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Abstract
Classical data can be copied and re-used for computation, with adverse consequences economically
and in terms of data privacy. Motivated by this, we formulate problems in one-way communication
complexity where Alice holds some data x and Bob holds m inputs y1, . . . , ym. They want to
compute m instances of a bipartite relation R(·, ·) on every pair (x, y1), . . . , (x, ym). We call this
the asymmetric direct sum question for one-way communication. We give examples where the
quantum communication complexity of such problems scales polynomially with m, while the classical
communication complexity depends at most logarithmically on m. Thus, for such problems, data
behaves like a consumable resource that is effectively destroyed upon use when the owner stores and
transmits it as quantum states, but not when transmitted classically. We show an application to a
strategic data-selling game, and discuss other potential economic implications.
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1 Introduction

As statistical models fitted to large datasets are being usefully applied to problems in various
fields of science and engineering [15, 19, 45], the use of proprietary data for training or
inference raises concerns of data privacy and adequate compensation for the data owner. The
destructive nature of measurement in quantum mechanics has the potential to change this
picture. In order to model this scenario we introduce the asymmetric direct sum question in
one-way communication complexity. Informally we say a relation R has an asymmetric direct
sum property for communication model M if the communication complexity of computing
R(x, y1) · R(x, y2) · . . . · R(x, ym) is Ω(m) times the communication complexity of computing
R(x, y). One would expect examples of this in quantum communication when the state Alice
sends to Bob undergoes destructive measurement, and may not be copyable. As such, we
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39:2 Consumable Data via Quantum Communication

refer to problems exhibiting this property as consumable data problems1. To our knowledge,
for communication complexity such a model is studied here for the first time. The work of
Hazan & Kushilevitz [33] is superficially similar but the crucial difference is that in our work
Alice receives only one input whereas in theirs Alice has m independent instances.

We provide a number of examples of consumable data problems when using quantum
communication. For the asymmetric sum version of the Hidden Matching problem [10], we
show in Section 4.1 that the one-way communication complexity is Ω̃(

√
m). This follows

from an information theoretic argument and generalizes to other settings as discussed in
Section 6. We conjecture this can be improved to Ω(m) for m not too large, and we study a
modification of the problem where we show the complexity is indeed Ω(m). Our results in
Sections 4.2 and 4.3 prove a scaling of Ω̃(m) for the problems of sampling from a solution
of a linear system and estimating the expectation values of two-outcome observables in a
multi-party setting, when the parties holding the observables are restricted to using classical
communication and performing single-copy measurements of Alice’s messages. For these
problems, we also show that classical one-way communication does not exhibit this scaling.
More generally, the consumable data property is easily seen to not hold for all relations when
M corresponds to deterministic one-way communication. Since Alice’s message depends
only on x, Bob can copy the message m times and solve each of his instances. Additionally,
the quantum asymmetric direct sum property only holds for relations which have a Ω(m)
separation between quantum and deterministic communication complexity, otherwise the
quantum protocol could mimic the deterministic one.

Our results have an interesting economic interpretation, specifically in a setting where a
data holder wishes to maximize the payoff of selling data that other parties wish to use for
computation, or prevent unauthorized re-use. Models of markets are concerned chiefly with
goods that are consumed during the process of economic production, known as rival goods.
However, for almost a century it has been recognized that data and information also play
a vital role in economic processes [54]. The ability to cheaply replicate data has long been
recognized as its chief distinguishing characteristics compared to other economic resources,
and this nonrivality has dramatic consequences [8, 52]. It essentially implies that the (albeit
idealized) equilibrium known as perfect competition, in which the price of every good on the
market is set by its capacity for increasing output, cannot hold once data is involved. In
some sense, one cannot “get their money’s worth” when data is traded, unless there is some
external enforcement mechanism that sets prices. Such a mechanism may lead to suboptimal
resource allocations, and requires trust between the parties involved. Examples of this can be
seen in recent proposals for data markets [5, 38]. Nonrivality of data may also disincentivise
the creation of novel datasets, which could be of particular concern as the production rate
of public high-quality data in certain modalities is far outstripped by the growth rate of
training sets for large models [57].

In contrast to the classical picture, the fragile nature of quantum states suggests that
classical data encoded in the amplitudes of a quantum state may be destroyed upon use for
computation. For this to be the case, one must first show that a problem of interest can be
solved with data encoded in this way. In addition, one must argue that the resulting states
cannot be replicated in a similar manner to classical data. There is an inherent tension between
these two goals, since while no-cloning is trivial for general quantum states [49], this is no
longer the case once states are structured. As a simple example, given a computational basis

1 To make our definition robust, we precisely define consumable data probltems to be those where the
scaling is polyomial in m.
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state, it can be measured in the computational basis without disturbing it and subsequently
copied, and thus acts analogously to classical data. A less trivial example is that states
encoding boolean functions may also be copied in some cases [1]. It is therefore a priori not
obvious whether any problems satisfy these competing demands. The nuanced nature of
clonability for both the state and the task motivates the formal study of this problem.

For any relation which exhibits a quantum asymmetric direct sum property, the state(s)
sent by Alice satisfy both of the requirements outlined above. In Section 5.1 we illustrate
the economic consequences of this within the framework of production theory, and show that
consumability implies the possibility of perfect competition, which cannot be achieved when
unencrypted classical data is used. Additionally, in Section 5.2 we formulate a data market
as a strategic game, and show that consumability implies potentially larger payoffs for the
data seller.

The problems we consider are based on ones that exhibit an exponential quantum
communication advantage. One may wonder whether such an advantage immediately implies
the asymmetric direct sum property. In Section 4.3 we show that this is not the case, by
considering the problem of observable estimation in a two-party setting [39, 50], and using
shadow tomography [2].

Comparison to Chatterjee et al. [18]. A recent work [18] also studied a problem similar
to the consumability of the Hidden Matching problem. They proved that if k separated
Bobs want to compute k instances of Hidden Matching then the min-entropy of their joint
distribution must be Ω(kn) for at least an exponentially small fraction of Alice’s possible
inputs. Our lower bound holds for the stronger model where a single Bob holds all k instances
and our result holds in the bounded error setting, which they leave as an open problem.

1.1 Related Work

1.1.1 Destructive measurement as a resource
The idea of using uncloneability of quantum states as a feature has a long history, starting
with the seminal work of Weisner [58] that introduced the notion of quantum money. However,
the states used in construction of quantum money schemes typically do not encode or transmit
useful information and can benefit from the computational power of pseudo-randomness in
quantum state [37]. While no-cloning is easy to show for states with little or no structure,
this notion becomes more subtle for structured states, and in particular ones that might
be useful in performing computation. Aaronson considered the question of uncloneablity
of states that encode classical boolean functions, a problem he called quantum software
copy-protection [1, 3]. He showed that the presence of structure enables such states to be
cloned unless computational assumptions are made, and even then cannot be ruled out for
states that encode functions that can be efficiently learned. The setting we consider can be
seen as a distributed generalization of this problem. In the simplest case, evaluating the
function of interest requires not only a quantum state in the possession of one player (or the
equivalent classical description), but also an observable in the possession of another player.

The line of work which most closely resembles our work conceptually is that of One-Time
Programs, introduced by Goldwasser et al. [28]. The quantum analog of these was defined
by Broadbent et al. in 2013 and has recently seen a surge of interest [13, 11, 22, 31, 32]. The
main difference in our definition is that it is information theoretic and thus does not rely on
any computational assumptions. We note that a natural definition of One-Time Programs
is provably impossible in many cases, and recent works weaken the model to make it more
generically feasible. We hence make an orthogonal inquiry into what is achievable in a very
strong sense, even if only in special cases.

APPROX/RANDOM 2025
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1.1.2 Secure Multi-Party Computation
The ability to prevent the re-use of data for computation can in principle be achieved
classically using the tools of secure multi-party computation (MPC). The principal objective
of line of work is the evaluation of a function f(x, y) where Alice holds x and Bob holds y,
in a manner that ensures the security of each player’s input and reveals only f(x, y) to both
players. There has been extensive work on this problem in various forms since its formulation
by Yao [59, 60] (see [25] for a review). Elegant solutions to this problem are known that
involve obfuscating (or garbling) the circuit describing f one gate at a time so as to obscure
the inputs of each player [27] (which can be achieved using standard cryptographic primitives
such as public-key cryptography) or alternatively based on fully homomorphic encryption [9].
Using MPC, the players can run a protocol that enables the evaluation of f(x, y) for a single
pair of inputs. However, if Bob wanted to evaluate f(x, y′) for some y′ ≠ y, the validity
of any MPC scheme implies that this would generally be impossible without rerunning the
protocol. Since this requires the cooperation of both parties, it could allow one party to
control the number of times another party can compute functions of their joint inputs.

MPC is incomparable to the consumability of data studied in this work, which relies on the
properties of quantum mechanics. MPC has the benefits of being generic and not requiring
the constant overheads associated with fault-tolerant quantum computation. However, MPC
has a number of drawbacks compared to consumable data, namely (i) it requires multiple
rounds of two-way communication [26] whereas our notion of consumable data requires only
a single round of one-way communication, (ii) it requires cryptographic assumptions while we
give unconditional results and (iii) it requires coordination between parties e.g. in choosing a
cryptosystem to use, while our construction requires no such coordination. The best known
classical techniques also have overheads associated with them due to the need to encrypt
data, which however may not be fundamental.

2 Preliminaries & Notation

We denote by D→ deterministic classical one-way communication complexity. R→
ε denotes

randomized one-way classical communication complexity with error probability at most ε,
in which players are allowed to share an unlimited number of public random bits that are
independent of their inputs. We similarly define by Q→

ε one-way quantum communication
complexity with error probability at most ε. In all cases the one-way restriction implies
that only Alice is allowed to send messages to Bob (if there are multiple Bobs, they can
communicate among themselves and we do not consider this as part of the complexity of
the problem). When the error is a nonzero constant (say 1/3) we omit the subscript. For
formal definitions we refer the reader to textbooks by Nisan & Kushilevitz [42], and Lee &
Shraibman [43].

We also consider sampling problems, where the goal is for Bob to produce a sample from
a target distribution (or some distribution close to it) given some inputs to Alice and Bob.
For this type of problem, we define analogously SR, SQ for the classical (randomized) and
quantum communication complexity respectively (with the superscript → denoting one-way
communication as before).

▶ Definition 1 (TV Distance). The total variation distance between two distributions p, q
supported on X is given by

dT V (p, q) = sup
S⊆X

|p(S) − q(S)|
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When we consider sampling problems, we allow constant error in TV distance between
the target distribution and the one sampled by the algorithm. Finally, we denote by A+ the
pseudoinverse of A.

3 Consumable data

We now define the notion of consumable or rival data. Denote by X ,Y,O the space of
Alice’s inputs, Bob’s inputs (or those of a single Bob in case there is more than one), and a
space of outputs. Below, we use P = (R,PP , q) to denote a family of relational problems
R ⊆ X × Y × O and a set of protocols PP . We informally use problem to refer to tuples of
this kind. Note that one can construct a similar definition for sampling problems, where for
each input the goal is for Bob to output a sample from a specific distribution.

We use Rm ⊆ X × Ym × Om to denote the m-Bob relational problem where Alice’s input
is kept constant but all the m Bobs have distinct inputs. The goal is to solve the relation
on all of Bob instances with 2/3 probability2. Similarly, we use Pm

P to denote the set of
protocols where Alice sends one message and the Bobs are allowed to communicate classically
if q = 0 and quantumly if q = 1. So Pm = (Rm,Pm

P , q).
For a problem P , denote c(P ) to be the one-way communication complexity of the

minimum cost protocol in the set PP which solves R. Since we will be modeling scenarios
where Alice is selling her data to the Bobs who will be using it for computation, the cost
here will be in terms of communication between Alice and the Bobs only.

▶ Definition 2 (Consumable data problem). A problem P is said to be a consumable data
problem if as m → ∞

c(Pm)
c(P ) = mΩ(1)

▶ Definition 3 (Non-consumable data problem). A problem P is said to be a non-consumable
data problem if as m → ∞

c(Pm)
c(P ) = mo(1)

We refer to the quantity appearing in the lower bound in Definition 2 as the consumability
rate of P . In other words, we can say that a problem P is a consumable data problem if
its consumability rate is polynomial, and it is non-consumable otherwise. Note that m is
bounded by a function of n so we have a slight abuse of notation, but this will not be a
concern for the problems we consider. There is a subtlety in this definition, in the sense that
the benefit of consumability arises when Alice chooses to use a particular communication
protocol (typically a quantum one over a classical one) but the definition itself does not
specify why she would have such a preference. A natural way to introduce a preference is
by formulating a strategic game that involves communication. We provide an example in
Section 5.2.

Note that any problem involving only deterministic classical communication must be
non-consumable – every Bob can just copy Alice’s message into his own working space.
We also show in Section 4.3 that if P corresponds to a decision problem, then even with
quantum communication it must be a non-consumable data problem. This is because the

2 If R was a decision problem that could be solved with failure probability δ, one could solve Rm with
failure probability δ as well by simple repetition, incurring a multiplicative overhead logarithmic in m.
However, this is no longer the case when considering relations, so this notion of complexity is not finite
in general.

APPROX/RANDOM 2025
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Bobs can apply the Shadow Tomography protocol [2] (unless the Bobs are only allowed
classical communication between themselves and limited quantum memory). Nevertheless,
consumability can be proved for certain search problems (with many solutions) solved using
randomised or quantum communication. There are a few cases where consumability or
nonconsumability can be characterized, which we discuss below:

▶ Lemma 4. For any relational problem R and resource q, if the protocol is deterministic
one way classical communication, P = (R, D→, q), then c(P m)

c(P ) = 1 and the data is non-
consumable.

Proof. For the m-Bob problem, Alice sends the same message as the protocol for the original
problem. Since her message depended only on her input, and must enable Bob to solve the
problem for any possible input of his, the message can be re-used m times and the correctness
guarantee holds for every instance on Bob’s end. ◀

Similarly,

▶ Lemma 5. For any relational problem R ⊆ X × Y × O, with |O| = K and resource
q, if the protocol is randomized one-way classical communication, P = (R, R→, q), then
c(P m)
c(P ) = O(K logm).

Proof. This can be achieved by learning the distribution of Bob’s output under the random-
ness of Alice’s message. Using folklore results (see [17]) this can be done using K logm times
the amount of communication, by learning the K-outcome distribution up to error 1/m. ◀

▶ Lemma 6. For any relation with an output space of size K, R ⊆ X × Y × O, with
|O| = K, if the protocol is one way quantum communication P = (R, Q→, q = 1) then
c(P m)
c(P ) = Õ(K log2 m)c(P ).

Proof. Akin to Lemma 5, we want to give a protocol for for Pm using a protocol for P as a
subroutine. We do this by relying on the work of Gong & Aaronson [29] who proved that
the distribution of K-outcome POVMs on logN qubits can be learned to constant additive
error in Õ(K log2 m logN) copies. ◀

All of these lemmas can be generalized to the setting where PP is a strict subset of one
of these sets, which applies to the sampling models. Note that the setting where Alice only
sends samples of a quantum state is the setting of shadow tomography [2], so our lower
bounds generalize lower bounds for shadow tomography.

We also define a related notion of strongly consumable data. To do this, we define the
problem SPm = (Rm,Pm

SP , q) where Pm
SP is the set of protocols which solve a 2/3 fraction

of Bob’s m instances successfully with high probability. Note that this makes Bob’s task
easier, hence achieving strong consumability is harder from Alice’s perspective.

▶ Definition 7 (Strongly consumable data problem). A problem P is said to be a consumable
data problem if

c(SPm)
c(P ) = mΩ(1)

Note that in the strongly consumable case, all classical protocols are non-consumable.

▶ Lemma 8. For any relational problem R ⊆ X × Y × O, with |O| = K and resource
q, if the protocol is randomized one-way classical communication, P = (R, R→, q), then
c(SP m)

c(P ) = O(logm) and the data is not strongly consumable.

Despite this classical impossibility, our results in the next section continue to hold for
strongly consumable data in the quantum setting.
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4 Examples of consumable quantum data

4.1 Hidden Matching
Hidden matching is a famous example of a relation that exhibits an exponential separation
between quantum and classical one-way communication complexity [10]. We prove that for
the asymmetric direct sum version of the Hidden Matching problem, quantum data behaves
as a consumable resource (while classical data does not).

The original problem is defined as follows:

▶ Problem 9 (Hidden Matching [10]). Alice is given a string x ∈ {0, 1}N . Bob is given a
perfect matching M over [N ]. Their goal is for Bob to output (i, j, xi ⊕ xj) where (i, j) ∈ M .
Only Alice is allowed to send messages to Bob.

One can naturally generalize this problem to the setting of multiple matchings as follows:

▶ Problem 10 (Multiple Hidden Matchings (MHMN,m)). Alice is given a string x ∈ {0, 1}N .
Each of the m Bobs is given m perfect matchings {Mk} over [N ]. Their goal is to output
(i, j, xi ⊕ xj) where (i, j) ∈ Mk for all k. Only Alice is allowed to send messages to Bob.

A tight lower bound shows that classical communication indeed acts like a nonrival good
for this problem. While it is known that R→(HMN ) = Ω(

√
N) [10], we believe this is the first

characterization of the deterministic complexity of the Hidden Matching problem. The results
are consistent with Lemma 4, and provide an explicit demonstration of the phenomenon
where a message large enough to solve a single instance of a relation can be re-used to solve
others.

▶ Lemma 11. D→(MHMN,m) = D→(HMN ) = N/2 + 1.

Proof: Section A.
Now we note that even with randomized communication, this relation does not possess

the consumable data property.

▶ Lemma 12. R→(MHMN ) = O(
√
N logm)

Proof. We adapt the upper bound for HMN . Alice sends the values of randomly chosen
O(

√
N logm) nodes, which by a birthday paradox style calculation and union bound has a

constant probability of containing one edge from each matching. ◀

There is a quantum algorithm that solves this problem with probability 1 using m logN
qubits of communication, which is a trivial repetition of the algorithm of [10]:

▶ Lemma 13. Q→(MHMN,m) = O(m logN).

Proof. Alice sends Bob a copy of the state |ψ⟩ = N−1/2 ∑N
i=1(−1)xi |i⟩ over logN qubits.

Denoting the k-th pair in Bob’s a matching that Bob holds by (ik, jk), Bob measures the
state using the N -outcome POVM defined by Ek,b = 1

2
(
|ik⟩ + (−1)b |jk⟩

) (
⟨ik| + (−1)b ⟨jk|

)
for k ∈ [N/2], b ∈ {0, 1}. This process is repeated for every matching. ◀

It is clear that the states in the algorithm above cannot be re-used after a measurement
to solve the problem for multiple matchings. Since each POVM has N possible outcomes,
approaches based on gentle measurement that are discussed in Section 4.3 should not be
applicable to this problem without requiring poly(N) copies of the state.

We also have the following lower bound on the quantum communication required to solve
the problem.

APPROX/RANDOM 2025
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▶ Lemma 14. Q→(MHMN,m) = Ω(
√
m) for m ≤ N/2.

Proof. Let us consider the distributional complexity of MHMN,m where Alice’s input is a
uniform random string X ∼ U({0, 1}N ). The Bobs have a deterministic input Y, where
M1 is just the matching {(i, i + 1)|i odd, i < N}. The matching Mk is just the kth cyclic
permutation on nodes on the left. The Bobs output random variables ok = (ik, jk, xik

⊕ xjk
)

as their respective solutions. For notational convenience, we define O = o1o2 . . . om. Note
that since m ≤ N/2, each matching consists of N/2 edges that do not appear in any other
matching. It follows that for any choice of O, no edge (as defined by the first two entries of
each ok) will be repeated.

Let ρX be density matrix corresponding to the message of length l sent by Alice, of
dimension 2l. By Holevo’s theorem, H(X : O) ≤ l. We will show that if the Bobs solve
MHMN,m then H(X : O) ≥ Ω(

√
m). This gives us the required lower bound.

H(X : O) = H(X) − H(X|O) = n− H(X|O). To make the random variable O amenable
to analysis, we remove dependencies in the output by considering a spanning forest of
the graph induced by V =

⋃
k{ik, jk} = ∪k{ik}

⋃
∪k{jk}. We have that |V | ≥ Ω(

√
m)

since we have a graph with m distinct edges by construction. Take a spanning tree (which
has size Ω(

√
m)) and call the collection of these random variables OT. We can write

H(X|O) = H(X|OTO′) ≤ H(X|OT).
Now, note that parities encoded in OT introduce k = Ω(

√
m) binary constraints on the

random variable X over the boolean hypercube, each of which reduces the support of the
conditional distribution by a factor of 2. Thus, we have that H(X|OT) ≤ log(2n−k) = n− k

which means that H(X : O) ≥ k = Ω(
√
m). This gives us the desired lower bound by

Holevo’s theorem. ◀

Combining Lemma 13 and Lemma 14 gives for m ≤ N/2

Q→(MHMN,m)
Q→(MHMN,1) = Ω̃(

√
m). (1)

This implies that Multiple Hidden Matchings is a consumable quantum data problem, with
consumability rate ≈

√
m. Note that this is not the case classically. The deterministic lower

bound in Lemma 11 also illustrates explicitly that the message sent by Alice to solve a single
matching, if composed of raw bits of her input, can be immediately re-used to solve the
problem for all possible matchings (since N + 1 bits will contain the end-points of an edge of
any possible perfect matching).
▶ Remark 15. We note that in the proof of Lemma 14, even if Ω(m) Bobs outputted an
answer, we would have that |V | ≥ Ω(

√
m). Therefore, the lower bound holds in the average

case and Multiple Hidden Matchings is a strongly consumable data problem with quantum
communication.

Finally, we define a problem with a slightly differrent definition which does not formally
fit into the framework of Consumable Data (Definition 2). However, it is conceptually similar
and we can achieve a tight lower bound for it.

▶ Problem 16 (Hidden Matching with Many Edges (HMMN,m)). Alice is given a string
x ∈ {0, 1}n. Bob is given a perfect matching M over [N ]. Their goal is for Bob to ouput m
tuples (ik, jk, xik

⊕ xjk
) where (ik, jk) ∈ M for all i ∈ [m].

We now show that the communication complexity of this problems scales linearly in m.

▶ Lemma 17. Q→(HMMN,m) = Ω(m) for m ≤ N
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Proof. We define the distribution to be X ∼ U({0, 1}n) with a single perfect matching M .
Then define the random variable O in the same way as in the proof of Lemma 14, but now
we are guaranteed that |V | ≥ m, because we are requiring that Bob outputs distinct edges
from a matching. This implies that I(O : X) ≥ Ω(m), giving us a lower bound of Ω(m) by
Holevo’s theorem. ◀

4.2 Linear regression sampling
Another key problem type for which it is possible to transform data into a rival good is
sampling problems with a quantum communication advantage. In this type of problem, Alice
sends Bob a message, which Bob uses to sample from a target distribution with high accuracy.
The essence of the construction is that the quantum communication advantage allows Alice
to reveal only a tiny fraction of the original data while allowing Bob to solve the problem,
and the method by which he solves it destroys the data that was sent, not allowing it to be
reused to generate more samples. We consider here a sampling variant of linear regression
introduced by Montanaro et al. [46]:

▶ Problem 18 (Linear Regression Sampling [46] (LRSN )). Alice is given a vector x ∈ SN−1.
Bob is given a matrix B. The goal is for Bob to produce a sample from the distribution P
over [N ] defined by

pi =
∣∣[B+x

]
i

∣∣2
/

∥∥B+x
∥∥2

2 . (2)

One can naturally generalize this problem to the setting of multiple samples as follows:

▶ Problem 19 (Multiple Linear Regression Sampling (MLRSN,m)). Alice is given a vector
x ∈ SN−1. Bob is given m matrices Bk. The goal is for Bob to produce one sample from
each distribution Pk over [N ] defined by

p
(k)
i =

∣∣[B+
k x

]
i

∣∣2
/

∥∥B+
k x

∥∥2
2 . (3)

Note that solving the above problem with some inaccuracy η corresponds to sampling from
some distribution with total variation error at most η with respect to Pk. In order to consider
the communication complexity of these problems, we must first discretize the inputs so that
they have finite size. We thus assume all real number are specified to logN bits of precision.
We then have the following lemma for classical protocols.

▶ Lemma 20 ([46]). For constant total variation distance error η in the sampled distribution,
(a) SR→

η (MLRSN,1) = Ω(N logN).
(b) For any m, SR→

η (MLRSN,m) = O(N logN).

Meanwhile for quantum protocols, we have a linear dependence on m.

▶ Lemma 21. We have the following bounds on SQ→
η ,

(a) For TV error η ≤ 1/4, SQ→
η (MLRSN,m) = Ω(m log(N/m)).

(b) For constant TV error η, SQ→
η (MLRSN,m) = O(m log(N)max

k
(
∥∥B+

k

∥∥2
/

∥∥B+
k x

∥∥2
2)).

We prove this in Section A.
While these upper and lower bounds match in terms of their N dependence if

∥∥B+
k x

∥∥
2

is relatively large (and in particular does not decay with N), they do not match in terms
of their m dependence. One example is when the features of x that different samples are
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sensitive to are in some sense uniformly distributed, as in the construction used to obtain the
lower bound in Lemma 21. In this case, we have max

k

∥∥B+
k

∥∥2
/
∥∥B+

k x
∥∥2

2 = O(m). It follows
that, restricting to such inputs, we have

SQ→
1/4(MLRSN,m)

SQ→
1/4(MLRSN,1) = Ω̃(m). (4)

Based on the definitions of Section 3, we obtain that MLRSN,m is a consumable data problem
for quantum data, with consumability rate m.

4.3 Decision problems
In the previous examples, we considered problems that exhibit an exponential quantum
communication advantage. It is natural to ask if such an advantage implies consumability
in some generic sense. We will see that this is not the case when Bob’s task is a decision
problem.

The examples we discuss here are based on the following problem:

▶ Problem 22 (Vector In Subspace (VSN,θ) [39]). Alice is given a vector x ∈ SN−1. Bob is
given two orthogonal subspaces of dimension N/2 specified by projection operators M (1),M (2).
Under the promise that either

∥∥M (1)x
∥∥

2 ≥
√

1 − θ2 or
∥∥M (2)x

∥∥
2 ≥

√
1 − θ2 for θ < 1/

√
2,

determine which is the case.

It is known that Vector in Subspace exhibits an exponential advantage in quantum
communication with respect to randomized classical communication complexity [51]. Consider
the following generalization:

▶ Problem 23 (Vector In Multiple Subspaces (VMSN,θ,m)). Alice is given a vector x ∈ SN−1.
Bob is given m pairs of orthogonal subspaces M (1)

j ,M
(2)
j . Given a similar promise to the

vector in subspace problem for each pair of subspaces, the goal is to determine which subspaces
x has large overlap with.

The exponential advantage in quantum communication might suggest that for this problem
as well, classical data will behave like a nonrival good while the quantum analog might
behave like a rival good. This is because even for m = 1, Alice must send a significant
portion of her input to Bob, and thus she may not be able to derive value that is polynomial
in m for larger m. However, the problem can still be solved with relatively little quantum
communication, since data states can be re-used in a manner that allows Bob to solve the
problem for m > 1 with Alice communicating a number of qubits that is only logarithmic in
m. This can be achieved via shadow tomography:

▶ Theorem 24 (Shadow Tomography [2] solved with Threshold Search [16]). For an unknown
state |ψ⟩ of logN qubits, given m known two-outcome measurements Ei, there is an explicit
algorithm that takes |ψ⟩⊗k as input, where k = Õ(log2 m logN log(1/δ)/ε4), and produces
estimates of ⟨ψ|Ei |ψ⟩ for all i up to additive error ε with probability greater than 1 − δ. Õ
hides subdominant polylog factors.

VMSN,θ,m is a problem of estimating m expectation values up to some constant error
(due to the constraint on θ) on a target state. If polynomial error is required, it is known
that Ω(N) qubits of communication may be needed, and hence quantum communication
is essentially equivalent to classical communication (from e.g. lower bounds on estimating
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inner products [21]). Allowing constant error, Theorem 24 says that polylog(m) qubits of
communication suffice to solve the problem. This directly implies that, at least if Alice
sends multiple copies of her state, a lower bound analogous to Lemma 21 is impossible, as
Bob does not require a number of qubits polynomial in m. This shows that an exponential
communication advantage is not a sufficient condition for quantum data to behave like a
rival good.

Given that multiple entangled copies of a quantum state are known to be a more powerful
resource than single copies [34], it would also be interesting to consider a setting where Alice
sends only single copies of her data states. One way to do this is by introducing assumptions
about the computation Bob is allowed to perform with his message. It may be possible
to remove this assumption by utilizing certified deletion [14]. While requiring additional
encryption, this could enable Alice to only send a copy of her state after receiving a certificate
that Bob has deleted the previous copy, ensuring that multi-copy measurements cannot be
performed.

A key difference between the Vector-in-Subspace problem and the other problems we
consider is that the former is a decision problem (a two-outcome measurement), while the
latter are sampling problems or relations. This difference was already captured by Lemma 6,
where we showed that if the number of outcomes are small then the problem does not exhibit
consumability for a large range of parameters. In the next section, we get around this
limitation by considering the multiparty setting.

4.4 Multiple Bobs: A communication arms race
The above picture changes when more than two parties are involved. Consider a setting
where Alice has a vector which she can encode in a quantum state |x⟩ and each of m Bobs has
an observable Oi, Alice is only willing to send the Bobs copies of |x⟩ (when using quantum
communication), and the Bobs cannot (i) store multiple copies of |x⟩ or (ii) communicate
quantum states between them, this is equivalent to the setting of learning without quantum
memory that is studied in [20]. More precisely, this is a setting where each Bob can perform
a POVM on a single copy of |x⟩ only, and exchange classical messages which correspond to
the classical memory used in this setting. In contrast, the setting of learning with quantum
memory (as per [20]) is one where the Bobs are allowed quantum communication (but still
can measure only a single copy of |x⟩ each), with the content of the quantum communication
channel corresponding to the quantum memory. In both cases, Alice’s messages correspond
to samples of a quantum state (unknown to Bob) as is standard in learning problems. While
the results of [20] apply to samples of a mixed state described by a density matrix ρ, they
also apply to a purification of ρ in a larger space. This will not affect the scaling with m

which is the main object of interest for our purposes.
Define by O an ensemble of two-outcome POVMs given by Oi = UiZnU

†
i for 0 ≤ i < m/2

and Oi = −Ui−m/2ZnU
†
i−m/2 for m/2 ≤ i < m, where the Ui are drawn i.i.d. from the Haar

measure and Zn acts only on the last qubit.
When only classical communication is used between Alice and the Bobs, an optimal lower

bound of Ω(
√
N) for estimating the expectation value of a single two-outcome observable with

constant probability is applicable [30]. Lemma 1 of that paper also provides a matching upper
bound in the m-observable case (up to logarithmic factors). Namely, estimating m expectation
values of unit norm observables to constant error can be done with probability 2/3 by sending
Õ(log(m)

√
N) bits from Alice to Bob (where Õ hides polylog(N) factors). Alice requires

no knowledge of the observables themselves. This protocol is based on sending O(log(m))
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Table 1 A communication arms race in estimating expectation values of two-outcome observables
to within constant error: Data behaves as a consumable resource if Alice is only willing to send
quantum states encoding her data, while the Bobs can only communicate classically. This ceases to
be the case if only classical communication is used, or if the Bobs can communicate quantum states.
Θ̃(·) hides factors of log m.

(Qu)bits sent from Alice to the Bobs

Classical A → Bs, Classical Bs ↔ Bs Θ̃(N1/2) [30]

Quantum A → Bs, Classical Bs ↔ Bs Θ̃(m log N) [35]

Quantum A → Bs, Quantum Bs ↔ Bs O((log(m) log(N))2) [16]

random stabilizer sketches of Alice’s input state |x⟩. Each sketch involves Alice drawing a
Clifford unitary C from a uniform distribution over the Clifford group Cn (n = logN), and
computing

〈
0⊗(n−k)z

∣∣C∣∣x〉
for all z ∈ |0, 1⟩k for 2k = Õ(

√
N). Alice generates O(log(m))

i.i.d. sketches in this way and sends both the measurement results and a description of the
Clifford unitaries to the Bobs. Each Clifford unitary is defined by specifying O(n2) one or
two-qubit gates from a small set, and thus has an efficient classical description.

If Alice instead sends copies of her input encoded in the amplitudes of a quantum state
|x⟩ to the Bobs, but we allow classical communication only between the Bobs, and restrict
the Bobs to performing single-copy measurements, the number of samples of |x⟩ required is
linear in m [20]:

▶ Theorem 25 (Corollary 5.7, [20]). With constant probability over Oi drawn i.i.d. from
O, estimating the expectation values of all Oi w.r.t. |x⟩ without quantum communication
between Bobs with success probability at least 2/3 requires Ω

(
min {m/ log(m), N} /ε2)

copies
of |x⟩.

Note that this is worst-case over |x⟩ (if |x⟩ was uniformly random Bobs could just guess 0).
Note also that the Oi are chosen so that classical shadows do not help (for the operators in
question the Hilbert-Schmidt norm is ||O2

i || = N , which is roughly equivalent to the shadow
norm that sets the sample complexity of classical shadows [35]). A matching upper bound
(up to log(m) factors, as long as m < N) is obtained by the straightforward approach in
which Alice sends each Bob O(1/ε2) copies of her state.

When the Bobs are allowed to use quantum communication, we are essentially back to
the two-party version of the problem, since they can jointly use shadow tomography [2, 16]
to estimate all the expectation values using a logarithmic number of copies of |x⟩. These
results are summarized in Table 1.

5 Economic implications of consumable data

We now illustrate the economic implications of the complexity-theoretic asymmetric direct
sum property. We give some background on the effect of the ability to copy classical data
on economic models, and, more concretely, design an auction where the buyer is forced to
purchase m copies of the data if they want to use it m times, increasing the payoff of the
data seller compared to an analogous situation when selling classical data.
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5.1 Data as an economic resource in production theory
Production theory [41] is one of the principal frameworks for the quantitative study of
economic systems. A fundamental object of interest within this framework is the production
function F : RM

+ → R+ that quantifies in some form the output of an economic agent, for
example the goods produced by a firm. The inputs to F denote the resources required to
produce said goods, such as labor, capital and raw materials. For conventional goods of this
form, which cannot be replicated at zero cost (and are referred to as rival goods), it is known
that the production function is typically a degree 1 homogeneous function of its inputs (at
least locally when restricted to some set S):

F (λx) = λF (x) (5)

for any λ ≥ 03. This captures the notion that e.g. doubling the number of raw materials will
double a firm’s output. It follows directly from Euler’s theorem for homogeneous functions
that within the interior of S,

F (x) = x · ∂F
∂x

. (6)

Since the output of the production function is a measure of the firm’s capacity to pay for the
needed resources, we see that if the price of resource i, denoted pi, is set according to

pi = ∂F

∂xi
, (7)

for all i ∈ [M ], then the output of the firm suffices exactly to purchase all the resources
required, and there is no surplus profit. This is known as competitive equilibrium, which
maximizes social welfare in the sense that the price of each good is commensurate to its
usefulness in increasing the total output [7, 23].

While it has long been understood at a qualitative level that data is an inherently different
resource than the ones considered above due to the ability to copy it for free [54, 8], the
quantitative form of this statement was realized decades later by the seminal work of Romer
[52]. If we include data y as an input into the production function, we instead have

F (λx, y) = λF (x, y) (8)

rather than the expected need to double each input proportionate to match production as in
F (λx, λy) = λF (x, y). This is because the data used by one process can be copied and used
by several with negligible additional cost. Euler’s theorem once again gives

F (x, y) = x · ∂F
∂x

. (9)

However, since increasing the amount of data will generally increase the output (say by
improving the quality of inference), we have ∂F

∂y > 0. It follows that

F (x, y) < x · ∂F
∂x

+ y
∂F

∂y
. (10)

Due to this inequality, it is impossible to set prices according to Equation (7). If this were
done for all inputs including data, the total output would be insufficient to pay for all the
required resources. As a result, markets involving data must be inherently inefficient in the

3 Strictly speaking, this relationship holds only if each good can serve as a substitute for another, which
is a standard assumption.
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sense that one must underpay for some resource, or must include some external mechanism
to enforce adequate compensation for resources that can be freely replicated. Mechanisms
such as patent law or subsidies that incentivize innovation are all examples of this. Other
examples are afforded by the trusted third parties that are introduced in proposals for data
markets and handle the data in lieu of the data buyers themselves [5]. In the context of
strategic games that model data selling, the ability to copy data is also manifest in the payoff
for the data seller being independent of the number of buyers, unless a mechanism is put in
place by which the data buyers all agree to pay in advance for their data [47].

5.1.1 Consumable data as a factor of production
We can interpret the results of Section 4 within this framework (at the limit of large m,N
so that m can be considered to be a continuous variable, and computing derivatives with
respect to it becomes meaningful). Taking the linear regression sampling problem as an
example, the solution of MLRSN,m is analogous to the output of a production function, with
the number of samples m and Alice’s message equivalent to λ and y respectively. The result
of Lemma 20 is then analogous to Equation (8). Up to constant factors, this is an example
of the well-known nonrival nature of classical data. Alice must send a significant portion of
her input to Bob for him to produce even a single sample, and once Alice sends her full input
he can produce an unlimited number of samples in this way. If Alice were to sell Bob her
data in the setting of a strategic game, her potential payoff will be essentially independent of
the value that Bob can derive (since this is proportional to m).

On the other hand, Lemma 21 indicates that if Alice insists on using quantum communica-
tion, the data is analogous to a rival good as described by Equation (5). Bob can still produce
m samples, but this requires that Alice sends at least a number of qubits proportional to
m. If Alice were to charge Bob for each qubit sent for example, she would obtain a payoff
proportional to the Bob’s output m (as long as m < N). The lower bound indicates that
this scaling holds regardless of the strategy Alice uses to encode her input into the message,
and of the strategy Bob uses to process this message. Using classical resources alone this
would be impossible to achieve. We make these notions more precise in the context of a
strategic game that models a data market in Section 5.2.

A similar analogy can be made with respect to the Multiple Hidden Matching problem
and the multi-party observable estimation problem.

5.2 A posted price data auction with consumable data
We would like to identify more concretely the economic consequences of the consumable
nature of quantum data. We consider a formulation naturally related to auction theory
[40, 53]. Alice’s action space AA = R+ is the set of prices she charges for a single bit or qubit
of her input. Once Alice fixes a price p, Bob is free to purchase as many bits/qubits as he
wants. Bob’s action space is thus AB = N, and we denote the number he purchases by b.
This is known as a posted price auction with only a single bidder and multiple items (or a
particularly simple combinatorial auction). Assume the number of samples m takes values in
[m] and Alice has no knowledge of it (say she holds a uniform prior). We also assume the
matrices Bi are chosen in a worst-case fashion (in order for our communication lower bounds
to be applicable).

For any values of m, p, b, the payoffs of the two players are

vA(m, p, b) = pb, vB(m, p, b) = #S(m, b) − pb, (11)
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where #S(m, b) represents the number of samples Bob can produce using a message of b
bits/qubits, given that he holds m such Bi).

Consider first the quantum communication case. We know from our lower bound Lemma 21
that for sufficiently large m, there is an absolute constant C such that, if Bob were to purchase
b qubits produced by Alice, then

#SQ(m, b) ≤ Cb

log(N/#SQ(m, b))
≈ Cb

log(N) (12)

for some absolute constant C. We also assume N ≫ m which allows us to use the ap-
proximation logN − log #SQ(m, b) ≈ logN since this slightly simplifies the analysis. Since
additionally #S(m, b) ≤ m by definition, we have the upper bound

vQ
B(m, p, b) ≤ min

{
Cb

logN ,m

}
− pb. (13)

If we also assume that Bob’s payoff is maximized at the point b⋆ that maximizes this upper
bound, he is interestsed in solving

max
b

min
{

Cb

logN ,m

}
− pb =

{
m(1 − p log N

C ) 0 ≤ p < C
log N (b⋆ = m log N

C )
0 p ≥ C

log N (b⋆ = 0) (14)

with the corresponding value of b⋆ in the right column. Alice’s payoff is maximized by thus
choosing p as close as possible to C/ logN from below without exceeding it, and will be equal
to b⋆(m, p)p = mp log(N)/C = Ω̃(m). This holds for any m for which Lemma 21 holds, even
though Alice has no knowledge of m.

In the classical case, we know the problem is non-consumable from Lemma 5. This implies
that for m = 1, there is a message of length κ independent of m which Alice can send, which
Bob can then re-use to produce say ρm samples with some constant probability, for some
ρ ≤ 1.

This implies

vC
B(m, p, b) = 1 [b ≥ κ] ρm− pb. (15)

Bob thus solves

max
b

1 [b ≥ κ] ρm− pb =
{
ρm− pκ 0 ≤ p < ρm

κ (b⋆ = κ)
0 p ≥ ρm

κ (b⋆ = 0) (16)

Note that unlike the quantum case, Alice has no way of knowing how to choose p appropriately
ahead of time, since the critical value below which she receives no payoff depends on m. If
she wants to guarantee a nonzero payoff she has to choose p = ρ/κ (i.e. assume m = 1) in
which case her payoff is independent of m.

6 Open questions

Our work raises the following open questions in communication complexity:

1. Can the lower bound on the one-way quantum communication complexity of MHMN,m

be improved to Ω(m) or even Ω(m logN) for m ≪
√
N?

2. Can the class of problems with a quantum asymmetric direct sum property be characterized
in some generality?
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3. Are there explicit problems with asymmetric direct sums for randomized communication?
For decision problems, the scaling can be at most O(logm). Can we get a Ω(m) scaling
for relations?

4. We considered the scenario where the graph of required computations is a star graph,
where one input must be paired with every other input. You can more generally consider
the asymmetric direct sum for any bipartite graph. It is easy to see that the proof of
Lemma 14 generalizes to say that the quantum communication complexity scales with the
sum of the square-roots of the degrees of the vertices on the left. Can this be improved?

A remark regarding question 3 is that for a random relation, it is actually impossible
to get a constant probability of success for every Bob for superconstant number of Bobs
because we do not have amplification of success probability. This is why we ask for explicit
examples. The lower bound technique would also need to avoid the trivial upper bound if we
only require a constant fraction of Bobs to succeed (Lemma 8).

Our results are unconditional but restricted to specific problems and one-way communic-
ation. By making additional assumptions or utilizing the strategic nature of the problems
we consider, it may be possible to extend the class of problems that enable consumable data.
One possible direction is outlined below. Moreover, in Section B we explore the broader
implications of our results beyond the scope of complexity theory.

Computational assumptions. A setting we have not yet considered, that is touched upon by
the task of shadow tomography, is one where the computational power of Bob is restricted. It
has been noted that general shadow tomography procedures are expected to scale polynomially
with the dimension of the Hilbert space of ρ or the trial state ρT . If Bob is restricted
to polylog computational time, then the creation of the clonable hypothesis state may
become impossible. This is analogous to the effect in cryptographic no-cloning theorems on
pseudorandom quantum states [37], where even when sample efficient cloning is possible,
no computationally efficient scheme can be used to clone the states of interest. In this
context, it is worth noting that learning of certain states that have efficient descriptions,
such as pseudorandom states [61], is known to be computationally hard. The addition of
computational restrictions on Bob hence potentially widens the class of consumable data tasks,
but requires moving beyond a communication complexity model that permits unbounded
computation.

References
1 Scott Aaronson. Quantum copy-protection and quantum money. In 24th Annual IEEE

Conference on Computational Complexity, pages 229–242. IEEE Computer Soc., Los Alamitos,
CA, 2009. doi:10.1109/CCC.2009.42.

2 Scott Aaronson. Shadow tomography of quantum states. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pages 325–338, New York, NY, USA,
2018. ACM. doi:10.1145/3188745.3188802.

3 Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New approaches
for quantum copy-protection. In Advances in cryptology – CRYPTO 2021. Part I, volume
12825 of Lecture Notes in Comput. Sci., pages 526–555. Springer, Cham, 2021. doi:10.1007/
978-3-030-84242-0_19.

4 Scott Aaronson and Guy N Rothblum. Gentle measurement of quantum states and differential
privacy. In STOC’19 – Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pages 322–333. ACM, New York, 2019. doi:10.1145/3313276.3316378.

https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1145/3188745.3188802
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1145/3313276.3316378


D. Gilboa, S. Jain, and J. R. McClean 39:17

5 Anish Agarwal, Munther Dahleh, and Tuhin Sarkar. A marketplace for data: An algorithmic
solution. In Proceedings of the 2019 ACM Conference on Economics and Computation, New
York, NY, USA, 2019. ACM. doi:10.1145/3328526.3329589.

6 Dorit Aharonov and Amnon Ta-Shma. Adiabatic quantum state generation and statistical
zero knowledge. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of
Computing, pages 20–29. ACM, New York, 2003. doi:10.1145/780542.780546.

7 Kenneth J Arrow. An extension of the basic theorems of classical welfare economics. In
Proceedings of the second Berkeley symposium on mathematical statistics and probability,
volume 2, pages 507–533, 1951.

8 Kenneth J Arrow. Economic welfare and the allocation of resources for invention. In The Rate
and Direction of Inventive Activity, pages 609–626. Princeton University Press, Princeton,
1962.

9 Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan,
and Daniel Wichs. Multiparty computation with low communication, computation and
interaction via threshold FHE. In Advances in Cryptology – EUROCRYPT 2012, Lecture
notes in computer science, pages 483–501. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
doi:10.1007/978-3-642-29011-4_29.

10 Ziv Bar-Yossef, T S Jayram, and Iordanis Kerenidis. Exponential separation of quantum
and classical one-way communication complexity. SIAM J. Comput., 38(1):366–384, 2008.
doi:10.1137/060651835.

11 Shalev Ben-David and Or Sattath. Quantum Tokens for Digital Signatures. Quantum, 7:901,
January 2023. doi:10.22331/q-2023-01-19-901.

12 Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct products in
communication complexity. In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, pages 746–755. IEEE, 2013. doi:10.1109/FOCS.2013.85.

13 Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-time programs (extended
abstract). In Advances in cryptology – CRYPTO 2013. Part II, volume 8043 of Lecture Notes in
Comput. Sci., pages 344–360. Springer, Heidelberg, 2013. doi:10.1007/978-3-642-40084-1_
20.

14 Anne Broadbent and Rabib Islam. Quantum encryption with certified deletion. In Theory of
cryptography. Part III, volume 12552 of Lecture Notes in Comput. Sci., pages 92–122. Springer,
Cham, 2020. doi:10.1007/978-3-030-64381-2_4.

15 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. Advances
in Neural Information Processing Systems, 33:1877–1901, 2020.

16 Costin Bădescu and Ryan O’Donnell. Improved quantum data analysis. In STOC ’21 –
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
1398–1411. ACM, New York, 2021.

17 Clément L. Canonne. A short note on learning discrete distributions, 2020. arXiv:2002.11457.
18 Rohit Chatterjee, Srijita Kundu, and Supartha Podder. Are uncloneable proof and advice

states strictly necessary? In STOC’25 – Proceedings of the 57th Annual ACM Symposium on
Theory of Computing. ACM, New York, 2025.

19 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex

APPROX/RANDOM 2025

https://doi.org/10.1145/3328526.3329589
https://doi.org/10.1145/780542.780546
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1137/060651835
https://doi.org/10.22331/q-2023-01-19-901
https://doi.org/10.1109/FOCS.2013.85
https://doi.org/10.1007/978-3-642-40084-1_20
https://doi.org/10.1007/978-3-642-40084-1_20
https://doi.org/10.1007/978-3-030-64381-2_4
https://arxiv.org/abs/2002.11457


39:18 Consumable Data via Quantum Communication

Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N Carr, Jan Leike, Josh Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code. arXiv [cs.LG], 2021.
arXiv:2107.03374.

20 Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li. Exponential separations between
learning with and without quantum memory. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science – FOCS 2021, pages 574–585. IEEE Computer Soc., Los
Alamitos, CA, 2022.

21 Richard Cleve, Wim van Dam, Michael Nielsen, and Alain Tapp. Quantum entanglement
and the communication complexity of the inner product function. In Quantum computing
and quantum communications (Palm Springs, CA, 1998), volume 1509 of Lecture Notes in
Comput. Sci., pages 61–74. Springer, Berlin, 1999. doi:10.1007/3-540-49208-9_4.

22 Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets and
applications to unclonable cryptography. In Advances in Cryptology – CRYPTO 2021:
41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August
16–20, 2021, Proceedings, Part I, pages 556–584, Berlin, Heidelberg, 2021. Springer-Verlag.
doi:10.1007/978-3-030-84242-0_20.

23 Gerard Debreu. Theory of value: An axiomatic analysis of economic equilibrium, volume 17.
Yale University Press, 1959.

24 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014. doi:10.1561/0400000042.

25 David Evans, Vladimir Kolesnikov, and Mike Rosulek. A pragmatic introduction to secure
multi-party computation. Found. Trends® Priv. Secur., 2(2-3):70–246, 2018. doi:10.1561/
3300000019.

26 Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity of
verifiable secret sharing and secure multicast. In Proceedings of the thirty-third annual ACM
symposium on Theory of computing, New York, NY, USA, 2001. ACM. doi:10.1145/380752.
380853.

27 O Goldreich, S Micali, and A Wigderson. How to play ANY mental game. In Proceedings of
the nineteenth annual ACM conference on Theory of computing – STOC ’87, New York, New
York, USA, 1987. ACM Press.

28 Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. One-Time programs. In Lecture
Notes in Computer Science, Lecture notes in computer science, pages 39–56. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008. doi:10.1007/978-3-540-85174-5_3.

29 Weiyuan Gong and Scott Aaronson. Learning distributions over quantum measurement
outcomes. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages 11598–11613.
PMLR, 23–29 July 2023. URL: https://proceedings.mlr.press/v202/gong23a.html.

30 David Gosset and John Smolin. A compressed classical description of quantum states. In 14th
Conference on the Theory of Quantum Computation, Communication and Cryptography, volume
135 of LIPIcs (Leibniz Int. Proc. Inform.), pages 8:1–8:9. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.TQC.2019.8.

31 Sam Gunn and Ramis Movassagh. Quantum one-time protection of any randomized algorithm.
Cryptology ePrint Archive, Paper 2024/1798, 2024. URL: https://eprint.iacr.org/2024/
1798.

32 Aparna Gupte, Jiahui Liu, Justin Raizes, Bhaskar Roberts, and Vinod Vaikuntanathan.
Quantum one-time programs, revisited. Cryptology ePrint Archive, Paper 2024/1934, 2024.
URL: https://eprint.iacr.org/2024/1934.

https://arxiv.org/abs/2107.03374
https://doi.org/10.1007/3-540-49208-9_4
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/3300000019
https://doi.org/10.1561/3300000019
https://doi.org/10.1145/380752.380853
https://doi.org/10.1145/380752.380853
https://doi.org/10.1007/978-3-540-85174-5_3
https://proceedings.mlr.press/v202/gong23a.html
https://doi.org/10.4230/LIPIcs.TQC.2019.8
https://eprint.iacr.org/2024/1798
https://eprint.iacr.org/2024/1798
https://eprint.iacr.org/2024/1934


D. Gilboa, S. Jain, and J. R. McClean 39:19

33 Itay Hazan and Eyal Kushilevitz. Two-party direct-sum questions through the lens of multi-
party communication complexity. In 31 International Symposium on Distributed Computing,
volume 91 of LIPIcs (Leibniz Int. Proc. Inform.), pages 26:1–26:15. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.DISC.2017.26.

34 Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li, Masoud Mohseni,
Hartmut Neven, Ryan Babbush, Richard Kueng, John Preskill, and Jarrod R McClean.
Quantum advantage in learning from experiments. Science, 376(6598):1182–1186, 2022.

35 Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum
system from very few measurements. Nature Physics, 16(10):1050–1057, 2020.

36 Rahul Jain and Srijita Kundu. A direct product theorem for one-way quantum communication.
In 36th Computational Complexity Conference, volume 200 of LIPIcs (Leibniz Int. Proc.
Inform.), pages 27:1–27:28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.CCC.2021.27.

37 Zhengfeng Ji, Yi-Kai Liu, and Fang Song. Pseudorandom quantum states. In Lecture Notes in
Computer Science, Lecture notes in computer science, pages 126–152. Springer International
Publishing, Cham, 2018. doi:10.1007/978-3-319-96878-0_5.

38 Charles I Jones and Christopher Tonetti. Nonrivalry and the economics of data. Am. Econ.
Rev., 110(9):2819–2858, 2020.

39 Ilan Kremer. Quantum communication. PhD thesis, Hebrew University of Jerusalem, 1995.
40 Vijay Krishna. Auction Theory. Academic Press, San Diego, CA, 2 edition, 2009.
41 Heinz D Kurz and Neri Salvadori. Theory of Production: A Long-Period Analysis. Cambridge

University Press, 1995.
42 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,

1996.
43 Troy Lee and Adi Shraibman. Lower bounds in communication complexity. Foundations and

Trends® in Theoretical Computer Science, 3(4):263–399, 2009. doi:10.1561/0400000040.
44 Troy Lee, Adi Shraibman, and Robert Spalek. A direct product theorem for discrepancy. In

2008 23rd Annual IEEE Conference on Computational Complexity, pages 71–80. IEEE, 2008.
doi:10.1109/CCC.2008.25.

45 Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 624(7990):80–85,
2023. doi:10.1038/S41586-023-06735-9.

46 Ashley Montanaro and Changpeng Shao. Quantum communication complexity of linear
regression. ACM Trans. Comput. Theory, 16(1):Art. 1, 30, 2024.

47 S Nageeb Ali, Ayal Chen-Zion, and Erik Lillethun. Reselling information. arXiv [cs.GT], 2020.
arXiv:2004.01788.

48 Ashwin Nayak. Optimal lower bounds for quantum automata and random access codes. In 40th
Annual Symposium on Foundations of Computer Science (New York, 1999), pages 369–376.
IEEE Computer Soc., Los Alamitos, CA, 1999. doi:10.1109/SFFCS.1999.814608.

49 Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2010.

50 Ran Raz. Exponential separation of quantum and classical communication complexity. In
Proceedings of the thirty-first annual ACM symposium on Theory of Computing, STOC ’99,
pages 358–367, New York, NY, USA, 1999. Association for Computing Machinery. doi:
10.1145/301250.301343.

51 Oded Regev and Bo’az Klartag. Quantum one-way communication can be exponentially
stronger than classical communication. In Proceedings of the forty-third annual ACM symposium
on Theory of computing, New York, NY, USA, 2011. ACM. doi:10.1145/1993636.1993642.

52 Paul M Romer. Endogenous technological change. J. Polit. Econ., 98(5):S71–S102, 1990.
53 Tim Roughgarden. Twenty lectures on algorithmic game theory. Cambridge University Press,

Cambridge, England, 2016.

APPROX/RANDOM 2025

https://doi.org/10.4230/LIPIcs.DISC.2017.26
https://doi.org/10.4230/LIPIcs.CCC.2021.27
https://doi.org/10.4230/LIPIcs.CCC.2021.27
https://doi.org/10.1007/978-3-319-96878-0_5
https://doi.org/10.1561/0400000040
https://doi.org/10.1109/CCC.2008.25
https://doi.org/10.1038/S41586-023-06735-9
https://arxiv.org/abs/2004.01788
https://doi.org/10.1109/SFFCS.1999.814608
https://doi.org/10.1145/301250.301343
https://doi.org/10.1145/301250.301343
https://doi.org/10.1145/1993636.1993642


39:20 Consumable Data via Quantum Communication

54 Joseph A Schumpeter. Capitalism, Socialism, and Democracy. Harper & Brothers, New York,
1942.

55 Ronen Shaltiel. Towards proving strong direct product theorems. Comput. Complex., 12(1-
2):1–22, 2003. doi:10.1007/S00037-003-0175-X.

56 Alexander A Sherstov. Strong direct product theorems for quantum communication and query
complexity. In Proceedings of the forty-third annual ACM symposium on Theory of computing,
New York, NY, USA, 2011. ACM. doi:10.1145/1993636.1993643.

57 Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and
Anson Ho. Will we run out of data? an analysis of the limits of scaling datasets in machine
learning. arXiv [cs.LG], 2022. arXiv:2211.04325.

58 Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983. doi:10.1145/1008908.
1008920.

59 Andrew C Yao. Protocols for secure computations. In 23rd Annual Symposium on Foundations
of Computer Science (sfcs 1982), pages 160–164. IEEE, 1982.

60 Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE, 1986.

61 Haimeng Zhao, Laura Lewis, Ishaan Kannan, Yihui Quek, Hsin-Yuan Huang, and Matthias C
Caro. Learning quantum states and unitaries of bounded gate complexity. arXiv [quant-ph],
2023. arXiv:2310.19882.

A Omitted Proofs

Proof of Lemma 11. We begin by proving D→(MHMN,1) ≥ N/2 + 1.
A deterministic protocol P for MHMN,1 is defined by a matrix with 2N rows denoting the

inputs to Alice and (N − 1)!! columns denoting the inputs to Bob ((N − 1)!! is the number
of perfect matchings over [N ]). The entry in the matrix corresponding to inputs (x,M) is a
tuple (i, j, b) such that (i, j) ∈ M and b = xi ⊕ xj . Define by τ a message sent by Alice, and
by Sτ the subset of the rows for which Alice sends τ to Bob. The choice of (i, j, b) depends
on x only through the message τ . Since the protocol is deterministic, for a given column, the
entries in each column of Sτ must have the same value since they share the same τ,M , so
we may write (with slight abuse of notation)

P(x,M) = P(τ,M) = (i, j, b), (i, j) ∈ M. (17)

Thus the rows of Sτ are all identical, and we can view each entry as a constraint that each
vector x for which Alice sends the message τ must obey. We will bound the maximal possible
size of Sτ by bounding the number of xs that can satisfy all these constraints.

The constraints on the bits can be thought of as edges on a graph G = (V,E) with nodes
V indexed by [N ]. We begin with E = ∅ and choose a sequence of matchings M = {M ℓ}.
For every matching, P must produce a valid output that selects an edge from the matching
and constrains the corresponding entries of x. While we have no control over which edge is
chosen, we will choose M in such a way that at each step of the algorithm, the size of the
connected components in G increases for any edge output by P.

Denote by {Cℓ
i } the connected components of G at step ℓ, and Cℓ = ∪

i
Cℓ

i . Initially we
thus have

∣∣C0
∣∣ = 0.

(a) |Cℓ| ≤ N/2
We start with an arbitrary matching M1. For any x for which Alice communicates τ , the
entries in Sτ in the column corresponding to M1 is Sτ must contain an edge (i, j) ∈ M1,
hence after adding (i, j) to E and M1 to M we have |C1| = 2. Denoting by Dℓ the
disconnected nodes, we next define a matching M2 that pairs each node in C1 with some
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node in D1. The remaining nodes of D1 are paired among themselves. Note that M2

cannot be equal to M1, since M1 contained an edge between two nodes that are both
in C1 while M2 does not. We add (i, j) to E where P(τ,M2) = (i, j, b). If the edge
connects C1 and D1, then |C2| = 3. Otherwise, |C2| = 4.
We pick M3, . . . in the same fashion, defining M ℓ+1 by pairing each node in Cℓ with a
node in Dℓ (and pairing the remaining nodes arbitrarily). This can be done as long as
|Cℓ| ≤ N/2. At every stage, we are guaranteed that M ℓ+1 /∈ M by the same argument
used for M2, hence we are assured that it is a valid choice.
After at most N/2 − 1 such steps, we have either |Cℓ| = N/2 + 1 or |Cℓ| = N/2 + 2.
From this point a different strategy is required, since there are not enough disconnected
nodes in Dℓ to pair with all the nodes in Cℓ. Subsequently, we order the nodes in Cℓ by
first ordering the connected components {Cℓ

i } by size, with Cℓ
0 being the largest (or tied

for the largest, breaking ties arbitrarily), and then arbitrarily ordering the nodes within
each Cℓ

i .
(b) |Cℓ| > N/2 and |Cℓ

0| ≤ N/2
Order the nodes in Cℓ in the manner specified above. Denote by Rℓ

− the first N/2 nodes
in this ordering, and by Rℓ

+ the remaining |Cℓ| −N/2 nodes. Define the matching M ℓ+1

by first pairing each node in Rℓ
+ with a node in Rℓ

− in descending order (i.e. starting
with the nodes in Cℓ

0). Note that two nodes in the same connected component cannot
be paired in this way. This is because, if this occurred for some connected component
Ci, this would imply that either |Ci| > |Cℓ

0| (since Ci must have a node in Rℓ
−, the

boundary between Rℓ
− and Rℓ

+ divides Ci, so every node in the matching so far is in Ci,
and we started the pairing in Rℓ

− with the nodes in Cℓ
0 and went through all of them

and reached Ci) contradicting the imposed ordering, or else Ci = Cℓ
0, in which case since

some nodes in Cℓ
0 are also in Rℓ

+, we have |Cℓ
0| > N/2 and we terminate the algorithm.

Having thus paired all the nodes in Rℓ
+ (we can always do this since |Rℓ

+| ≤ N/2), we
complete M ℓ+1 by pairing the remaining nodes in Rℓ

− with the unconnected nodes Dℓ

in an arbitrary way. Note that M ℓ+1 does not contain any edge between two nodes that
are in the same connectivity component. Thus it is distinct from all of the matchings
already in M (since by construction each one contained such an edge) and we can add it
to M. We add (j, k) to E where P(τ,M ℓ+1) = (j, k, b).
For the same reason specified above, the edge from M ℓ+1 that is selected by P will
either connect two previously unconnected components in Cℓ hence Cℓ+1

k = Cℓ
i ∪ Cℓ

j

for some i, j, k, or else connect some Cℓ
i with a previously unconnected edge (meaning

|Cℓ+1| = |Cℓ| + 1).
We run the above algorithm until some step ℓ̃ when either (a) |C ℓ̃| = N or (b) C ℓ̃

0 > N/2.
The algorithm is guaranteed to terminate in O(N) steps. If (a) occurs, then either (a1) there
are strictly less than N/2 connectivity components or (a2) there are exactly N/2 connectivity
components, since each one contains at least two nodes. In case (a1), there are strictly less
than N/2 independent degrees of freedom in the choice of the bits of any x for which Alice
sends the message τ , since each connectivity component C ℓ̃

i implies |C ℓ̃
i | constraints of the

form xj ⊕ xk = b where P(τ,M) = (j, k, b), (j, k) ∈ M connects two nodes in C ℓ̃
i . In case

(a2), there are N/2 connectivity components of size 2. We then consider a final matching
M ℓ̃+1 that first divides {C ℓ̃

i } into groups of two {Ki} and then pairs each node to a node in
a different connectivity component within the same Ki. As before, this matching is valid
since M ℓ̃+1 /∈ M. After including the edge in P(τ,M ℓ̃+1) into E, G will contain N/2 − 1
connected components. As before, there are strictly less than N/2 degrees of freedom in
choosing x. In case (b), there is a single component of size strictly larger than N/2. Thus
even if all the remaining nodes are disconnected, there are strictly less than N/2 degrees of
freedom once again.

APPROX/RANDOM 2025



39:22 Consumable Data via Quantum Communication

In conclusion, in all cases we obtain that the number of rows of Sτ is at most 2N/2−1. The
number of possible messages Alice must send is therefore at least 2N/2N/2−1 = 2N/2+1 and
thus the number of bits Alice must send in order to solve MHMN,1 is at least N/2 + 1. Since
this bound is valid for the multi-Bob version of the problem as well, we have D→(MHMN,m) ≥
N/2 + 1.

The upper bound is trivial: Alice sends the Bobs the first N/2 + 1 bits of her input.
These are sufficient for the Bobs to compute the output for all m matchings simultaneously.
The result follows. ◀

Proof of Lemma 20.
(a) Theorem 9 of [46], applied to square matrices. The proof is based on lower bounds for

distributed Fourier sampling.
(b) It follows from the ability of Alice to send her whole input to Bob to complete the task.

◀

Proof of Lemma 21.
(a) Say Alice is given a binary vector y of length m log(N/m) and there are m Bobs. Each

Bob uses the matrix

Bj =
(N/m)(j+1)∑
i=(N/m)j

|i⟩ ⟨i| . (18)

Alice then divides her bits into m sets of size log(N/m) and treats the bits in each set
as an integer rj ∈ [N/m]. She creates a vector x of length N by concatenating a unary
encoding of these numbers, meaning

[x[(N/m)j:(N/m)(j+1)]]i =
√

1
m
δirj

, (19)

where we used x[l:m] denotes the subset of the entries of a vector ranging from [l,m).
Suppose Alice and the Bobs manage to solve MLRSN,m with inaccuracy η. This means
that Bob produces a sample from a distribution that is at most η in TV from each of his
target distributions Pj . From the definition of x and the B(j), Pj is be a delta function
at rj . This means that with probability at least 1 − 2η, Bob recovers the log(N/m) bits
of rj by performing a computational basis measurement. It follows that Alice’s message
to Bob is a random-access encoding of m log(N/m) bits. From known lower bounds on
the number of qubits needed for random access coding [48], if 2η < 1/2, Alice must send
at least Ω(m log(N/m)) qubits to the Bobs.

(b) This follows immediately from the bound of Theorem 4 of [46] with an additional factor
of m due to the number of samples, and using ||x||2 = 1. The bound uses an amplitude-
encoding of x, followed by the application of B+

k using block-encoding. If two-way commu-
nication is allowed, the complexity can be improved to O(m log(N)max

k

∥∥B+
k

∥∥ / ∥∥B+
k x

∥∥
2)

since Alice and Bob can run amplitude amplification. ◀

B Discussion

We demonstrated that there exist problems for which encoding classical data into quantum
states leads to behavior that is akin to that of rival, or consumable, goods, which is generally
not possible using classical data alone. The inherent privacy benefits of amplitude-encoded
data might also facilitate computation with proprietary data, giving users fine-grained control
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over the dissemination of their private data without the need for additional encryption.
The setup we consider also does not require end-users to possess a quantum computer in
order to be valuable. Instead, the user must simply trust an entity possessing a networked
quantum computer to distribute data states on their behalf. This is similar to entrusting a
bank to distribute funds on the behalf of an account holder. While our results are based
on communication complexity, they rely on the properties of the data encoding itself, and
thus are also relevant in a scenario where different parties are provided access to the same
quantum memory at different times, without requiring networked quantum computers.

Being a preliminary investigation into the possibility of using quantum networks in this
manner, our results do not immediately apply to problems with clear economic value. If
this were the case, it could enable novel types of data markets and incentive structures for
the production of data. It is worth noting however that our results for the linear regression
sampling problem apply also to a related problem in which Bob obtains a state that encodes
the solution to a linear system rather than a classical sample. Such states are known to be
strictly more powerful resources than classical samples [6], and could potentially be useful
in learning tasks such as updating the value of a linear estimator with new data (which is
typically achieved with the recursive least squares algorithm).

The form of the quantum communication lower bound that indicates the rival behavior
of quantum data is reminiscent of a direct sum theorem. Direct sum theorems demonstrate
that the complexity of solving m independent instances of certain problems scales linearly
with m. They have been studied extensively in both the classical [55, 12, 44] and quantum
[56, 36] setting. These results are not directly applicable since in our setting the inputs to
Alice are not independent. Thus, this work motivates an asymmetric direct sum result for
classes of communication relations.

In analogy to the potential clonability of quantum states with structure, there is a
sense in which any non-consumable data may be cloned with respect to a particular task
sample efficiently, even when cloning the overall state containing the information remains
sample inefficient. This is exemplified by the shadow tomography task above in which the
task is solved via the creation of a classical representation of a hypothesis ρT , such that
tr [(]EiρT ) ≈ tr [(]Eiρ) for all i for the ground truth state ρ. This classical representation
ρT need not be close in trace distance such that ||ρ− ρT ||tr is small, as would be required
for a high fidelity cloning of the true state. However it suffices for the task of shadow
tomography, and admits an entirely classical representation that may be cloned through
classical communication at will, making the data non-consumable, hence this task is clonable
even when the underlying states might not be.

In restricting access to data that is used for computation, the setting we consider bears
some resemblance to that of differential privacy [24, 4]. In differential privacy, a query is
promised not to reveal too much about individual datapoints. This is typically achieved
classically by adding noise to data, while we achieve a similar capability in spirit by using a
noiseless encoding into quantum states.
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