 in [39]). For a choice of εu > 0, we have that g1(tc + εu) > g1(tc)
since tc is the unique minimizer of g1(t).

However, a similar argument can’t be made for the light maxcut setting, i.e., where
sdpopt = (tc − εl) |E| for some εl > 0. This is since, it may be possible that for a (1 − εl)
fraction of the edges te = tc while it is 0 for the other εl |E| edges. We note that if the
sdpopt value is very close to 1/2, then indeed a random cut gives improved approximation
guarantees. However for sdpopt ≥ |E| /2tc

def= αrandom |E| ≈ 0.56911 |E|, the approximation
factor of a random cut is also strictly smaller than αGW. Therefore, for a large range of values
for sdpopt in the interval [αrandom |E| , tc |E|), [39] can only guarantee a αGW-approximation.

This is where the work [76] introduced a novel rounding technique and analysis that gives
an algorithm (denoted Algrot) which improves the approximation guarantees in the light
maxcut setting. Their rounding algorithm is based on “outward rotations”, an idea proposed
by [63]. We present their algorithm next.

Zwick’s Outward Rotation Algorithm [76]

Input. The algorithm takes a graph G = (V, E) and a parameter τ as input.
Algorithm. We present their algorithm from [76] denoted Algrot(G, τ) below,

Solve the Maxcut SDP to obtain a collection of vectors {v1, v2, . . . , vn}.
They embed the SDP vectors in R2n (by padding them with n zeroes).
An angle ϕ is obtained by solving the below system of equations in variables r, t,

arccos(r(1− 2t))− arccos(r)
t

= 2r√
1− r2(1− 2t)2

(1)

1− t|E|
sdpopt√

1− r2
= 1− 2t√

1− r2(1− 2t)2
(2)

and letting ϕ = arccos (
√

r). If sdpopt ≥ τ |E|, they set ϕ = 0◦.
Consider an orthogonal subspace of vectors {u1, u2, . . . , un} and for each i ∈ [n] they
rotate the vector vi by an angle ϕ towards the vector ui in the plane spanned by vi and
ui to obtain vectors {wi}i∈[n] where ⟨wi, wj⟩ = cos2(ϕ) ⟨vi, vj⟩.
Finally, they run the rounding algorithm of [39] on the {wi}i∈[n] vectors.

The work [76] then show the following guarantees about their algorithm.

▶ Theorem 12 (Theorem 3.3 in [76]). For a graph G = (V, E) where sdpval ≤ (tc − εl) |E|
for εl > 0,

E
[
Algrot(G, tc)

]
≥
((

1
tc − εl

− 1
t∗

)
hr∗(0) + gr∗(t∗)

)
optMC

where r∗ and t∗ are the unique solutions to Equation (1) and Equation (2), obtained by
setting sdpopt = (tc − εl) |E|.

APPROX/RANDOM 2025
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Figure 1 Improvement by Outward Rotation (Figure 2, Figure 4 in [76]).

▶ Remark 13 (Lemma 3.2 in [76]). For a choice of τ = tc and εl > 0, we have that(
1

tc − εl
− 1

t∗

)
hr∗(0) + gr∗(t∗) > αGW.

2.3 Our SDP Based Algorithm
From Theorem 10 and Theorem 12, we observe that if sdpopt value is bounded sufficiently
away from tc, it is possible to round the Maxcut SDP and obtain a strictly better than
αGW-approximation algorithm. However, we note from Theorem 12 (see also αrot in Figure 1)
that when sdpopt = tc |E|, the algorithm of [76] reduces to algorithm of [39], and as before it
offers no improvement beyond αGW-approximation. This highlights the need for new ideas to
handle the case when sdpopt ≈ tc. Towards this we make a definition first,

▶ Definition 14 (Edge-Disjoint Triangle Density). For a graph G = (V, E), we define its
edge-disjoint triangle density denoted µ(G) as,

µ(G) = 3∆(G)
|E|

.

▶ Remark 15. Clearly, 0 ≤ µ(G) ≤ 1. The quantity µ(G) is similar to the global clustering
coefficient of the graph considered in [73, 40]. However, in µ(G) we consider edge-disjoint
triangles as opposed to total number of triangles.

We now present our algorithm, which we later show achieves an improved approximation
ratio regardless of the value of sdpopt.

Algorithm. Our SDP algorithm (denoted Alg(G)) is the following,
Fix ε to be,

ε
def= (tc − 3/4)µ(G)

9 (note that clearly ε ≤ (tc − 3/4)/9 < tc) (3)

Run Algrot (G, tc − ε)

Our algorithm essentially runs the Zwick’s Outward Rotation Algorithm Algrot as a
subroutine, with the key difference being that we use a smaller threshold value of τ = tc − ε,
as compared to τ = tc in [76]. Thus, for regimes of sdpopt ≤ (tc − ε) |E|, our algorithm
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reduces to Algrot, and retains the improvement over αGW from Theorem 12. Similarly for
sdpopt ≥ (tc + ε) |E|, our algorithm reduces to the standard [39] analysis and we have an
improvement due to Theorem 10. We formalize this discussion below.

▶ Definition 16 (Minimum Improvement). We define the minimum improvement (over αGW)
as the minimum of the improvement obtained from Theorem 10 by setting εl = ε and from
Theorem 12 by setting εu = ε (for choice of ε in Equation (3)) as,

δ = min
{

g1 (tc + ε)− αGW,

((
1

tc − ε
− 1

t∗

)
hr∗(0) + gr∗(t∗)

)
− αGW

}
.

Note that δ > 0 (from Remark 11 and Remark 13) and it follows from the discussion above,

▶ Corollary 17. For a graph G = (V, E) with sdpopt /∈ [tc− ε, tc + ε] |E|, our algorithm gives,

E[Alg(G)] ≥ (αGW + δ) sdpopt ≥ (αGW + δ) optMC.

2.4 Our SDP Analysis

Building on the discussion above, it suffices to show that our algorithm obtains (αGW + Ω(1))-
approximation guarantees when sdpopt ≈ tc |E|. Our analysis centers on the contribution of
individual edges to the SDP solution, denoted by te. We define tavg = sdpopt/ |E|, and we
will focus on the values of tavg in the band [tc − ε, tc + ε]. We note that in these regimes our
algorithm sets ϕ = 0◦ and reduces to the algorithm of [39].

Refined SDP Analysis

Previously, we mentioned that if tavg = tc − ε, it’s possible that a (1− ε)-fraction of edges
have te = tc while the remaining edges have te = 0 yielding no improvement over αGW. Here,
we consider a more refined analysis of this argument by defining a set of good edges as
F = {e ∈ E : te ≥ tc + ε}. We leverage the edge by edge analysis of [39] to show that,

E
g∼N (0,1)n

[
|E(Sg, V \ Sg)|

]
=
∑
e∈F

g1(te)te +
∑

e∈E\F

g1(te)te (See Theorem 9)

≥
∑
e∈F

g1(tc + ε)te + αGW
∑

e∈E\F

te (Definition of F and g)

≥ (αGW + δ)
∑
e∈F

te + αGW
∑

e∈E\F

te (By Theorem 10)

= αGW
∑
e∈E

te + δ
∑
e∈F

te

≥ αGW tavg |E|+ δ |F | (tc + ε) (By definition of F )
≥ αGW optMC + δ |F | (tc + ε) (By definition of tavg) .

Improved Approximation Guarantees

The main takeaway from the above analysis is that for tavg ∈ [tc − ε, tc + ε], the condition
|F | = Ω(1) |E| ensures an (αGW + Ω(1))-approximation. We will next identify a sufficient
criterion for graphs where this condition holds.
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Figure 2 Orientation of SDP vectors for a triangle {i, j, k} in G.

Triangles and Good Edges

We consider another set of good edges D = {e ∈ E : te ≪ tc} (say smaller than tc − 100ε).
Now, given a triangle T = {i, j, k} in the graph, we examine the geometry of SDP vectors
for T and note (see Figure 2) that there always exists an edge {i, j} having

θij ≤
(

θij + θjk + θik

3

)
≤
(

θ′
ij + θ′

jk + θ′
ik

3

)
≤ 2π

3 (also see proof of Claim 24) .

For such an edge e = {i, j} having θij ≤ 2π/3 we have its contribution to the SDP value as,

te = 1
2 (1− ⟨vi, vj⟩) = 1

2 (1− cos(θij)) ≤ 1
2 (1− cos(2π/3)) = 0.75.

Now tc − 100ε > 0.75 (for ε ≤ 1/1000) and hence the edge e ∈ D. Thus if the graph
has “large” number of edge-disjoint triangles, such that ∆(G) = Ω(1) |E| (equivalently
µ(G) = Ω(1)), then each triangle will contribute a unique edge to the set D and we can infer
that |D| = Ω(1) |E|.

Averaging argument saves the day

Recall we earlier show that an improvement over αGW is possible when a certain set of good
edges F are large |F | = Ω(1) |E|. Then we showed that if the graph has Ω(1) |E| many
edge-disjoint triangles, a different set of good edges D such that |D| = Ω(1) |E|. One may
wonder where are we headed and the connection between these set of good edges?

Here we use the fact that we only care about tavg in the band [tc − ε, tc + ε]. This
allows us to use a simple averaging argument (see Lemma 25 for details) to argue that
|D| = Ω(1) |E| implies that |F | = Ω(1) |E|. Thus, we identify a structural criterion, namely
a large number (Ω(1) |E| many) of edge-disjoint triangles in a graph that is sufficient for
obtaining a (αGW + Ω(1))-approximation.

Fast SDP Solvers

As we pointed out earlier, for CSPs such as the Maxcut problem, it is possible to use the
result of [68] which builds upon framework of [3, 65] to obtain a feasible SDP solution with
sdpval ≥ sdpopt− υ |E| for some υ > 0 in time O(|E| log2 |V | poly(1/υ)). We show later that
it is possible to choose υ appropriately and prove Theorem 1.
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2.5 Applications of Improved SDP Analysis
In this section, we apply our main result (Theorem 1) which shows that the Maxcut SDP
achieves a strictly better-than-αGW approximation ratio whenever the graph G contains a
constant fraction of edge-disjoint triangles, i.e., µ(G) = ∆(G)/|E| = Ω(1). We show this
property for two broad classes of graphs: (1) unit ball graphs (for simplicity we use unit disk
graphs in the overview), and (2) real-world networks with strong community structure.

Unit Disk Graphs

A unit disk graph is defined by mapping vertices to points in R2, where an edge is present
between two vertices if their corresponding unit-radius disks intersect. Our goal is to show
unit disks graph with sufficiently large average degree contains Ω(|E|) edge-disjoint triangles.

We begin by fixing a vertex v and analyzing its neighborhood N(v) in the geometric
embedding. The vectors from v to its neighbors are projected onto the unit circle, and
this space is partitioned into six small angular sectors (using spherical caps on S1). By the
pigeonhole principle, one such sector contains Ω(deg(v)/6) neighbors, all within an angular
range of π/6. This is small enough to ensure that any pair of vertices here have an edge due
to the geometry.

Thus, the set of neighbors, along with v, induces a dense subgraph which contains a clique
of size Ω (deg(v)). Using an algorithm that greedily packs triangles in cliques, we extract
Ω(deg(v)2) edge-disjoint triangles from this neighborhood. Repeating this process over all
high-degree vertices, we construct a global set of Ω(|E|) edge-disjoint triangles. Therefore,
any unit disk graph with average degree at least 18 satisfies µ(G) = Ω(1), and Theorem 1
implies a (αGW + Ω(1))-approximation in Õ(|E|) time.

Real-World Network Graphs

Real-world networks often display features like high clustering, community structure, and
triangle density, which are not captured by classical Erdős–Rényi models. To formalize this,
we use the “spectral triadic decomposition” framework of [12], which introduces a measure
of triangle density called spectral transitivity:

τ(G) =
(

n∑
i=1

λ3
i

)
/

(
n∑

i=1
λ2

i

)
,

where λi are the eigenvalues of the normalized adjacency matrix.
For d-regular graphs, they show that τ(G) = 3T (G)

|E|d , where T (G) is the total number
of triangles in the graph. Using a simple greedy packing argument and upper bounding
the triangle load on any edge, we show that such graphs must contain at least Ω(τ(G)|E|)
edge-disjoint triangles.

Thus, for such graphs where τ(G) = Ω(1), we again conclude µ(G) = Ω(1), and hence
the Maxcut SDP achieves a (αGW + Ω(1))-approximation guarantee.

3 Maxcut SDP Analysis

The main result in this section is presenting a sufficient condition under which the Maxcut
SDP achieves better than αGW approximation. We begin by recalling that in Equation (3)
we fix our value for ε = ((tc − 3/4)µ(G)) /9, where µ(G) denotes the edge-disjoint triangle
density of a graph. For this choice of ε, we also refer to the definition of δ from Definition 16.
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▶ Theorem 18. Given a graph G = (V, E), there exists an algorithm Alg+(G) such that,

E[Alg+(G)] ≥
(

αGW + δ

2

(
tc + (tc − 3/4)µ(G)

9

)( (tc−3/4)µ(G)
9

1− tc − (tc−3/4)µ(G)
9

))
optMC.

where the running time of Alg+(G) is O
(
|E| log2 |V | poly

(
1/
(
δµ2(G)

)))
.

3.1 Improved Approximation Ratio Analysis
Towards proving Theorem 18, we start with a few useful definitions,

▶ Definition 19 (Good and Bad Edges). For a given feasible solution to the Maxcut SDP
and ε′, ζ ′ > 0, we say that an edge e = {i, j} is an (ε′, ζ ′)-bad edge if te ∈ [tc − ζ ′ε′, tc + ε′].
We say an edge e is an (ε′, ζ ′)-good edge if it is not (ε′, ζ ′)-bad. We let Eg(ε′, ζ ′) denote the
set of (ε′, ζ ′)-good edges and Eb(ε′, ζ ′) denote the set of (ε′, ζ ′)-bad edges. Further we let,
E

(l)
g (ε′, ζ ′) = {e ∈ E : te ≤ tc − ζ ′ε′} and E

(u)
g (ε′, ζ ′) = Eg(ε′, ζ ′) \ E

(l)
g (ε′, ζ ′).

▶ Definition 20 (Density Constants). We let ζ = ((tc − 3/4)/ε)− 1/2(any arbitrary small
constant c > 0 instead of 1/2 would also suffice). For choice of ε′ = ε, ζ ′ = ζ we let
κ =

∣∣∣E(l)
g (ε, ζ)

∣∣∣ / |E|, and we let γ =
∣∣∣E(u)

g (ε, ζ)
∣∣∣ / |E|. We note that 0 ≤ κ, γ ≤ 1.

Recall that for sdpopt ≥ (tc − ε) |E|, our algorithm Alg(G) sets ϕ = 0◦ and consequently
reduces to the [39] algorithm. As noted earlier, if sdpopt = tc |E|, the analysis of [39] gives
exactly αGW-approximation ratio (no improvement). We now present a more refined analysis
of [39] that leverages the notion of good edges we defined above to show that,

▶ Lemma 21. For a graph G = (V, E) and a feasible SDP solution to the Maxcut SDP
such that sdpval(G) ≥ (tc − ε) |E| for some ε > 0, there exists an algorithm Alg+(G) such
that,

E
g∼N (0,1)n

[Alg+(G)] ≥ αGW sdpval(G) + δ
∑

e∈E
(u)
g (ε,ζ)

(
1
2 (1− ⟨vi, vj⟩)

)
.

Proof. The proof follows along lines of proof of Theorem 9. For sdpval(G) ≥ (tc − ε) |E| for
some ε > 0 the algorithm sets ϕ = 0◦ and hence one obtains that,

E
g∼N (0,1)n

[Alg+(G)] = E
g∼N (0,1)n

[|E(Sg, V \ Sg)|] = E
g∼N (0,1)n

[∑
e∈E

1e∈E(Sg,V \Sg)

]

=
∑
e∈E

E
g∼N (0,1)n

[1e∈E(Sg,V \Sg)] =
∑
e∈E

P
g∼N (0,1)n

[e ∈ E(Sg, V \ Sg)]

=
∑

e∈E
(u)
g (ε,ζ)

P
g∼N (0,1)n

[e ∈ E(Sg, V \ Sg)] +
∑

e∈E\E
(u)
g (ε,ζ)

P
g∼N (0,1)n

[e ∈ E(Sg, V \ Sg)]

≥ (αGW + δ)
∑

e∈E
(u)
g (ε,ζ)

(
1
2 (1− ⟨vi, vj⟩)

)
+ (αGW)

∑
e∈E\E

(u)
g (ε,ζ)

(
1
2 (1− ⟨vi, vj⟩)

)

= αGW
∑
e∈E

(
1
2 (1− ⟨vi, vj⟩)

)
+ δ

∑
e∈E

(u)
g (ε,ζ)

(
1
2 (1− ⟨vi, vj⟩)

)

= αGW sdpval(G) + δ
∑

e∈E
(u)
g (ε,ζ)

(
1
2 (1− ⟨vi, vj⟩)

)
.

where the inequality follows from Definition 16 and proof of Theorem 10. ◀
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Above, we show that we obtain an improvement over αGW when the “SDP mass” on
the good edges, E

(u)
g (ε, ζ) is large. Next, we argue that rather than requiring a large “SDP

mass”, it suffices to show that the fraction of good edges,
∣∣∣E(u)

g (ε, ζ)
∣∣∣ / |E| is large.

▶ Lemma 22. Given a graph G = (V, E), and a feasible solution to the Maxcut SDP one
obtains that,

∑
e∈E

(u)
g (ε,ζ)

(
1
2 (1− ⟨vi, vj⟩)

)
≥ γ (tc + ε) sdpval(G) where γ =

∣∣∣E(u)
g (ε, ζ)

∣∣∣ / |E|.
Proof. Considering the contribution in the SDP objective from E

(u)
g (ε, ζ) it follows that,

∑
e∈E

(u)
g (ε,ζ)

(
1
2 (1− ⟨vi, vj⟩)

)
=

∑
{i,j}∈E

(u)
g (ε,ζ)

tij

≥
∣∣∣E(u)

g (ε, ζ)
∣∣∣ min

{i,j}∈E
(u)
g (ε,ζ)

{tij}

≥
∣∣∣E(u)

g (ε, ζ)
∣∣∣ (tc + ε)

(
Definition of E(u)

g (ε, ζ)
)

≥ (tc + ε) γ |E| (By Definition 20)
≥ (tc + ε) γ sdpval(G) (sdpval(G) ≤ |E|) .

◀

Now we present a crucial result, where we show that the other type of good edges E
(l)
g (ε, ζ)

can be lower bounded by µ(G)/3, the edge-disjoint triangle density of our graph G. We
examine the SDP vectors corresponding to the vertices of triangles, and use their geometry
to infer a useful bound on the SDP contribution of the edges within each triangle.

▶ Lemma 23. Given a graph G = (V, E), and a feasible solution to the Maxcut SDP one
obtains that κ ≥ µ(G)/3 where κ =

∣∣∣E(l)
g (ε, ζ)

∣∣∣ / |E|.
Proof. Let T = {i, j, k} be a triangle in the graph G and let vi, vj , vk be the corresponding
vectors for a solution to the Maxcut SDP. Now, consider the plane spanned by vi, vj and
vk and let θij , θjk, θik be the corresponding angles between the respective vectors. Then we
have that,

▷ Claim 24. min {θij , θik, θjk} ≤ 2π/3.

Proof. The analysis proceeds by examining ∥vi + vj + vk∥2 and noting that,

0 ≤ ∥vi + vj + vk∥2

= ∥vi∥2 + ∥vj∥2 + ∥vk∥2 + 2 (⟨vi, vj⟩+ ⟨vj , vk⟩+ ⟨vi, vk⟩)
= 3 + 2 (cos(θij) + cos(θjk) + cos(θik)) (By constraints of Maxcut SDP) .

From the above it follows that cos(θij) + cos(θjk) + cos(θik) ≥ −3/2. Since the maximum of
three real numbers at least their average, one obtains that,

max {cos(θij), cos(θik), cos(θjk)} ≥ −1/2 and hence min {θij , θik, θjk} ≤ 2π/3 ◁
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Now, at least one of the edges in the triangles (without loss of generality, say the edge {i, j})
is such that θij ≤ 2π/3 = 120◦ and hence for this edge it follows that,

tij
def= 1

2 (1− ⟨vi, vj⟩) = 1
2 (1− cos θij) ≤ 1

2 (1− cos(2π/3)) = 3
4 .

Now for the given choice of ζ = (tc − 3/4)/ε − 1/2 it is easy to see that for choice of ε in
Equation (3),

ζ = tc − 3/4
ε

− 1
2 = 9

µ(G) −
1
2 ≥ 9− 1

2 > 0

where above uses µ(G) ≤ 1 and further one obtains that,

tc − εζ = tc − ε

(
tc − 3/4

ε
− 1

2

)
= tc − (tc − 3/4) + ε

2 >
3
4

Therefore one concludes that {i, j} ∈ E
(l)
g (ε, ζ) and hence,

κ =

∣∣∣E(l)
g (ε, ζ)

∣∣∣
|E|

≥ ∆(G)
|E|

= µ(G)
3 . ◀

We now revisit the object of our interest, the type of good edges E
(u)
g (ε, ζ). Next, we

show through an averaging argument that for sdpopt ≥ (tc − ε) |E|, a large number of good
edges of other type E

(l)
g (ε, ζ) imply a large number of edges of type E

(u)
g (ε, ζ).

▶ Lemma 25. Given a graph G = (V, E), a feasible solution to the Maxcut SDP such that
sdpval(G) ≥ (tc − ε) |E| one obtains that,

γ ≥ ε

(1− tc − ε) , where recall that γ =
∣∣∣E(u)

g (ε, ζ)
∣∣∣ / |E| .

Proof. Let T be a uniform random variable that takes values (te)e∈E , then it is given that,

E[T ] = 1
|E|

∑
e∈E

te ≥
1
|E|

(tc − ε) |E| ≥ tc − ε and

P [T ≤ tc − ζε] =

∣∣∣E(l)
g (ε, ζ)

∣∣∣
|E|

= κ |E|
|E|

= κ

Note that T ∈ [0, 1] and it follows that P [T ≥ (tc + ε)] = γ and hence one obtains that,

E[T ] = 1
|E|

 ∑
e∈E

te≤tc−ζε

te +
∑
e∈E

tc−ζε≤te≤tc+ε

te +
∑
e∈E

te≥tc+ε

te


≤ (tc − ζε)P [T ≤ tc − ζε] + (tc + ε)P [tc − ζε ≤ T ≤ tc + ε] + 1.P [T ≥ tc + ε]

≤ (tc − ζε) κ + (tc + ε) (1− κ− γ) + γ

Now using E[T ] ≥ tc − ε and by expanding the above expression if follows that,

tc − ε ≤ tcκ− ζεκ + tc + ε− tcκ− tcγ − εκ− εγ + γ
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and rearranging terms in the above expression one obtains that,

(1− tc − ε) γ ≥ ζεκ + εκ− 2ε = ((ζ + 1) κ− 2) ε

and we one can then solve for γ by noting that for choice of ζ from Definition 20,

ζ + 1 =
(

tc − 3/4
ε

− 1
2

)
+ 1 ≥ tc − 3/4

ε
≥ (tc − 3/4) 9

(tc − 3/4)µ(G) = 9
µ(G)

where the second inequality follows by choice of ε in Equation (3). Now solving for γ,

γ ≥ ((ζ + 1) κ− 2) ε

1− tc − ε
≥ ((9/µ(G))κ− 2) ε

1− tc − ε
≥ (3− 2)ε

1− tc − ε
≥ ε

1− tc − ε

where the last inequality follows from Lemma 23 since κ ≥ µ(G)/3. ◀

3.2 Running Time Analysis
We recall our discussion of fast SDP solvers for Maxcut SDP. The work of [68] (building on
the works of [3, 65]) showed that for CSPs such as Maxcut , we can obtain an approximate
solution to their canonical SDP relaxation in near-linear time. We state the main result in
[68] in the context of solving the Maxcut SDP.

▶ Theorem 26 (Theorem 1.1 in [68]). Given a graph G = (V, E) and a constant υ > 0, there
exists an algorithm that computes in time O(|E| log2 |V | poly(1/υ)), a subgraph G′ = (V, E′)
and a feasible solution to Maxcut SDP with value sdpval(G′) such that,

sdpval(G′) ≥ sdpopt(G)− υ |E| |E \ E′| ≤ υ |E|.

The fast SDP solver of [68] finds an approximately optimal solution using the Matrix
Multiplicative Weights Update framework developed in [3] that does not construct a full
n× n Gram matrix but a low-rank approximation where instead it produces the solution
vectors {v1, v2, . . . , vn} ∈ Rk for k = O (poly (log n)). Next the angle computation for the
outward rotation angle ϕ can be done in O (n) time. The vectors after rotation like in space
Rn+k, but we do not need to explicitly compute these vectors. Instead we proceed to show
that the [39] rounding can be more directly applied. We recall first that in [76] the rotated
vectors wi can be written as,

wi = (cos ϕ) vi + (sin ϕ) ui

where ui is simply the ith standard basis vector of Rn. Finally we see that the last step is
a plain [39] rounding which requires computing an inner product with a random Gaussian
vector g ∼ N (0, 1)n+k. Now we can decompose g as g = gv + gu where gv ∈ Rk and
gu ∈ Rn and gv ⊥ gu. Then we note that the inner product computation is simply,

⟨wi, g⟩ = ⟨(cos ϕ) vi + (sin ϕ) ui, gv + gu⟩
= (cos ϕ) ⟨vi, gv⟩+ (sin ϕ) ⟨ui, gu⟩
= (cos ϕ) ⟨vi, gv⟩+ (sin ϕ) gu (i) (4)

Since vi and gv are vectors in Rk, we can compute ⟨wi, g⟩ in O (k) time. Thus the overall
running time is dominated by the time required by the fast SDP solver. We restate the
algorithm for clarity.
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Input. The algorithm takes a graph G = (V, E) as input.
Algorithm. We present the final algorithm denoted Alg+(G) below,

Solve the Maxcut SDP using fast SDP solver of [68] to obtain a subgraph G′ = (V, E′)
and a collection of vectors {v1, v2, . . . , vn} that are feasible for it.
An angle ϕ is obtained by solving the below system of equations in variables r, t,

arccos(r(1− 2t))− arccos(r)
t

= 2r√
1− r2(1− 2t)2

,

1− t|E|
sdpval(G′)√
1− r2

= 1− 2t√
1− r2(1− 2t)2

and letting ϕ = arccos (
√

r). If sdpval(G′) ≥ (tc − ε) |E|, set ϕ = 0◦.
Run the rounding algorithm of [39] on the {wi}i∈[n] vectors using computation as in
Equation (4).

Now we have all the ingredients to prove our main result in this section where we show
formal guarantees on the performance of Alg+(G).

Proof of Theorem 18. For the choice of ε in Equation (3) observe when sdpval(G′) ≥
(tc − ε) |E| it follows that,

sdpopt(G) ≥ sdpval(G′) ≥ (tc − ε) |E| .

If sdpval(G′) ≤ (tc − ε) |E|, then from Theorem 26 with choice of υ = 2ϵ one obtains that,

sdpopt(G) ≤ sdpval(G′) + υ |E| ≤ (tc − ε) |E|+ υ |E| = (tc + ε) |E|

Therefore, it follows that sdpopt(G) /∈ [(tc − ε) |E| , (tc + ε) |E|] and using Corollary 17 one
obtains the following,

E[Alg+(G)] ≥ (αGW + δ) sdpval(G) ≥ (αGW + δ) optMC.

Next, consider the regimes where sdpval(G′) ∈ [(tc − ε) |E| , (tc + ε) |E|]. For choice of
ζ = ((tc − 3/4)/ε)− 1/2 and using Lemma 25 one obtains that,

γ ≥ ε

(1− tc − ε)

Using this in Lemma 22 and the bound obtained there further in Lemma 21 one obtains that,

E[Alg+(G)] ≥ αGW sdpval(G′) + δγ (tc + ε) sdpval(G′)

≥ αGW sdpval(G′) + δ

(
ε

(1− tc − ε)

)
(tc + ε) sdpval(G′)

=
(

αGW + δ (tc + ε)
(

ε

1− tc − ε

))
sdpval(G′)

Putting everything together we have that regardless of the value of sdpval(G′),

E[Alg+(G)] ≥
(

αGW + min
{

δ, δ (tc + ε)
(

ε

1− tc − ε

)})
sdpval(G′).

Note that for choice of ε in Equation (3) and using µ(G) ≤ 1 it follows that for tc ≈ 0.84458,

tc + ε ≤ tc + tc − 3/4
9 = 10tc

9 − 1
12 < 1,

ε

1− tc − ε
≤

tc

9 −
1

12
1− tc −

(
tc

9 −
1

12
) = 4tc − 3

39− 40tc
< 1
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and hence one obtains that,

min
{

δ, δ (tc + ε)
(

ε

1− tc − ε

)}
= δ (tc + ε)

(
ε

1− tc − ε

)
Setting the value of ε from Equation (3) it follows that,

E[Alg+(G)] ≥
(

αGW + δ

(
tc + (tc − 3/4)µ(G)

9

)( (tc−3/4)µ(G)
9

1− tc − (tc−3/4)µ(G)
9

))
sdpval(G′).

Now to simplify the notation in rest of the analysis consider a definition,

▶ Definition 27 (Final Improvement). Denote the final improvement (over αGW) as τ by
letting,

τ
def= δ

2

(
tc + (tc − 3/4)µ(G)

9

)( (tc−3/4)µ(G)
9

1− tc − (tc−3/4)µ(G)
9

)
.

Thus one notes that E[Alg+(G)] ≥ (αGW + 2τ) sdpval(G′). Now using Theorem 26 for choice
of υ = τ/ (4αGW + 8τ) it follows that,

E[Alg+(G)] ≥ (αGW + 2τ) sdpval(G′)
≥ (αGW + 2τ) (sdpopt(G)− 2υ |E|) (Using Theorem 26)
≥ (αGW + 2τ) (1− 4υ) sdpopt(G) (Using sdpopt(G) ≥ opt(G) ≥ |E| /2)
= (αGW + τ) sdpopt(G) (Using choice of υ)
≥ (αGW + τ) opt(G) (Since sdpopt(G) ≥ opt(G)) .

The running time is O(|E| log2 |V | poly(1/τ)) and it is easy to note from Definition 27 that
τ = Ω(δµ2(G)) and hence the running time is O

(
|E| log2 |V | poly

(
1/
(
δµ2(G)

)))
. ◀

4 Applications of Improved Maxcut SDP Analysis

In this section, we apply Theorem 18 to derive improved approximation guarantees for Max-
cut problem on some natural class of graphs. We show that (αGW + Ω(1))-approximation is
achievable by showing that µ(G) = Ω(1) indeed holds for these classes of graphs.

4.1 Geometric Intersection Graphs of Unit Balls
Given a set of geometric objects, a geometric intersection graph is constructed by repres-
enting each object as a vertex and placing an edge between two vertices if and only if the
corresponding objects intersect.

▶ Definition 28 (Unit Ball Graph in Rk). An undirected graph G = (V, E) is said to be a
unit ball graph if there exists an embedding φ : V → Rk such that for every vertex u ∈ V , we
associate a unit radius ball centered at φ(u), and for all u, v ∈ V we have,

{u, v} ∈ E ⇐⇒ ∥φ(u)− φ(v)∥2 ≤ 2 i.e., an edge exists iff the vertex balls intersect.

▶ Remark 29. Since recognizing whether a graph (given in standard representation such as
adjacency list or matrix), is a unit ball graph is NP-hard (even for k = 2, see [20]), one
assumes that the mapping φ is given explicitly as part of the input.

APPROX/RANDOM 2025



27:18 Triangles Improve 0.878 Approximation for Maxcut

Our goal in this section is to show that any unit ball graph with sufficiently high average
degree satisfies µ(G) = Ω(1) by exhibiting that it has ∆(G) = Ω (|E|) many edge-disjoint
triangles.

▶ Definition 30 (Covering Number). The covering number C(l, θ) is the minimum number
of spherical caps of angular radius θ required to cover the entire sphere Sl−1. We let Nl =
C(l, π/6), be the covering number with spherical caps of angular radius1 π/6. Equivalently,
in each such cap, the angle between any two points is at most π/3.

▶ Theorem 31. Let G = (V, E) be a unit ball graph in Rk with average degree davg ≥ 6Nk.
Then G contains |E| /216N2

k edge-disjoint triangles.

▶ Construction 32 (Spherical Cap Partitioning). Fix a vertex v ∈ V of degree r = deg(v),
and let the set S(v) = v ∪N(v). Without loss of generality, translate the embedding so that
φ(v) = O (the origin). For each neighbor u ∈ N(v) define:

pu = φ(u) and p̂u = pu

∥pu∥
∈ Sk−1 that represent unit direction from v to u.

Let {C1, C2, . . . , CNk
} be a covering of Sk−1 by spherical caps of angular radius π/6 where

Nk = C(k, π/6). We then group the neighbors of v according to which cap the direction falls
into as,

Ri(v) = {u ∈ N(v) : p̂u ∈ Ci} , i ∈ {1, 2, . . . , Nk}

▶ Fact 33. For l ∈ N we define Nl
def= C(l, π/6). Then for all dimensions l, the covering

number Nl satisfies Nl ≤ 23l.

Proof. We consider a proof by the connection to packing number. We define the packing
number as,

▶ Definition 34 (Packing Number). The packing number, denoted P (l, θ) is the maximum
number of points that can be placed on the unit sphere Sl−1 such that the angular distance
between any pair of points is at least θ.

▶ Remark 35. The kissing number κl in Rl is defined as the maximum number of non-
overlapping unit balls that can simultaneously touch a central unit ball. Equivalently
κl = P (l, π/3) since the angle between any two such directions must be at least π/3.

▶ Fact 36 (Covering-Packing Duality, Lemma 5.5 in [72]). For all dimensions l, the packing
number and covering number satisfy the following relation,

P (l, θ) ≤ C(l, θ) ≤ P (l, θ/2).

Now using the general bounds in the works [51, 26] and using the Fact 36 one notes that,

Nl = C(l, π/6) ≤ P (l, π/12) ≤ (7.67)l−2 ≤ 23l

where the last inequality is easy to check, and this finishes the proof. ◀

▷ Claim 37. Let the vertices x, y, z ∈ Ri(v) for some i ∈ {1, 2, . . . , Nk}. Then it follows
that {x, y, z} forms a triangle.

1 A spherical cap of angular radius θ is set of points on surface of sphere with angular distance from
center at most θ.
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Proof. By construction, all three vertices x, y, z lie in the same spherical cap Ci of angular
radius π/6. Therefore the angular distance between any two direction vectors is at most π/3.
In particular,

∥px − py∥2 = ∥px∥2
2 + ∥py∥2

2 − 2pT
x py = ∥px∥2

2 + ∥py∥2
2 − 2 ∥px∥2 ∥py∥2 ⟨p̂x, p̂y⟩

≤ ∥px∥2
2 + ∥py∥2

2 − ∥px∥2 ∥py∥2 ≤ ∥px∥2
2 + ∥py∥2

2 −min
{
∥px∥2

2 , ∥py∥2
2

}
= max

{
∥px∥2

2 , ∥py∥2
2

}
= 4

and hence ∥px − py∥ ≤ 2 and {x, y} ∈ E. The same argument applies to pairs {y, z} and
{x, z}, and hence all three edges {x, y} , {y, z} {x, z} are present. Therefore, {x, y, z} forms
a triangle. ◁

If n = 6x + 1 or n = 6x + 3, one gets a decomposition of complete graph Kn into edge-
disjoint triangles, the number of edge-disjoint triangles is exactly

(
n
2
)
/3, a perfect packing

of edge-disjoint triangles. We consider the following result that tells the maximum number
of edge-disjoint triangles that can be packed into Kn when n is not of the form 6x + 1 or
6x + 3,

▶ Fact 38 (Theorem 2, [33]). Given a complete graph Kn where |V | = n = 6x + i, 0 ≤ i ≤ 5,

∆(Kn) =



(n
2)− n

2
3 if i = 0, 2

(n
2)
3 if i = 1, 3

(n
2)− n

2 −1
3 if i = 4

(n
2)−4

3 if i = 5,

, thus a uniform lower bound, ∆(Kn) ≥
(

n
2
)
− n

2 − 1
3 .

▶ Lemma 39. Let G = (V, E) be a unit ball graph in Rk. Fix a vertex v ∈ V of degree
d ≥ 3Nk and let S(v) = {v}∪N(v). Then the induced subgraph G[S(v)] has at least d2/54N2

k

edge-disjoint triangles.

Proof. Recall Construction 32 for vertex v where we partition Sk−1 into Nk spherical caps
of angular radius π/6. By a simple averaging argument, some cap (say Ci) contains at least
⌊d/Nk⌋ neighbors of v. Including v this gives us a set of n′ = ⌊d/Nk⌋+ 1 vertices all lying in
the same region Ri(v). By Claim 37, the subgraph induced by this set forms a clique of size
n′ = ⌊d/Nk⌋+ 1. Using Fact 38 the number of edge disjoint triangles in a clique of size n′ is
at least,(

n′

2
)
− (n′/2 + 1)

3 = n′2 − 2n′ − 2
6

Now let C be a constant such that d ≥ CNk. Since n′ = ⌊d/Nk⌋+ 1 ≥ d/Nk it follows that,

n′2 − 2n′ − 2
6 ≥

(
1− 2/C − 2/C2

6

)
d2

N2
k

The coefficient above is non-negative when 1−2/C−2/C2 ≥ 0 which holds for C ≥ 1+
√

3 ≈
2.732. For simplicity taking C = 3 gives a valid lower bound whenever d ≥ 3Nk and one
obtains that the number of edge-disjoint triangles in G[S(v)] is at least,(

1− 2/3− 2/9
6

)
d2

N2
k

= d2

54N2
k

. ◀
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Proof of Theorem 31. We will give a constructive proof for this by extracting edge-disjoint
triangles greedily as below,

Algorithm. Initialize G0 = G, m0 = m = |E|, and initially empty set of edge disjoint
triangles T ← ∅. For rounds i = 1, 2, . . . , do the following:
1. If max

v∈V (Gi−1)
degGi−1(v) ≤ 3Nk, then terminate.

2. Otherwise choose a vertex vi in Gi−1 with maximum degree where di ≥ 3Nk.
3. Apply Lemma 39 to extract edge disjoint triangles Ti from Gi−1[S(vi)] and add to T .
4. Delete all vertices in S(vi) and their incident edges to form a graph Gi. Let mi = |E(Gi)|.

It is easy to see that when procedure terminates correctly. Each triangle in T is edge-
disjoint by construction. Since all vertices and their incident edges in S(vi) are removed
in each round, no triangle in any subsequent round can share an edge with any triangle
previously added. Thus, T is a collection of edge-disjoint triangles.

In each round we remove mi−1 −mi edges, which is at most (di + 1) di ≤ 2d2
i (since each

vertex in S(vi) has degree at most di in Gi−1). By Lemma 39, we add at least d2
i /(54N2

k )
triangles. Therefore, the number of triangles added satisfies:

|Ti| ≥
d2

i

54N2
k

≥ mi−1 −mi

108N2
k

(5)

Let the procedure end after r rounds where one notes that r ≥ 1 since to start with the
graph has average degree at least 6Nk and hence,

m0 = |E| ≥ 6Nk |V |
2 = 3Nk |V | (6)

Each round removes at least one vertex and hence |V (Gr)| ≤ |V | − r and in Gr we have all
degrees are smaller than 3Nk and hence,

mr ≤
1
2 (3Nk − 1) |V (Gr)| < 3Nk

2 (|V | − r) <
3Nk |V |

2 (7)

and using Equation (6) one concludes that mr ≤ m0/2.
Finally, summing over all the rounds and using Equation (5) the number of edge-disjoint

triangles,

|T | =
r∑

i=1
|Ti| ≥

r∑
i=1

(
mi−1 −mi

108N2
k

)
= m0 −mr

108N2
k

≥ m0

216N2
k

= |E|
216N2

k

. ◀

4.2 Real-World Network Graphs
While the performance of Maxcut SDP on random Erdős–Rényi G(n, p) graphs has received
considerable attention, with several works [27, 62, 38, 61] showing that αGW-approximation
ratio can be significantly improved. However, Erdős–Rényi graphs are often too simplified
of model that fail to capture many key features of real-world networks. This includes the
presence of community structure, heavy-tailed degree distributions, small diameter, and high
clustering coefficients. There are various models proposed that address these shortcomings,
the most popular ones being the Preferential Attachment Model due to [8] and the small-world
network model due to [74] More recently frameworks such as the combinatorial triangle-dense
decompositions by [40] and the “spectral triadic decomposition” by [12], emphasize the role of
triangles and higher-order motifs in capturing the nuanced community structure of real-world
networks.
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While one might expect that tailored algorithms could yield much better than αGW-
approximation in such models by exploiting the structure in such graphs. However, we show
here that one can use the result from our SDP analysis in a black box fashion to show an
(αGW + Ω(1))-approximation on such real-world network graphs.

4.2.1 Spectral Triadic Decomposition Framework

The spectral triadic decomposition proposed by [12] provides an analytical model for studying
the community structure of real-world networks. They define a spectral measure called
“spectral transitivity” denoted τ(G), which quantifies the pervalence of triangles in real-world
graphs. They show that a large value for this measure allows for a graph decomposition
into multiple dense “clique like” structures capturing a stylized form of community structure
observed in real-world networks.

▶ Definition 40 (Spectral Transitivity, Definition 1.1 in [12]). For an undirected graph G with
a normalized adjacency matrix A, the spectral transitivity denoted τ(G) is defined as,

τ(G) =

n∑
i=1

λ3
i

n∑
i=1

λ2
i

.

where λ1, λ2, . . . , λn are eigenvalues of A.

▶ Remark 41. This measure is a reweighted version of transitivity notion from [40]. For
simplicity we restrict to d-regular graphs where A = A/d. For an edge {u, v} the weight is
defined as 1/dudv = 1/d2 and for a triangle {u, v, w} it is defined to be 1/dudvdw = 1/d3

▶ Lemma 42 (Lemma 3.5 in [12]). For a d-regular graph G = (V, E) having T (G) many
triangles, the spectral transitivity is,

τ(G) =
3
∑
t∈T

w(t)∑
e∈E

w(e) = 3T (G)/d3

|E| /d2 = 3T (G)
|E| d

.

▶ Lemma 43. Let G be a d-regular graphs with d ≥ 3, and τ(G) ≥ c for a constant c > 0,
then τ(G) ≥ c/3.

Proof. Consider the quantity te = |t ∈ T (G) : e ∈ T | which calculates the number of triangles
containing edge e, and let t∗ = maxe∈E te. In a d-regular graph it is easy to see that te ≤ d−1
and hence t∗ ≤ d− 1. Now, we greedily pick a triangle and remove its three edges from the
graph. The total number of triangles in the graph can go down by at most 3t∗. Thus we
have that total number of edge-disjoint triangles is at least,

∆(G) ≥ T (G)
1 + 3t∗ ≥

T (G)
1 + 3(d− 1) ≥

T (G)
3d− 2

and using d ≥ 3 and using Lemma 42 we have that,

∆(G) ≥ τ(G) |E| d
3(3d− 2) ≥

c |E|
9 and hence τ(G) = 3∆(G)

|E|
≥ c

3 . ◀
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