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Abstract
We study the spectral gap of subgraphs of the hypercube induced by monotone subsets of vertices. For
a monotone subset A ⊆ {0, 1}n of density µ(A), the previous best lower bound on the spectral gap,
due to Cohen [14], was γ ≳ µ(A)/n2, improving upon the earlier bound γ ≳ µ(A)2/n2 established by
Ding and Mossel [16]. In this paper, we prove the optimal lower bound γ ≳ µ(A)/n. As a corollary,
we improve the mixing time upper bound of the random walk on constant-density monotone sets
from O(n3), as shown by Ding and Mossel, to O(n2). Along the way, we develop two new inequalities
that may be of independent interest: (1) a directed L2-Poincaré inequality on the hypercube, and
(2) an “approximate” FKG inequality for monotone sets.
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1 Introduction

Suppose G = (V, E) is a good expander graph, so that a random walk on the vertices of G

is fast mixing, i.e. converges quickly to its stationary distribution. When is a random walk
on a subgraph of G also fast mixing? More precisely, what kinds of subgraph restrictions
preserve good expansion?

This paper studies the case of the hypercube graph Hn, where vertices x, y ∈ {0, 1}n are
connected by an edge if and only if they differ in exactly one coordinate. Recall that the
lazy random walk on Hn has mixing time Θ(n log n). Given a subset A ⊆ {0, 1}n of vertices,
we consider the random walk on {0, 1}n censored to A.

▶ Definition 1 (Censored random walk, [16]). Given A ⊆ {0, 1}n, the random walk on {0, 1}n

censored to A is defined as follows. On state x ∈ A, sample i ∈ [n] uniformly at random and
let y be the vertex obtained by flipping the i-th bit of x. Then
1. If y ∈ A, flip a coin and either stay at x or move to y (each with probability 1/2).
2. If y ̸∈ A, stay at x (in which case we call this a censored step).

Without further guarantees on A, the censored random walk may mix well or extremely
poorly even when A is large and connected, as the following two examples illustrate:
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42:2 On the Spectral Expansion of Monotone Subsets of the Hypercube

▶ Example 2 (Subcube). Let S ⊂ [n] be a set of indices, and let A be the subcube given by
the vertices x ∈ {0, 1}n satisfying xi = 0 for all i ∈ S. Then the censored random walk is
essentially a random walk on the smaller cube {0, 1}n′ , where n′ := n − |S|, except that only
an O(n′/n)-fraction of the transitions are not censored. Thus the censored random walk has
mixing time O( n

n′ · n′ log n′) = O(n log n).

▶ Example 3 (Middle slice bridge). Let x∗ ∈ {0, 1}n be an arbitrary vertex with Hamming
weight |x∗| = ⌊n/2⌋, and consider the set A := {x ∈ {0, 1}n : |x| ≠ ⌊n/2⌋} ∪ {x∗}. A spectral
argument shows that the mixing time of the censored random walk is exponential in n.

Thus, it is natural to ask: what properties of A ensure fast mixing? In [16], Ding &
Mossel initiated the study of random walks censored to monotone sets1 A and showed that,
when A is not too small, monotonicity implies fast mixing. Concretely, letting µ denote the
uniform distribution on {0, 1}n, they proved

▶ Theorem 4 ([16, Corollary 1.2]). Let A ⊆ {0, 1}n be a non-empty monotone set. Then the
random walk on {0, 1}n censored to A has mixing time

tmix ≤ 512 ·
(

n

µ(A)

)2
log(4 · 2nµ(A)).

When the density µ(A) is a constant, the above implies a mixing time bound of O(n3).
In particular, for the uncensored special case A = Hn, this result only yields an upper bound
of O(n3) on the mixing time, versus the optimal Θ(n log n); this suggests the potential for
improving upon Theorem 4, and indeed [16] asked the following question.

▶ Question 5 ([16, Question 1.1]). Suppose µ(A) ≥ ε for some constant ε > 0. Is it true
that tmix ≤ Oε(n log n)?

Our main result makes progress on this question by showing an O(n2) mixing time bound
for monotone sets A of constant density.

▶ Theorem 6. Let A ⊆ {0, 1}n be a non-empty monotone set. Then the random walk on
{0, 1}n censored to A has mixing time

tmix ≤ 2n

µ(A) · log(4 · 2nµ(A)) .

1.1 Spectral gap
It is well-known that the mixing time of a Markov chain is related to the spectral gap of its
generator (see e.g. [35]), or equivalently the spectral expansion of the underlying graph. The
Poincaré inequality (see e.g. [39]) for the hypercube states that the spectral expansion of the
(lazy) hypercube Hn is exactly 1/n, which implies the (non-tight) mixing time bound O(n2)
for the lazy random walk on Hn.

Thus, a natural question related to mixing under censoring is the robustness of the
classical Poincaré inequality under vertex removal from Hn. Specifically, does the spectral
expansion of Hn remain on the order of 1/n if only a small fraction of the vertices are
removed, or does it exhibit a significant deviation? Example 3 demonstrates that the spectral

1 A set A is called monotone if x ∈ A implies y ∈ A whenever x ⪯ y, where the latter denotes the natural
partial order on the hypercube: x ⪯ y if xi ≤ yi for every i ∈ [n].
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expansion can shrink to exponentially small values if the removed set is arbitrary. Our goal is
to show that when the removed set of vertices is monotone (and not too large), the spectral
expansion remains at least on the order of 1/n.

For the purpose of clearer comparison with the classical Poincaré inequality, we introduce
the Dirichlet form of a function on A. Note that in the case A = Hn, the following definition
is exactly the “influence” [39, Definition 2.27] of the function f : {0, 1}n → R.

▶ Definition 7. Fix a monotone set A ⊆ {0, 1}n. For all f : A → R, we define2

EA(f) := 1
4 · E

x∈A

[
n∑

i=1

(
f(x) − f(x⊕i)

)2 · 1
[
x⊕i ∈ A

]]
.

Here x⊕i denotes the binary string obtained by flipping the i-th bit of x.

We can now state our “robust” version of the Poincaré inequality.

▶ Theorem 8. Let A ⊆ {0, 1}n be a non-empty monotone set. We have for all f : A → R

VarA [f ] ≤ 1
1 −

√
1 − µ(A)

· EA(f).

Here VarA [f ] stands for the variance of f(x) where x is a uniformly random element of A.

Note that in the case A = Hn, the above theorem recovers the Poincaré inequality on the
hypercube. We remark that Theorem 6 follows directly from Theorem 8 due to standard
Markov chain theory (e.g. [35, Theorem 12.4]), so the rest of the paper focuses mainly on
proving Theorem 8.

Theorem 8 can also be stated as a lower bound on the spectral gap of HA – the subgraph
of Hn induced by A, with a self-loop added to vertex x for each edge {x, y} of the hypercube
with x ∈ A and y ̸∈ A (which counts as 1 toward the degree of x). For convenience of
reference, in this paper we define the spectral gap using the language of Theorem 8.

▶ Definition 9. Let A ⊆ {0, 1}n be a monotone set with at least 2 elements. We define

γ(HA) := 1
n

· inf
f ̸∈constA

EA(f)
VarA [f ] ,

where f ranges over all non-constant functions from A to R.

Now Theorem 8 can be stated as γ(HA) ≥ 1
n

(
1 −

√
1 − µ(A)

)
≳ µ(A)/n, for monotone

sets A with |A| ≥ 2.

1.2 Proof overview: previous work
We begin by briefly describing the proof of Theorem 4 in [16]. The proof in [16] also analyzes
the spectral expansion of HA, achieving the lower bound γ(HA) ≳ µ(A)2/n2.

By Cheeger’s inequality, to obtain a lower bound on γ(HA), it suffices to lower bound
the bottleneck ratio

ϕ(HA) := min
S⊆A

|E(S, A \ S)|
min{|S|, |A \ S|}

,

2 The energy functional EA(·) defined here differs from the standard Dirichlet form of the censored random
walk on A by a factor of n. This normalization is chosen to better align with the notion of total influence
in the analysis of Boolean functions.

APPROX/RANDOM 2025
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where E(S, A \ S) denotes the set of edges {x, y} of Hn with x ∈ S and y ∈ A \ S. By
an isoperimetric inequality of the hypercube, there is good lower bound on the number
of boundary edges connecting a vertex in S to a vertex in {0, 1}n \ S. However, it is not
immediately clear how many of these edges actually lead to A \ S. The crucial observation
of [16] is that if an edge from a vertex x ∈ S goes “upward” – that is, if its other endpoint
y ∈ {0, 1}n \ S satisfies y ⪰ x – then by the monotonicity of A, we must have y ∈ A \ S.

Coincidentally, there is a “directed isopetrimetric inequality” [25, Theorem 2], developed
by the property testing community, which provides a lower bound on exactly the number of
such upward boundary edges. Specifically, it gives a lower bound on the number of edges
connecting a vertex x ∈ S to a vertex y ∈ {0, 1}n \ S with y ⪰ x in terms of the distance of
S to monotonicity. The precise notion of distance is less important than the key fact that,
when |A| is not too small, at least one of S and A \ S must be far from any monotone set –
i.e., it must have a large distance to monotonicity – due to the FKG inequality [22]. As a
result, we can lower bound the number of upward boundary edges from either S or A \ S.
Since both sets of upward edges are subsets E(S, A \ S), we can thus arrive at a lower bound
on |E(S, A \ S)| and hence ϕ(HA).

The work [16] actually achieves the optimal bound ϕ(HA) ≳ µ(A)/n on the bottleneck
ratio. However, this only translates to a quadratically worse bound γ(HA) ≳ µ(A)2/n2 for
the spectral expansion, due to the loss incurred by applying Cheeger’s inequality. One natural
idea is to avoid using Cheeger’s inequality by directly bounding the spectral gap γ(HA). In
this direction, [14] used a canonical path argument to show the bound γ(HA) ≳ µ(A)/n2,
which improves upon Theorem 4 by a factor of µ(A). However, this improvement is only
effective when µ(A) ≪ 1 and the dependence on n remains suboptimal.

1.3 Proof overview: our work

At first glance, the proof in [16], as described in the previous subsection, appears to heavily
depend on the discrete nature of the bottleneck ratio. In our view, a key conceptual
contribution of this work is that the arguments in [16] can be adapted to the L2 setting.
While the discrete setting leads to the bottleneck ratio, in the L2 setting, the corresponding
arguments directly lead to the spectral expansion as stated in Theorem 8. For a full set of
analogies, see Table 1.

Table 1 The analogies between the discrete and L2 settings.

The discrete setting The L2 setting
subset S ⊆ A function f : A → R

the complement set A \ S the function −f

|E(S, A \ S)| EA(f)
min{|S|, |A \ S|} VarA [f ]

bottleneck ratio ϕ(HA) spectral gap γ(HA)
directed isoperimetric inequality [25] directed L2-Poincaré inequality (Theorem 12)

classical FKG inequality [22] approximate FKG inequality (Theorem 14)

In contrast to [16], where the two main inequalities used in the proof – the directed
isoperimetric inequality from [25] and the FKG inequality from [22] – are classical results, in
our L2 settings we have to formulate and prove new versions of these inequalities, which may
be of interest on their own.
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Directed Poincaré inequality

As indicated in Section 1.2, directed isoperimetric inequalities aim to lower bound the number
of “upward boundary edges” from a set S to {0, 1}n \ S in terms of the “distance” of S to
monotonicity; see Section 1.6 for more background.

For our application, we require a directed isoperimetric inequality in the L2 setting, which
is the setting associated with the classical Poincaré inequality and the spectral gap. The first
step is to define, for any f : {0, 1}n → R, its L2-distance to monotonicity and its “upward
boundary edges”.

▶ Definition 10 (Distance to monotonicity). For a function f : {0, 1}n → R, we define

distmono
2 (f) := inf

g∈mono

√
E

x∈{0,1}n

[(
f(x) − g(x)

)2
]
,

where g ranges over all monotone increasing functions from {0, 1}n to R.

▶ Definition 11 (Upward boundary). For all f : {0, 1}n → R, we define

E−(f) := 1
4 · E

x∈{0,1}n

[
n∑

i=1
min

{
0, f(xi→1) − f(xi→0)

}2
]

.

Here for x ∈ {0, 1}n and b ∈ {0, 1}, xi→b stands for the string (x1, . . . , xi−1, b, xi+1, . . . , xn).

We are now ready to state our directed L2-Poincaré inequality.

▶ Theorem 12 (Directed Poincaré inequality). For all functions f : {0, 1}n → R, we have

distmono
2 (f)2 ≤ E−(f).

Approximate FKG inequality

The classical FKG inequality of [22] states that if f, g : {0, 1}n → R are monotone increasing
functions and x is a uniformly random element of {0, 1}n, then the random variables f(x) and
g(x) are nonnegatively correlated. It is well-known that this statement holds for increasing
functions over a broader class of partially ordered sets (posets). In our proof, we crucially
need a lower bound on the correlation ratio of any two increasing functions A → R, where
the set A is partially ordered by the natural partial order of the hypercube. However, it is
easy to see that the FKG inequality does not generally hold on this poset. Thus, we seek an
“approximate” version of the FKG inequality, where we are content with a correlation ratio
bounded away from −1, rather than necessarily nonnegative.

▶ Definition 13 (Approximate FKG ratio). Fix a monotone set A ⊆ {0, 1}n with at least 2
elements. We define the approximate FKG ratio of the poset A to be

δ(A) := min
{

0, inf
f,g∈monoA\constA

CovA [f, g]√
VarA [f ] · VarA [g]

}
,

where f and g range over all non-constant monotone increasing functions from A to R. Here,
CovA [f, g] stands for the covariance of the random variable pair (f(x), g(x)) where x is a
uniformly random element of A.

▶ Theorem 14 (Approximate FKG inequality). For any monotone set A ⊆ {0, 1}n with at
least 2 elements, we have δ(A) ≥ −

√
1 − µ(A).

APPROX/RANDOM 2025
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1.4 The case of small A: fast mixing requires good FKG ratio

The bound in Theorem 8 gives only a spectral gap bound γ(HA) ≳ µ(A)/n for the random
walk censored to A. The dependence on n is clearly optimal: even in the case A = Hn, the
spectral gap is exactly 1/n. The next example shows that the asymptotic dependence on
µ(A) is also optimal.

▶ Example 15 ([16, Example 1.3]). Assume n/4 ≤ m ≤ n/2 and consider A = {x ∈ {0, 1}n :
x1 = · · · = xm = 1} ∪ {x ∈ {0, 1}n : xm+1 = · · · = x2m = 1}, the union of two subcubes. In
this case, µ(A) ∼ 2−m+1. Let f : A → R be defined by f(x) = 1 if x1 = · · · = xm = 1 and
f(x) = −1 otherwise. Then EA(f) ∼ m · 2−m and VarA [f ] ∼ 1, so VarA [f ] ≳ µ(A)−1 · EA(f).
Standard Markov chain theory (e.g. [35, Theorem 7.4]) shows that the mixing time of the
random walk censored to A is exponentially large in n.

Remarkably, Example 15 is also where the approximate FKG inequality fails badly – if
we let A be the union of two subcubes as in Example 15 and consider the indicator functions
of the two subcubes, it is easy to see that they are both increasing functions on the poset A

but are very anti-correlated (i.e. the approximate FKG ratio δ(A) is very close to −1).
Our results actually reveal that, when A is a monotone set, torpid mixing happens if and

only if the approximate FKG ratio of A is close to −1.

▶ Theorem 16. Let A ⊆ {0, 1}n be a monotone set with at least 2 elements. Then for all
functions f : A → R, we have (1 + δ(A)) · VarA [f ] ≤ EA(f).

▶ Theorem 17. Let A ⊆ {0, 1}n be a monotone set with at least 2 elements. Then for some
non-constant function f : A → R, we have (1 + δ(A)) · n · VarA [f ] ≥ EA(f).

The two theorems above imply that (1 + δ(A))/n ≤ γ(HA) ≤ 1 + δ(A), which means the
approximate FKG ratio of A characterizes the spectral gap of HA up to a factor of n.

▶ Remark 18. The case A = Hn demonstrates that the lower bound (1 + δ(A))/n ≤ γ(HA)
is tight. Moreover, there are examples indicating that the upper bound γ(HA) ≤ 1 + δ(A) is
tight up to a constant factor – for instance, when A = {x ∈ {0, 1}n : |x| ≤ 1}.

1.5 Open problems

Our work leaves two avenues for potential improvement, roughly corresponding to two regimes
in the size of the set A. We discuss each of these directions in turn.

Large A

When µ(A) ≥ ε for some fixed constant ε > 0, we establish the tight asymptotic bound
γ(HA) ≳ 1/n. However, this only yields the mixing time bound tmix = Oε(n2), which does
not resolve Question 5. One way to establish an O(n log n) mixing time bound would be to
prove a log-Sobolev inequality instead of an L2-Poincaré inequality. It is plausible that our
techniques could be further adapted to establish a log-Sobolev inequality, similar to how we
extended the argument of [16] from the discrete setting to the L2 setting. Are there analogous
versions of the directed isoperimetric inequality and the approximate FKG inequality in the
log-Sobolev setting? We leave these as open questions.
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Small A

When no additional structure is imposed, the random walk censored to A may mix very
slowly if µ(A) ≪ 1 (e.g. Example 15). In many problems of interest, however, A possesses
some form of structure, and the goal is to obtain a good bound on the mixing time, aiming for
an efficient approximate sampling algorithm. For example, when A is a halfspace, i.e. defined
by A = {x ∈ {0, 1}n : a1x1 + · · · + anxn ≥ b} for nonnegative numbers a1, . . . , an, b, [38]
proves a mixing time bound of n9/2+o(1) which yields a sampling algorithm for 0-1 knapsack
solutions.

Our work (Theorems 16 and 17) reveals that the deciding factor for whether rapid mixing
holds is the approximate FKG ratio of A rather than the size of A. However, we do not know
how to leverage additional structure of A in a direct study of its approximate FKG ratio,
and we leave the development of new tools for this purpose as a direction for future work.

1.6 Related work

Mixing time of censored random walks

Markov Chain Monte Carlo methods are the object of extensive study in mathematics,
statistical physics and theoretical computer science, and the question of mixing time of
random walks lies at the core of algorithms for approximate sampling and counting; see e.g.
[29, 27, 37, 35]. In settings featuring combinatorial structure such as in sampling matchings,
independent sets, or spanning forests of a graph, or their natural generalizations to the more
algebraic setting of matroids, a basis exchange or down-up random walk is usually employed,
and spectral arguments are used to bound the mixing time; see e.g. [30, 2, 15, 1].

Our work focuses on the setting where the set A may not enjoy such rich structure, and
instead is only guaranteed to be monotone. As discussed above, our results improve upon
the spectral gap and mixing time bounds shown by the previous works of [16, 14]. In the
special case where the monotone set A is additionally promised to contain every x ∈ {0, 1}n

with Hamming weight at least ( 1
2 − ε)n, i.e. the middle layers of the hypercube, one may

expect the censored and uncensored random walks to behave similarly, and indeed in this
case [36] gave the optimal Ωε(1/n) bound for the spectral gap and log-Sobolev constant of
the censored random walk, which implies the optimal Oε(n log n) mixing time bound.

Besides combinatorial or algebraic structure, one may also ask what geometric structure
affords fast mixing. As mentioned above, [38] studied the censored random walk when the
set A is a halfspace, i.e. A = {x ∈ {0, 1}n : a1x1 + · · · + anxn ≤ b} for nonnegative numbers
a1, . . . , an, b, which corresponds to 0-1 knapsack solutions. Intuitively, such set A should not
contain bottlenecks even if it is very small, and indeed [38] showed a mixing time bound
of n9/2+o(1). By our Theorem 17, this also gives an inverse polynomial lower bound on the
quantity 1 + δ(A). On the other hand, a lower bound of Ω̃(n2) holds for the mixing time [38],
and closing this gap is an interesting open problem3.

3 In a different line of investigation, a series of works has explored approaches for approximately sampling
and counting knapsack solutions using dynamic programming [17, 26, 42, 24, 41, 18]; the best results in
this direction are Õ(n5/2) and Õ(n4)-time algorithms for approximately sampling (depending on the
model of computation) [17, 24, 41], and a (subquadratic) Õ(n3/2)-time algorithm for approximately
counting knapsack solutions [18]. However, these results do not directly say anything about the mixing
time of the random walk on knapsack solutions.

APPROX/RANDOM 2025
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Directed isoperimetric inequalities

Directed versions of isoperimetric inequalities such as the classical Poincaré inequality and
Talagrand’s inequality [43] have emerged over the last couple of decades as a key tool in the
field of property testing. Since the introduction of the problem of monotonicity testing [25]
and especially since the work of [11], directed isoperimetric inequalities have unlocked new
results on the query complexity of testing monotonicity of Boolean functions over discrete
domains such as the hypercube and hypergrid [31, 7, 40, 5, 6, 10], and, more recently, real-
valued functions over the hypercube [8] and the continuous cube [20]. In recent work, [12]
proved such an inequality toward testing monotonicity of probability distributions over the
hypercube, using certain conditional samples from that distribution. To the best of our
knowledge, the work of [16] was the first application of a directed isoperimetric inequality (i.e.
the inequality of [25] for Boolean functions) outside of property testing, and the present work
seems to be the first application of a real-valued directed isoperimetric inequality outside of
property testing.

The specific Poincaré inequality we prove in Theorem 12 is most closely related to the
following previous developments. The work of [19] introduced the systematic study of directed
Lp-Poincaré inequalities for monotonicity testing, and proved an L1 version of our Theorem 12;
in the language of that paper, Theorem 12 is a directed (L2, ℓ2)-Poincaré inequality, whereas
[19] proved an (L1, ℓ1) inequality. Another similar inequality for real-valued functions was
proved by [8], who considered the Hamming distance as opposed to Lp distance. An (L2, ℓ2)
inequality (i.e. the same flavor as ours) was proved for functions over the continuous cube
[0, 1]n in [20], and our proof via the study of a dynamical system is directly inspired by theirs.
Most recently, [12] proved a directed (L1, ℓ2)-Poincaré inequality4 for real-valued functions
on the hypercube, by extending the result of [31] for Boolean functions via a thresholding
argument of [4]. There does not seem to be a trivial reduction between our inequality and
the foregoing results.

Organization of the paper

It is clear that Theorems 14 and 16 together imply Theorem 8, and we recall that standard
Markov chain theory ([35, Theorem 12.4]) derives Theorem 6 from Theorem 8.

Section 2 presents a proof of the approximate FKG inequality for large monotone sets
(Theorem 14). Section 3 is where the heart of the argument of [16] is carried out in the
L2 setting. Section 3 demonstrates that the directed isoperimetric inequality of {0, 1}n

(Theorem 12) implies the undirected isoperimetric inequality of the monotone subset A

(Theorem 16), and why the approximate FKG ratio of A is important for this implication.
Sections 4 and 5 are devoted to proving the directed L2-Poincaré inequality (Theorem 12).

We defer the proof of Theorem 17, which is logically independent from the proof of the
main result Theorem 6, to the full version of the paper.

2 Approximate FKG inequality

The goal of this section is to prove Theorem 14, where we need to lower bound the correlation
ratio between two monotone increasing functions on A. We first note that the case where
the functions take values in {0, 1} is easy. Indeed, we have the following simple lemma.

4 Compared to Theorem 12, that inequality uses the L1 as opposed to L2 distance, and takes a square-root
inside the expectation operator in our definition of E−(f) in Definition 11. By Jensen’s inequality, the
square root of the left- and right-hand sides of our inequality are respectively larger than the left- and
right-hand sides of the inequality of [12], so the two results are not immediately comparable.
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▶ Lemma 19. Assume that f, g : A → {0, 1} are monotone increasing functions. Then we
have E

x∈A
[f(x)g(x)] ≥ µ(A) · E

x∈A
[f(x)] · E

x∈A
[g(x)].

Proof. Let B = {x ∈ A : f(x) = 1} and C = {x ∈ A : g(x) = 1}. By the monotonicity of
f and g, the sets B and C are both monotone subsets of the hypercube {0, 1}n. By the
classical FKG inequality [22] we know that µ(B ∩ C) ≥ µ(B) · µ(C). Therefore,

E
x∈A

[f(x)g(x)] = µ(B ∩ C)
µ(A) ≥ µ(A) · µ(B)

µ(A) · µ(C)
µ(A) = µ(A) · E

x∈A
[f(x)] · E

x∈A
[g(x)] . ◀

It is straightforward to deduce from Lemma 19 that for monotone increasing functions
f, g : A → {0, 1}, the desired approximate FKG inequality

CovA [f, g] ≥ −
√

1 − µ(A) ·
√

VarA [f ] · VarA [g]

holds.
The main challenge in Theorem 14 lies in extending this idea to real-valued functions. In

fact, the problem can be reduced to proving the following statement, which involves purely
random variables rather than any structural property of the partially ordered set A.

▶ Theorem 20. Let (X, Y ) be a pair of real-valued random variables with bounded second
moment. Suppose there is a constant c ∈ [0, 1) such that for all a, b ∈ R,

P [X ≥ a, Y ≥ b] ≥ c · P [X ≥ a] · P [Y ≥ b] , (1)

then we must have

Cov [X, Y ] ≥ −
√

(1 − c) · Var [X] · Var [Y ]. (2)

Proof of Theorem 14 assuming Theorem 20. Let x be a uniformly random element of
A and let X = f(x) and Y = g(x). Thus Var [X] = VarA [f ], Var [Y ] = VarA [g], and
Cov [X, Y ] = CovA [f, g].

Now for each pair of a, b ∈ R, if we define fa, gb : A → R by

fa(x) := 1 [f(x) ≥ a] and gb(x) := 1 [g(x) ≥ b] ,

since they are clearly monotone increasing 0/1-valued functions, we can apply Lemma 19 to
fa and gb to deduce that P [X ≥ a, Y ≥ b] ≥ µ(A) · P [X ≥ a] · P [Y ≥ b]. If µ(A) = 1, then
A = {0, 1}n and the conclusion follows from the classical FKG inequality. If µ(A) < 1, we
apply Theorem 20 to the random variable pair (X, Y ) with constant c = µ(A), which yields
exactly the desired conclusion. ◀

The remainder of this section is devoted to proving Theorem 20, which is surprisingly
nontrivial. To illustrate the complexity of this inequality, we note that equality in (2) holds
for a wide range of joint distributions of (X, Y ) beyond the case captured by Lemma 19, i.e.
where X and Y take only two possible values.

▶ Example 21. Let (X, Y ) follow a discrete distribution supported on the grid {0, 2, 3}2.
Specifically, let

P [X = 3, Y = 3] = P [X = 3, Y = 2] = P [X = 2, Y = 3] = 1
5 ,

P [X = 0, Y = 3] = P [X = 3, Y = 0] = 1
15 , and P [X = 2, Y = 2] = 4

15 .

Then (1) holds for c = 45/49 and all a, b ∈ R. On the other hand, we have Cov [X, Y ] = −8/45
and Var [X] = Var [Y ] = 28/45, so equality in (2) holds for c = 45/49 as well.
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2.1 A symmetric model

A key challenge in Theorem 20 lies in its lack of “centrosymmetry” with respect to (X, Y ).
While the assumption (1) does not remain invariant under the substitution X 7→ −X and
Y 7→ −Y , the conclusion is unaffected by such substitutions. This raises an intriguing
question: what is the “symmetric” information inherent in (1) that leads to the conclusion?

In this subsection, we present an approach that effectively extracts the “symmetric”
information from (1). To this end, we first define two Borel measures on [0, 1] induced by X

and Y .

▶ Definition 22. Let φX : R → [0, 1] be the Borel-measurable map defined by a 7→ P [X ≥ a],
and then for each Borel set E ⊆ [0, 1], let α(E) be the Lebesgue measure of the inverse image
φ−1

X (E). The countable additivity of α easily follows from the countable additivity of the
Lebesgue measure.

The measure α is referred to as the push-forward of the Lebesgue measure on R by the
map a 7→ P [X ≥ a]. Similarly define the Borel measure β on [0, 1] to be the push-forward of
the Lebesgue measure by the map b 7→ P [Y ≥ b].

The definition of push-forward measures naturally leads to the following “change of
variable” formula, which is a standard fact in measure theory.

▶ Proposition 23 ([9, Theorem 3.6.1]). Suppose φ is a Borel-measurable map from R to
[0, 1], and suppose λ is the push-forward of the Lebesgue measure under φ. Then for any
Borel-measurable function f : [0, 1] → R≥0, we have

∫ 1

0
f(x) dλ(x) =

∫
R

f(φ(a)) da.

We then define the reverse of a measure, which corresponds to the substitution X 7→ −X.

▶ Definition 24. If λ is a Borel measure on [0, 1], we let λ R be the Borel measure on [0, 1]
defined by λ R(E) = λ({1 − x : x ∈ E}), for Borel subsets E of [0, 1].

The following definition is the crucial tool in our proof of Theorem 20.

▶ Definition 25. Fix a constant c ∈ [0, 1). We define the operator Kc(·, ·) by

Kc(λ, ν) :=
∫ ∫

min
{√

1 − c · xy,
(1 − x)(1 − y)√

1 − c

}
dλ(x) dν(y),

for Borel measures λ, ν on [0, 1]. For c = 0, we omit the subscript and write K := K0.

The next two propositions demonstrate that the operator Kc(·, ·) is able to capture the
variances and covariance of X and Y . Proposition 27 is the key place where “symmetric”
information is extracted from the condition (1).

▶ Proposition 26. We have Var [X] = K(α, α R). Similarly, Var [Y ] = K(β, β R).
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Proof. Writing expected values as integrations of cumulative distribution functions (the
“layer cake representation”), we have

Var [X] = E
[
X2]

− E [X]2

=
∫ ∞

−∞

∫ ∞

−∞

(
P [X ≥ a, X ≥ b] − P [X ≥ a]P [X ≥ b]

)
da db

=
∫ ∞

−∞

∫ ∞

−∞
min

{
P [X ≥ a]

(
1 − P [X ≥ b]

)
,P [X ≥ b]

(
1 − P [X ≥ a]

)}
da db

=
∫ 1

0

∫ 1

0
min{x(1 − y), y(1 − x)} dα(x) dα(y)

=
∫ 1

0

∫ 1

0
min{xy, (1 − x)(1 − y)} dα(x) dα R(y) = K(α, α R),

where the fourth equality above follows from Proposition 23. ◀

▶ Proposition 27. Assuming (1), we have Cov [X, Y ] ≥ −
√

1 − c · Kc(α, β).

Proof. In a similar way to the proof of Proposition 26, we have

Cov [X, Y ] = E [XY ] − E [X]E [Y ]

=
∫ ∞

−∞

∫ ∞

−∞

(
P [X ≥ a, Y ≥ b] − P [X ≥ a]P [Y ≥ b]

)
da db. (3)

Note that on one hand, by (1) we have

P [X ≥ a, Y ≥ b] − P [X ≥ a]P [Y ≥ b] ≥ −(1 − c)P [X ≥ a]P [Y ≥ b] . (4)

On the other hand, by union bound we have

P [X ≥ a, Y ≥ b] − P [X ≥ a]P [Y ≥ b] ≥ 1 − P [X < a] − P [Y < b] − P [X ≥ a]P [Y ≥ b]

= −
(

1 − P [X ≥ a]
)(

1 − P [Y ≥ b]
)

. (5)

Plugging (4) and (5) into (3), we have

Cov [X, Y ]

≥ −
∫ ∞

−∞

∫ ∞

−∞
min

{
(1 − c)P [X ≥ a]P [Y ≥ b] ,

(
1 − P [X ≥ a]

)(
1 − P [Y ≥ b]

)}
da db

= −
∫ 1

0

∫ 1

0
min{(1 − c)xy, (1 − x)(1 − y)} dα(x) dβ(y) = −

√
1 − c · Kc(α, β),

where the first equality above follows from Proposition 23. ◀

We can now reduce Theorem 20 to the following more “symmetric” lemma, whose proof
we defer to the full version.

▶ Lemma 28. For any two Borel measures α, β, and any constant c ∈ [0, 1) we have

Kc(α, β)2 ≤ K(α, α R) · K(β, β R).

Proof of Theorem 20 assuming Lemma 28. Using Proposition 27, Lemma 28 and Propos-
ition 26 successively, we have

Cov [X, Y ] ≥ −
√

1 − c · Kc(α, β) ≥ −
√

1 − c ·
√

K(α, α R)K(β, βR)

= −
√

(1 − c) · Var [X] · Var [Y ]. ◀
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3 From directed to undirected isoperimetry

In this section, we provide a proof of Theorem 16 assuming Theorem 12. Throughout the
section, we fix a monotone set A ⊆ {0, 1}n with at least 2 elements.

3.1 Domain extension
Since the target result, Theorem 16, focuses solely on the subset A of the hypercube, while
Theorem 12 applies only to functions defined on the entire hypercube, we first introduce a
simple method for extending function domains to the whole hypercube.

▶ Definition 29. We define an operator T that extends any function f : A → R to the
function T [f ] : {0, 1}n → R defined by

T [f ](x) =
{

miny∈A f(y), if x ̸∈ A,

f(x), if x ∈ A.

By defining the value of the function outside of the original domain A to be sufficiently
small, the extension operator enjoys the following two useful properties that allow us to
access the power of Theorem 12.

▶ Proposition 30. For every function f : A → R we have

µ(A) · EA(f) = E−(T [f ]) + E−(T [−f ]).

Proof. See the full version. ◀

▶ Proposition 31. For every function f : A → R, there exists a monotone increasing function
g : A → R such that ∥f − g∥2 ≤ µ(A)−1/2 · distmono

2 (T [f ]), where the L2-norm is the norm in
the inner product space L2(A).

Proof. Since the collection of all monotone increasing real-valued functions on {0, 1}n form
a closed set in the Euclidean space R{0,1}n , there exists a monotone increasing function
g̃ : {0, 1}n → R such that ∥T [f ] − g̃∥2 = distmono

2 (T [f ]), where the L2-norm is the norm
in the space L2({0, 1}n). Now note that the restriction g := g̃|A is a monotone increasing
function on A. Therefore,

∥f − g∥2
2 = E

x∈A

[
(f(x) − g(x))2]

= E
x∈A

[(
T [f ](x) − g̃(x)

)2
]

≤ µ(A)−1 · E
x∈{0,1}n

[(
T [f ](x) − g̃(x)

)2
]

= µ(A)−1 · distmono
2 (T [f ])2. ◀

3.2 Correlation analysis
In this subsection, we lay some groundwork about correlation of functions (or equivalently,
random variables) that will help prove Theorem 16. We begin with the following natural
definition of correlation ratios.

▶ Definition 32. For non-constant functions g, h : A → R, we define

ρ(g, h) := CovA [g, h]√
VarA [g] · VarA [h]

.
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The following triangle-inequality-type lemma is going to be important in the proof of
Theorem 16. Conceptually, the lemma says that if functions g and h on A are not very
correlated with each other (that is, ρ(g, h) is bounded away from 1), then f cannot be very
correlated with both g and h at the same time. In particular, we will later use the lemma in
the case where g is a monotone increasing function and h is a monotone decreasing function,
which cannot be very correlated if δ(A) is bounded away from −1.

▶ Proposition 33. Consider three non-constant functions f, g, h : A → R. We have

max{0, ρ(f, g)}2 + max{0, ρ(f, h)}2 ≤ 1 + max{0, ρ(g, h)}.

Proof. We may without loss generality assume that VarA [f ] = VarA [g] = VarA [h] = 1. In
this case, CovA [f, g] = ρ(f, g), CovA [f, h] = ρ(f, h) and CovA [g, h] = ρ(g, h).

If ρ(f, g) < 0 then the conclusion trivially holds since max{0, ρ(f, h)}2 ≤ 1. Similarly if
ρ(f, h) < 0, the conclusion is also trivial. In the following, we assume that ρ(f, g) ≥ 0 and
ρ(f, h) ≥ 0.

Consider the matrix

B :=

 1 ρ(f, g) ρ(f, h)
ρ(f, g) 1 ρ(g, h)
ρ(f, h) ρ(g, h) 1

 .

For each vector λ = (λ1, λ2, λ3) ∈ R3, we know λT Bλ = VarA [λ1f + λ2g + λ3h] ≥ 0. So B

is a positive semi-definite matrix. This means det B ≥ 0, and we can expand it into

1 + 2ρ(f, g)ρ(f, h)ρ(g, h) ≥ ρ(f, g)2 + ρ(f, h)2 + ρ(g, h)2. (6)

If ρ(g, h) < 0, then (6) implies 1 ≥ ρ(f, g)2 + ρ(f, h)2 and we arrive at the conclusion. In the
following we assume ρ(g, h) ≥ 0.

Expanding the Cauchy-Schwarz inequality VarA [f ] ·VarA [g + h] ≥ CovA [f, g + h]2 yields

2 + 2ρ(g, h) ≥ (ρ(f, g) + ρ(f, h))2 ≥ 4ρ(f, g)ρ(f, h). (7)

Multiplying both sides of (7) by ρ(g, h)/2 and then adding it to (6), we get the desired
conclusion 1 + ρ(g, h) ≥ ρ(f, g)2 + ρ(f, h)2. ◀

The following definition serves to interpret correlation ratios in terms of L2 distances.

▶ Definition 34. For functions f, g : A → R, we define

τ(f, g) := min
a∈R≥0,b∈R

∥f − (ag + b)∥2 ,

where the L2-norm is the norm in the inner product space L2(A).

▶ Proposition 35. Consider two non-constant functions f, g : A → R. We have

τ(f, g)2 =
(

1 − max{0, ρ(f, g)}2
)

· VarA [f ] .

Proof. Note that

τ(f, g)2 = min
a∈R≥0,b∈R

∥f − (ag + b)∥2
2 = min

a∈R≥0
VarA [f − ag]

= min
a∈R≥0

(
a2 · VarA [g] − 2a · CovA [f, g] + VarA [f ]

)
. (8)
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If ρ(f, g) < 0, then CovA [f, g] < 0, and the quadratic polynomial in the right hand side
of (8) is minimized at a = 0. Therefore τ(f, g)2 = VarA [f ], as desired.

If ρ(f, g) ≥ 0, then CovA [f, g] ≥ 0, and the quadratic polynomial in the right hand side
of (8) is minimized at a = CovA [f, g] /VarA [g]. Therefore (8) simplifies to

τ(f, g)2 = −CovA [f, g]2

VarA [g] + VarA [f ] = (1 − ρ(f, g)2) · VarA [f ] ,

as desired. ◀

3.3 Proof of Theorem 16
We are now ready to prove Theorem 16 assuming Theorem 12.

Proof of Theorem 16 assuming Theorem 12. We have

EA(f) = µ(A)−1 · E−(T [f ]) + µ(A)−1 · E−(T [−f ]) (by Proposition 30)
≥ µ(A)−1 · distmono

2 (T [f ])2 + µ(A)−1 · distmono
2 (T [−f ])2 (by Theorem 12)

≥ ∥f − g0∥2
2 + ∥−f − h0∥2

2 (by Proposition 31), (9)

for some monotone increasing functions g0, h0 : A → R. If g0 is non-constant, we pick
g : A → R to be g := g0. If g0 is constant, we pick an arbitrary non-constant increasing
function g : A → R. In either case, we trivially have

∥f − g0∥2
2 ≥ min

a∈R≥0,b∈R
∥f − (ag + b)∥2

2 = τ(f, g)2.

Similarly we pick a non-constant increasing function h : A → R such that ∥−f − h0∥2
2 ≥

τ(−f, h)2. We can then continue from (9) and have

EA(f) ≥ τ(f, g)2 + τ(−f, h)2

=
(

1 − max{0, ρ(f, g)}2
)

· VarA [f ]

+
(

1 − max{0, ρ(−f, h)}2
)

· VarA [f ] (by Proposition 35)

=
(

2 − max{0, ρ(f, g)}2 − max{0, ρ(f, −h)}2
)

· VarA [f ]

≥
(

1 − max{0, ρ(g, −h)}
)

· VarA [f ] (by Proposition 33)

=
(

1 + min{0, ρ(g, h)}
)

· VarA [f ] ≥ (1 + δ(A)) · VarA [f ] (by Definition 13). ◀

4 Spectral theory and heat flow for directed graphs

In this section, as a first step toward proving our directed Poincaré inequality for the
hypercube (Theorem 12), we first set up a framework that applies to the more general case of
directed weighted graphs. Specifically, we revisit and extend the study of directed analogues
of classical concepts from spectral graph theory such as the Laplacian operator, the Dirichlet
energy, and the heat flow; define a directed notion of spectral gap for weighed directed
graphs; and show that bounding this dynamical spectral gap suffices for proving a directed
Poincaré inequality. Then, in the next section, Theorem 12 will follow as an application once
we establish a bound on the directed spectral graph of the directed hypercube graph.
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Prior work on spectral theory for directed graphs

There has been extensive prior work developing spectral graph theory beyond the classical
setting of undirected graphs, toward capturing directed graphs and hypergraphs. Early work
of [21, 13] associated a certain Hermitian matrix with each directed graph, and showed a
Cheeger-type inequality based on the eigenvalues of that matrix, and many subsequent works
have built upon that foundation; we refer to the recent thesis [45] for a thorough review,
and here we mention two recent lines of work that are closest to our setting. One line of
works [33, 34, 45] has developed a theory of reweighted eigenvalues capturing expansion
properties of directed graphs and hypergraphs, proved Cheeger inequalities for these settings,
and devised efficient algorithms for graph partitioning. Another line of works [47, 48, 23, 28]
has pursued similar goals by analyzing a nonlinear Laplacian operator and the heat equation
associated with it.

While our interest in a spectral theory for directed graphs is related to these previous
works (and indeed we will build upon the approach of [47]), our focus is slightly different. In
a nutshell, while prior works have focused on spectral characterizations of good expansion
of a directed graph G as captured by directed versions of Cheeger inequalities (for edge
conductance or vertex expansion) and mixing time of random walks, our focus will be on the
quality of G as the “substrate” for a dynamical process; we will consider G a good directed
spectral expander if it affords fast convergence for that process. In particular, our perspective
allows for directed acyclic graphs to be considered good expanders, which is a stark departure
from prior perspectives – as we briefly explain next.

Indeed, a central focus of prior works has been to establish Cheeger inequalities of the
type λ⃗2 ≲ ϕ⃗(G) ≲

√
λ⃗2, where λ⃗2 denotes a relevant second eigenvalue related to the directed

weighted graph G, and the edge conductance ϕ⃗(G) of G is

ϕ⃗(G) := min
∅̸=S⊊V

min {w(δ+(S)), w(δ+(V \ S))}
min {volw(S), volw(V \ S)} ,

where δ+(S) denotes the outgoing edge boundary of S and volw(S) denotes the total weighted
degree of all vertices in S. Now, if G is not strongly connected, then in general there exists a
set S with positive volume but no outgoing edges, which makes ϕ⃗(G) and thus λ⃗2 zero. In
particular, this is the case for the directed hypercube graph which we are interested in, so if
we hope to show a non-trivial directed Poincaré inequality via a spectral argument, such a
quantity λ⃗2 will not do.

Our approach

The type of spectral theory for directed graphs we study in this section was first developed
by [47] in the context of network analysis. In that work, [47] defined a nonlinear Laplacian
operator acting on real-valued functions defined on the vertices of a directed graph, showed
that this operator induces a dynamical process that is a directed analogue of the classical
heat flow on graphs, proved that this operator has nontrivial eigenvalues, and established
a Cheeger inequality for this setting. While [47] focused on the implications of directed
spectral theory for graph partitioning and related problems in network analysis, we focus on
the dynamical properties of the heat flow on directed graphs – namely its convergence to a
monotone limit, and its connection to the directed Poincaré inequality.

Let us briefly motivate and preview the main ideas in our argument. In classical spectral
graph theory, given a graph G = (V, E), the following four concepts play a central role:
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1. The Laplacian operator L, which acts on function f by outputting another function Lf .
2. The Dirichlet energy functional E , which associates with each f an energy E(f) ≥ 0

measuring the “local variance” of f along edges of G.
3. The heat flow semigroup St, which captures a dynamical process which starts at some

initial state f and has its rate of change governed by the Laplacian: d
dt Stf = LStf . The

heat flow informally “sends mass” along each edge of G from the vertex with higher
f -value to the vertex with lower f -value, causing the system to converge to an equilibrium
state.

4. The Poincaré inequality, which states that Var [f ] ≤ 1
λ E(f). The best constant λ is called

the spectral gap of G.

The appearance of the Poincaré inequality above hints at the relevance of this theory to
our goal of proving a directed Poincaré inequality, and we mentioned above that our strategy
toward this goal will be to define a directed version of the spectral gap. As a motivation
for this strategy, we recall that the spectral gap ties together essentially all of the elements
of the list above; indeed, as summarized in [46, Theorem 2.18], the following are equivalent
given a constant c ≥ 0:
1. Poincaré inequality: Var [f ] ≤ cE(f) for all f .
2. Variance decay: Var [Stf ] ≤ e−2t/cVar [f ] for all f, t.
3. Energy decay: E(Stf) ≤ e−2t/cE(f) for all f, t.

To prove a directed Poincaré inequality, we replace the Laplacian operator L with an
operator L− which, intuitively, only “sends mass” from vertex u to vertex v if (u, v) is a
directed edge and f(u) > f(v), i.e. f violates monotonicity along edge (u, v); the dynamical
system induced by L− is the directed heat flow on G, which was studied by [47]. The directed
heat flow is precisely the gradient system for the directed energy functional E−(f), i.e. the
upward boundary from Definition 11. Thus, this system intuitively “corrects” the local
violations of monotonicity as quickly as possible, and indeed it converges to a monotone
function as t → ∞.

This directed theory cannot fully analogize the classical situation above; for example,
variance decay fails to hold, because non-constant monotone functions are (non-unique!)
stationary solutions. Instead, we will define the dynamical spectral gap of G as the best
constant characterizing the (directed) energy decay, as in Item 3 above, and then show that
(the directed version of) Item 3 implies (the directed version of) Item 1.

As mentioned in the introduction, recent work of [20] also proved a directed Poincaré
inequality – for functions defined on the continuous cube [0, 1]n – using a dynamical argument.
Indeed, that work also took as its starting point the connections between the heat flow
and the Poincaré inequality, and showed that the natural directed version of the heat flow
in continuous space enjoys exponential energy decay, which implies a directed Poincaré
inequality for that setting. Our proof is conceptually similar to the proof of [20], but our
techniques differ in at least two ways: 1) [20] required analytical arguments from the theory of
partial differential equations (PDEs), while we are able to study our dynamical process as an
ordinary differential equation (ODE) thanks to the finite-dimensional nature of our problem;
and 2) [20] used tools from optimal transport theory to tensorize their one-dimensional result,
while we obtain a multidimensional inequality directly by studying the directed heat flow as
a gradient system. In this last regard, our proof also bears resemblance to, and is inspired by
prior work of [32] on the so-called Paulsen problem from operator theory, where a “movement
decay” property of a suitable dynamical system was used to bound the distance between the
initial and equilibrium states of that system.
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The rest of this section is organized as follows. Sections 4.1–4.3 present the directed
versions of the Laplacian operator, the Dirichlet energy functional, and the heat flow,
respectively. These subsections are largely an alternative exposition of the ideas in [47], but
with a different emphasis tailored to our goals5. In Section 4.4, we define the dynamical
spectral gap, which mediates a directed Poincaré inequality for each directed weighted graph.

Notation

Given a discrete set V , we denote by L2(V ) the Hilbert space obtained by endowing the set
of V → R functions with the inner product ⟨f, g⟩ := E

x∈V
[f(x)g(x)], where the expectation is

taken with respect to the uniform distribution over V . This inner product induces the norm
∥f∥ =

√
⟨f, f⟩ =

√
E [f2].

For each u ∈ V , we write eu ∈ L2(V ) for the standard basis vector given by eu(v) :=
1 [u = v].

4.1 The directed Laplacian
Let G = (V, w) be a directed weighted graph, where w : V × V → [0, +∞) is function
specifying the weights of edges in G. By convention, we say that (u, v) ∈ V × V is an edge
in G when w(u, v) > 0. We say G is undirected is w is a symmetric function.

▶ Definition 36 (Directed Laplacian [47]). The directed Laplacian operator of G is the
operator L− = L−

G : L2(V ) → L2(V ) given by

L−f := 1
2

∑
u,v∈V

w(u, v) (f(u) − f(v))+ (ev − eu) (10)

for each f ∈ L2(V ). In this paper, we use the notation x+ := max{x, 0}, for x ∈ R.

Given f ∈ L2(V ), we say an edge (u, v) is f-monotone if f(u) ≤ f(v), and we say it is
f -antimonotone if f(u) > f(v). We say f is monotone if every edge (u, v) of G is f -monotone.
If we think of f as the distribution of “mass” over the vertices V and of L−f as the rate
of change of f = f(t) over time t, then Definition 36 posits that mass flows along the
f -antimonotone edges, from the heavier vertex to the lighter one. When G is undirected,
this process is the standard heat flow on G, and indeed Definition 36 recovers the standard
graph Laplacian in this case:

▶ Observation 37. If G is undirected, then L−
G is (half of) the standard (unnormalized)

Laplacian operator LG of G. Indeed, we can see the action of L−
G on f ∈ L2(V ) as follows:

1) remove the f -monotone edges (u, v) from G; 2) view the resulting graph G′ as undirected;
and 3) apply the standard Laplacian operator LG′ to f .

▶ Remark 38. In spectral graph theory, one typically defines the Laplacian operator of
an undirected graph as −LG in our notation, i.e. by replacing ev − eu with eu − ev in
Definition 36. Our notation follows instead the tradition from probability theory (see e.g.
[3, 46]), which has the advantages 1) that L− itself, rather than −L−, will be the generator
of the heat semigroup – our main object of interest; and 2) of consistency with the analytic
setting, where we have the Laplacian operator ∆ for smooth functions in Euclidean space.

5 In particular, [47] defined both normalized and unnormalized versions of their Laplacian operator, and
focused on the normalized one. We study a single definition for weighted graphs.
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We note that unlike the standard Laplacian operator, the operator L− is nonlinear and
not self-adjoint in general. Instead, one may think of L− as a “piecewise linear” operator on
L2(V ), which is in particular Lipschitz continuous. In the full version we show

▶ Lemma 39. The operator L− : L2(V ) → L2(V ) is Lipschitz continuous.

4.2 The energy functional
As in the case of the standard Laplacian operator, the directed Laplacian naturally induces
an energy functional (or Dirichlet form). The following definition corresponds to the Rayleigh
quotient defined in [47].

▶ Definition 40 (Energy functional). The directed Dirichlet energy functional E− : L2(V ) → R
is given by E−(f) := − ⟨f,L−f⟩.

The directed Dirichlet energy measures the local violations of monotonicity along edges
of G, and it is indeed always non-negative, as shown in the following proposition, which is
similar to Lemma 4.3 of [47] for the normalized nonlinear Laplacian and is proved in the full
version.

▶ Proposition 41 (Energy functional measures local violations). For each f ∈ L2(V ), it holds
that

E−(f) = 1
2 E

u∈V

[∑
v∈V

w(u, v)
(

(f(u) − f(v))+
)2

]
.

Observe that since L− is “piecewise linear”, the energy functional E− is a “piecewise
quadratic” functional on L2(V ). Furthermore, at each point f ∈ L2(V ) the Laplacian L−f

points at the direction opposite to the gradient of E−. Using the appropriate analytic
formalism, we show the following lemma in the full version.

▶ Lemma 42. For any f ∈ L2(V ), we have L−f = − 1
2 ∇E−(f).

4.3 Directed heat flow
As previewed in the Section 4.1, the directed Laplacian operator can be thought of as the
rate of mass transfer along f -antimonotone edges of G in a dynamical process. Let us make
this notion precise.

Given any f ∈ L2(V ), we define the directed heat flow on G with initial state f as the
dynamical system given by the initial value problem (IVP)

f ′(t) = L−f(t) for all t ≥ 0 , f(0) = f . (11)

Since the operator L− is Lipschitz, a standard existence and uniqueness theorem for ordinary
differential equations (ODEs) implies that this IVP has a unique solution f : [0, +∞) →
L2(V ); see e.g. [44, Corollary 2.6]. This can also be shown using the theory of maximal
monotone operators, as done by [28] for the heat flow on hypergraphs, and by [48] in a study
that generalizes both the directed graph setting of [47] and the hypergraph setting of [28].

Moreover, the directed heat flow enjoys the following semigroup structure. Define the
operator family (Pt)t≥0, with Pt : L2(V ) → L2(V ) for each t ≥ 0, as follows: for each
f ∈ L2(V ), let f : [0, +∞) → L2(V ) be the solution to the IVP (11), and let Ptf := f(t).
Then it immediately follows that Pt satisfies the properties of a semigroup, namely
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1. P0 is the identity operator.
2. PsPt = Ps+t for all s, t ≥ 0.
3. limt→0 Ptf = f for all f ∈ L2(V ) (follows from the differentiability of the solution f(t)).
We call Pt the directed heat semigroup operator. Note that Pt is a nonlinear operator.

▶ Observation 43 (Monotone functions are stationary solutions). If f ∈ L2(V ) is monotone,
then L−f = 0 and hence Ptf = f for all t ≥ 0.

Since monotone functions are stationary solutions to the directed heat flow (Observa-
tion 43), while any non-monotone f has non-zero Laplacian L−f (see Proposition 41), it
is natural to expect that Ptf always converges to a monotone function as t → ∞. This is
indeed the case, because the directed heat flow is a gradient system for the convex energy
functional E−.

▶ Proposition 44 (Directed heat flow is gradient system). For all f ∈ L2(V ) and t ≥ 0, we
have d

dt Ptf = − 1
2 ∇E−(Ptf).

Proof. By the definition of Pt we have d
dt Ptf = L−Ptf . The claim follows from Lemma 42.

◀

Using basic facts about gradient systems, in the full version we show

▶ Corollary 45 (Convergence to monotone equilibrium). For every f ∈ L2(V ), there exists a
(unique) monotone f∗ ∈ L2(V ) such that Ptf → f∗ as t → ∞.

In light of Corollary 45, we may define the following limit operator.

▶ Definition 46 (Monotone equilibrium). We define the operator P∞ : L2(V ) → L2(V ) by
P∞f := limt→∞ Ptf for each f ∈ L2(V ), and call P∞f the monotone equilibrium of f .

4.4 Dynamical spectral gap
In this subsection, we associate with the directed Laplacian operator L− = L−

G a quantity
λ− = λ−(G), the dynamical spectral gap of G, as a natural directed generalization of the
classical (undirected) case. In particular, λ−(G) characterizes the rate of energy decay in
the directed heat flow as Ptf converges to its monotone equilibrium, and this also implies a
directed Poincaré inequality linking the distance between the initial and equilibrium states to
the energy of the initial state (i.e. its violations of monotonicity). We defer to the full version
a thorough discussion of the motivation behind our definition. Here, we directly give the
following definition, which accomplishes the goals described in the beginning of this section.

▶ Definition 47. The dynamical spectral gap of G is the quantity λ−(G) ∈ [0, +∞] given by

λ−(G) := inf
{

∥L−f∥2
2

E−(f)

∣∣∣ f ∈ L2(V ) , E−(f) > 0
}

.

In the full version, we show that λ−(G) characterizes the rate of exponential decay of
E−(Ptf), and this suffices to obtain, via a calculus argument, our directed Poincaré inequality:

▶ Theorem 48 (Directed Poincaré inequality). For all f ∈ L2(V ), it holds that

∥f − P∞f∥2
2 ≤ 1

λ−(G) E−(f) .
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5 The dynamical spectral gap of the directed hypercube

Let Hn denote the unweighted directed hypercube in dimension n, i.e. Hn = ({0, 1}n, w)
where the weight function w is as follows: for each x, y ∈ {0, 1}n, w(x, y) = 1 if ∥x − y∥1 = 1
with x ⪯ y, and w(x, y) = 0 otherwise. For simplicity of notation, in this section we also let
V := {0, 1}n.

This section studies the spectral gap of Hn endowed with directed Laplacian operator
L− = L−

Hn
and associated directed Dirichlet energy functional E−. We show

▶ Theorem 49 (Dynamical spectral gap of the directed hypercube). Hn satisfies λ−(Hn) = 1.

Here we sketch the main idea behind the proof of Theorem 49, which is given in the full
version. The main point is that L− and E− enjoy a useful coordinate-wise decomposition:
we write L− =

∑n
i=1 L

(i), where each L(i) : L2(V ) → L2(V ) is given by

(L(i)f)(x) := 1
2

(
f(x⊕i) − f(x)

)
1

[
f(xi→0) > f(xi→1)

]
for each f ∈ L2(V ) and x ∈ {0, 1}n. It is straightforward to check that this decomposition
agrees with Definition 36. Similarly, from Proposition 41 we also obtain the decomposition
E− =

∑n
i=1 E(i), where each E(i) : L2(V ) → R is given by

E(i)(f) := 1
4 · E

x∈{0,1}n

[(
(f(xi→1) − f(xi→0))−)2]

for each f ∈ L2(V ). (The extra factor of 1/2 compared to Proposition 41 appears because
the summation above counts each edge of Hn twice.)

Now, the upper bound of Theorem 49 is easy and attained by anti-dictator functions, so
the main point is to show the lower bound λ−(Hn) ≥ 1. To this end, we fix any function
f , consider the fraction in Definition 47, and expand the operators L− and E− according
to the coordinate-wise decompositions above. The definitions of L(i) and E(i) readily yield∥∥L(i)f

∥∥2
2 = E(i)(f), so the main step is to control the correlation terms

〈
L(i)f,L(j)f

〉
. The

main conceptual ingredient of the proof shows that this correlation is nonnegative, which is
established by an argument reminiscent of the analysis of the “edge tester” for monotonicity
of functions on the hypercube [25]6. We prove this fact below.

▶ Lemma 50. For every i, j ∈ [n] with i ̸= j, we have
〈
L(i)f,L(j)f

〉
≥ 0.

Proof. Suppose without loss of generality that i = 1 and j = 2. We first observe that it
suffices to consider each “square” obtained by fixing all but the first two coordinates, since
the inner product decomposes along these squares. Concretely, for each y ∈ {0, 1}n−2, let
gy : {0, 1}2 → R be given by gy(x) := f(x, y) for each x ∈ {0, 1}2, where we write f(x, y) for
the value of f at the input obtained by concatenating x and y. Then

6 [25] define a switch operator Si which fixes all violations of monotonicity of a Boolean function f along
direction i, by switching the values of f along violating edges. A key lemma in that paper shows that
the application of Si can only make the number of violations of monotonicity along a different direction
j smaller – informally, the work along direction i “helps” toward the work along direction j. In our
L2 setting, this is captured by the positive correlation

〈
L(i)f,L(j)f

〉
≥ 0 between the contributions of

directions i and j to the action of L.



Y. Fei and R. Ferreira Pinto Jr. 42:21

〈
L(1)f,L(2)f

〉
= 1

2n

∑
z∈{0,1}n

(
(L(1)f)(z)

) (
(L(2)f)(z)

)

= 1
2n

∑
x∈{0,1}2

∑
y∈{0,1}n−2

[
1
2

(
f(x⊕1, y) − f(x, y)

)
1

[
f(x1→0, y) > f(x1→1, y)

]
· 1

2
(
f(x⊕2, y) − f(x, y)

)
1

[
f(x2→0, y) > f(x2→1, y)

] ]

= 1
2n

∑
y∈{0,1}n−2

∑
x∈{0,1}2

L(1)gy(x) · L(2)gy(x) .

We will show that for any g : {0, 1}2 → R, the sum
∑

x∈{0,1}2 L(1)g(x)·L(2)g(x) is nonnegative,
which will complete the proof. Define

c := g(0, 1) , d := g(1, 1) ,

a := g(0, 0) , b := g(1, 0) .

Then we have∑
x∈{0,1}2

L(1)g(x) · L(2)g(x)

=
∑

x∈{0,1}2

[ (
g(x⊕1) − g(x)

)
1

[
g(x1→0) > g(x1→1)

]
·
(
g(x⊕2) − g(x)

)
1

[
g(x2→0) > g(x2→1)

] ]
= (b − a)1 [a > b] (c − a)1 [a > c] + (a − b)1 [a > b] (d − b)1 [b > d]

+ (d − c)1 [c > d] (a − c)1 [a > c] + (c − d)1 [c > d] (b − d)1 [b > d]
= (a − b)+(a − c)+ − (a − b)+(b − d)+ − (c − d)+(a − c)+ + (c − d)+(b − d)+

=
[
(a − b)+ − (c − d)+] [

(a − c)+ − (b − d)+]
≥ 0 ,

where the last inequality is proved in Lemma 51 below. ◀

▶ Lemma 51. For any a, b, c, d ∈ R, we have [(a − b)+ − (c − d)+] [(a − c)+ − (b − d)+] ≥ 0.

Proof. Let X := (a − b)+ − (c − d)+ and Y := (a − c)+ − (b − d)+, so that our goal is to show
that XY ≥ 0, or equivalently that X > 0 =⇒ Y ≥ 0 and Y > 0 =⇒ X ≥ 0. By switching
the roles of b and c, it suffices to prove the first implication, i.e. that X > 0 =⇒ Y ≥ 0.

Suppose X > 0. Then a − b > 0, since otherwise we would have (a − b)+ = 0 and hence
X ≤ 0. Therefore a − b = (a − b)+ > (c − d)+ ≥ c − d. Moreover, if (b − d)+ = 0 then Y ≥ 0
and we are done, so we may assume that b − d = (b − d)+ > 0. We conclude that

Y = (a − c)+ − (b − d)+ ≥ (a − c) − (b − d) = (a − b) − (c − d) ≥ 0 ,

where the first inequality holds since (a − c)+ ≥ a − c while (b − d)+ = b − d, and the second
inequality holds since a − b ≥ c − d. ◀

Combining Theorems 48 and 49, we conclude

▶ Corollary 52 (Directed Poincaré inequality for the hypercube; refinement of Theorem 12).
For all f ∈ L2(V ), it holds that distmono

2 (f)2 ≤ ∥f − P∞f∥2
2 ≤ 1

λ−(Hn) E−(f) = E−(f).
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