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Abstract
We prove that random low-degree polynomials (over F2) are unbiased, in an extremely general sense.
That is, we show that random low-degree polynomials are good randomness extractors for a wide
class of distributions. Prior to our work, such results were only known for the small families of (1)
uniform sources, (2) affine sources, and (3) local sources. We significantly generalize these results,
and prove the following.
1. Low-degree polynomials extract from small families. We show that a random low-degree

polynomial is a good low-error extractor for any small family of sources. In particular, we
improve the positive result of Alrabiah, Chattopadhyay, Goodman, Li, and Ribeiro (ICALP
2022) for local sources, and give new results for polynomial and variety sources via a single
unified approach.

2. Low-degree polynomials extract from sumset sources. We show that a random low-degree
polynomial is a good extractor for sumset sources, which are the most general large family of
sources (capturing independent sources, interleaved sources, small-space sources, and more).
Formally, for any even d, we show that a random degree d polynomial is an ε-error extractor for
n-bit sumset sources with min-entropy k = O(d(n/ε2)2/d). This is nearly tight in the polynomial
error regime.

Our results on sumset extractors imply new complexity separations for linear ROBPs, and the
tools that go into its proof may be of independent interest. The two main tools we use are a new
structural result on sumset-punctured Reed-Muller codes, paired with a novel type of reduction
between extractors. Using the new structural result, we obtain new limits on the power of sumset
extractors, strengthening and generalizing the impossibility results of Chattopadhyay, Goodman,
and Gurumukhani (ITCS 2024).
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1 Introduction

In this work, we are interested in the following open-ended question:

How biased is a random degree d polynomial f : Fn
2 → F2?

By random degree d polynomial, we mean a polynomial of the form

f(x) =
∑

S⊆[n]:|S|≤d

αS · xS ,

where xS :=
∏

i∈S xi and the coefficients αS are sampled independently and uniformly at
random from F2. And by bias, perhaps the most basic definition is to simply check the
difference between how many inputs are mapped to 0 and 1. Or more formally, letting Un

denote the uniform distribution over Fn
2 ,

bias(f) := Pr
x∼Un

[f(x) = 0] − Pr
x∼Un

[f(x) = 1].

For these definitions of random and bias, Ben-Eliezer, Hod, and Lovett [7] – building on a pair
of earlier papers [50, 3] – provided a complete answer to the above question. In particular,
they showed sharp concentration bounds on | bias(f)|, concluding that a random degree d

polynomial is essentially unbiased on a uniform input, with extremely high probability. More
precisely, they proved the following.

▶ Theorem 0 (Random low-degree polynomials are unbiased [7, Lemma 1.2]). For every
δ ∈ (0, 1) there is a constant c > 0 such that the following holds. Let d ∈ N be an integer
satisfying 1 ≤ d ≤ (1 − δ)k. Then for a random degree d polynomial f : Fn

2 → F2,

Pr
f

[
| bias(f)| > 2−cn/d

]
≤ 2−c( n

≤d).

They showed these bounds were tight, and a later work extended these results to all prime
fields [6].

While Theorem 0 is interesting in its own right (since low-degree polynomials are funda-
mental objects), its pursuit was largely motivated by applications in coding theory, complexity
theory, and pseudorandomness. Indeed, given this new result, Ben-Eliezer, Hod, and Lovett
immediately obtained important corollaries in each of these areas. In coding theory, they
obtained new tail bounds on the weight distribution of Reed-Muller codes. In complexity
theory, they showed that (random) low-degree polynomials cannot be approximated by
polynomials of smaller degree. And in pseudorandomness, they obtained new lower bounds
on the seed length of pseudorandom generators (PRGs) for low-degree polynomials.

Since we now understand the bias of a random low-degree polynomial on a uniform input,
it is natural to ask whether a more general result can be proven for weakly random inputs –
especially given the connection this problem has to pseudorandomness. But in order to make
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this question formal, we’ll need a more general definition of bias, which allows the function
to receive a weakly random input. Towards this end, given a random variable (“source”) X
over Fn

2 , we define

biasX(f) := Pr
x∼X

[f(x) = 0] − Pr
x∼X

[f(x) = 1].

Given this definition, a simple observation is that biasUn(f) = bias(f), and thus establishing
concentration bounds for | biasX(f)| is a strictly more general problem than doing so for
| bias(f)|. But how should we use this generality? And for what distributions X is it actually
interesting to understand | biasX(f)|? Recall that we would like to understand | biasX(f)|
for weakly random X, but it is still not clear what weakly random should mean. To answer
all of these questions and more, we enter the world of randomness extraction.

Randomness extractors
Randomness extractors are fundamental objects in pseudorandomness and complexity theory.
They are motivated by the fact that nature can only provide us with weak sources of ran-
domness, yet most applications in computer science require perfectly uniform bits. Formally,
they are defined as follows.

▶ Definition 0 (Randomness extractor). Let X be a family of sources X ∼ {0, 1}n. A
deterministic function Ext : {0, 1}n → {0, 1}m is an extractor for X with error ε if for any
X ∈ X ,

∆(Ext(X), Um) ≤ ε,

where ∆(·, ·) denotes statistical distance. For short, we also call Ext an ε-extractor for X .

Ever since extractors were first introduced, they have found countless unexpected applications
in complexity, cryptography, pseudorandomness, and theoretical computer science. For a
survey, see [61, 39].

In this paper, we will focus on extractors that output one bit.1 In this case, the
requirement in Definition 0 reduces to a requirement that for any X ∈ X , it holds that
| Pr[Ext(X) = 1] − 1/2| ≤ ε. Or in other words,

| biasX(Ext)| ≤ 2ε.

Thus, returning to our original discussion, we see that getting good bounds on | biasX(f)|
for a random low-degree polynomial f is equivalent to showing that a random low-degree
polynomial is a good extractor for X. Thus, in order to figure out interesting distributions X
for which to pursue upper bounds on | biasX(f)|, it is only natural to borrow some motivation
from extractor theory. We do so, below.

Key questions
In order to show that a random low-degree polynomial extracts from a source X ∼ Fn

2
(equivalently, in order to upper bound | biasX(f)|), it is easy to see that an absolute minimum
requirement is that X contains some “randomness.” To formalize this notion, it is standard
to use min-entropy, defined as follows.

H∞(X) := min
x∈supp(X)

log
(

1
Pr[X = x]

)
.

1 As we will see, there are often relatively standard tricks that can boost the output length of an extractor,
once one bit is obtained.

APPROX/RANDOM 2025
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If X has min-entropy H∞(X) ≥ k, we often refer to it as an (n, k)-source.
Unfortunately, a well-known impossibility result says that even if each source X ∈ X

has nearly full min-entropy, it is still impossible to extract [23].2 Thus, in order to make
extraction possible, we not only need a lower bound on the min-entropy of each X ∈ X ,
but we also need to assume that each X ∈ X has some structure. Towards this end, the
oldest trick in the book is to assume that the family X is not too large. In this case, since
a uniformly random function extracts from one source X (with a min-entropy guarantee)
with extremely high probability [61, Proposition 6.12], a simple union bound allows one to
conclude that there exists a single function that extracts from all sources X ∈ X .

Given the above discussion, it is natural to ask whether an analogous fundamental result
can be established for uniformly random low-degree polynomials, which immediately raises
the question,

How biased is a random degree d polynomial on a single (n, k)-source X?

If we can show that | biasX(f)| is low with extremely high probability over f , then we can
conclude that random low-degree polynomials extract from any small family X of sources.
Importantly, many well-studied families of sources are, in fact, very small. In particular, this
is true of all families for which random low-degree polynomial extractors have been studied:
uniform sources [7], affine sources [25], and local sources [4].3 Thus, showing that a random
low-degree polynomial is unbiased on any single source X of min-entropy k could lead to a
result that subsumes (and greatly generalizes) all previous work.

Unfortunately, several important families of sources X are quite large. For these, the
above approach cannot be used to show that random low-degree polynomials extract. Here,
the most general (well-studied) family is the family X of sumset sources [18], a model
inspired by fundamental structures in additive combinatorics. Formally, an (n, k)-sumset
source is defined to have the form X = A + B, where A, B ∼ Fn

2 are independent sources
of min-entropy at least k, and + denotes bitwise XOR. Sumset sources generalize a huge
number of other well-studied large families [18, 14, 19], including: independent sources [23],
interleaved sources [59], and small-space sources [48] (and affine sources [8], though this
family is small). Thus, to complement our first question, we also ask:

How good is a random degree d polynomial as an extractor
for the family of (n, k)-sumset sources?

In the remainder of this paper, our goal is to answer both of the questions presented above.
In doing so, we hope to provide new insight into the power of a fundamental computational
model (low-degree polynomials) for a fundamental computational task (randomness extraction).
As it turns out, however, there are a few other reasons why answering these questions might
be useful. Before we formally present our main results, we highlight some of these, below.

Pseudorandomness

Low-complexity extractors have important applications in the real world and theory. In
the real world, low-complexity extractors are more likely to be implemented and exhibit a
reasonable running time. In theory, low-complexity extractors serve as fundamental building

2 Crucially, this is because the extractor Ext must be a single function that works for all X ∈ X .
3 The family of uniform sources is the trivial family X = {Un}, while the family of affine sources (of

min-entropy k) consists of all X ∼ Fn
2 that are uniform over a k-dimensional affine subspace of Fn

2 .
Local sources, on the other hand, consist of sources of the form X = f(Um), where f is some function
where each output bit depends on a bounded number of input bits.
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blocks in the construction of key cryptographic [56, 62] and pseudorandom primitives
[53, 54].4 Their study has also led to important structural results for well-studied families
of distributions [25, 4]. Because of this, low-complexity extractors have received a lot of
attention in the literature [33, 56, 62, 63, 26, 53, 11, 35, 25, 21, 4, 47, 22, 54], with the
works of Cohen and Tal [25] and Alrabiah, Chattopadhyay, Goodman, Li, and Ribeiro [4]
specifically focusing on the power of random low-degree polynomials as extractors (for affine
sources and local sources, respectively).

Coding theory

Low-degree polynomials are fundamental objects in both algebra and coding theory, and
studying whether they are good extractors ultimately requires proving new structural results
about them - leading to new insights in these two areas. For example, the work of Ben-Eliezer,
Hod, and Lovett [7] (on low-degree extractors for uniform sources) immediately gave new
bounds on the weight distribution of Reed-Muller codes. On the other hand, the results
of Cohen and Tal [25] (on low-degree extractors for affine sources) showed that every low-
degree polynomial must have a big subspace in its solution set. And the work of Alrabiah,
Chattopadhyay, Goodman, Li, and Ribeiro [4] (on low-degree extractors for local sources)
proved a new type of “Chevalley-Warning theorem,” which established that every (small)
system of low-degree polynomial equations must have a solution with low Hamming weight.

Complexity theory

Finally, low-complexity extractors can help us establish fine-grained complexity separations
(as advocated for in, e.g., [45]). In more detail, extractors are known to exhibit strong
lower bounds against a variety of well-studied complexity classes, including low-depth
circuits [46, 38], general circuits [28, 37, 34, 38, 52], various flavors of branching programs
[46, 17, 42, 20], and more [24, 38, 40, 15]. Showing that there exist extractors in a low-level
complexity class C would allow one to separate C from the classes above.

1.1 Our results

In this paper, we show that random low-degree polynomials extract from any small family
of sources, and from the (large) family of sumset sources. This answers both questions
presented in the introduction, and we present these two results in Sections 1.1.1 and 1.1.2.

1.1.1 Low-degree polynomials extract from small families

In order to prove that random low-degree polynomials can extract from any small family, we
first show that a random low-degree polynomial extracts from a single source. We prove the
following, which can be viewed as both: (1) a “low-degree” version of the classical fact that a
random function extracts from a single source [61, Proposition 6.12], and (2) a generalization
of the result that a random low-degree polynomial has low bias [7, Lemma 1.2] (Theorem 0).

4 In fact, several well-known explicit extractors are themselves low-degree polynomials [23, 5, 8, 13, 31, 51]!
The most canonical example is the inner-product extractor [23], which works for independent sources
and, more generally, sumset sources (see Section A).

APPROX/RANDOM 2025
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▶ Theorem 1 (Low-degree polynomials extract from a single source). For every δ ∈ (0, 1) there
is a constant c > 0 such that the following holds. Let X ∼ Fn

2 be a source with min-entropy
at least k, and let d ∈ N be an integer satisfying 1 ≤ d ≤ (1 − δ)k. Then for a random degree
d polynomial f : Fn

2 → F2,

Pr
f

[
| biasX(f)| > 2−ck/d

]
≤ 2−c( k

≤d).

We highlight some key aspects of this result. First, it has a simple proof, which follows
by combining [7, Lemma 1.2] (Theorem 0) with the leftover hash lemma [44]. Second, it is
easy to verify that it is tight.5 Third, we emphasize that the above result works for any
distribution of min-entropy at least k, not just those that are “flat” (uniform over a subset
S ⊆ Fn

2 of size 2k). This is crucial in some applications.6

We note that by a standard application of the XOR lemma [30, Lemma 3.8], it is easy
to extend Theorem 1 to show that a sequence of independent, uniformly random degree d

polynomials f1, f2, . . . , fm : Fn
2 → F2 can be concatenated to create a multi-bit extractor

for X.7 In fact, this can further be extended to show that the sequence f1, f2, . . . , fm not
only extracts m uniform bits from X, but has low correlation with any (short) fixed function
g applied to X.8 Finally, if we set k = n, m = 1, and g to have output length 1, this
result can be interpreted as nontrivial bounds on the list-size of Reed-Muller codes at the
extreme (relative) radius of 1/2 − 2−Ω(n/d). This appears to be the first result of this form
(c.f. [49, 1, 2]), and naturally extends to punctured Reed-Muller codes (by picking k < n).

Returning to our original problem, it is straightforward to combine Theorem 1 to show
our unifying result: that random low-degree polynomials extract from any small family of
sources, with exponentially small error. We record this corollary below, and instantiate
the general result with three interesting small families of sources: local sources, polynomial
sources, and variety sources. The family of local sources are easily shown to be small, while
the families of polynomial sources and variety sources were recently shown to be small via
“input reduction lemmas” [16, 25].

▶ Corollary 1 (Low-degree polynomials extract from small families). For every δ > 0 there
exists a constant c > 0 such that for all n ≥ k ≥ d ∈ N with d ≤ (1 − δ)k, the following holds.
For any family X of (n, k)-sources with size |X | < 2c( k

≤d), a random degree d polynomial
f : Fn

2 → F2 is a 2−ck/d-extractor for X , except with probability at most 2−c( k
≤d). In particular,

we get the following for a sufficiently large constant C > 0 depending only on δ.

Local sources: There exists a degree ≤ d polynomial f : Fn
2 → F2 that is a 2−ck/d-

extractor for r-local sources with min-entropy

k ≥ Cd(2rn + rn log n)1/d.

5 This follows by considering the (n, k)-source X which is uniform on the first k bits and constantly 0 on
the remaining bits, combined with the tightness of Theorem 0.

6 Even though arbitrary (n, k)-sources are known to be convex combinations of flat (n, k)-sources [61,
Lemma 6.10], this convex combination may end up bringing the source X out of the “small family” X .

7 In order to apply the XOR lemma, the only observation needed is that the XOR of (any number of)
independent, uniformly random degree d polynomials applied to X is, itself, a uniformly random degree
d polynomial applied to X.

8 This can be done by first conditioning on the output of g(X), which will only cause X to lose a little bit
of min-entropy.
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Polynomial sources: There exists a degree ≤ d polynomial f : Fn
2 → F2 that is a

2−ck/d-extractor for degree r polynomial sources with min-entropy

k ≥ C

(
Crdd

rr
· n

)1/(d−r)

.

Variety sources: There exists a degree ≤ d polynomial f : Fn
2 → F2 that is a 2−ck/d-

extractor for degree r variety sources with min-entropy

k ≥ Cdn(r+1)/d.

We make a few brief remarks about this result. First, we note that our result on
local sources significantly improves the parameters of the previous best result [4, Theorem
1.1], which required min-entropy k ≥ C2rr2d(2rn log n)1/d and had error ε = 2−ck/(d32rr2).
Second, we highlight that our result on polynomial sources may be surprising, as it shows
that polynomials can be used to extract from polynomial sources. Perhaps this can be used
to make progress on (the challenging goal of) constructing explicit extractors for polynomial
sources [32, 16], as it suggests that it is possible to improve the quality of a polynomial
source while keeping it as a polynomial source. Third, we mention that our result on variety
sources may be useful for establishing fine-grained complexity separations between low-degree
polynomials and other models of computation, given known hardness results for variety
extractors [46, 38]. Finally, we note that in the full version, we show that Corollary 1 (in fact,
Theorem 0) can be used to prove low-degree polynomials are good linear seeded extractors.9

Concurrent work

In a concurrent and independent work, Golovnev, Guo, Hatami, Nagargoje, and Yan [36]
prove similar results to those presented above (in Section 1.1.1). In particular, they show
that random low-degree polynomials are good extractors for any small family of sources,
and instantiate this to obtain results similar to those presented in Corollary 1. Moreover,
our proofs both rely on a similar key ingredient on the dimension of punctured Reed-Muller
codes [50, Theorem 1.5]. The differences are as follows: our result achieves better error
(exponentially small vs. polynomially small),10 and we also establish results for sumset sources
(discussed in Section 1.1.2 below).11 On the other hand, the work [36] proves a significant
generalization of [50, Theorem 1.5], in order to get interesting results in algebraic geometry.

1.1.2 Low-degree polynomials extract from sumset sources
In the second main part of our paper, we show that random low-degree polynomials are also
good extractors for sumset sources – the most general well-studied large family of sources.

▶ Theorem 2 (Low-degree polynomials extract from sumset sources). There exists a constant
C > 0 such that for any n ≥ k ≥ d ∈ N and ε > 0 such that k ≥ Cd(n/ε2)1/⌊d/2⌋, a random
degree d polynomial f : Fn

2 → F2 is an ε-extractor for (n, k)-sumset sources, with probability
at least 1 − 2−ε2( k/C

2⌊d/2⌋) ≥ 1 − 2−n2/ε2 .

9 Recall that a linear seeded extractor only needs to be linear on the source (fixing the seed), but may be
an arbitrarily high-degree polynomial in general.

10 Our exponentially small error is crucial to our strict improvement over the main positive result in [4].
11 We find the sumset setting to be much more challenging, and view these results as the main technical

contribution of this work.

APPROX/RANDOM 2025
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We highlight a few key specializations of Theorem 2 – focusing on even d, for simplicity.
First, we note that in the disperser regime,12 it shows that there exist degree ≤ d polynomials
that disperse from sumset sources with min-entropy k = O(dn2/d). This is nearly tight, since
Cohen and Tal [25] show that degree ≤ d polynomials cannot extract from affine sources
(and thus sumset sources) with min-entropy below k = Ω(dn1/(d−1)). (In the full version, we
show that the same impossibility result holds for independent sources, which are the other
special case of sumset sources.) Second, we note that in the polynomial error regime ε = n−γ ,
it shows that there exist degree ≤ d polynomials that are ε-extractors for sumset sources
with min-entropy k = O(dn2(1+2γ)/d). Third, in the arbitrary error regime ε > 0, it shows
that a random degree d = O(log(n/ε)) polynomial f is an ε-extractor for sumset sources
with min-entropy k = O(log(n/ε)). This strengthens the existential result of Mrazović [57],
who obtained such a min-entropy requirement for a uniformly random function f .

Finally, our sumset extractors have interesting consequences for linear read-once branching
programs, and our proof requires two new tools, which may be of independent interest.

Linear ROBPs

In more detail, linear read-once branching programs (ROBPs) are a new computational
model [42], which simultaneously generalize both standard ROBPs and parity decision trees.
At each point in the branching program, instead of querying a single input variable, the
ROBP is allowed to query an arbitrary linear function of the input (so long as it is linearly
independent of all previous queries).13 We observe that by leveraging standard results on
finite fields [55, Lemma 6.21] (see also [12, Lemma 17]), linear ROBPs of constant width
w = O(1) can compute any polynomial of degree 2.14 On the other hand, Theorem 2
(combined with [20, Theorem 1]) implies that linear ROBPs require exponential width
w = 2n−o(n) to compute polynomials of degree 4. This is a huge, perhaps surprising, jump
in complexity.15

Sumset-punctured Reed-Muller codes

Finally, we highlight that the proof of Theorem 2 requires two new key ingredients, which
may be of independent interest. The first key ingredient is a new result about the structure
of Reed-Muller codes that are punctured on sumsets. As a bonus application, in the full
version, we use this to build new “evasive sets,” which we then use to improve the extractor
impossibility results of Chattopadhyay, Goodman, and Gurumukhani [16], and to get a
low-error version of Theorem 2 for the special case of degree 4 polynomials and independent
sources. Interestingly, the latter result relies on the recent breakthrough resolution of
Marton’s PFR conjecture from additive combinatorics [41].

12 A disperser is an extractor f : Fn
2 → F2 with nontrivial error ε < 1/2.

13 The formal definition is slightly more technical - see [20, Definition 2].
14 In more detail, [12, Lemma 17] asserts that for any quadratic q : Fn

2 → F2, there is some B ∈ Fm×n
2

with full row rank and some affine L : Fn
2 → F2 such that q(x) = ⟨(Bx)≤m/2, (Bx)>m/2⟩ + L(x). Since

each row in B is linearly independent, the inner product can be computed using ≤ 2 bits of storage.
Then, using ≤ 1 additional bit of storage (in case L is linearly dependent on the rows in B), one can
simultaneously compute L(x). Thus, q(x) can be computed by a constant-width linear ROBP.

15 Indeed, one might expect the width w to somehow grow proportionately with the degree d of the
polynomial that must computed. However, this shows that the width jumps from constant to exponential,
simply by moving from degree 2 to degree 4.
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A novel reduction between extractors

The second key ingredient in the proof of Theorem 2 is a new type of reduction between
extractors. While most reductions rely on showing that a source can be equipped with
structure by breaking it down into a convex combination of well-behaved distributions via a
deterministic process, we show that using a careful (correlated) randomized process can make
this task much easier. In the full version, we illustrate a simpler variant of this idea in order
to give an alternative proof that a uniformly random function is an extractor for sumset
sources with min-entropy k = O(log(n/ε)) – a result first established by Mrazović [57].

2 Overview of our techniques

2.1 Low-degree polynomials extract from small families
Recall that our goal in Theorem 1 is to obtain concentration bounds for | biasX(f)| =
|Ex∼X[(−1)f(x)]| with X an arbitrary (n, k)-source. Our simple argument combines the
original result of [7] for X uniformly distributed over Fn

2 (Theorem 0) and an application of
the leftover hash lemma.

We first introduce some useful concepts. For a vector x ∈ Fn
2 , we denote by evald(x) the

tuple of evaluations of all monomials of degree at most d on x, i.e.,

evald(x) =
(∏

i∈I

xi

)
I⊆[n],|I|≤d

∈ F( n
≤d)

2 .

Given a set S ⊆ Fn
2 , we write evald(S) = {evald(x) : x ∈ S}.

In order to obtain the desired concentration, it suffices to appropriately upper bound the
high-order moments E[biasX(f)t] for a large t, which is also the approach followed in [7].
And, also analogously to [7], it is not hard to show that

Ef [biasX(f)t] = Pr
x(1),...,x(t)∼X

[evald(x(1)) + · · · + evald(x(t)) = 0]

= Pr
x(1),...,x(t)∼X

[∀p : Fn
2 → F2, deg p ≤ d : p(x(1)) + · · · + p(x(t)) = 0]. (1)

Intuitively, we would like to reduce the task of bounding Ef [biasX(f)t] to the task of
bounding Ef [bias(f)t], which can be handled via the concentration bounds from [7]. We
establish such a reduction via the leftover hash lemma, which guarantees the existence of a
linear map L : Fn

2 → Fm
2 with m ≈ k such that L(X) is close (in statistical distance) to the

uniform distribution on Fm
2 . We claim that

Ef [biasX(f)t] ≤ Eg[biasL(X)(g)t] (2)

where g : Fm
2 → F2 is a random degree d polynomial. This holds since, by Equation (1),

Eg[biasL(X)(g)t]

= Pr
y(1),...,y(t)∼L(X)

[∀q : Fm
2 → F2, deg q ≤ d : q(y(1)) + · · · + q(y(t)) = 0]

= Pr
x(1),...,x(t)∼X

[∀q : Fm
2 → F2, deg q ≤ d : q(L(x(1))) + · · · + q(L(x(t))) = 0]

≥ (1),

where the inequality uses the fact that q ◦ L : Fn
2 → F2 has degree at most d (with q ◦ L

denoting composition), as L is linear.
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We are almost done. Informally, since L(X) ≈ Um, it is easy to show Eg[biasL(X)(g)t] ≈
Eg[bias(g)t]. Moreover, we can upper bound Eg[bias(g)t] via the known concentration bound
from [7]. Combining this with Equation (2) yields the desired upper bound on Ef [biasX(f)t],
which we translate into a concentration bound on | biasX(f)| via Markov’s inequality.

2.2 Low-degree polynomials extract from sumset sources
Next, we discuss the approach behind Theorem 2. For simplicity, we focus here on the case
of even degree d, and note that it is trivial to extend to odd d (at a slight loss in parameters).

2.2.1 Low-degree polynomials disperse from sumset sources
As a warm-up, we first consider the simpler task of dispersing. In this case, we wish
to show that a random degree d polynomial f : Fn

2 → F2 will satisfy f(supp(W)) = F2
simultaneously for all (n, k)-sumset sources W with k = O(dn2/d). Then, we discuss the
necessary modifications to obtain sumset extraction with arbitrary error ε > 0.

First, as usual, we only need to focus on sumset sources W = X + Y where X and Y are
independent flat (n, k)-sources. Denote the supports of X and Y by X and Y , respectively,
which have size 2k. Then, the probability that f is identically 0 on X + Y is

Pr
f

[f(X + Y ) ≡ 0] ≤ 2− rank(evald(X+Y )). (3)

This is because we may write f(x) = ⟨v, evald(x)⟩ for a uniformly random vector v ∈ F( n
≤d)

2 ,
and so (i) f(x) is uniformly distributed over F2 for any fixed nonzero x, and (ii) f(x) and f(y)
are independent (and uniformly distributed) if evald(x) and evald(y) are linearly independent.

Given Equation (3), it is clear that we must understand rank(evald(X + Y )). If this
quantity is suitably large, then the probability that f is constant on any such sumset X + Y

is small, and we could hope to survive a union bound over all choices of X and Y . However,
this strategy cannot directly work, because rank(evald(X + Y )) will be at most

(
n

≤d

)
while

there are
(2n

2k

)2
≥ 22(n−k)2k ≫ 2( n

≤d) choices for X and Y .
A possible way to overcome the barrier to the application of the union bound above

is to show that there exist appropriately small subsets X ′ ⊆ X and Y ′ ⊆ Y such that
rank(evald(X ′ + Y ′)) is still large. If this were the case, we could then just apply the union
bound over all possible choices of the now much smaller sets X ′ and Y ′. We can make this
approach work by proving the following:

▶ Claim 2 (Informal). Let A, B ⊆ Fn
2 be sets of size 2k. Then, there exist subsets A′ ⊆ A

and B′ ⊆ B each of size roughly
√(

k
≤d

)
such that rank(evald(A′ + B′)) is roughly

(
k

≤d

)
.

We sketch how Claim 2 can be applied to obtain the desired result. Setting A = X and
B = Y , we obtain X ′ ⊆ X and Y ′ ⊆ Y of size about

√(
k

≤d

)
such that evald(X ′ + Y ′) has

rank about
(

k
≤d

)
. By Equation (3), this means that the probability that f is identically 0 on

X ′ + Y ′, and hence on X + Y , is at most about 2−( k
≤d). But now, crucially, we only have

to carry out a union bound over the at most about
( 2n

kd/2

)2
choices for X ′ and Y ′, which is

approximately 2nkd/2 ≪ 2( k
≤d) when k ≥ Cdn2/d for some large enough constant C > 0. Note

that this strategy would not have worked if X ′ and Y ′ were instead of size close to
(

k
≤d

)
.

Before discussing the simple proof of Claim 2, it is instructive to consider existing results
of a similar flavor. Keevash and Sudakov [50] (and later Ben-Eliezer, Hod, and Lovett [7,
Lemma 1.4]) proved that for any set S ⊆ Fn

2 of size 2k there exists a subset S′ ⊆ S of size at



O. Alrabiah, J. Goodman, J. Mosheiff, and J. Ribeiro 38:11

least
(

k
≤d

)
such that rank(evald(S′)) = |S′|. This lemma is one of the most important steps

in the proof of the main result of [7], and its proof hinges on the construction of an intricate
“rank-preserving surjection” from S to Fk

2 . More precisely, this is a map g : Fn
2 → Fk

2 that is
surjective on S and satisfies

rank(evald(S)) ≥ rank(evald(g(S))) = rank(evald(Fk
2)) =

(
k

≤ d

)
.

Applying this same rank-preserving surjection in the setting of Claim 2 is not guaranteed to
work, because now the subset that witnesses the

(
k

≤d

)
rank lower bound must be a sumset

A + B with |A|, |B| ≈
√(

k
≤d

)
. We overcome this by observing that if we are fine with worse

constants, then we can replace the complicated rank-preserving surjection from [7] with a
linear map, guaranteed by the leftover hash lemma. In fact, by the leftover hash lemma, there
exists a linear map L : Fn

2 → Fk′

2 , for k′ = Ω(k), which is surjective on both X and Y . We
choose X ′ ⊆ X and Y ′ ⊆ Y such that L(X ′) = L(Y ′) = Bk′

d/2(0), the radius-d/2 Hamming
ball in Fk′

2 centered at 0. Then, the linearity of L plus basic properties of evaluation vectors
allows us to conclude that

rank(evald(X ′ + Y ′)) ≥ rank(evald(L(X ′ + Y ′)))

= rank(evald(Bk′

d/2(0) + Bk′

d/2(0))) = rank(evald(Bk′

d (0))),

and it is well known that rank(evald(Bk′

d (0))) =
(

k′

≤d

)
.

2.2.2 From dispersers to extractors via random convex combinations
The argument discussed above shows that a random degree d polynomial is a k-sumset
disperser for min-entropy k = O(dn2/d) with high probability. It remains to see how we can
extend this to get sumset extraction for similar min-entropy k with arbitrary error ε > 0.

Our first observation is that if W = X + Y is a sumset source with flat X and Y whose
supports X and Y satisfy rank(evald(X+Y )) = |X|·|Y |, then Pr[f(W) = 0] ≈ 1/2 holds with
high probability over the choice of a random degree d polynomial f . In other words, f(W) is
close (in statistical distance) to uniform over F2, with high probability over f . This happens
because, under the conditions above, W is a flat source and all the vectors in evald(X + Y )
are linearly independent, which means that the bits (f(w) = ⟨v, evald(w)⟩)w∈X+Y are
independent and uniformly distributed when v is a uniformly random vector over F( n

≤d)
2 .

Now, set k = Cd(n/ε2)2/d for a large enough constant C > 0, and call a sumset source
W = X+Y special if X and Y are flat, rank(evald(X +Y )) = |X| · |Y |, and |X|, |Y | ≈

√(
k

≤d

)
.

Combining the previous paragraph with a union bound over the choices of X and Y (analogous
to the one in Section 2.2.1) shows that a random degree d polynomial will be, with high
probability, an ε-extractor for the class of special sumset sources.

Of course, most sumset sources are far from special. We overcome this by showing that
every (n, k)-sumset source W = X + Y with flat X and Y is 2−Ω(k)-close to a convex
combination of special sumset sources. Combining this with the observations above lets
us conclude that a random degree d polynomial will be a (k, ε′ = 2−Ω(k) + ε ≈ ε)-sumset
extractor with high probability.

It remains to argue why every (n, k)-sumset source W = X + Y with flat X and Y is
2−Ω(k)-close to some convex combination of special sumset sources. To better highlight the
main underlying ideas, we consider here only the particular case where k = n and X and Y
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are uniformly distributed over Fk
2 , and present a less optimized version of our final argument.

It is not hard to reduce the general case to a scenario very similar to this particular case
through an application of the leftover hash lemma.

We consider an alternative way of (approximately) sampling from W = X + Y – the
convex combination will be implicit in this sampling procedure. The idea is to first sample
uniformly random subsets X ′ ⊆ X = Fk

2 and Y ′ ⊆ Y = Fk
2 each of size

(
k/3
d/2
)

(which is

very roughly
√(

k
≤d

)
), and then sample X′ and Y′ uniformly at random from X ′ and Y ′,

respectively. If X ′ and Y ′ are sampled independently, then it is not hard to show that
W′ = X′ + Y′ is distributed exactly like W. However, we would like to claim that the
resulting sumset source X′ + Y′ will be special with high probability over the choice of
subsets X ′ and Y ′. To this end, we do not sample the subsets X ′ and Y ′ independently from
each other, but rather couple the randomness used in their sampling carefully. This coupling
will ensure that W′ = X′ + Y′ is always a special sumset source for any fixing of X ′ and Y ′,
while we still have W′ ≈2−Ω(k) W.

To sample the (correlated) random subsets X ′ and Y ′, we proceed as follows. Let
B1 = {u1, . . . , ut} be the set of weight-d/2 vectors supported on {1, . . . , k/3}, and let
B2 = {v1, . . . , vt} be the set of weight-d/2 vectors supported on {2k/3 + 1, . . . , k}. Since any
two vectors ui and vj have disjoint supports and are non-zero, each sum ui + vj is a distinct
non-zero vector in the radius-d Hamming ball, and so

rank evald(B1 + B2) = |B1| · |B2| =
(

k/3
d/2

)2
.

We couple the sampling of X ′ and Y ′ by choosing a uniformly random invertible matrix
L ∈ Fk×k

2 and setting X ′ = LB1 = {Lu1, . . . , Lut} and Y ′ = LB2 = {Lv1, . . . , Lvt}. Now,
because L is invertible, we know that

rank evald(X ′ + Y ′) = rank evald(B1 + B2) = |B1| · |B2| = |X ′| · |Y ′|.

Therefore, if X′ and Y′ are sampled independently and uniformly at random from X ′ and
Y ′, respectively, then W′ = X′ + Y′ is a special sumset source, as desired.

However, because the choices of X ′ and Y ′ are now correlated, we still need to argue that
this overall sampling process produces something statistically close to W = X + Y, with
X, Y independent and uniformly distributed over Fk

2 . If L ∈ Fk×k
2 were a uniformly random

matrix, this would be immediate. Indeed, let I and J be the random indices associated to the
choices of X′ and Y′ from X ′ and Y ′. Then, X′ = LuI and Y′ = LvJ would be independent
and uniformly distributed over Fk

2 , since uI and vJ are linearly independent for all choices of
I and J . To argue that this is still approximately true when L is required to be invertible, we
use the fact that the supports of uI and vJ lie in a subset of 2k/3 coordinates. Therefore, it
suffices to focus on 2k/3 columns of L. Since a collection of 2k/3 uniformly random vectors
over Fk

2 will be linearly independent except with probability 2−Ω(k), we conclude that any
collection of 2k/3 columns of L will be 2−Ω(k)-close in statistical distance to a collection of
2k/3 uniformly random vectors. This gives that (X′, Y′) ≈2−Ω(k) (X, Y), where X and Y
are independent, and so W′ = X′ + Y′ is 2−Ω(k)-close to the true sumset W = X + Y.

3 Preliminaries

We begin with some notation. We denote random variables by boldfaced uppercase letters
such as X and Y and denote sets by uppercase letters such as A and B or, at times, by
calligraphic uppercase letters. In this work we focus on random variables supported on finite
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sets, and write supp(X) for the support of the random variable X. We denote the uniform
distribution over Fm

2 by Um, and we write log for the base-2 logarithm. We use wt(x) to
denote the Hamming weight of a vector x ∈ Fn

2 , and we let Bn
r (v) denote the Hamming ball

in Fn
2 that is centered at v and has radius r. Finally, we define

(
n

≤r

)
:=
∑r

i=0
(

n
i

)
.

3.1 Probability
We now collect some basic notions from probability theory that will be useful throughout.

▶ Definition 2 (Statistical distance). The statistical distance between discrete random variables
X and Y supported on S, denoted ∆(X, Y), is given by

∆(X, Y) := max
T ⊆S

|Pr[X ∈ T ] − Pr[Y ∈ T ]| = 1
2
∑
x∈S

|Pr[X = x] − Pr[Y = x]| .

We say that X and Y are ε-close, and write X ≈ε Y, if ∆(X, Y) ≤ ε.

We will heavily exploit the following standard result about statistical distance.

▶ Fact 3 (Data-processing inequality). For any random variables X, Y ∼ V and function
f : V → W , it holds that

∆(X, Y) ≥ ∆(f(X), f(Y)).

Next, we define the notion of min-entropy, and various types of sources.

▶ Definition 3 (Min-entropy). The min-entropy of a random variable X is defined as

H∞(X) := min
x∈supp(X)

log
(

1
Pr[X = x]

)
.

▶ Definition 3 ((n, k)-source). We say that X ∼ Fn
2 is an (n, k)-source if H∞(X) ≥ k.

▶ Definition 3 ((n, k)-sumset source). We say that W ∼ Fn
2 is an (n, k)-sumset source if

there exist independent (n, k)-sources X, Y ∼ Fn
2 such that W = X + Y.

We’ll also need the following “dependency reversal” lemma from [15].

▶ Lemma 3 (Dependency reversal [15]). For any random variable X ∼ X and deterministic
function f : X → Y , there exists an independent random variable A ∼ A and deterministic
function g : Y × A → X such that

g(f(X), A) ≡ X,

and such that g(·, a) is a pseudoinverse16 of f , for all a ∈ supp(A).

3.2 Extractors
Finally, we collect some basic definitions of randomness extractors and useful auxiliary results.

16 We say that g′ : Y → X is a pseudoinverse of f : X → Y if f(g′(f(x))) = f(x) for all x ∈ X.
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▶ Definition 3 (Strong seeded extractor). A function Ext : Fn
2 × Fs

2 → Fm
2 is called a

(k, ε)-strong seeded extractor if for every (n, k)-source X it holds that

(Ext(X, Us), Us) ≈ε (Um, Us),

where Us is independent of X and Um. Moreover, we say that Ext is linear if Ext(·, y) is a
linear function for all y ∈ Fs

2.

The leftover hash lemma, stated below, is a crucial ingredient in our proofs.

▶ Lemma 3 (Leftover Hash Lemma [44]). For every 0 < k < n, ε > 0, and m ≤ k−2 log(1/ε),
there exists an explicit linear (k, ε)-strong seeded extractor Ext : Fn

2 × Fn
2 → Fm

2 .

We’ll also need the following (special case of) the leftover hash lemma with ℓ∞ guarantees.

▶ Lemma 3 ([29, Theorem II.4, special case]). There exists a constant C > 0 such that for all
n ≥ k ≥ 2, the following holds. Fix any set S ⊆ Fn

2 of size 2k. Then at least 0.99 fraction all
linear maps L : Fn

2 → Fm
2 with output length m = ⌊k − C log k⌋ are surjective when restricted

to S.

We now define various types of extractors and dispersers that will appear throughout.

▶ Definition 3 (Two-source disperser). A function Disp : Fn
2 ×Fn

2 → F2 is called a k-two-source
disperser if for any two independent (n, k)-sources X, Y it holds that supp(Disp(X, Y)) = F2.

▶ Definition 3 (Two-source extractor). A function Ext : Fn
2 × Fn

2 → Fm
2 is called a (k, ε)-two-

source extractor if for any two independent (n, k)-sources X, Y it holds that

Ext(X, Y) ≈ε Um.

▶ Definition 3 (Sumset disperser). A function Disp : Fn
2 → F2 is called a k-sumset disperser

if for any (n, k)-sumset source W it holds that supp(Disp(W)) = F2.

▶ Definition 3 (Sumset extractor). A function Ext : Fn
2 → Fm

2 is called a (k, ε)-sumset
extractor if for any (n, k)-sumset source W it holds that

Ext(W) ≈ε Um.

Note that every k-sumset disperser Disp automatically gives a k-two-source disperser
Disp′, simply by setting Disp′(x, y) := Disp(x + y). The same holds for extractors.

4 Low-degree polynomials extract from small families

4.1 Low-degree polynomials extract from a single source
In this section we prove Theorem 1, which we restate here.

▶ Theorem 1 (Low-degree polynomials extract from a single source). For every δ ∈ (0, 1) there
is a constant c > 0 such that the following holds. Let X ∼ Fn

2 be a source with min-entropy
at least k, and let d ∈ N be an integer satisfying 1 ≤ d ≤ (1 − δ)k. Then for a random degree
d polynomial f : Fn

2 → F2,

Pr
f

[
| biasX(f)| > 2−ck/d

]
≤ 2−c( k

≤d).
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We’ll use the following characterization of the bias’s moments, whose statement and proof
are analogous to those of [7, Claim 2.1] (which only focuses on uniform input.)

▶ Lemma 3 (Simple extension of [7, Claim 2.1]). If f : Fn
2 → F2 is a random degree d

polynomial, it holds that

Ef

[
biasX(f)t

]
= Pr

x(1),...,x(t)∼X
[∀p : Fn

2 → F2, deg(p) ≤ d : p(x(1)) + · · · + p(x(t)) = 0]

for any random variable X ∼ Fn
2 .

With this lemma in hand, we are ready to prove Theorem 1.

Proof of Theorem 1. The proof follows along the same lines as the proof of [7, Lemma 1.2],
combined with a linear hashing trick. For an integer t > 0, we focus on bounding the t-th
moment of biasX(f). By Lemma 3, we have that

Ef

[
biasX(f)t

]
= Pr

x(1),...,x(t)∼X
[∀p : Fn

2 → F2, deg(p) ≤ d : p(x(1)) + · · · + p(x(t)) = 0].

Fix any linear map L : Fn
2 → Fm

2 . Observe that the above is

≤ Pr
x(1),...,x(t)∼X

[∀p : Fm
2 → F2, deg(p) ≤ d : p(L(x(1))) + · · · + p(L(x(t))) = 0],

since deg(p ◦ L) ≤ deg(p) ≤ d, where p ◦ L denotes the composition of the polynomial p and
the linear map L. Then, applying Lemma 3 again, the above is exactly

= Pr
w(1),...,w(t)∼L(X)

[∀p : Fm
2 → F2, deg(p) ≤ d : p(w(1)) + · · · + p(w(t)) = 0]

= Eg

[
biasL(X)(g)t

]
,

where the expectation is taken over the choice of a random degree d polynomial g : Fm
2 → F2.

Therefore, we conclude that

Ef

[
biasX(f)t

]
≤ Eg

[
biasL(X)(g)t

]
(4)

for all linear maps L.
Now, let c > 0 be the absolute constant from Theorem 0. Without loss of generality, we

enforce that c < min(1/4, δ/2) (if this does not hold for the choice of c from Theorem 0,
take a smaller c). Since H∞(X) = k, the leftover hash lemma (Lemma 3) guarantees the
existence of a linear map L : Fn

2 → Fm
2 with m = k(1 − 2c/d) such that

L(X) ≈2−ck/d Um. (5)

Note that, by our choice of c, we have that m ≥ (1 − δ)k ≥ d. Equation (5) implies that

Pr
g

[
| biasL(X)(g)| > 2− ck

2d +1
]

≤ Pr
g

[
| bias(g)| > 2− ck

2d +1 − 2− ck
d

]
≤ 2−c( m

≤d). (6)

The last inequality follows from Theorem 0 applied to Fm
2 because 2− ck

2d +1 − 2− ck
d ≥ 2− ck

2d ≥
2−cm/d, since m = k(1 − 2c/d) ≥ k/2 (as we enforced that c < 1/4). Now, since

(
m
≤d

)
=(

k(1−2c/d)
≤d

)
≥ α

(
k

≤d

)
for some constant α = α(c, δ) > 0, we get from Equation (6) that

Pr
g

[
| biasL(X)(g)| > 2−c1k/d

]
≤ 2−c1( k

≤d) (7)

for some absolute constant c1 > 0.
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We now bound the t-th moment Ef [biasX(f)t] for an appropriate t. Set t = c2 · d
k ·
(

k
≤d

)
for a sufficiently large constant c2 = c2(c1) > 0. Using Equations (4) and (7), we have that

Ef

[
biasX(f)t

]
≤ Eg

[
biasL(X)(g)t

]
≤ 2−c1kt/d + 2−c1( k

≤d) ≤ 2−c3( k
≤d),

where the last equality uses our choice of t and holds for a sufficiently small constant c3 > 0.
Let c4 = c3/2. Combining the bound above with Markov’s inequality, we conclude that

Pr
f

[
| biasX(f)| > 2−c4k/d

]
≤ Ef [biasX(f)t]

2−c4tk/d
≤ 2−c4( k

≤d),

which yields the desired lemma statement with absolute constant c4 > 0. ◀

4.2 Low-degree polynomials extract from small families
We showcase applications of Theorem 1 to some important small families of sources.

Local sources
First, we consider the scenario of locally-samplable sources [27, 64, 4]. A source X ∼ Fn

2 is
said to be r-local if X = g(Um), where g : Fm

2 → Fn
2 is some function such that each output

bit depends on at most r input bits and Um denotes the uniform distribution over Fm
2 . In

the full version, we show that by combining Theorem 1 with a simple upper bound on the
number of local sources, we immediately obtain the following.

▶ Corollary 3 (Low-degree polynomials extract from local sources). There exist constants
C, c > 0 such that for all n, k, d, r ∈ N with k ≥ Cdn1/d(r log n + 2r)1/d, the following holds.
A random degree d polynomial f is an (ε = 2−ck/d)-extractor for the family of length-n r-local
sources of min-entropy k, with probability at least 1 − 2−c( k

≤d) over the choice of f .

Corollary 3 both improves on and simplifies the proof of [4, Theorem 1.1], which required
min-entropy k ≥ C2rr2d(2rn log n)1/d and error ε = 2− ck

d32rr2 for some absolute constants
C, c > 0, and was obtained via an intricate initial reduction to local “non-oblivious bit-fixing
(NOBF)” sources. In particular, observe that when d > r, we now get that the min-entropy
requirement is just O(d(n log n)1/d). Previously, this was only possible for d ≫ 2r.

It is also instructive to compare our improved result with the lower bound from [4,
Theorem 1.2], which states that no degree-d polynomial extracts from length-n r-local
sources of min-entropy k = cd(rn log n)1/d for some absolute constant c > 0. For example,
when the locality satisfies r < log log n, Corollary 3 is optimal up to the constant factor.

Polynomial sources
A random variable X ∼ Fn

2 is a degree-r polynomial source if there exist F2-polynomials
p1, . . . , pn : Fm

2 → F2 of degree at most r for some positive integer m (the input length)
such that X = P (Um), where P = (p1, . . . , pn) and Um is uniform over Fm

2 . This is a very
challenging model to extract from, and several papers have attempted to do so [32, 11, 43, 16].
In the full version, we show that by combining Theorem 1 with a recently-established input
reduction lemma for polynomial sources [16], we immediately obtain the following.

▶ Corollary 3 (Low-degree polynomials extract from polynomial sources). There exist constants

C, c > 0 such that for all n, k, d, r ∈ N with d > r and k ≥ C
(

Crddn
rr

) 1
d−r , the following

holds. A random degree d polynomial f is an (ε = 2−ck/d)-extractor for the family of length-n
degree-r polynomial sources of min-entropy k, with probability at least 1 − 2−c( k

≤d) over f .
In particular, if we take d = 2r, then the above holds for any k ≥ Cdn2/d.
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Variety sources
A random variable X ∼ Fn

2 is a variety source of degree r and min-entropy k if for some t

there exist polynomials p1, . . . , pt : Fn
2 → F2 of degree at most r such that X is uniformly

distributed over the variety

V (p1, . . . , pt) := {x ∈ Fn
2 | p1(x) = p2(x) = · · · = pt(x) = 0}.

This family of sources has received significant interest over the last decade, both over F2 and
larger fields [31, 60, 51, 43]. Sufficiently strong explicit extractors for variety sources are
known to imply breakthrough circuit lower bounds [38]. In the full version, we show that
by combining Theorem 1 with a known input reduction lemma for variety sources [25], we
immediately obtain the following.

▶ Corollary 3 (Low-degree polynomials extract from variety sources). There exist constants
C, c > 0 such that for all n, k, d, r ∈ N with d > r and k ≥ Cdn

r+1
d , the following holds. A

random degree d polynomial f is an (ε = 2−ck/d)-extractor for the family of length-n variety
sources of degree r and min-entropy k, with probability at least 1 − 2−c( k

≤d) over f .

The best explicit extractors for variety sources over F2 either work for constant degree
r and min-entropy k = (1 − cr)n [51], or large degree r = nα and very high min-entropy
n − nβ with α + β < 1/2 [60]. By [38], an explicit version of Corollary 3 would be more than
enough to imply significantly improved circuit lower bounds.

5 Low-degree polynomials extract from sumset sources

5.1 Low-degree polynomials disperse from sumset sources
As a warmup to proving Theorem 2, we prove a disperser version of this result (with a slightly
better bound on the probability). For simplicity, we focus here on the case of even degree d.

▶ Proposition 3. There exist constants C, c > 0 such that for any n ≥ k ≥ d ∈ N (with d

even) satisfying d ≤ c log n
log log n and k ≥ Cdn2/d, a random degree d polynomial f : Fn

2 → F2 is
a disperser for (n, k)-sumset sources, with probability at least 1 − 2−c( k

≤d).

Our key lemma (recall the informal Claim 2) states that for any two subsets A and B,
we can find small subsets A′ ⊆ A and B′ ⊆ B such that rank(evald(A′ + B′)) is large.

▶ Lemma 3. There exists a constant C > 0 such that for all n ≥ k ≥ d ∈ N (with
d even) satisfying k ≥ C(1 + log n), the following holds. Let A, B ⊆ Fn

2 be sets of size
2k. Then, there exist subsets A′ ⊆ A and B′ ⊆ B such that |A′|, |B′| =

(
k−C log n

≤d/2
)

and
rank(evald(A′ + B′)) ≥

(
k−C log n

≤d

)
.

In order to prove this result, the following simple claim will come in handy. It says that
applying a linear map to a set can only decrease its “evald-rank.”

▶ Claim 3. If L : Fn
2 → Fm

2 is linear, then rank(evald(S)) ≥ rank(evald(L(S))) ∀S ⊆ Fn
2 .

This claim’s proof is straightforward, and we include it in the full version. Next, by
combining this claim with the leftover hash lemma, we can prove Lemma 3.

Proof of Lemma 3. Fix arbitrary sets A, B ⊆ Fn
2 of size 2k. By Lemma 3 and a union bound,

there exists a linear map L : Fn
2 → Ft

2 with output length t = k−C(1+log n) that is surjective
on both A and B. In particular, there are subsets A′ ⊆ A and B′ ⊆ B of size

(
t

≤d/2
)

such that
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L(A′), L(B′) = Bt
d/2(0). Since L is linear, we have that L(A′ + B′) = L(A′) + L(B′) = Bt

d(0),
and so

rank(evald(A′ + B′)) ≥ rank(evald(L(A′ + B′))) = rank(evald(Bt
d(0))) =

(
t

≤ d

)
,

where the first inequality uses Claim 3, and the last equality uses the fact that Bt
d(0) is an

interpolating set for degree ≤ d polynomials (see, e.g., [58, Proposition 6.21]). ◀

Finally, we can now use Lemma 3 to prove Proposition 3.

Proof of Proposition 3. Without loss of generality, we may assume that X and Y are
uniformly distributed over sets A, B ⊆ Fn

2 , respectively, each of size 2k. By Lemma 3, there
exist subsets A′ ⊆ A and B′ ⊆ B of size

(
t

≤d/2
)

such that

rank(evald(A′ + B′)) ≥
(

t

≤ d

)
,

with t = k − C0(1 + log n) for an absolute constant C0 > 0. Since A′ + B′ ⊆ A + B, it follows
that f is constant on A + B with probability at most

2 · 2− rank(evald(A′+B′)) ≤ 2−( t
≤d)+1.

By taking a union bound over all of the at most
( 2n

( t
≤d/2)

)2
≤ 22n( t

≤d/2) choices of A′ and B′,
we conclude that the probability that f is constant on some set A + B is at most

22n( t
≤d/2) · 2−( t

≤d)+1 ≤ 22n( k
≤d/2)+1 · 2−( t

≤d).

By combining the guaranteed bounds on k, d (from the hypothesis) with standard estimates
on binomial coefficients, it is straightforward to show that this is at most

22n( k
≤d/2)+1 · 2− 1

2 ( k
≤d) ≤ 2− 1

4 ( k
≤d)+1,

which completes the proof. (For detailed calculations, see the full version.) ◀

5.2 Low-degree polynomials extract from sumset sources
We now prove Theorem 2 in full generality. For convenience, we restate it, below.

▶ Theorem 2 (Low-degree polynomials extract from sumset sources). There exists a constant
C > 0 such that for any n ≥ k ≥ d ∈ N and ε > 0 such that k ≥ Cd(n/ε2)1/⌊d/2⌋, a random
degree d polynomial f : Fn

2 → F2 is an ε-extractor for (n, k)-sumset sources, with probability
at least 1 − 2−ε2( k/C

2⌊d/2⌋) ≥ 1 − 2−n2/ε2 .

In order to prove Theorem 2, we start by defining a special type of sumset sources.

▶ Definition 3. We say that a sumset source W = X + Y has full evald-rank if the set
evald(supp(X) + supp(Y)) is a collection of |supp(X)| · |supp(Y)| linearly independent vectors.

As it turns out, random low-degree polynomials can easily be shown to extract from
sumset sources with full evald-rank. Indeed, a straightforward application of the Chernoff
(and union) bounds yields the following (for a proof, see the full version).
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▶ Lemma 3. For any t, n ∈ N and ε > 0 such that t ≥ 64n/ε2, the following holds with
probability at least 1 − 2 · 2−ε2t2/32 over the selection of a random degree d polynomial
f : Fn

2 → F2. For any sets X, Y ⊆ Fn
2 of size t satisfying rank(evald(X + Y )) = t2, we have

| biasX+Y(f)| ≤ ε,

where X and Y are uniformly distributed over X and Y , respectively.

Next, we show that every sumset source is close to a convex combination of sumset
sources with full evald-rank. This is the main ingredient in our proof.

▶ Lemma 3. There exists a constant c > 0 such that for all n ≥ k ≥ d ∈ N, the following
holds. Let W = X + Y be an (n, k)-sumset source. Then W is 2−ck-close to a convex
combination of flat sumset sources W⋆ = X⋆ + Y⋆ with full evald-rank and such that
|supp(X⋆)| = |supp(Y⋆)| =

(
k/6

⌊d/2⌋
)
.

Proof. Let Ext : Fn
2 → Fm

2 be a linear map such that m = k/2 and

Ext(X) ≈2ε Um,

Ext(Y) ≈2ε Um. (8)

This map is guaranteed to exist by the leftover hash lemma (Lemma 3) with ε = 2−k/4 and a
union bound. Using the dependency reversal lemma (Lemma 3), there exist functions Ext−1

X

and Ext−1
Y and random variables A = (A0, . . . , At) and B = (B0, . . . , Bt) such that

X ≡ Pick
(
Ext−1

X (Ext(X), A0), . . . , Ext−1
X (Ext(X), At); U

)
Y ≡ Pick

(
Ext−1

Y (Ext(Y), B0), . . . , Ext−1
Y (Ext(Y), Bt); U′) ,

where A0, . . . , At, B0, . . . , Bt, U, U′, X, Y are mutually independent, U, U′ ∼ {0, . . . , t} and
Pick uses its last argument to pick among its first t + 1 arguments (i.e., Pick(v0, v1, . . . , vt; i)
outputs vi). To see why the above is true, consider an arbitrary fixing of U, U′ and simply
apply the dependency reversal lemma.

Now, by Equation (8) and the independence of X and Y, there are random variables
R, R′ ∼ Fm

2 independent of each other and the rest that are both uniformly random over Fm
2

and such that we can replace Ext(X), Ext(Y) with them. Recalling that X, Y are independent,
we get from an application of the data-processing inequality and Equation (8) that both

Pick
(
Ext−1

X (Ext(X), A0), . . . , Ext−1
X (Ext(X), At); U

)
≈2ε Pick

(
Ext−1

X (R, A0), . . . , Ext−1
X (R, At); U

)
, and

Pick
(
Ext−1

Y (Ext(Y), B0), . . . , Ext−1
Y (Ext(Y), Bt); U′)

≈2ε Pick
(
Ext−1

Y (R′, B0), . . . , Ext−1
Y (R′, Bt); U′) . (9)

We now couple the randomness of R, R′ in a specific way. Let L ∼ Fm×m
2 be a uniformly

random invertible matrix (L is obtained by sampling its i-th column uniformly at random from
Fm

2 , conditioned on it being lienarly independent of the previous i − 1 columns). Intuitively,
we take appropriate disjoint subsets B0 and B1 of the radius-d/2 Hamming ball, and replace
R and R′ by applications of L to vectors in these sets. More precisely, consider the sets

B0 := {u ∈ Fm
2 : wt(u) = ⌊d/2⌋, supp(u) ⊆ {1, . . . , m/3}},

B1 := {v ∈ Fm
2 : wt(v) = ⌊d/2⌋, supp(v) ⊆ {2m/3 + 1, . . . , m}}.

Note that vectors in B0 and B1 are nonzero and have disjoint supports. Moreover, B0 + B1 is
a subset of the radius-d Hamming ball, and so rank(evald(B0 + B1)) = |B0| · |B1|.
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Let u0, . . . , ut be the elements in B0, and v0, . . . , vt the elements in B1. We argue that(
Pick

(
Ext−1

X (R, A0), . . . , Ext−1
X (R, At); U

)
,

Pick
(
Ext−1

Y (R′, B0), . . . , Ext−1
Y (R′, Bt); U′))

≈m2−m/3

(
Pick

(
Ext−1

X (Lu0, A0), . . . , Ext−1
X (Lut, At); U

)
,

Pick
(
Ext−1

Y (Lv0, B0), . . . , Ext−1
Y (Lvt, Bt); U′)) := (X∗, Y∗). (10)

To see why this holds, consider an arbitrary fixing of (U, U′) = (i, j). Then, by an application
of the data-processing inequality, it suffices to show that (Lui, Lvj) ≈m2−m/3 (R, R′).
Towards this end, recall that for any i, j ∈ [t], the vectors ui and vj are nonzero with disjoint
supports of size m/3 each. Let L′ denote the m × (2m/3) matrix obtained by selecting
columns of L indexed by the supports of ui and vj . Then, we have that L′ ≈m2−m/3 M′,
where M′ is a uniformly random m × (2m/3) matrix. To see this, note that a uniformly
random vector in Fm

2 will be linearly independent from any given collection of 2m/3 vectors
with probability at least 1 − 2−m/3, and then apply a union bound over all the 2m/3 < m

columns of L′. Therefore, letting u′
i and v′

j denote the restrictions of ui and vj to the
coordinates in supp(ui)∪ supp(vj), we have that (Lui, Lvj) ≈m2−m/3 (M′u′

i, M′v′
j) ≡ (R, R′).

The last step holds because u′
i and v′

j are linearly independent, so the random variables M′u′
i

and M′v′
j are independent and uniformly distributed over Fm

2 .
We now analyze the evald-rank of X∗ + Y∗. Consider any fixing of the random variables

L and A0, . . . , At, B0, . . . , Bt. Upon such a fixing, (X∗, Y∗) becomes of the form (X⋆, Y⋆),
where X⋆, Y⋆ are independent and uniform over the sets

X⋆ := {Ext−1
X (Lu0, a0), . . . , Ext−1

X (Lut, at)},

Y ⋆ := {Ext−1
Y (Lv0, b0), . . . , Ext−1

Y (Lvt, bt)},

respectively. Then, notice that the support of X⋆ + Y⋆ is exactly

S⋆ := {Ext−1
X (Lui, ai) + Ext−1

Y (Lvj , bj)}i,j∈[t].

To analyze the evald-rank of S⋆, recall from Claim 3 that applying linear transformations
can only decrease the evald-rank. Furthermore, note that for any i, j ∈ [t] it holds that

L−1(Ext(Ext−1
X (Lui, ai) + Ext−1

Y (Lvj , bj))) = ui + vj .

Furthermore, the composition L−1 ◦ Ext is linear, since L was linear (and invertible) and Ext
is also linear (since it comes from the leftover hash lemma). Thus,

rank(evald(S⋆)) ≥ rank(evald(L−1(Ext(S⋆))))
= rank(evald({ui + vj}i,j)) = rank(evald(B0 + B1)).

Since |S⋆| ≤ |B0| · |B1|, we get that rank(evald(S⋆)) = |B0| · |B1|, and so X⋆ + Y⋆ has full
evald-rank. Recalling Equations (9) and (10) and the parameter settings m = k/2 and
ε = 2−k/4, this means that the sumset source X + Y is ε⋆-close to a convex combination of
flat sumset sources X⋆ + Y⋆ with full evald-rank and support sizes |supp(X⋆)|, |supp(Y⋆)| =(

m/3
⌊d/2⌋

)
=
(

k/6
⌊d/2⌋

)
, where ε⋆ = 4ε + m2−m/3 ≤ 4 · 2−k/4 + (k/2) · 2−k/6 ≤ 5k · 2−k/6. This is at

most 2−k/7 as long as k exceeds a big enough constant C. Since the lemma is straightforward
to obtain whenever k ≤ C, this completes the proof. ◀
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As we have seen, random low-degree polynomials easily extract from sumset sources with
full evald-rank (Lemma 3), and every sumset source is close to a convex combination of sumset
sources with full evald-rank (Lemma 3). As a result, we immediately obtain Theorem 2. For
the detailed calculations, we refer the reader to the full version.

6 Open problems

We list here some of our favorite directions for future research:
In Theorem 2, we showed that most degree ≤ d polynomials are sumset dispersers (in
fact, extractors) for min-entropy k = O(dn1/⌊d/2⌋). On the other hand, we also know
that no degree ≤ d polynomial is a sumset disperser for min-entropy k = c · dn1/(d−1),
where c > 0 is some constant. Can we narrow this gap?
We conjecture that most degree ≤ d polynomials are sumset extractors with exponentially
small error for min-entropy k = CdnC/d for some constant C > 0, even when d is a
constant.17 We think that even showing this for small linear min-entropy would already
be quite interesting.
In the full version, we show that there exist (non-explicit) degree ≤ 4 low-error two-
source extractors for any linear min-entropy via approximate duality [10]. This approach,
however, provably cannot go below min-entropy

√
n [9]. Can we show the existence of

low-degree low-error two-source extractors for min-entropy below
√

n?
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A Inner product as a sumset extractor

We show that the inner product function (a degree 2 polynomial) is a sumset extractor for
min-entropy k > n/2.

▶ Theorem 4. For any even n and n/2 ≤ k ≤ n, the function f : Fn
2 → F2 given by

f(x) = ⟨(x1, . . . , xn/2), (xn/2+1, . . . , xn)⟩ is a (k, ε)-sumset extractor for ε ≤ 4 · 2 1
2 (n−2k).

To prove Theorem 4, we only need the fact that inner product is a two-source extractor.

▶ Lemma 4 ([23]). Suppose that X is an (n, k1)-source and Y is an (n, k2)-source, and that
X and Y are independent. Then, ⟨X, Y⟩ ≈ε U1 for ε ≤ 2 1

2 (n−k1−k2).

Proof of Theorem 4. Without loss of generality, fix any two independent flat (n, k)-sources
X, Y. For a vector w ∈ Fn

2 , define w(1) := (w1, . . . , wn/2) and w(2) := (wn/2+1, . . . , wn).
We first carry out the analysis assuming ⟨X(1), X(2)⟩ and ⟨Y(1), Y(2)⟩ are both constant.

We will then remove this constraint by increasing the final error. For any b, b′ ∈ F2, let
Xb := (X | ⟨X(1), X(2)⟩ = b) and Yb′ := (Y | ⟨Y(1), Y(2)⟩ = b′), and denote kX,b := H∞(Xb)
and kY,b′ := H∞(Yb′). Then, defining rev(y) := (y(2), y(1)) for any y, we have that

f(x + y) = ⟨x(1) + y(1), x(2) + y(2)⟩ = ⟨x(1), x(2) + y(2)⟩ + ⟨y(1), x(2) + y(2)⟩

= ⟨x(1), y(2)⟩ + ⟨y(1), x(2)⟩ + ⟨x(1), x(2)⟩ + ⟨y(1), y(2)⟩ = ⟨x, rev(y)⟩ + b + b′

for all x ∈ supp(Xb), y ∈ supp(Yb′). Note that Xb is a flat (n, kX,b)-source and rev(Yb′) is a
flat (n, kY,b′)-source, and they are independent. So, by Lemma 4, we know that f(Xb, Yb′)
is εb,b′ -close to uniform with εb,b′ ≤ 2 1

2 (n−kX,b−kY,b′ ). Thus, by convexity, we have that

∆(f(X + Y), U1) ≤
∑

b,b′∈F2

Pr[⟨X(1), X(2)⟩ = b] · Pr[⟨Y(1), Y(2)⟩ = b′] · εb,b′

=
∑

b,b′∈F2

2kX,b

2k
· 2kY,b′

2k
· εb,b′ ≤

∑
b,b′∈F2

2 1
2 (n+kX,b+kY,b′ −4k)

≤
∑

b,b′∈F2

2 1
2 (n−2k) = 4 · 2 1

2 (n−2k). ◀
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