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—— Abstract

A multiset of literals, called a clause, is strongly satisfied by an assignment if no literal evaluates to

false. Finding an assignment that maximises the number of strongly satisfied clauses is NP-hard.
We present a simple algorithm that finds, given a multiset of clauses that admits an assignment
that strongly satisfies p of the clauses, an assignment in which at least p of the clauses are weakly
satisfied, in the sense that an even number of literals evaluate to false.

In particular, this implies an efficient algorithm for finding an undirected cut of value p in a
graph G given that a directed cut of value p in G is promised to exist. A similar argument also gives
an efficient algorithm for finding an acyclic subgraph of G with p edges under the same promise.
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1 Introduction

The Maximum Cut problem in undirected graphs (Max-Cut) is a fundamental problem, seeking
a partition of the vertex set into two parts while maximising the number of edges going across.
While Max-Cut is NP-hard [10], a random assignment leads to a %-approximation algorithm.
In their influential work, Goemans and Williamson gave the first improvement and presented
an SDP-based agw-approximation algorithm [7], where agw = 0.878. Under Khot’s Unique
Games Conjecture (UGC) [12], this approximation factor is optimal [13, 16]. The current
best known inapproximability result not relying on UGC is % ~~ 0.941 [19] (obtained by a
gadget from Héstad’s optimal inapproximability result [8]).

The Maximum Cut problem in directed graphs (Max-DiCut) is a closely related and well-
studied NP-hard problem, seeking a partition of the vertex set into two parts while maximising
the number of edges going across in the prescribed direction. A random assignment leads
to a i—approximation algorithm. In the first improvement over the random assignment,
Goemans and Williamson presented an SDP-based 0.796-approximation algorithm [7]. By
considering a stronger SDP formulation (with triangle inequalities), Feige and Goemans
later presented a 0.859-approximation algorithm for Max-DiCut [5], building on the work of
Feige and Lovész [6]. Follow-up works by Matuura and Matsui [15] and by Lewin, Livnat,
and Zwick [14] further improved the approximation factor, obtaining a 0.874-approximation
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algorithm [14]. On the hardness side, the best inapproximability factor under NP-hardness is
12 ~0.923 [19] (again, via a gadget from a result in [8]). In recent work, Brakensiek, Huang,
Potechin, and Zwick gave an 0.8746-approximation algorithm for Max-DiCut, also showing
that it is UGC-hard to achieve a 0.875-approximation [4].

Our results
Consider the following promise variant of the two discussed problems:

» Definition 1 (Max-DiCut-Cut). Given a directed graph that has a directed cut of value p,
efficiently find an undirected cut (i.e., ignoring edge directions) of value at least p.

It turns out that the Max-DiCut-Cut admits an efficient algorithm, as will follow from our
more general result (cf. Theorem 3 below).

We represent the Boolean true value by +1 and the false value by —1. A literal sx is
a variable z (s = 1, positive sign) or its negation —x (s = —1, negative sign). A clause
C = {s121,...,8kx} is a multiset of literals. An assignment of +1s and —1s to the variables
of a clause C' strongly satisfies C' if no literal evaluates to false, and weakly satisfies C' if an
even number of literals evaluates to false.

We now define a natural variant of the Boolean satisfiability problem.

» Definition 2 (Max-And-Even). Given a multiset of clauses for which there is an assignment
strongly satisfying p of the clauses, find an assignment that weakly satisfies p of the clauses.

Coming back to Max-DiCut-Cut, a directed edge (u,v) is cut if the clause {—u,v} is
strongly satisfied, and the edge is cut (ignoring the direction) if the clause {—u,v} is weakly
satisfied. Thus, Max-And-Even is a generalisation of Max-DiCut-Cut.

Our main result is an algorithm for Max-And-Even, and thus also for Max-DiCut-Cut.
» Theorem 3. There exists a polynomial-time algorithm for Max-And-Even.
Theorem 3 has an interesting corollary for a related, and in some sense dual, problem.

» Definition 4 (Cut-Orientation). Given an undirected graph G that has a maximum cut
of value p, orient the edges of G so that the resulting directed graph has a directed cut of
mazimum possible value.

Cut-Orientation can be approximated with the ratio agw: Find a cut in G of size agwp
using the Goemans-Williamson algorithm [7], then orient all the edges from one side of the
cut to the other. Interestingly, Theorem 3 shows that this approximation is UGC-optimal.

» Corollary 5. It is UGC-hard to approximate Cut-Orientation with a factor better than agwy.

Proof. The observation is that the Max-DiCut-Cut problem gives a reduction from Max-Cut to
Cut-Orientation: Given an instance of Max-Cut that has a cut of size p, if we could orient the
graph to obtain a directed cut of size ap, then by solving the resulting digraph as an instance
of Max-DiCut-Cut we would find a cut of size ap. Since it is UGC-hard to approximate
Max-Cut with a factor better than agw [13, 16], the same is true for Cut-Orientation. |

Using ideas from the proof of Theorem 3, we give an efficient algorithm for another problem.

» Definition 6 (Max-DiCut-Acyclic). Given a directed graph G that has a directed cut of
value p, efficiently find an acyclic subgraph of G with at least p edges.

» Theorem 7. There exists a polynomial-time algorithm for Max-DiCut-Acyclic.
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Related work

The motivation for our work comes from a systematic study of so-called promise constraint
satisfaction problems (PCSPs) [3, 1]. These are problems concerned with homomorphisms
between graphs and, more generally, relational structures. A homomorphism h from a graph
G to a graph H, also known as an H-colouring of G [9], is a map from the vertex set of G to
the vertex set of H that preserves edges; i.e., if (u,v) is an edge in G then (h(u), h(v)) must
be an edge in H. For instance, if H = K3 is a clique on 3 vertices, then homomorphisms
from G to H are precisely 3-colourings of G. Equivalently, there is a homomorphism from G
to H if GG is a subgraph of a blow-up of H, where a blow-up of H replaces every vertex by
an independent set and every edge by a complete bipartite graph. Homomorphisms between
relational structures are defined analogously as maps from the universe of one structure to
the universe of another structure so that all relations are preserved by a component-wise
application of the map.

Our work is related to an optimisation variant of PCSPs. In particular, the problem
Max-PCSP(G, H) asks: Given an input structure X which admits a G-colouring of value p,
find an H-colouring of value at least p. For example, Max-PCSP(G, H) with bipartite G was

classified [18] and the intractability of non-bipartite G was very recently established in [17].
This leaves open cases where G and H are not graphs but rather arbitrary relational structures.

The simplest open case is Boolean binary structures, i.e., digraphs on 2 vertices. There
are three interesting problems: Max-Cut, Max-DiCut, and Max-DiCut-Cut. Since Max-Cut
and Max-DiCut are already well-understood, understanding the complexity of Max-DiCut-Cut
was the first step in the ultimate goal of understanding all structures beyond (undirected)
graphs. Thus, we view the importance of Theorem 3 as twofold. Firstly, as a non-trivial
tractability result for a natural problem. Secondly, as initiating the study of Max-PCSP
beyond graphs. Finally, Theorem 7 gives a tractability result for Max-PCSP(A, B), where
A = ({0,1},{(0,1)}) represents the cut problem in directed graphs and B = (Q, <) represents
the graph acyclicity problem, thus identifying a natural tractable Max-PCSP with an infinite
structure, following a well-established line of work on infinite-domain CSPs [2].

2  Algorithm from Theorem 3

We denote by [k] the set {1,...,k}. For a statement ¢, we let [p] be 1 if ¢ is true and
0 otherwise. For a clause C = {s121,..., sgx}, weak and strong satisfaction of C' by an
assignment ¢ can be expressed as

. . 11
[C is strongly satisfied] = 5 + 2 o, sic(x;),
1 1
Cis kly satisfied] = = = i i)-
[C is weakly satisfied] 2+21<111ksc(a:)

Thus, a clause C is strongly satisfied if and only if the minimum of all the literals in that
clause is 1, and this minimum is —1 otherwise. Hence, we can cast Max-And over an instance
with variable set V', and clauses C1,...,C,, with C; = {s%2,... ,six}c}, as the problem of
finding a solution to

1 1
B 25t 3. B8, ) .

i=1
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where we take D = {—1,+1}. One way to establish Theorem 3 would be to first solve this
problem relaxed to D = [—1, 1] using LP, and then round directly. We take a slightly different
(and simpler) route, which relies on the idea of “half-integrality” and will be also useful for
proving Theorem 7: (1) can be solved exactly if we take D = {—1,0,+1}.

» Theorem 8. An optimal solution to (1) can be found in polynomial time for D =

{-1,0,+1}.
Proof. First, find any optimal solution ¢* to (1) with D = [—1,1] by LP. To do this, one
can use a standard trick. For each clause C; = {s{z,..., s} x} } for i € [m], introduce a

variable ¢; and constraints t; < s;c(xz) for j € [ki]. Next, replace the objective function by
S, 245t Observe that in any feasible solution to this LP, we have ¢; < minj<j<g, she(x?).
Furthermore, since the objective is an increasing function of ¢, ..., t,,, in any optimal solution
to this LP we have t; = mini <<y, s;c(x;) Hence the optimal solutions to this LP precisely
correspond to the optimal solutions to (1).

We will shift the solution while keeping it optimal until the image of ¢* is contained in
{-1,0,1}. As a pre-processing step, flip signs of literals so that ¢*(z) > 0 for z € V. Our
goal now is to have the image of ¢* contained in {0,1}. Suppose without loss of generality
that V. ={1,...,n} and ¢*(1) < --- < ¢*(n). Define

:Eml—l—1 min sc(x?).
,12 21<j<k; 7
1=

Note that for every ¢ for which 0 < c(1) < -+ < ¢(n), argming <<y, sc(gc]) is known.
Indeed, if all s} are positive then the minimum is attained at the smallest gc ; whereas if
there is at least one negative s; then the minimum is attained at the largest 2 among those
with s§» = —1. (Here we compare variables by the natural ordering, since we have assumed
the variables are natural numbers.) Let j(z) = arg mini<j<g, s;c(x;) be this minimum; then,
for all ¢ where 0 < ¢(1) < --- < ¢(n),

1
Zg 23(1 CHO

In other words, F' is an affine function in terms of ¢! Define ¢*(0) = 0,¢*(n + 1) = 1.
While ¢* has an image that is not 0 or 1, do the following. Take 1 < a < b < n so that
0=c(0)=---=ca—1)<c(a)=---=c*b) <c*(b+1) <---<c*(n+1)=1. Such a,b
exist, or else ¢*(z) € {0,1} for all « € [n]. If the sum of the coefficients of ¢*(a),...,c*(b) in
F (seen as an affine function) is negative, then we could decrease all of these values together
(since this maintains the fact that 0 < ¢*(1) < --. < ¢*(n)) and improve our solution, which
is impossible. If the sum of the coefficients is positive, then we could improve our solution
by increasing the values of ¢*(a),...,c*(b), which is impossible. So we can assume the
sum of the coefficients is 0, in which case we can set the values ¢*(a), ..., ¢*(b) to anything
we want in the interval [0,c¢*(b + 1)] without changing the value of the solution. So set
c¢*(a) =--- = c*(b) = 0. Continue this procedure until there are no variables set to anything
other than 0 or 1. |

We now prove Theorem 3, restated below for the reader’s convenience.
» Theorem 3. There exists a polynomial-time algorithm for Max-And-Even.

Proof. Without loss of generality, we can assume that each variable appears in each clause
at most once. Indeed, if a clause C' contains a variable z and its negation —z then C
cannot be strongly satisfied but could be weakly satisfied, so running our algorithm on the
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instance without C' causes no issues. Similarly, if a literal appears twice in a clause then both
occurrences can be removed, as this does not affect weak satisfiability (but could improve
strong satisfiability).

Suppose we are given an instance of Max-And-Even, namely an expression of form

)

m
1 1 .
max — + — min ske(zb).
c:V%{il}EQ 2 1<j<k; 7 ( J)

Suppose that the value of this expression is p. Our goal is to find a function ¢* such that
that number of weakly satisfied clauses is at least p. Recalling that a clause {s1z1,..., Sgxk}
is weakly satisfied by c¢ if and only if % + %Hl sic(x;) = 1, and that this expression is 0
otherwise, we note that we must find ¢* : V' — {—1,+1} such that

pSZ%—F% H szc*(x;) (2)

Using Theorem 8, we can efficiently find a function ¢: V' — {—1,0,+1} such that

< Em 1+1 min s%é(xh)
P=. « 2 2 15j2k, 1)
1=

We claim that the following choice of ¢* makes (2) hold in expectation: if ¢(v) = £1 then set

c*(v) = é(v). Otherwise set ¢*(v) equal to +1 or —1 uniformly and independently at random.

Indeed, by linearity of expectation it suffices to show that, for any clause {s1x1,..., Sgxr},
we have
1 o 11
1<i<k

In particular, let us consider the value of the minimum on the left. If it is —1 there is
nothing left to prove. If it is +1, then é(z;) # 0 and hence ¢*(z;) = é(z;) for all z;, and
the bound holds with equality. Finally, if the minimum is 0, then there exists some x; such
that ¢(xz;) = 0; hence ¢*(x;) is set to +1 or —1 equiprobably. It is easy then to see that the
product on the right hand side is either +1 or —1 equiprobably, whence the conclusion. (This
depends, essentially, on the fact that every variable appears in each clause at most once.)
We now derandomise the rounding scheme above; in other words, we will show how
to deterministically set the variables so that the resulting value is at least as good as the
expectation of the random variables. Equivalently, given a set of parity constraints on subsets
of variables, the goal is to find an assignment that satisfies at least as many constraints
as the random assignment. This problem can be derandomised easily using the method of
conditional expectation — indeed these techniques have appeared before in e.g. [11], but we
include them for completeness. Recall that, by assumption, each variable appears in each
clause at most once. Thus, conditional on some subset of variables being fixed, we expect
half of the remaining parity constraints that have at least one unfixed variable within them
to be satisfied. Thus, we can derandomise by going through the variables one by one; when
we set a variable z, we set it so that as many as possible of the parity constraints where x is
the last unfixed variable remaining are satisfied. <
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3 Algorithm from Theorem 7
We are now ready to prove Theorem 7, restated below.
» Theorem 7. There exists a polynomial-time algorithm for Max-DiCut-Acyclic.

Proof. Equivalently, given a digraph G that has a dicut with p edges, we will produce an
ordering of the vertices of G such that at least p edges are oriented according to the ordering
— removing all the edges that are not oriented in this way gives us the required subgraph. For
some ordering o, we say that an edge (z,y) is well ordered by ¢ if z comes before y in o.

As a pre-processing step, remove all loops from the input digraph. This will never lower
the size of the maximum dicut, nor will it lower the size of the outputted subgraph. Now
compute a solution ¢ to (1) for G = (V, E) over D = {—1,0, 1}, using Theorem 8. By this,
we mean a solution to the instance including the clause {—z,y} once for each occurrence
of the edge (z,y) in G. In other words, each edge (z,y) contributes 3 + 3 min(—c(z), c(y))
to (1). The values of this expression over D = {—1,0, 1} are tabulated in Figure 1.

o)
=
<
=

I
—
o
—

1
—1 o 1 1
1 1
0 0 0

Figure 1 Value of $ + 1 min(—c(), c(y)).

Since the digraph admits a dicut with p edges, the value of ¢ is at least p. Partition the
vertices of G into V_1, Vi, V1 according to their image through ¢é. Let E;; = EN (V; x V}),
for 4,5 € {—1,0,1}. Let m_1, mo, m1 be arbitrary orderings of V_y,Vy, V1, and let 7)) be the
reverse of my. We claim that one of the orderings o = (7_1, 7, m1) or ¢/ = (71,7, 71) can
be returned.

To see why, note that every edge (x,y) with é(z) < é(y) is well ordered by both ¢ and o’.
Furthermore, at least half the edges (z,y) with é(z) = é(y) = 0 are ordered correctly in one
of o or o’ (this is why removing loops is essential). But (cf. Figure 1 and the optimality of ¢),

1 1 1 1
p<#E_11+ §#E—1,0 + §#E0,1 + §#E0,0 SH#HFE 1 +#E 10+ #E01+ -#Eopo

2
~ - 1
=#{(z,y) € E | &(z) < &(y)} + §#Eo,o-
Hence, at least one of o and ¢’ well orders at least p edges. <

4 Conclusions

As discussed briefly in Section 1, the main contribution of this paper is twofold. Firstly, we
give a simple, efficient algorithm for a very natural computational problem. Secondly, we
initiate the study of Max-PCSPs beyond graphs (which have been recently classified [17]) and
beyond finite structures. A concrete question worthy of investigating is for which Max-PCSPs
our method of rounding, relying on the idea of half-integrality, is applicable.
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