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Abstract
We consider random walks on “balanced multislices” of any “grid” that respects the “symmetries” of
the grid, and show that a broad class of such walks are good spectral expanders. (A grid is a set of
points of the form Sn for finite S, and a balanced multi-slice is the subset that contains an equal
number of coordinates taking every value in S. A walk respects symmetries if the probability of
going from u = (u1, . . . , un) to v = (v1, . . . , vn) is invariant under simultaneous permutations of the
coordinates of u and v.) Our main theorem shows that, under some technical conditions, every such
walk where a single step leads to an almost O(1)-wise independent distribution on the next state,
conditioned on the previous state, satisfies a non-trivially small singular value bound.

We give two applications of our theorem to error-correcting codes: (1) We give an analog of
the Ore-DeMillo-Lipton-Schwartz-Zippel lemma for polynomials, and junta-sums, over balanced
multislices. (2) We also give a local list-correction algorithm for d-junta-sums mapping an arbitrary
grid Sn to an Abelian group, correcting from a near-optimal ( 1

|S|d − ε) fraction of errors for every
ε > 0, where a d-junta-sum is a sum of (arbitrarily many) d-juntas (and a d-junta is a function that
depends on only d of the n variables).

Our proofs are obtained by exploring the representation theory of the symmetric group and
merging it with some careful spectral analysis.
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34:2 Eigenvalue Bounds for Symmetric Markov Chains on Multislices with Applications

1 Introduction

Consider the following natural random walk whose states are the balanced vectors of {0, 1}n,
i.e., the balanced Boolean slice with an equal number of 0s and 1s, where a single step of the
random walk takes a state u to a state v at Hamming distance exactly n/2 from it. One
would expect this random walk to mix extremely rapidly, and indeed this is known. The
underlying graph here is a special case of a Johnson graph whose entire eigenspectrum is
well known [8] and, in particular, implies that the second eigenvalue of this graph is on(1).

Now consider the following variant of the above random walk: The states now are elements
of the “balanced multislice” in {−1, 0, 1}n, i.e. vectors with exactly 1/3rd fraction of the
letters −1, 0 and 1, and in a single step from a balanced vector u to a random balanced
vector v obtained by flipping exactly 1/3 fraction of each of the letters of u to −1, 0 and 1.
(So for a single coordinate i, vi is uniform in {−1, 0, 1} conditioned on ui.) It is intuitive
to believe that such a random walk should also converge to the uniform distribution over
all balanced vectors extremely fast, but, as far as we know, it was not even known that the
second-eigenvalue of this random walk (or its transition probability matrix) has value on(1).

The gap in the understanding between the Boolean and non-Boolean cases in such
problems can be significant for fundamental reasons. For example, for the alternate version
of the random walk where the transition is defined by a uniformly random transposition
of coordinates, it took a decade after optimal bounds on the mixing time were proved in
the Boolean case [10] to prove similar results in the non-Boolean setting [19]. We refer the
reader to the work of Filmus, O’Donnell, and Wu [14] for a nice overview of the challenges
posed by the non-Boolean setting in such problems. Some of these obstructions have to do
with associated representations of the symmetric group that play a role in the corresponding
proofs; these representations are simpler (‘multiplicity-free’) in the Boolean setting than in
the non-Boolean setting. This also creates difficulties in resolving the questions we consider.

The main contribution of this work is to address some of the challenges alluded to above.
In particular, we show that the variant random walk described in the second paragraph also
has fast mixing, specifically by giving a on(1) bound on its second eigenvalue. Indeed, we
study this question in more generality for balanced multislices, with “nearly balanced moves”.
We believe the questions carry intrinsic interest and should find broad applications in the
field. We justify this belief partially by describing two applications in coding theory:

The first gives a near-tight distance bound on codes obtained by evaluations of polynomials
on balanced multislices.
The second gives a local list-correction algorithm for subclasses of polynomials evaluated
on grids. (Note that the second application does not refer to balanced multislices in the
problem definition – the multislices arise naturally in the design and analysis of the local
correction algorithm!)

We elaborate on our setting and results, the applications, and the technical challenges below.
In this extended abstract, we only include an overview of the proof techniques. For full
proofs, see the full version of this paper [3].

1.1 Multislices and Random Walks
By a grid, we refer to sets of the form Sn for some finite set S and positive integer n. (Usually
we think of s := |S| as a constant and study the growth of relevant parameters as a function
of n). The balanced multislice of a grid Sn is the set

Sn
µ :=

{
a ∈ Sn

∣∣∣ ∀σ ∈ S, |{i ∈ [n]|ai = σ}| = n

s

}
.

(Note that a multislice is non-empty if and only if s divides n. We will drop the term
“balanced” in the future and simply refer to multislices to keep the term short.)
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The random walks we consider have the multislice of some grid as their state space. Recall
that such a random walk can be described by a Sn

µ × Sn
µ matrix W with W (a,b) denoting

the probability of transition from state a to b. We consider walks where every step of the
walk makes a “nearly balanced move”. To elaborate, let us define the generalized Hamming
distance1 ∆(a,b), for vectors a,b ∈ Sn, to be the S × S matrix given by ∆σ,τ (a,b) = |{i ∈
[n]|ai = σ, bi = τ}|. We say that a generalized Hamming distance parameter ∆ ∈ ZS×S

determines a random walk matrix, denoted W∆, if for each vertex a, the random step
corresponding to W∆ is obtained by picking, uniformly at random, a vertex b on the
multislice such that ∆(a,b) = ∆.

For constant C < ∞, we say that a generalized Hamming distance parameter ∆ ∈ ZS×S

is C-balanced if each entry of ∆ is m
s ±

(
C

√
m logm

)
where m = n/s. In other words, all

the entries of ∆ are equal up to a difference of at most 2C
√
m logm. Informally, when

considering n → ∞ we refer to ∆, as also a random walk matrix W∆ determined by ∆,
as “nearly balanced” if ∆ is C-balanced for some constant C. Here, we note that W∆ is
a well-defined random walk matrix over the multislice only if ∆/m is a doubly-stochastic
matrix (i.e., every row and every column of ∆ sums to m).

Note that the mixing time of a random walk matrix W is closely tied to the second
largest singular value, which we denote by σ2(W ). (In particular, the singular values satisfy
1 = σ1 ≥ σ2 ≥ · · ·σN ≥ 0 and we let σ2(W ) = σ2. If the walk is symmetric, then this
captures the second eigenvalue. Specifically, if the eigenvalues are 1 = λ1 ≥ λ2 ≥ · · ·λN ≥ −1
where N = |Sn

µ |, then σ2(W ) = max{|λ2|, |λN |}.) Our main goal is to bound the value of
σ2(W ) by some function on(1) that tends to 0 with growing n for a broad class of random
walk matrices W over the multislice Sn

µ . In general, it is desirable to have such singular value
bounds, and such random walk matrices are said to have good “spectral expansion” or “fast
mixing”.

The following theorem gives such a fast mixing result on the balanced multislice for all
nearly balanced walks that “respect symmetries”. More formally, for a permutation π ∈ Symn

and a ∈ Sn, let π(a) denote the action of π on Sn
µ , i.e., π(a) := (aπ−1(1), . . . , aπ−1(n)). For

a stochastic matrix M ∈ RSn
µ ×Sn

µ , we say M respects symmetries if for all permutations
π ∈ Symn and for all a,b ∈ Sn

µ we have M(π(a), π(b)) = M(a,b). Our main theorem shows
that walks that respect symmetries and are nearly balanced have fast mixing.

▶ Theorem 1 (Singular value bound for nearly balanced walks). For every s ≥ 2 and C < ∞,
there exists τ > 0 such that for every finite set S of size s and sufficiently large n ∈ N, the
following holds:
If W is a stochastic matrix over the multislice Sn

µ that respects symmetries, and satisfies the
condition that

W (a,b) > 0 ⇒ ∆(a,b) is C-balanced ∀ a,b ∈ Sn
µ ,

then σ2(W ) ≤ 1/nτ .

The above result implies that the random walk on the balanced multislice mentioned earlier in
this section (which corresponds to s = 3 and C-balanced generalized distance parameter with
C = 0) has its second largest eigenvalue polynomially bounded. In fact, Theorem 1 is more
general and covers multislices over any grid S of constant size (i.e., for every |S| = O(1)).
Additionally, it is robust to perturbations of transition probabilities as long as the transition
probabilities are nearly balanced.

1 Sometimes, this is also called as a “meet table” in algebraic combinatorics.

APPROX/RANDOM 2025
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Indeed Theorem 1 follows from our main technical theorem, stated as Theorem 3 below,
which abstracts the main properties that suffice to prove the bound on the second largest
singular value. Specifically Theorem 3 shows that, in addition to the symmetries respected
by the matrix W , the important features that suffice to prove fast mixing are:
1. The next state of the random walk is “almost O(1)-wise independent” conditioned on the

current state
2. The Frobenius norm of W is polynomially bounded in n.
We elaborate on these conditions below before stating our main technical result Theorem 3.
For a distribution D supported on Sn and set T ⊆ [n], we let DT denote the marginal distri-
bution supported on ST induced by projecting a random variable x ∼ D to its coordinates
in T . Recall that a distribution D is k-wise independent if for every set T ⊆ [n] with |T | ≤ k

we have DT is the uniform distribution on ST . Recall further that D is ε-almost k-wise
independent if for every set T ⊆ [n] with |T | ≤ k we have DT is ε-close in total variation
distance to the uniform distribution on ST .
In the following definition we view the rows of a stochastic matrix M ∈ RSn

µ ×Sn
µ , denoted

M(a) := (M(a,b)|b ∈ Sn
µ ) for a ∈ Sn

µ , as distributions supported on Sn (which have zero
support outside Sn

µ ).

▶ Definition 2 (ε-almost k-wise independent matrix). For parameter k ∈ N and ϵ > 0 we
say that a stochastic matrix M ∈ RSn

µ ×Sn
µ is ε-almost k-wise independent if for every row

a ∈ Sn
µ , the distribution M(a) is ε-almost k-wise independent.

Finally we recall that for a matrix M ∈ RN×N , its Frobenius norm, denoted ∥M∥F , is
the quantity

√∑
(i,j)∈N×N M(i, j)2.

We now state the main theorem of our work.

▶ Theorem 3 (Singular Value Bound for Markov Chains on Balanced Multislice). For every
κ > 0, and s ∈ N with κ ≥ s there exists c1.c2, c3 < ∞ such that for every ε > 0 and every
sufficiently large n ∈ N that is divisible by s, the following holds:
Suppose S is a set of size s, and M ∈ RSn

µ ×Sn
µ is a stochastic matrix that satisfies the

following three conditions:
1. The matrix M respects symmetries.
2. ∥M∥F ≤ c1 · nκ.
3. The matrix M is ε-almost k-wise independent for k = 10sκ.

Then we have σ2(M) ≤ max {c2/n, c3 · ε}.

If the Markov chain is symmetric, then the singular values correspond to the eigenvalues,
and hence Theorem 3 yields eigenvalue bounds for symmetric Markov chains satisfying the
properties mentioned above. Theorem 3 is proved in [3, Section 3]. The proof involves
many standard and some new elements of representation theory for the symmetric group.
We elaborate on this in Section 1.2.2. We also note that Theorem 1 immediately follows
from Theorem 3, modulo some calculations that verify that Condition (2) above applies to
C-balanced matrices. For more details, see [3, Section 3.5].
To illustrate the applicability of Theorem 1, we give two examples, both related to coding
theoretic aspects of polynomials and other polynomial-like functions that we refer to as
junta-sums. These results extend corresponding works in the Boolean setting [1, 2], obtaining
natural generalizations to non-Boolean settings.
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Distance of polynomials and junta-sums on multislices

A function f : Sn → G is called a d-junta if it depends on only d of the n variables, i.e,
there exists a set I ⊆ [n], |I| ≤ d and a function g : SI → G such that for all a ∈ Sn,
f(a) = g(a|I) where a|I is the projection of a to the coordinates in I. Here we could allow
G to be any set, though in this work G will denote an Abelian group. We say f is a degree d
junta-sum (or simply a d-junta-sum) if there exists d-junta’s f1, . . . , fk : Sn → G such that
f = f1 + · · · + fk.
When G = F is a field and S ⊆ F, then degree d junta-sums are closely related to the
notion of degree d polynomials. In particular, every degree-d polynomial is also a degree-d
junta-sum, and degree-d junta-sums are polynomials of degree at most (s− 1)d where s = |S|.
Junta-sums come up naturally when studying questions related to testing direct sums and
low-degree polynomials [11, 6, 4].

A well-studied question about degree-d polynomials is: How often can a non-zero polyno-
mial be zero on a grid? The well-known and oft-discovered Ore-DeMillo-Lipton-Schwartz-
Zippel lemma [18, 9, 23, 20] (henceforth ODLSZ lemma) asserts that a non-zero degree-d
polynomial over a field F is non-zero with probability at least s−d/(s−1) over the uniform
distribution over Sn. When S = F, the precise bound is δ(q, d) = (1 − β/q)q−α, where α
and β are the quotient and remainder respectively when d is divided by q − 1. The former
bound immediately implies that a degree-d junta-sum is non-zero with probability at least
s−d over Sn (and the claim even extends to arbitrary S and Abelian groups G).

A natural related question then becomes – how do these bounds change when considering
natural subsets T that are not grids (or more generally product sets)? Recent work has begun
to address such questions [2, 17]. In this work, we consider the case of the balanced multislice
i.e., T = Sn

µ . Despite the simple nature of these questions, the answer does not seem to
have been pinned down before, with the exception of the Boolean case that was resolved
recently [2]. We are able to show a clean connection between Sn and Sn

µ that allows us to
show that these probabilities (in the worst case) differ by at most λ2(W ) for some nearly
balanced walk over the multislice. This allows us to prove the following theorem, which
generalizes the work of [2] beyond the Boolean case.

▶ Theorem 4 (Polynomial distance over multislice). For every finite field F = Fq, if a degree
d polynomial P (x) is such that P (a) ̸= 0 for some a ∈ Fn

µ on the balanced multislice, then

Pr
b∼Fn

µ

[P (b) ̸= 0] ≥ δ(q, d) − 1
nΩq(1) ,

where δ(q, d) = (1 − β/q)q−α, where α and β are the quotient and remainder respectively
when d is divided by q − 1.

Please refer to [3, Section 4] for the proof.
Note that δ(q, d) is exactly the distance of the space of degree-d polynomials on the field

Fq and hence the above theorem says that the distance of the space of polynomials on the
balanced multislice is nearly exactly what it is in the grid Fn

q .2 An analogous statement can
also be made for junta-sums, getting a bound that almost matches the bound over grids, i.e.,
1/sd (see [3, Theorem 4.2]).

2 An important subtlety here is that there are polynomials that are non-zero in the grid Fn
q but are zero

at all points on the multislice. That is the reason this theorem is only stated for polynomials that are
non-zero as functions on the multislice. This is analogous to similar restrictions we place on polynomials
in the setting of grids (e.g., in the setting of the Boolean cube, we only consider non-zero multilinear
polynomials).

APPROX/RANDOM 2025
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Following the proof idea of [2], both cases are handled by a similar proof technique
that first proves a quantitatively weak bound on the probability that f is non-zero3(see [3,
Corollary 5.11]), and then randomly identifies a small grid inside the multislice. On each such
grid, we can apply the ODLSZ lemma as a black-box to assert that if f is non-zero within
the randomly identified small grid, then it is non-zero with the “correct” probability (either
δ(q, d) or s−d). It suffices, therefore, to prove that f is non-zero on most of the grids, which
is where the main technical theorem regarding the expansion of the walk on the balanced
multislice comes into play. We use our eigenvalue bounds along with the quantitatively weak
bound already obtained to establish that all but an n−Ω(1)-fraction of the grids satisfy this
property. See Section 1.2.3 for the proof overview and [3, Section 4] for a formal proof.

Local Correction of Junta-Sums

Our next application considers the local correction problem for junta-sums over grids. Here
a (possibly randomized) corrector is given oracle access to a function f that is known to be
δ-close (in normalized Hamming distance) to some degree-d junta-sum P , and also given
a point a ∈ Sn and needs to output P (a) (with high probability) while making few oracle
queries to f .
In the list-correction setting, the amount of error δ may be too high for P to be defined
uniquely by f and δ, but it may be known a priori that the list size is bounded. In the local
list-correction problem, the goal for the corrector is to make a few queries to f to produce
several “oracle” algorithms, such that for every degree d junta-sum P that is δ-close to f ,
there is an algorithm with oracle access to f that computes P . We refer the reader to [3,
Section 2] for more formal definitions.

Local correction algorithms for low-degree polynomials have played a central role in
complexity theory, for example [15, 22]. While most of the early works like [16, 5] considered
the setting where S = G = F, some recent works have considered the setting of S = {0, 1}
and general abelian G such as [1] (Note that when |S| = 2, then degree-d polynomials are
the same as degree-d junta-sums.)

For general S and Abelian group G, even the list-decoding radius was not completely
understood till this work. We prove that for δ = |S|−d − ϵ there are most Oε(1) degree
d junta-sums P that are δ-close to any given function f . (This bound is tight in that for
δ = |S|−d the number of junta-sums grows with n.) This motivates the corresponding local
list-correction problem, which we solve tightly in this work. We state an informal version
below and point to [3, Theorem 5.1] for the more precise version.

▶ Theorem 5 (Local list-correction of junta-sums (Informal)). For every set S, every Abelian
group G, every integer d and ε > 0, there exists an L = L(ε, d,S) such that the following
holds.

There exists an algorithm A that on oracle access to a function f : Sn → G, outputs
L oracle algorithms ψ1, . . . , ψL such that for every degree d junta-sum P : Sn → G that is
(1/sd − ε)-close to f , there exists i ∈ [L] such that ψf

i (·) computes P (with high probability
for every input).
The query complexity of A and ψ1, . . . , ψL is poly(logn).

3 We prove these bounds by an adaptation of the standard inductive strategy used to prove the standard
ODLSZ lemma. Unfortunately, we are unable to use this strategy to prove a tight bound.
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This theorem is formalized as [3, Theorem 5.1] with more explicit bounds on the error
probability and query complexity, and is proved in [3, Section 5].

This theorem generalizes a theorem of Amireddy, Behera, Paraashar, Srinivasan, and
Sudan ([1, Theorem 1.3.4]) who solved the corresponding problem over the Boolean cube
{0, 1}n. (Note that in the Boolean setting, junta-degree is the same as algebraic degree, and
their result is thus expressed in terms of the latter phrase.) Our extension follows the same
sequence of steps as employed in [1]. Their work ultimately ends up using the expansion
properties of Boolean multislices, which, as we’ve noted earlier, is well-understood. Extending
their work to general grids requires a number of changes that we elaborate on in Section 1.2.4,
with the most significant change being the use of Theorem 1 instead of the expansion results
on the Boolean slice.

1.2 Techniques and Proof Overview
In this section, we first review known methods for bounding the singular values of walks
that respect symmetries and explain where there is a gap in knowledge. We then show how
we overcome these challenges by overviewing the proof of our main theorem Theorem 3 in
Section 1.2.2. Next, we give an overview of the proof of the ODLSZ theorem for multislices,
Theorem 4, in Section 1.2.3. Finally, we discuss the proof of the local correction theorem for
grids, Theorem 5 in Section 1.2.4.

1.2.1 Prior Approaches and Obstructions
We describe some prior cases where random walk matrices respecting symmetries (i.e., the
first condition of Theorem 3) have been studied and explain the special properties in play
there.

Boolean Hypercube and Cayley graphs

A broad class of examples bounding eigenvalues of highly symmetric graphs are the bounds
on the eigenvalues of Cayley graphs over abelian groups - this captures random walks on the
Boolean hypercube and many more general settings. Here it is well known that the random
walk matrix is diagonalizable4 and the eigenvectors of the random walk matrix depend only
on the group (and not the set of generators). This makes it possible to determine the entire
eigenspectrum for many basic groups using Fourier analysis. We note that Cayley graphs
over some non-abelian groups have been studied, but general results are mostly lacking. In
these cases, the random walk matrix is typically not diagonalizable, but can be made block
diagonal, using the representation theory of the underlying group. This is a complex tool,
and many basic questions are unanswered as we elaborate below.

Boolean slices

One well-studied setting that happens to be the special case of s = 2 of our problem is the
setting of Boolean slices. Here S = {0, 1} and Sn

µ is the balanced Boolean slice (all points
in {0, 1}n of Hamming weight exactly n/2). This setting has particular relevance to the
analysis of Boolean functions and combinatorics; see, e.g. [8, 12, 13]. The random walk

4 A matrix M ∈ RN×N is said to be diagonalizable if there is a unitary matrix U ∈ RN×N such that
UMUT is a diagonal matrix.

APPROX/RANDOM 2025
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matrices in this setting lie in the Johnson scheme, which is an algebra of symmetric matrices
that commute with one another. This implies that all such matrices can be diagonalized
simultaneously, i.e., there exists one unitary matrix U such that for every random walk
matrix M on the Boolean slice that respects symmetries, we have that UMUT is diagonal.
This implies that all such matrices M have the same eigenvectors. The works [12, 21] gave
explicit descriptions of the common eigenspaces. This can be quite useful when analyzing
the spectrum of such matrices and in a recent example [2] used this description to show that
a particular random walk matrix on the balanced Boolean slice is a good spectral expander
(see [2, Lemma 3.2]).

1.2.2 Spectral Expansion of Multislice Walks

Turning to our setting, our matrix M is not diagonalizable and so the techniques from the
analysis of Cayley graphs on abelian groups as well as the random walk on the Boolean slice,
do not work in this setting. We have to resort to the use of representation theory, but here
as we alluded to earlier, the knowledge is not complete. In what follows, we explain what
representation theory implies for our setting and how we build on it.

Summary of known facts from representation theory

The fact that our matrix M respects symmetries allows us to invoke results from the
representation theory of the symmetric group Symn. We cover these results in detail in
[3, Proposition 3.1] and [3, Theorem 3.3] (Parts (1) and (2)). Essentially, we can use
representation theory to show that our matrix M can be block-diagonalized with relatively
few blocks.

Specifically5 there is an orthonormal matrix U = US,n such that for every M respecting
symmetries the matrix UMUT is block diagonal with blocks M0,M1, . . . ,Mt where t and the
“shape” of the blocks is known from standard representation theory. In particular, M0 = [1]
is just a 1 × 1 matrix that contributes the top singular value (which is 1), and M1, . . . ,Mt

determine σ2(M) < 1.
Now let us understand the structure of Mi’s in more detail. Each block Mi is a Kronecker-
/tensor product of a “small” matrix Ai ∈ Rm(i)×m(i) with a somewhat larger identity matrix
i.e.,

Mi = Ai ⊗ Idk(i), where Idk is the k × k identity matrix.

See Figure 1 for an informal pictorial description. Both the quantities m(i) and k(i) are
known from the representation theory of Symn (and in particular only depend on S and
n and are independent of the particular matrix M). However, the small matrices Ai’s do
depend on M , and more importantly, the matrix U is not too well-understood. (In particular,
we need to understand the effect of U on Ai and this is not clear.) In particular, if we were to
arrange i such that m(i)’s are non-decreasing, then k(i)’s are also non-decreasing. Intuition
from Fourier analysis in the abelian world would suggest that λ2 comes from M1 = A1 ⊗Idk(1)
but, as far as we are aware, even this is not known.

5 This conclusion only requires that M respects symmetries (see Theorem 3).
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1

M1

Mt

Mi

k(i) ≫ ∥M∥F

k(i) ≈ ∥M∥F

m(i) = O(1)

Mi Ai
Id

m(i)
k(i)

⊗=

U M UT

. . .

. . .

Figure 1 An informal visualization for the block diagonalization of our matrix M .

Our analysis

Given that the Ai’s are not determined by only S and n, and U is not explicitly understood,
we need to find some crude ways to bound the singular values of M . We give such an analysis
in [3, Section 3] and summarize the essence here. We start with the following informal
observation.

▶ Observation 6. If for some i ∈ [t], the quantity k(i) is a polynomial larger than the Frobenius
norm of M , then every singular value corresponding to the block Mi must necessarily be
small.

The observation follows from the fact that the Frobenius norm is lower bounded by the
sum of the squares of the singular values of Mi, each of which repeats at least k(i) times, so
each singular value must be small.

In the context of our goal, the observation above immediately allows us to eliminate all
the large blocks in the block diagonalization of M and turns the focus to the small blocks
– where k(i) is bounded by some polynomial in n. Here, standard facts of representations
of Symn imply that the corresponding matrix Ai is of constant size (dependent on S and
the exponent of n in k(i) but not on n). However, this does not immediately translate to
bounds on the singular values, since these depend on the actual matrix Ai and its entries.
Ideally, we would have liked to get our hands on the singular vectors of M corresponding to
singular vectors of the Ai’s (after a change of basis according to U), but such vectors were
not known (and we do not get such vectors either). Fortunately, a collection of vectors that
span the space corresponding to the singular vectors of Ai’s is known. In particular, we use a
description given by Dafni, Filmus, Lifshitz, Lindzey, and Vinyals [7] – see [3, Definition 3.8].
Our main contribution adds two observations about this collection of vectors, called “special
vectors” below.

Our main contribution here does get something almost as good, for our purposes (i.e., to
show that each Mi has top singular value on(1)):

We observe that the special vectors given in [3, Definition 3.8] are “weakly orthogonal”
in the sense that they have Ω(1) volume (in the space they span). We further observe
that these functions are junta-like and so shrink significantly when acted on by ε-almost
k-wise independent matrices for sufficiently large constant k. (See [3, Theorem 3.3],
Parts 3(c) and 3(d)).

APPROX/RANDOM 2025
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More specifically, the work of [7] yields dim(Ai) = m(i) many vectors (see [3, Section 3.3]) of
M that are supported on coordinates of one of the blocks of Mi after transforming the basis
according to U . We show that while these vectors do not form an orthogonal basis, they are
sufficiently divergent to ensure their determinantal volume is large (see [3, Lemma 3.12]).
Thus, bounding the length of the vectors obtained by applying the linear map Ai by on(1)
suffices to bound the spectral norm of Ai and hence also Mi. Details of this part may be
found in [3, Section 3.3]. We give some more insight in the next paragraph.
To show our singular value bounds, we use the fact that the vectors in the basis correspond
to O(1)-junta’s. Specifically, note that a vector that M acts on can be viewed as a function f
from Sn

µ to R, which can in turn be viewed as a partial function from Sn to R. We show that
this function depends on only O(1)-coordinates of the input vector. (See [3, Section 3.3].)
This property now combines nicely with our third condition in Theorem 3 which asserts
that after multiplication by M any vector f looks essentially random when projected on
O(1)-coordinates and so has little correlation left with f – this immediately translates into
an upper bound on the singular value of M corresponding to coordinates in Mi, and yields a
proof of Theorem 3.

Why does our Theorem 1 hold only for nearly-balanced walks?

The reason is related to Observation 6. We note that the Frobenius norm condition is not
completely natural, and indeed the natural matrices in our applications do not satisfy this
condition (and we have to find workarounds). The Frobenius norm restriction is satisfied by
nearly-balanced walks as considered in Theorem 1, and indeed it is one of the reasons why
Theorem 1 is restricted to such nearly balanced walks.

1.2.3 Distance Lemma over Balanced Multislice

In this subsection, we discuss the proof overview for Theorem 4. The strategy is a generaliz-
ation of the proof for [2, Lemma 3.2]. The idea is to find a random copy of Sn/s inside the
balanced multislice Sn

µ such that it is a good sampler for Sn
µ , i.e. if we choose points from this

subgrid Sn/s at random, then the corresponding points in Sn
µ behave like random samples.

As we explain now, this guarantee essentially allows us to move from balanced multislice to
subgrid, where we have a complete understanding of distance. For every non-zero d-junta-sum
P : Sn

µ → G, we choose a random copy of Sn/s inside Sn
µ and restrict P to this copy. With

the sampling guarantee, we can argue that the restricted d-junta-sum is also non-zero on the
subgrid Sn/s, and we get the claimed bound by applying [3, Claim 2.6] on this restricted
polynomial. Next, we explain the process of finding a random copy of the n/s-dimensional
subgrid inside the balanced multislice.

The key step in our proof is to show that we can find a random copy of Sn/s inside
Sn

µ , which is a sampler for Sn
µ . We do it by randomly grouping the coordinates x1, . . . , xn

into n/s buckets of size s and in each bucket, we randomly assign distinct values to the s
coordinates. We prove that for two random points in Sn/s, their corresponding points in
the balanced multislice Sn

µ are almost pairwise independent. We show this via the second
moment method and the expander mixing lemma. We use our main theorem Theorem 3 to
show that the random walk on Sn

µ arising from the above random process has good spectral
expansion, making the expander mixing lemma applicable in this context.
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1.2.4 Local List Correction for Junta-Sums

Our local list corrector (see [3, Theorem 5.1]) is a generalization of [1, Theorem 1.3.4] to
d-junta-sums and arbitrary grids Sn (instead of degree-d polynomials and Boolean cube).
We do not dwell on the algorithm here, but only highlight and discuss the key technical
difference in our work and the previous work of [1]. We request the reader to please refer to
[3, Section 5] for more details on the algorithm.

An important step of our local list corrector involves a random restriction of Ssk to a
subgrid Sk, as follows: We randomly group the sk coordinates into k groups of size s, and
identify all the s coordinates in a group together by a single new coordinate. To show that
our local list corrector has small error probability, we need the following guarantee from
the above random restriction: If a d-junta-sum P ∈ Jd(Ssk) is non-zero on the balanced
multislice, then with high probability, it continues to be a non-zero junta-sum on Sk after
the random restriction. For this, we show that the above-mentioned random process can be
interpreted as finding a random copy of the balanced multislice in Sk inside the balanced
multislice in Ssk. Similar to the distance lemma for multislices ([3, Theorem 4.2]), we show
that we get a good sampler using Theorem 3.

We now briefly touch upon some of the additional challenges in going from the Boolean
case of [1] to junta-sums over grids Sn, in the context of local list-correction. For the local
correction algorithm in the unique decoding regime, the main idea is to reduce the problem
to the Boolean case but over a biased distribution instead of the uniform one; the proof then
proceeds by a mostly straightforward generalization of the local corrector from [1] for the
uniform distribution. The overall template for proving the combinatorial bound is also similar
to that over the Boolean cube, except now we will need more general anti-concentration
lemmas and distance lemmas for junta-sums. As already described in the above paragraph,
going from the combinatorial bound for list-decodability to the local list-corrector is the
main technical challenge we overcome in this work by making use of the fact that a certain
random embedding of the multislice of Sk inside the multislice of Sn is a good sampler.
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