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Abstract
In this paper, we show that random Gabidulin codes of block length n and rate R achieve the
(average-radius) list decoding capacity of radius 1 − R − ε in the rank metric with an order-optimal
column-to-row ratio of O(ε). This extends the recent work of Guo, Xing, Yuan, and Zhang (FOCS
2024), improving their column-to-row ratio from O( ε

n
) to O(ε). For completeness, we also establish

a matching lower bound on the column-to-row ratio for capacity-achieving Gabidulin codes in the
rank metric.

Our proof techniques build on the work of Guo and Zhang (FOCS 2023), who showed that
randomly punctured Reed–Solomon codes over fields of quadratic size attain the generalized Singleton
bound of Shangguan and Tamo (STOC 2020) in the Hamming metric. The proof of our lower bound
follows the method of Alrabiah, Guruswami, and Li (SODA 2024) for codes in the Hamming metric.
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1 Introduction

Introduced by Delsarte [5], rank-metric codes have since developed into a field of study with
applications and connections spanning network coding [16, 26, 17, 25], space-time coding
[21, 20], cryptography [10, 9, 18, 19], and pseudorandomness [7, 6, 15, 14, 11].

A rank-metric code is a collection of matrices in Fm×n
q with m ≥ n, where the distance

between two matrices A and B is defined to be their rank distance rank(A−B). A rank-metric
code C ⊆ Fm×n

q of rate R := log2 |C|
log2(qmn) and relative minimum (rank) distance δ must satisfy

that R + δ ≤ 1, which is called the Singleton bound. A rank-metric code attaining the
Singleton bound is called a maximum rank distance (MRD) code. Gabidulin codes are an
important class of MRD codes, which can be seen as the linearized version of Reed–Solomon
codes. This analogy allows us to design efficient encoding and unique decoding algorithms
for Gabidulin codes. However, when it comes to the list decoding regime, it is known that
some Gabidulin codes are not list decodable beyond the unique decoding radius [22, 23].
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43:2 Gabidulin Codes Achieve Capacity with an Optimal Column-To-Row Ratio

Thus, it is impossible to design a list decoding algorithm for all Gabidulin codes. Moreover,
it was not even clear if any Gabidulin codes were list decodable beyond the unique decoding
radius until very recently. Guo, Xing, Yuan and Zhang [12] recently proved that random
Gabidulin codes are not only list decodable beyond the unique decoding radius but also
attain the optimal generalized Singleton bound (see Lemma 1) with high probability. This
settles an open problem of whether there exist list decodable Gabidulin codes.

However, the construction in [12] requires m, the number of rows of matrices, to be at
least quadratic in n, so the column-to-row ratio n

m = O( 1
n ) tends to zero as n grows. This is

analogous to a result of Brakensiek, Gopi, and Makam on Reed–Solomon codes [4], which
states that any Reed–Solomon code exactly attaining the generalized Singleton bound must
have an exponential field size. Suppose the list decoding radius is slightly off the generalized
Singleton bound (with a gap of ε). In that case, Guo and Zhang [13] proved that the field
size of Reed–Solomon codes can be brought down to quadratic which was further brought
down to linear in the follow-up work of Alrabiah, Guruswami, and Li [2].

Thus, this raises an open problem for rank-metric codes, already asked in [12]: Can we
obtain a similar result for Gabidulin codes as well?

▶ Open Problem 1. Do there exist Gabidulin codes of constant column-to-row ratio that are
list decodable in the rank metric?

In this paper, we provide a positive answer to this open problem. We show that if the
list decoding radius is slightly off the generalized Singleton bound (with a gap of ε), then a
random Gabidulin code C ⊆ Fm×n

q with m = O( n
ε ) is list decodable up to this bound with

high probability. Moreover, we complement our positive result by proving an upper bound
m = Ω(n

ε ) for any list decodable Gabidulin codes approaching the generalized Singleton
bound with a gap of ε. One can find the details in the following subsection.

1.1 Main Results
In this paper, we mainly focus on the rank distance, which is defined to be the rank of the
difference between two matrices A, B ∈ Fm×n

q i.e., d(A, B) := rank(A − B). In what follows,
d(·, ·) refers to the rank distance. For ρ ∈ [0, 1], a code C ⊆ Σn over an alphabet Σ is said to
be (ρ, ℓ)-list decodable if for any y ∈ Fn

q , it holds that

|{x ∈ C : d(x, y) ≤ ρn}| ≤ ℓ,

where d(x, y) denotes the distance between x and y. Here, ρ is called the list decoding radius,
and ℓ is called the list size. The stronger notion of (ρ, ℓ)-average-radius list decodability is
defined in the same way, except that we replace the maximum of the distances d(ci, y) by
the average of these distances. The formal definition is given as follows.

▶ Definition 2 (Average-radius list decodability). A code C ⊆ Σn is (ρ, ℓ) average-radius list
decodable if for any y ∈ Σn and ℓ + 1 distinct codewords c0, c1, . . . , cℓ ∈ C, it holds that

1
ℓ + 1

ℓ∑
i=0

d(y, ci) > ρn.

In [24], Shangguan and Tamo proved the generalized Singleton bound for list decoding,
generalizing the classical Singleton bound for unique decoding. For linear codes, this
generalized Singleton bound states that if C ⊆ Fn

q is an [n, k]-linear code that is (ρ, ℓ)-list
decodable in the Hamming metric, then it holds that ρ ≤ ℓ

ℓ+1
(
1 − k

n

)
. In [12], they noted

that this generalized Singleton bound also holds for rank-metric codes.
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▶ Lemma 1 (Generalized Singleton bound for rank-metric codes [12, Lemma 2.1]). Let C ⊆ Fn
qm

be an [n, k]Fqm -linear code that is (ρ, ℓ)-list decodable in the rank metric. Then it holds that

ρ ≤ ℓ

ℓ + 1

(
1 − k

n

)
.

They further showed that this bound is tight for rank-metric codes by proving that random
Gabidulin codes attain it with high probability. (This is a nontrivial task; in fact, even
proving that random linear rank-metric codes attain the generalized Singleton bound is far
from obvious.) However, the column-to-row ratio of these codes is quite small, which makes
them less appealing for practical applications.

▶ Theorem 3 ([12, Lemma 1.3]). Let (α1, . . . , αn) be uniformly distributed over the set
of all vectors in Fn

qm whose coordinates are linearly independent over Fq. Suppose m ≥
cnkℓ + logq(1/δ), where c is a large enough absolute constant. Then it holds with probability
at least 1 − δ that the Gabidulin code Gn,k(α1, . . . , αn)1 over Fqm is

(
L

L+1 (1 − k/n) , L
)

-list
decodable for all L ∈ [ℓ] in the rank metric.

In this paper, we prove that there exist Gabidulin codes with constant column-to-row ratio
Ω(ε) that are list decodable up to the radius ℓ

ℓ+1 (1 − k
n − ε).

▶ Theorem 4. Let ε > 0 and n, k be positive integers with k ≤ n. Let m and ℓ be positive
integers such that m ≥ cℓ(ℓ+1)n

ε , where c is a sufficiently large absolute constant. Then with
probability at least 1 − q−O(n) > 0, a random Gabidulin code of rate R = k/n and block length
n over Fn

qm is
(

ℓ
ℓ+1 (1 − R − ε), ℓ

)
average-radius list decodable.

Complementing this result, we also show that the column-to-row ratio is at most O(ε) for
any rank-metric code that is average-radius list decodable up to the generalized Singleton
bound. Thus, our results are essentially tight.

▶ Theorem 5. Let ℓ ≥ 2. For any R ∈ [0, 1], any rank-metric code C ⊆ Fn
qm of rate R that

is
(

ℓ(1−R−ε)
ℓ+1 , ℓ

)
-average-radius list decodable must have m = Ω

(
Rn
ε

)
.

1.2 Proof Overview
Our proof is inspired by [13]. To explain our proof, we first briefly review the techniques in [13].
In [13], they proposed the notion of a reduced intersection matrix, whose kernel corresponds
to the list of codewords. Let C be an [n, k] linear code and G be its generator matrix, which
is a k × n matrix. Given ℓ + 1 distinct codewords c1, . . . , cℓ+1 with ci = xiG = (ci1, . . . , cin)
that are close to a vector y = (y1, . . . , yn), where the coordinates cij and yj are in the
alphabet F, we define the intersection index set Ij := {h ∈ [n] : yh = cjh}. For a subset
J ⊆ [n], let GJ (resp. yJ) be the submatrix (resp. subvector) of G (resp. y) formed by
the columns (resp. components) with indices in J . Then, we have yIi

− xiGIi
= 0. If

a ∈ Ii ∩ Ij , then (xi − xj)Ga = 0. This means that for each element in Ii ∩ Ij , we can
establish a linear equation. Since these ℓ + 1 codewords are very close to y, it is expected
that we can obtain many equations of the form (xi − xj)Ga = 0. By removing the linear
dependence of these equations, we obtain a reduced intersection matrix RG,I[ℓ] such that
(x2 − x1, . . . , xℓ+1 − x1)RG,I[ℓ] = 0, where I[ℓ] is a shorthand for the tuple (I1, . . . , In). On

1 See the definition of Gabidulin codes in Definition 13.
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the other hand, if RG,I[ℓ] has full rank, then we cannot find ℓ + 1 distinct codewords that
are close to a vector y and thus C is list decodable. Thus, the essence of their paper is to
investigate the full rankness of RG,I[ℓ] .

In this paper, we investigate the list decodability of rank-metric codes, where distance
is measured using the rank metric rather than the Hamming metric. Thus, we cannot
construct the reduced intersection matrix RG,I[ℓ] row by row as in [13]. Instead, we present
another construction of a reduced intersection matrix, which captures the property of the
rank distance. Let us first represent the codeword of our rank-metric code as a vector
c ∈ Fn where F is the extension field of Fq. This is done by fixing an Fq-linear isomorphism
F ∼= F[F:Fq ]

q . The rank distance between two codewords d(c1, c2) is the maximum number of
Fq-linear independent components in c1 − c2. One can find the precise definition in Section 2.
Similar to Hamming codes, a linear rank-metric code has a generator matrix G and each
codeword can be encoded as c = xG. Given two vectors y1, y2 ∈ Fn with rank distance d,
we can find a (n − d) × n matrix A over Fq of full rank such that A(y1 − y2)⊤ = 0. The
major difference between the rank metric and the Hamming metric is that for each vector
v that lies in the vector space spanned by the rows in A, we always have v(y1 − y2)⊤ = 0.
Thus, we cannot include all v in our equations. Instead, we include A as a whole.

With this observation in mind, we present our new reduced intersection matrix. Assume
distinct codewords c1, . . . , cℓ+1 with ci = xiG are close to a vector y = (y1, . . . , yn). Assume
that d(y, xiG) = ai and there exists an ai × n matrix Ai of full rank over Fq such that
Ai(y − xiG)⊤ = 0. By replacing y with y − x1G and xi = xi − x1, we have A1y⊤ = 0
and Ai(y − xiG)⊤ = 0. Let V = (V1, . . . , Vℓ+1) where Vi is the vector space spanned by the
rows in Ai.2 Then, we construct a reduced intersection matrix RG,V to represent all these
relations as RG,V(y, x2, . . . , xℓ+1)⊤ = 0 which can be found in (9). If RG,V has full rank,
which means that we cannot find such ℓ + 1 distinct codewords, then our rank-metric code is
list decodable. Thus, it suffices to study the rank of RG,V . If our decoding radius is slightly
off the generalized Singleton bound (with a gap of ε), then RG,V is not square. This makes
the full rank condition easier to meet.

We restrict G to a subspace V by defining GV to be the column space of GA where the
columns of A span V . This can be seen as a generalization of puncturing in the Hamming
metric. By introducing a subspace V , we obtain a submatrix RV

G,V of RG,V by restricting G to
V . Using results from [12], we show that if G is a symbolic Gabidulin code (see Definition 15),
then the submatrix RV

G,V is invertible and has the same rank as RG,V when the dimension
of V is not too small, i.e., dim(V ) ≥ n − λk

ℓ , where λ > 0 is a small parameter depending
on ε. This means if each variable of this symbolic Gabidulin code is chosen uniformly at
random, with high probability, RV

G,V has full rank. To show that a Gabidulin code is list
decodable, we need to enumerate all possible t-tuples (V1, . . . , Vt) for t = 1, . . . , ℓ + 1 and
take a union bound over all these tuples. Thus, we need to show that RG,V is of full rank
with high probability 1 − exp(Ω(−n2)) for each V. To do this, we borrow the idea of [13] to
bound the failure probability.

Let us briefly review the idea of our algorithm. Let e1, . . . , en be a standard basis of
Fn

q . We first fix a non-singular maximal square submatrix W of RG,V . The reason we
need a square submatrix is that it is easy to calculate the determinant of W to bound the
failure probability that W is non-singular. Initially, since G is the generator matrix of a
symbolic Gabidulin code, W is a nonsingular matrix. If W remains non-singular with the

2 In our analysis, we need to consider V[t] = (V1, . . . , Vt) for t = 1, . . . , ℓ + 1. Here, we only consider V[ℓ+1]
for simplicity.
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assignment X1 = α1, . . . , Xn = αn, we are done. Otherwise, we face the situation where
M is non-singular under the partial assignment X1 = α1, . . . , Xj−1 = αj−1 but becomes
singular under X1 = α1, . . . , Xj = αj . In this case, we call j a faulty index and remove the
corresponding columns from the generator matrix G. Then, we come to the submatrix RV

G,V
for some subspace V = span{ei : i ∈ [n]/{j}}. Note that we have already shown that RV

G,V
has full rank if V has large dimension. Then, we find a new maximal square submatrix W of
RV

G,V and continue the argument. We show that, with high probability, there are not too
many faulty indices, which implies that we can finally find a maximal square submatrix W

that has full rank under the assignment. This means RG,V has full rank, completing the
proof.

Complementing our positive result, we also show that a capacity-achieving list decodable
rank-metric code must satisfy m = Ω(n/ε). Our proof generalizes the proof in [1] in the
rank-metric case. In particular, we first fix a subspace V0 ⊆ Fn

qm of dimension b = 4εn and
let V 0 be a complement of V0. Then, we construct a collection F of subspaces of dimension
R − ε in V 0, where R is the rate of our rank-metric code. For any two subspaces V1, V2 ∈ F ,
dim(V1 + V2) ≥ (R + ε)n. We manage to show that F has a large size. Using a probabilistic
argument, we find a codeword M in the rank-metric code C such that for most subspaces
V ∈ F , there is a corresponding codeword MV in C satisfying the condition that the kernel
of M − MV contains V . Since the number of such subspaces is greater than ℓq4εn, by the
pigeonhole principle, we can find ℓ distinct codewords MV1 , . . . MVℓ

such that the kernel of
M − MVi

also contains V0. Then, we show that these ℓ + 1 codewords M, MV1 , . . . MVℓ
are

contained in a ball of small radius in the rank metric. This implies an upper bound on the
list decoding radius, thus completing the proof.
▶ Remark. It is interesting to note that we require only the ideas from [13] to improve the
column-to-row ratio to Ωℓ,ε(1), without relying on the more refined techniques from [2].
This is likely due to the significantly larger alphabet size of rank-metric codes. While the
techniques in [2] might further improve lower-order factors, such as the dependence on ℓ, we
do not pursue this direction here in order to keep the presentation simple.

2 Preliminaries

In this paper, vectors are considered row vectors unless stated otherwise. Define [k] =
{1, . . . , k}. Let Fq be a finite field with q elements and F/Fq be a (finite or infinite) extension
of Fq.

2.1 Vector Spaces
Fn

q is a vector space of dimension n over Fq. We denote by x a row vector in Fn
q and x⊤

a column vector. Let e1, . . . , en be the standard basis of Fn
q . Given a matrix A ∈ Fm×n

q ,
we denote by ⟨A⟩ the subspace spanned by the column vectors in A. For a t-tuple V[t] =
(V1, . . . , Vt) and J ⊆ [t], define VJ = (Vi)i∈J .

▶ Definition 6 (Dual space). Let V ⊆ Fn
q be a linear subspace. The dual space of Vi is

denoted as V ⊥ = {v ∈ Fn
q : vx⊤ = 0, ∀x ∈ V }. It is clear that V ⊥ is well-defined, and

dim(V ⊥) = n − dim(V ).

Linear codes

Let F be a field. An [n, k]F linear code C (or [n, k]F code for short) is simply a subspace of
Fn of dimension k. The dual code of an [n, k]F code C is the [n, n − k]F code C⊥ which is
the dual space of C.

APPROX/RANDOM 2025
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For an [n, k]F code C, a matrix G ∈ Fk×n is said to be a generator matrix of C if
C = {uG : u ∈ Fk}, and a matrix H ∈ F(n−k)×n is said to be a parity-check matrix of C if
C = {v ∈ Fn : Hv⊤ = 0}. A generator matrix of C is also a parity-check matrix of the dual
code C⊥. Similarly, a parity-check matrix of C is also a generator matrix of C⊥.

▶ Definition 7 (Dimension of a collection of vector spaces). For a t-tuple V[t] = (V1, . . . , Vt)
of subspaces and J ⊆ [t], the dimension of VJ is defined as

dim(VJ) :=
∑
i∈J

dim(Vi) − dim
(∑

i∈J

Vi

)
.

We need the following simple lemmas, whose proofs are omitted.

▶ Lemma 2. Let ℓ ≤ n. Let T1 be a ℓ×n matrix of full rank over F. Then there exist matrices
M1 ∈ Fn×ℓ, M2 ∈ Fn×(n−ℓ), and T2 ∈ F(n−ℓ)×n of full rank such that M1T1 + M2T2 = In

and T1M2 = 0.

▶ Lemma 3. Let V1, . . . , Vℓ ⊆ Fn. Then(
ℓ⋂

i=1
Vi

)⊥

=
ℓ∑

i=1
V ⊥

i . (1)

▶ Lemma 4. Let V be a subspace in Fn
q and W be a subspace of V . Then, there exists a

matrix A ∈ Fn×dim(V )
q with ⟨A⟩ = V such that there exists a n × dim(W ) submatrix B of A

with ⟨B⟩ = W .

▶ Lemma 5. Let 0 < α < β < 1 with β − α < 1
4 . Given a subspace V1 ⊆ Fn

q of dimen-
sion αn, the number of V2 ⊆ Fn

q with dim(V1 + V2) ≤ βn and dim(V2) = αn is at most
16n2q(β−α)(1+3α−2β)n2 .

Proof. Let W = V1 ∩ V2 and we write V1 = W ⊕ W1 and V2 = W ⊕ W2. Since

dim(V1 ∩ V2) = dim(V1) + dim(V2) − dim(V1 + V2) ≥ (2α − β)n,

we conclude that a := dim(W ) ≥ (2α−β)n and b := dim(W2) ≤ (β −α)n. To construct V2, it
suffices to construct W and W2 separately. The number of subspaces W equals the number of
ways of picking a dim(W )-dimensional subspace from V1, which is at most 4q(αn−a)a. On the
other hand, the number of W2 equals the number of ways of picking a dim(W2)-dimensional
subspace that W2 ∩ V1 = {0}, which is

dim(W2)−1∏
i=0

qn − qαn+i

qdim(W2) − qi
≤ 4q(n−b)b.

Thus, for fixed (a, b), the total number of V2 is at most 16q(αn−a)a+(n−b)b subject to a+b = αn

and b ≤ (β − α)n. And we have

(αn − a)a + (n − b)b = b(αn − b) + (n − b)b = b((α + 1)n − 2b) ≤ (β − α)(1 + 3α − 2β)n2.

The number of possible (a, b) is at most n2. The claim follows by taking the union bound
over all possible (a, b). ◀

▶ Corollary 8. Let 0 < α < β < 1. There exists a collection F of αn-dimensional subspaces in
Fn

q of size at least Ω(q(α−α2−2(β−α)−o(1))n2) such that for any V1, V2 ∈ F , dim(V1 +V2) ≥ βn.
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Proof. There are at least qα(1−α)n2
αn-dimensional subspaces in Fn

q . For each such subspace
V , by Lemma 5, we remove at most 16n2q(β−α)(1+3α−2β)n2 subspaces W in Fn

q such that
dim(V + W ) ≤ βn. Thus, by a greedy algorithm (i.e., iteratively adding subspaces that have
not been selected or removed to F), we can find F of size at least

1
16n2 qα(1−α)n2−(β−α)(1+3α−2β)n2

≥ Ω(q(α−α2−2(β−α)−o(1))n2
).

The last inequality is due to 1 + 3α − 2β ≤ 1 + α ≤ 2. The proof is completed. ◀

The size of family F will be used in the lower bound argument in Section A.

2.2 Rank-Metric Codes
We first review some basic facts and results about rank-metric codes. The rank distance
d(A, B) between two matrices A, B ∈ Fm×n

q is defined to be the rank of A − B, i.e.,
d(A, B) := rank(A − B). Indeed, this defines a distance [8]. A rank-metric code C is a subset
of Fm×n

q whose rate and minimum distance are given by

R(C) :=
logq |C|

nm
and d(C) := min

A,B∈C
A̸=B

d(A, B).

Without loss of generality, we always assume that m ≥ n, since otherwise we can exchange n

and m. It is convenient to treat an m×n matrix A over Fq as a vector v = (v1, . . . , vn) ∈ Fn
qm

by identifying Fm
q with Fqm (by fixing a basis of Fqm) and viewing each column of A as

an element in Fqm . Then, we have rank(A) = dimFq (spanFq
{v1, . . . , vn}). In this way, a

rank-metric code C may be viewed as a subset of Fn
qm , and we can study linear rank-metric

codes, i.e, codes that are Fqm -subspaces.

Linear rank-metric codes over a general field F/Fq

It is convenient for us to consider a general notion of linear rank-metric codes C ⊆ Fn over
a field F/Fq that can even be infinite. To properly define this notion, we first define the
Fq-rank and the kernel subspace of a vector v ∈ Fn.

▶ Definition 9 (Fq-rank). Let F be an extension field of Fq. For v = (v1, . . . , vn) ∈ Fn, define

rankFq
(v) := dimFq

(spanFq
{v1, . . . , vn}),

called the Fq-rank of v.

▶ Definition 10 (Kernel subspace). For v = (v1, . . . , vn) ∈ Fn, define the Fq-kernel subspace
(or simply the kernel subspace) of v to be

kerFq (v) :=
{

u ∈ Fn
q : uv⊤ = 0

}
=
{

(u1, . . . , un) ∈ Fn
q :

n∑
i=1

uivi = 0
}

.

The following lemma can be seen as an alternative definition of the Fq-rank.

▶ Lemma 6. rankFq
(v) = n − dimFq

(kerFq
(v)).

Proof. Consider the Fq-linear map Fn
q → F sending u ∈ Fn

q to uv⊤. The image of this map
is spanFq

{v1, . . . , vn}, whose dimension is rankFq (v) by definition. The kernel of this map is
kerFq

(v). So rankFq
(v) = n − dimFq

(kerFq
(v)). ◀

APPROX/RANDOM 2025
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We can now define the notion of a linear rank-metric code over a field F/Fq.

▶ Definition 11 (Linear rank-metric code). Let F be an extension field of Fq. An [n, k]F
(linear) rank-metric code is simply an [n, k]F code C ⊆ Fn equipped with the distance function
d : Fn × Fn → N defined by d(v, v′) := rankFq

(v − v′). The minimum distance of C is

d(C) := min
v,v′∈C

v ̸=v′

d(v, v′) = min
0̸=v∈C

rankFq
(v).

Analogous to the classical setting, one can prove the following Singleton bound for linear
rank-metric codes. While this may be well known, we include a proof for completeness.

▶ Theorem 12 (Singleton bound). Let C be an [n, k]F rank-metric code. Then d(C) ≤
n − k + 1.3

Proof. There exists a nonzero codeword v = (v1, . . . , vn) ∈ C whose first k − 1 coordinates
are zero. So d(C) ≤ rankFq

(v) = dimFq
(spanFq

{v1, . . . , vn}) = dimFq
(spanFq

{vk, . . . , vn}) ≤
n − k + 1. ◀

A rank-metric code meeting the Singleton bound is called maximum rank distance (MRD)
code.

▶ Lemma 7 ([12, Lemma 2.11]). Let C be an [n, k]F code. If C is MRD, then C⊥ is also
MRD.

▶ Lemma 8. Let G ∈ Fk×n be a generator matrix of an [n, k]F code C and H ∈ F(n−k)×n be
a parity-check matrix of code C. Then the following are all equivalent:
1. C is MRD.
2. For any A ∈ Fn×k

q of full rank, the matrix GA ∈ Fk×k also has full rank.
3. For any B ∈ Fn×(n−k)

q of full rank, the matrix HB ∈ F(n−k)×(n−k) also has full rank.

Proof. For the first two claims, see [12, Lemma 2.10]. Lemma 7 says that H is the generator
matrix of a [n, n − k]F MRD code C⊥. The third claim follows by applying the second one
to the dual code C⊥. ◀

Gabidulin codes

The most famous MRD codes are Gabidulin codes, which are defined by using the evaluation
of linearized polynomials. We briefly review the construction of Gabidulin codes [8] and
extend it to a general field F/Fq.

▶ Definition 13 (Gabidulin code over F). Let 0 < k ≤ n be integers. Let F be an extension
field of Fq such that [F : Fq] ≥ n. Let α1, . . . , αn ∈ F be linearly independent over Fq. Define
the [n, k]F rank-metric code

Gn,k(α1, . . . , αn) :=
{

xf = (f(α1), . . . , f(αn)) : f ∈ F[X] is q-linearized, degq(f) < k
}

,

where f ∈ F[X] is said to be q-linearized if it only contains monomials whose degrees are
q-powers, and we define degq(f) = d if deg(f) = qd.

3 We remark that when F = Fqm , there exists a Singleton bound, |C| ≤ qm(n−d+1), that also applies to
nonlinear rank-metric codes C ⊆ Fn [8]. However, this bound is given in terms of the size of the code,
not the dimension, making it inapplicable when F is infinite.
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For a nonzero codeword xf = (f(α1), . . . , f(αn)) ∈ Gn,k(α1, . . . , αn), using the fact that
f is q-linearized, we have

kerFq
(xf ) =

{
(u1, . . . , un) ∈ Fn

q : f

(
n∑

i=1
uiαi

)
= 0
}

whose dimension over Fq is bounded by k − 1 since α1, . . . , αn are linearly independent over
Fq and f has at most deg(f) ≤ qk−1 roots. So rankFq

(xf ) ≥ n − k + 1 by Lemma 6. This
shows that Gabidulin codes are MRD codes.

The dual code of a Gabidulin code is also a Gabidulin code, which can be seen as an
analogy of a Reed–Solomon code.

▶ Theorem 14 (Duality of Gabidulin codes). Let F be an extension field of Fq, and let
α1, . . . , αn ∈ F be linearly independent over Fq. Then there exists (β1, . . . , βn) ∈ Fn \ {0}
such that

n∑
i=1

αqj−1

i βqh−1

i = 0 for (j, h) ∈ [k] × [n − k]. (2)

The choice of (β1, . . . , βn) satisfying (2) is unique up to a scalar in Fq \ {0}. Moreover,
β1, . . . , βn are linearly independent over Fq, and

(
βqi−1

j

)
i∈[n−k],j∈[n]

is a parity-check matrix

of Gn,k(α1, . . . , αn), i.e.,

Gn,k(α1, . . . , αn)⊥ = Gn,n−k(β1, . . . , βn).

A proof can be found in [3, Lemma 2.7.2]. We present this proof for completeness.

Proof of Theorem 14. This holds for any extension field F no matter if F is finite or infinite.
Let β1, . . . , βn be the unique solution up to the scalar such that

n∑
i=1

αqj

i βi = 0, j = k + 1 − n, . . . , k − 1. (3)

The uniqueness is due to the fact that (αqk−j

i )(i,j)∈[n]×[n−1] is a Moore matrix of rank n − 1
if α1, . . . , αn are Fq-linearly independent. Then, for j ∈ [k], h ∈ [n − k], we have

n∑
i=1

αqj

i βqh

i =
(

n∑
i=1

αqj−h

i βj

)qh

= 0.

This is due to (3) and the fact that k + 1 − n ≤ j − h ≤ k − 1. ◀

▶ Definition 15 (Symbolic Gabidulin code). Let 0 < k ≤ n. Let F = Fq(X1, . . . , Xn), where
X1, . . . , Xn are transcendental and algebraically independent elements over Fq. A [n, k]F
symbolic Gabidulin code is a F-linear code with generator matrix G = (Xqi−1

j )(i,j)∈[k]×[n],
i.e.,

Gn,k(X1, . . . , Xn) :=
{

xf = (f(X1), . . . , f(Xn)) : f ∈ F[X] is q-linearized, degq(f) < k
}

.
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2.3 Known Results on the List Decoding of Gabidulin Codes
For G ∈ Fk×n over an extension field F/Fq, A ∈ Fn×d

q , and V = ⟨A⟩ ⊆ Fn
q , define GV ⊆ Fn to

be the column space of GA. The following results on the list decoding of symbolic Gabidulin
codes can be found (implicitly) in [12].

▶ Theorem 16 (Implicit in Theorem 1.16, [12]). Let ℓ > 0 be an integer. Let Gn,k(X1, . . . , Xn)
be a symbolic Gabidulin code with generator matrix G and parity-check matrix H. Let
V1, . . . , Vℓ be subspaces of Fn

q , each of dimension at most k. Then,

dimF

⋂
i∈[ℓ]

GVi

 = max
P1⊔P2⊔···⊔Ps=[ℓ]

∑
i∈[s]

dimFq

 ⋂
j∈Pi

Vj

− (s − 1)k

 (4)

where the maximum is taken over all possible partitions P1 ⊔P2 ⊔· · ·⊔Ps of [ℓ]. Let V1, . . . , Vℓ

be subspaces of Fn
q , each of dimension at most n − k. Then,

dimF

⋂
i∈[ℓ]

HVi

 = max
P1⊔P2⊔···⊔Ps=[ℓ]

∑
i∈[s]

dimFq

 ⋂
j∈Pi

Vj

− (s − 1)k

 . (5)

▶ Lemma 9 (Lemma 6.1, [12]). Let F be an extension field of Fq and let G ∈ Fk×n. For
i = 1, . . . , ℓ, let Vi be a subspace of Fn

q and let Ai ∈ Fn×dim Vi
q such that Vi = ⟨Ai⟩. Then,

GVi
= ⟨GAi⟩ and

dim

⋂
i∈[ℓ]

GVi

 =
∑
i∈[ℓ]

dim GVi
− rank

(
G{Ai}i∈[ℓ]

)
, (6)

where we define the matrix G{Ai}i∈[ℓ] :=


GA1 GA2
GA1 GA3

...
. . .

GA1 GAℓ

.

3 Characterization of the List Decodable Property

Let F be the extension field of Fq. Let C be a [n, k]F code with generator matrix G and
parity-check matrix H. Assume xiG ∈ Fn, i = 1, . . . , ℓ + 1 are ℓ + 1 codewords close to a
vector y ∈ Fn, i.e.,

ℓ+1∑
i=1

rankFq
(y − xiG) ≤ ℓn(1 − R + ε). (7)

By replacing y with y − x1G and xi with xi − x1 for i > 1, we may assume x1 = 0. Thus,
(7) is equivalent to:

rank(y) +
ℓ+1∑
i=2

rankFq
(y − xiG) ≤ ℓn(1 − R + ε), (8)

Let Vi = ker(y − xiG) ⊆ Fn
q be a vector space and Ai ∈ Fn×dim(Vi)

q such that ⟨Ai⟩ = Vi.
It follows that rank(Ai) = dim(Vi) = n − rank(y − xiG) and (y − xiG)Ai = 0. Since
A⊤

i (y⊤ − G⊤x⊤
i ) = 0,
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
A⊤

1 0 · · · 0
A⊤

2 −A⊤
2 G⊤ · · · 0

...
...

. . .
...

A⊤
ℓ+1 0 · · · −A⊤

ℓ+1G⊤




y⊤

x⊤
2
...

x⊤
ℓ+1

 = 0. (9)

Let the matrix above be denoted as RG,V[ℓ+1] where V[ℓ+1] = (V1, . . . , Vℓ+1). Since Ai ∈
Fn×dim(Vi)

q , RG,V[ℓ+1] is a (
∑ℓ+1

i=1 dim(Vi)) × (ℓk + n) matrix.

▶ Lemma 10. Let ρ ∈ (0, 1), λ ≥ 0, and ℓ be a positive integer. Let C be an [n, k]F-
linear code over a finite field Fq with generator matrix G ∈ Fk×n. Suppose C is not (ρ, ℓ)
average-radius list decodable in the rank metric and ρ ≤ ℓ

ℓ+1 (1 − (1 + λ) k
n ). Then, there exist

t ∈ {2, 3, . . . , ℓ + 1} and Fq-linear subspaces V1, . . . , Vt ⊆ Fn
q such that

1. ker(RG,V[t]) ̸= 0.
2. dim(V[t]) ≥ (1 + λ)(t − 1)k
3. dim(VJ) ≤ (1 + λ)(|J | − 1)k for some non-empty set J ⊆ [t].

Proof. As C is not (ρ, ℓ) average-radius list decodable in the rank metric, there exists a vector
y ∈ Fn and ℓ + 1 codewords c1, . . . , cℓ+1 ∈ C such that

∑
i∈[ℓ+1] rankFq

(y − ci) ≤ (ℓ + 1)ρn.

Let Vi = ker(y − ci) and we have
∑

i∈[ℓ+1] dim(Vi) ≥ (ℓ + 1)n(1 − ρ). This implies that

dim(V[ℓ+1]) =
∑

i∈[ℓ+1]

dim(Vi) − dim(
∑

i∈[ℓ+1]

Vi) ≥
∑

i∈[ℓ+1]

dim(Vi) − n ≥ ℓ(1 + λ)k.

Thus, we can choose a minimal set S ⊆ [ℓ + 1] of size at least 2 such that dim(VS) ≥
(1 + λ)(|S| − 1)k. By permuting the codewords c1, . . . , cℓ+1, we may assume that S = [t].
By the definition of dim(VJ), dim(VJ) = 0 for any subset J of size 1. Then, for any subset
J ⊆ [t], Item 3 holds due to the minimality of S. It remains to show that Item 1 holds. To
see this, we first notice that ci = xiG for some xi ∈ Ft

qm . Let Ai ∈ Fn×dim(Vi)
q such that

⟨Ai⟩ = Vi. Since Vi = ker(y − ci), we have (y − ci)Ai = (y − xiG)Ai = 0. Let y′ = y − x1G

and x′
i = xi − x1 for i = 2, . . . , ℓ + 1. Then (y′, x′

2, . . . , x′
t)⊤ ∈ ker(RG,V[t]). This completes

the proof. ◀

▶ Definition 17 (Reduced Matrix). Let V[t] = (V1, . . . , Vt), where each Vi is a linear subspace
of Fn

q . Let V ⊆ Fn
q be a linear subspace and V̂i = Vi ∩ V be the intersection of Vi and V .

The reduced matrix RV
G,V[t]

is defined as

RV
G,V[t]

=


Â⊤

1 0 · · · 0
Â⊤

2 −Â⊤
2 G⊤ · · · 0

...
...

. . .
...

Â⊤
t 0 · · · −Â⊤

t G⊤

 . (10)

where Âi ∈ Fn×dim(V̂i)
q of full rank with ⟨Âi⟩ = V̂i. If VJ = spanFq

{ei : i ∈ J} for some
J ⊆ [n], we shorthand RJ

G,V[t]
:= RVJ

G,V[t]
if no ambiguity occurs.

Let A ⊆ Fn×dim(V )
q with ⟨A⟩ = V . Since the column vectors in Âi lie in V = ⟨A⟩, we may

write Âi = ATi where Ti ∈ Fdim(V )×dim(V̂i)
q of full rank. Using the above notation, we have

the following results.
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▶ Lemma 11. Let G1 = GA and Ui = ⟨Ti⟩ for i = 1, . . . , t. Let U[t] = (U1, . . . , Ut). Assume
ker(RG1,U[t]) = 0, i.e., there is no nonzero solution to


T ⊤

1 0 · · · 0
T ⊤

2 −T ⊤
2 G⊤

1 · · · 0
...

...
. . .

...
T ⊤

t 0 · · · −T ⊤
t G⊤

1




y⊤

x⊤
2
...

x⊤
t

 = 0. (11)

Then ker(RV
G,V[t]

) = 0.

Proof. Assume that there exists a solution (y, x2, . . . , xt) ∈ ker(RV
G,V[t]

). Let y′ = yA.
Then, (y′, x2, . . . , xt)⊤ is a solution to (11) by observing

Â⊤
i G⊤ = (ATi)⊤G⊤ = T ⊤

i A⊤G⊤ = T ⊤
i (GA)⊤ = T ⊤

i G⊤
1 . ◀

4 Connection to the Parity-Check Matrix

▶ Definition 18. Let F be the extension field of Fq. Let H be the parity-check matrix
of a [n, k]F code C. Let V[t] = (V1, . . . , Vt) be a tuple of subspaces of Fn

q . Assume that
Di ∈ Fn×dim(Vi)

q such that ⟨Di⟩ = Vi for i ∈ [t]. Define the following matrix

MH,V[t] =


HD1 HD2 0 · · · 0
HD1 0 HD3 · · · 0

...
...

...
. . .

...
HD1 0 0 · · · HDt

 . (12)

Since each Di is an n × dim(Vi) matrix over Fq, MH,V[t] is a (t − 1)(n − k) ×
∑t

i=1 dim(Vi)
matrix over Fq.

The following theorem connects the matrices MH,V⊥
[t]

and RG,V[t] . See Section B for its proof.

▶ Theorem 19. Let F be an extension field of Fq. Let G and H be the generator and
parity-check matrix of a [n, k]F MRD code C, respectively. Let V[t] = (V1, . . . , Vt) and
V⊥

[t] = (V ⊥
1 , . . . , V ⊥

t ). Then, there is an injective F-linear map ϕ : ker(RG,V[t]) → ker(MH,V⊥
[t]

).

We note that the matrix RG,V[t] is not a square matrix as (t − 1)k + n <
∑

i∈[ℓ+1] dim(Vi).
This means that if RG,V[t] has full rank, there exists a reduced submatrix RV

G,V[t]
of RG,V[t]

that has the same rank as RG,V[t] . The following theorem proves this claim provided that
the dimension of V is not too small. See Section C for its proof.

▶ Theorem 20. Let F = Fq(X1, . . . , Xn) where X1, . . . , Xn are transcendental and alge-
braically independent elements over Fq. Let G = (Xqi−1

j )(i,j)∈[k]×[n] be the generator matrix
of a [n, k]F symbolic Gabidulin code. Let λ > 0 and t > 1. Assume that V[t] = (V1, . . . , Vt)
satisfies that dim(V[t]) ≥ (1 + λ)(t − 1)k and dim(VJ) ≤ (|J | − 1)(1 + λ)k for all nonempty
J ⊆ [t]. Let V ⊆ Fn

q be a linear space with dim(V ) ≥ n − λk
t−1 . Then, ker(RV

G,V[t]
) = 0.
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5 Random Assignment to Achieve the Capacity

5.1 Random Puncturing
Let {e1, . . . , en} be the standard basis of Fn

q . Theorem 20 states that for any subspace
V ⊆ Fn

q of dimension at least n − λk
t−1 , and V[t] = (V1, . . . , Vt) satisfying Item 2 and

Item 3, we have ker(RV
G,V[t]

) = 0. In this section, we focus on the subspace of the form
WJ := spanFq

{ei : i ∈ J} for some subset J ⊆ [n]. Recall that we shorthand RWJ

G,V as RJ
G,V .

By focusing on the subset J ⊆ [n], we are able to mimic the technique in [13] to bound
the probability that RJ

G,V[t]
is not of full rank when selecting the value of Xi uniformly at

random. The connection between RJ
G,V[t]

and RG,V[t] can be found in the following lemma.

▶ Lemma 12. Let V[t] = (V1, . . . , Vt) ∈ (Fn
q )t and V ⊆ Fn

q . Then, there exist Ai and Âi in
(9) and (10) such that RV

G,V[t]
is a submatrix of RG,V[t] .

Proof. From Lemma 4, we can find Ai ∈ Fn×dim(Vi)
q and its submatrix Âi ∈ Fn×dim(V̂i)

q such
that ⟨Ai⟩ = Vi, ⟨Âi⟩ = V̂i. This implies that (Â⊤

i , 0, . . . , 0, −Â⊤
i G⊤, 0, . . . , 0) is a submatrix of

(A⊤
i , 0, . . . , 0, −A⊤

i G⊤, 0, . . . , 0). In view of the expression of RV
G,V[t]

and RG,V[t] , we conclude
that RV

G,V[t]
is a submatrix of RG,V[t] . ◀

Next, we define the faulty index which was first proposed in [13].

▶ Definition 21 (Faulty index). Assume r ≥ ℓ. Let A ∈ Fq(X1, . . . , Xn)r×ℓ be a matrix such
that rank(A) = ℓ and the entries of A are in Fq[X1, . . . , Xn]. For α1, . . . , αn ∈ Fqm , we say
i ∈ [n] is the faulty index of A (with respect to α1, . . . , αn) if A|X1=α1,...,Xi−1=αi−1 has full
(column) rank but A|X1=α1,...,Xi=αi

does not.

Algorithm 1 Output faulty indices.

Input: V = (V1, . . . , Vt) ⊆ (Fn
q )t, α1, . . . , αn ∈ Fqm , and positive integer r

Output: “Success” or (i1, . . . , ir) ∈ [n]r

Let G = (Xqi−1

j )(i,j)∈[k]×[n] and J = [n].
for j = 1 to r, do

if rank(RJ
G,V) < (t − 1)k + n then

Output “Fail” and halt.
else if i ∈ [n] is the faulty index of RJ

G,V then
ij = i and J = J \ {i}.

else
Output “Success” and halt.

end if
end for
Output (i1, . . . , ir).

▶ Lemma 13. Let λ ≥ 0 and let t ≥ 1 be an integer. Let V[t] = (V1, . . . , Vt) ⊆ (Fn
q )t such that

dim(V[t]) ≥ (1 + λ)(t − 1)k and dim(VJ ) ≤ (1 + λ)(|J | − 1)k for all nonempty J ⊆ [t]. Let r

be a positive integer with r ≤ λk
t−1 + 1. Then, for all α1, . . . , αn ∈ Fqm , running Algorithm 1

on the input V[t], α1, . . . , αn, and r yields the following two possible scenarios:
1. Algorithm 1 outputs “Success”. In this case, RG,V[t] |X1=α1,...,Xn=αn has full rank.
2. Algorithm 1 outputs an r-tuple (i1, . . . , ir) ∈

([n]
r

)
. In this case, for each j ∈ [r], ij is the

faulty index of R
Sj

G,V[t]
for Sj = [n] \ {i1, . . . , ij−1}.
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Proof. Assume the algorithm reaches the j-th round of the loop. At the beginning, we have
|J | ≥ n − j + 1 ≥ n − r + 1 ≥ n − λk

t−1 . Then by Lemma 11 and the fact that G is the
generator matrix of a symbolic Gabidulin code, RJ

G,V has full rank and thus the algorithm
never outputs “Fail”. Suppose that the algorithm outputs “Success” and halts in the j-th
round. This means that the faulty index of RJ

G,V does not exist in this round. This implies
that RG,V |X1=α1,...,Xn=αn has full rank. It remains to consider the case where the algorithm
outputs a r-tuple (i1, . . . , ir). For j ∈ [r], the index ij is chosen to be the faulty index of
R

Sj

G,V , where Sj = [n] \ {i1, . . . , ij−1}. The distinctness of i1, . . . , ir is due to the fact that if
i /∈ Sj , then R

Sj

G,V does not contain Xi. ◀

▶ Lemma 14. Suppose m ≥ n and (α1, . . . , αn) are chosen uniformly at random in Fqm .
Then, for any r-tuple (i1, . . . , ir) ∈

([n]
r

)
and (V1, . . . , Vt) ∈ (Fn

q )t, the probability that
Algorithm 1 outputs (i1, . . . , ir) given the input (V1, . . . , Vt), α1, . . . , αn and r is at most(

(t−1)kqk−1

qm

)r

.

Proof. For j ∈ [r], define the following:
1. Sj := [n] \ {i1, . . . , ij−1}.
2. Let Mj be the smallest nonsingular maximal minor of R

Sj

G,V in the lexicographic order.
The same argument in Lemma 13 implies that for j ∈ [r], R

Sj

G,V has full rank and hence
Mj exists.

3. Let Ej be the event that det(Mj |X1=α1,...,Xij −1=αij −1) ̸= but det(Mj |X1=α1,...,Xij
=αij

) is
zero.

Note that if (i1, . . . , ir) is output by the algorithm, then E1, . . . , Er occurs. So it suffices to
prove that Pr[E1 ∧ · · · ∧ Er] ≤

(
(t−1)kqk−1

qm

)r

.
Let (j1, j2, . . . , jr) be a permutation of (1, 2, . . . , r) such that ij1 < · · · < ijr

, i.e., ijℓ
is the

ℓ-th smallest index among i1, . . . , ir for ℓ ∈ [r]. For ℓ ∈ {0, 1, . . . , r}, define Fℓ := Ej1∧· · ·∧Ejℓ
,

where we let F0 be the event that always occurs. Then Fr = Ej1 ∧ · · · ∧ Ejr
= E1 ∧ · · · ∧ Er.

If Pr[Fr] = 0 then we are done. So assume Pr[Fr] > 0. By definition, if Fℓ occurs and ℓ′ < ℓ,
then Fℓ′ also occurs. So Pr[Fℓ] > 0 for all ℓ ∈ {0, 1, . . . , r}. Note

Pr[E1 ∧ · · · ∧ Er] = Pr[Fr] =
r∏

ℓ=1

Pr[Fℓ]
Pr[Fℓ−1] .

So it suffices to prove that Pr[Fℓ]
Pr[Fℓ−1] ≤ (t−1)kqk−1

qm for ℓ ∈ [r].
Fix ℓ ∈ [r] and let j = jℓ. Let T be the set of all β = (β1, . . . , βij−1) ∈ Fij−1

q such that
Pr
[(

α<ij
= β

)
∧ Fℓ−1

]
> 0, where α<ij

= β is a shorthand for (α1 = β1) ∧ · · · ∧ (αij−1 =
βij−1). Note that for β ∈ T , the event

(
α<ij = β

)
∧ Fℓ−1 is simply α<ij = β since

Fℓ−1 = Ej1 ∧ · · · ∧ Ejℓ−1 depends only on α1, . . . , αijℓ−1
and is bound to happen conditioned

on α<ij
= β. We then have

Pr[Fℓ]
Pr[Fℓ−1] =

∑
β∈S Pr

[(
α<ij = β

)
∧ Fℓ

]∑
β∈S Pr

[(
α<ij

= β
)

∧ Fℓ−1
] =

∑
β∈S Pr

[(
α<ij = β

)
∧ Ej

]∑
β∈S Pr

[
α<ij

= β
]

≤ max
β∈S

Pr
[(

α<ij = β
)

∧ Ej

]
Pr
[
α<ij

= β
] = max

β∈S
Pr
[
Ej | α<ij

= β
]

.

Fix β = (β1, . . . , βij−1) ∈ T . We just need to prove that Pr
[
Ej | α<ij = β

]
≤ (t−1)kqk−1

qm .
Let

Q := det(Mj |X1=β1,...,Xij −1=βij −1) ∈ Fq[Xij
, . . . , Xn].
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If Q = 0, then Ej never occurs conditioned on α<ij = β and we are done. So assume
Q ̸= 0. View Q as a polynomial in Xij+1, . . . , Xn over the ring Fq[Xij

], and let Q0 ∈ Fq[Xij
]

be the coefficient of a nonzero term of Q. Then conditioned on α<ij
= β, the event Ej

occurs only if αij is a root of Q0 ≠ 0. Note that deg Q0 ≤ degXij
Q ≤ degXij

(det(Mj)),

which is bounded by (t − 1)kqk−1 from the expression of R
Sj

G,V . Also note that conditioned
on α<ij = β, the random variable αij is uniformly distributed over Fm

q . It follows that
Pr
[
Ej | α<ij

= β
]

≤ (t−1)kqk−1

qm . ◀

▶ Corollary 22. Under the notations and conditions in Lemma 14, suppose m ≥ n and
(α1, . . . , αn) is chosen uniformly at random, then

Pr[ker(RG,V |X1=α1,...,Xn=αn
) ̸= 0] ≤

(
(t − 1)knqk−m

)r

.

Proof. Take a union bound over sequences (i1, . . . , ir) ∈
([n]

r

)
, by Lemma 14, the probability

that Algorithm 1 outputs a faulty sequence on the input V1, . . . , Vt and α1, . . . , αn is at most
nr×((t−1)kqk−m)r. If this doesn’t happen, by Lemma 13, ker(RG,V |X1=α1,...,Xn=αn) ̸= 0. ◀

5.2 Application to List Decoding
We are ready to prove our main results.

▶ Theorem 23. Let ε ∈ (0, 1), c > 1 and n, k, m, ℓ be positive integers with k ≤ n and
m ≥ cℓ(ℓ+1)n

ε . Then with probability at least 1 − q−Ω(n), a randomly punctured Gabidulin
code C ⊆ Fn

qm with rate R := k
n is ( ℓ

ℓ+1 (1 − R − ε), ℓ) average-radius list decodable.

Proof. Let λ = ε
R = εk

n . By Lemma 10, if C with generator matrix G is not ( ℓ
ℓ+1 (1−R−ε), ℓ)

average-radius list decodable in the rank metric, then, there exist t ∈ {2, 3, . . . , ℓ + 1} and
Fq-linear subspaces V1, . . . , Vt ⊆ Fn

q such that
1. ker(RG,V[t]) ̸= 0.
2. dim(V[t]) ≥ (1 + λ)(t − 1)k
3. dim(VJ) ≤ (1 + λ)(|J | − 1)k for some non-empty set J ⊆ [t].
Choose α1, . . . , αn ∈ Fqm uniformly at random. The probability that α1, . . . , αn are Fq-
linearly dependent is at most nq(n−m) = q−Ω(n). Let Ḡ = (αqi−1

j )(i,j)∈[k]×[n]. To prove this
theorem,it suffices to show that Items 1–3 simultaneously hold with probability at most
q−O(n2). We fix t ∈ {2, 3, . . . , ℓ + 1} and V1, . . . , Vt ⊆ Fn

q satisfying Item 2 and Item 3.
Let r = ⌊ λk

t−1 + 1⌋ ≥ λk
t−1 = εn

t−1 . Observe that RḠ,V[t]
= RG,V[t] |X1=α1,...,Xn=αn

where

G = (Xqi−1

j )(i,j)∈[k]×[n]. By Corollary 22, the probability that ker(RḠ,V[t]
) ̸= 0 holds is at

most (ℓknqk−m)r ≤ (ℓknqk−m) εn
ℓ , where we use the fact that r ≥ εn

ℓ . The number of t-tuples
V[t], where t ranges over {2, . . . , ℓ + 1}, is bounded by

∑ℓ+1
t=2(qn2)t ≤ 2q(ℓ+1)n2 . By the union

bound, the probability that Items 1–3 hold for some t ∈ {2, . . . , ℓ + 1} and V1, . . . , Vt ⊆ Fn
q is

at most 2q(ℓ+1)n2 × (ℓknqk−m) εn
ℓ + nqn−m = 2(knqk+nℓ(ℓ+1)/ε−m)εn/ℓ + q−Ω(n) = q−Ω(n) as

m ≥ cnℓ(ℓ+1)
ε for some c > 1. ◀

References
1 Omar Alrabiah, Venkatesan Guruswami, and Ray Li. AG codes have no list-decoding friends:

Approaching the generalized Singleton bound requires exponential alphabets. In Proceedings
of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1367–1378.
SIAM, 2024. doi:10.1137/1.9781611977912.55.

APPROX/RANDOM 2025

https://doi.org/10.1137/1.9781611977912.55


43:16 Gabidulin Codes Achieve Capacity with an Optimal Column-To-Row Ratio

2 Omar Alrabiah, Venkatesan Guruswami, and Ray Li. Randomly punctured Reed–Solomon
codes achieve list-decoding capacity over linear-sized fields. In Proceedings of the 56th Annual
ACM Symposium on Theory of Computing, pages 1458–1469, 2024. doi:10.1145/3618260.
3649634.

3 Hannes Bartz, Lukas Holzbaur, Hedongliang Liu, Sven Puchinger, Julian Renner, Antonia
Wachter-Zeh, et al. Rank-metric codes and their applications. Foundations and Trends® in
Communications and Information Theory, 19(3):390–546, 2022. doi:10.1561/0100000119.

4 Joshua Brakensiek, Sivakanth Gopi, and Visu Makam. Lower bounds for maximally recoverable
tensor codes and higher order MDS codes. IEEE Transactions on Information Theory,
68(11):7125–7140, 2022. doi:10.1109/TIT.2022.3187366.

5 Philippe Delsarte. Bilinear forms over a finite field, with applications to coding theory. J.
Comb. Theory, Ser. A, 25(3):226–241, 1978. doi:10.1016/0097-3165(78)90015-8.

6 Michael A. Forbes and Venkatesan Guruswami. Dimension Expanders via Rank Condensers. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2015), pages 800–814, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.
2015.800.

7 Michael A Forbes and Amir Shpilka. On identity testing of tensors, low-rank recovery and
compressed sensing. In Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, pages 163–172, 2012. doi:10.1145/2213977.2213995.

8 Ernst Gabidulin. Theory of codes with maximum rank distance (translation). Problems of
Information Transmission, 21:1–12, January 1985.

9 J. K. Gibson. Severely denting the Gabidulin version of the Mceliece public key cryptosystem.
Designs, Codes and Cryptography, pages 37–45, 1995. doi:10.1007/BF01390769.

10 J. K. Gibson. The security of the Gabidulin public-key cryptosystem. In Advances in Cryptology
– EUROCRYPT’96, LNCS 1070,. Springer, 1996.

11 Zeyu Guo, Ben Lee Volk, Akhil Jalan, and David Zuckerman. Extractors for images of varieties.
In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pages 46–59,
2023. doi:10.1145/3564246.3585109.

12 Zeyu Guo, Chaoping Xing, Chen Yuan, and Zihan Zhang. Random gabidulin codes achieve
list decoding capacity in the rank metric. In 65th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024, pages 1846–1873.
IEEE, 2024. doi:10.1109/FOCS61266.2024.00111.

13 Zeyu Guo and Zihan Zhang. Randomly punctured Reed-Solomon codes achieve the list decoding
capacity over polynomial-size alphabets. In 2023 IEEE 64th Annual Symposium on Foundations
of Computer Science (FOCS), pages 164–176, 2023. doi:10.1109/FOCS57990.2023.00019.

14 Venkatesan Guruswami, Nicolas Resch, and Chaoping Xing. Lossless dimension expanders
via linearized polynomials and subspace designs. Comb., 41(4):545–579, 2021. doi:10.1007/
s00493-020-4360-1.

15 Venkatesan Guruswami, Carol Wang, and Chaoping Xing. Explicit list-decodable rank-metric
and subspace codes via subspace designs. IEEE Trans. Inf. Theory, 62(5):2707–2718, 2016.
doi:10.1109/TIT.2016.2544347.

16 R. Koetter and F. R. Kschischang. Coding for errors and erasures in random network coding.
In IEEE International Symposium on Information Theory (ISIT 2007), pages 791–795. IEEE,
2007. doi:10.1109/ISIT.2007.4557321.

17 Ralf Koetter and Frank R. Kschischang. Coding for errors and erasures in random network
coding. IEEE Trans. Inf. Theory, 54(8):3579–3591, 2008. doi:10.1109/TIT.2008.926449.

18 Pierre Loidreau. Designing a rank metric based mceliece cryptosystem. In Post-Quantum
Cryptography: Third International Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-
28, 2010. Proceedings 3, pages 142–152. Springer, 2010. doi:10.1007/978-3-642-12929-2_11.

19 Pierre Loidreau. A new rank metric codes based encryption scheme. In Post-Quantum
Cryptography: 8th International Workshop, PQCrypto 2017, Utrecht, The Netherlands, June
26-28, 2017, Proceedings 8, pages 3–17. Springer, 2017. doi:10.1007/978-3-319-59879-6_1.

https://doi.org/10.1145/3618260.3649634
https://doi.org/10.1145/3618260.3649634
https://doi.org/10.1561/0100000119
https://doi.org/10.1109/TIT.2022.3187366
https://doi.org/10.1016/0097-3165(78)90015-8
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.800
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.800
https://doi.org/10.1145/2213977.2213995
https://doi.org/10.1007/BF01390769
https://doi.org/10.1145/3564246.3585109
https://doi.org/10.1109/FOCS61266.2024.00111
https://doi.org/10.1109/FOCS57990.2023.00019
https://doi.org/10.1007/s00493-020-4360-1
https://doi.org/10.1007/s00493-020-4360-1
https://doi.org/10.1109/TIT.2016.2544347
https://doi.org/10.1109/ISIT.2007.4557321
https://doi.org/10.1109/TIT.2008.926449
https://doi.org/10.1007/978-3-642-12929-2_11
https://doi.org/10.1007/978-3-319-59879-6_1


Z. Guo, C. Xing, C. Yuan, and Z. Zhang 43:17

20 Hsiao-feng Lu and P Vijay Kumar. A unified construction of space-time codes with optimal
rate-diversity tradeoff. IEEE Transactions on Information Theory, 51(5):1709–1730, 2005.
doi:10.1109/TIT.2005.846403.

21 Paul Lusina, Ernst Gabidulin, and Martin Bossert. Maximum rank distance codes as space-
time codes. IEEE Transactions on Information Theory, 49(10):2757–2760, 2003. doi:10.
1109/TIT.2003.818023.

22 Netanel Raviv and Antonia Wachter-Zeh. Some Gabidulin codes cannot be list decoded
efficiently at any radius. IEEE Transactions on Information Theory, 62(4):1605–1615, 2016.
doi:10.1109/TIT.2016.2532343.

23 Netanel Raviv and Antonia Wachter-Zeh. A correction to “some Gabidulin codes cannot be list
decoded efficiently at any radius”. IEEE Transactions on Information Theory, 63(4):2623–2624,
2017. doi:10.1109/TIT.2017.2659766.

24 Chong Shangguan and Itzhak Tamo. Combinatorial list-decoding of Reed-Solomon codes
beyond the Johnson radius. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 538–551, 2020. doi:10.1145/3357713.3384295.

25 D. Silva and F. R. Kschischang. Fast encoding and decoding of Gabidulin codes. In IEEE
International Symposium on Information Theory (ISIT 2009). IEEE, 2009.

26 D. Silva, F.R. Kschischang, and R. Koetter. A rank-metric approach to error control in
random network coding. IEEE Transactions on Information Theory, 54(9):3951–3967, 2008.
doi:10.1109/TIT.2008.928291.

A Field Size Lower Bound for Capacity-Achieving Rank-Metric Codes

We prove a lower bound on the field size of capacity achieving rank-metric codes by adapting
the argument in [1]. We first prove a lower bound for rank-metric codes with large distance
in Theorem 24. Then, we remove this distance requirement in Corollary 25.

▶ Theorem 24. Let ℓ ≥ 2. For any r ∈ [0, 1], any rank-metric code C ⊆ Fn
qm of rate R and

minimum distance at least (1 − R − ε)n + 1 that is
(

ℓ(1−R−ε)
ℓ+1 , ℓ

)
-avearge-radius list decodable

must have m = Ω( Rn
ε ).

Proof. Fix a subspace V0 ⊆ Fn
q of dimension b := 4εn. Choose a subspace V 0 such that

V0 ⊕ V 0 = Fn
q . Let α = R − ε and β = R + ε. Let F be the collection of subspaces V ⊆ V 0

of dimension αn such that for any pair of vector spaces V1, V2 ∈ F1, dim(V1 + V2) ≥ βn.
By Corollary 8, the size of F can be at least qΩ((α−α2−4ε−o(1))n2). It suffices to prove that
ℓqbm ≥ |F|/2, as this would imply m = Ω( Rn

ε ).
Assume to the contrary that ℓqbm < |F|/2. Let M be uniformly distributed from C. For

a fixed subspace V ∈ F , let A ∈ Fn×αn
q such that ⟨A⟩ = V . Let EV be the event that there

exists a codeword M1 ∈ C different from M such that MA = M1A, i.e., (M − M1)A = 0.
If EV does not hold, then M is uniquely determined by MA ∈ Fm×αn

q . As the number of
possible values of MA is at most qαnm and |C| = qRmn, we have

Pr[¬EV ] ≤ qαmn

qRmn
= q−εRmn.

Therefore, over random M ∈ C, the expected number of V ∈ F such that EV happens is∑
V ∈F (1 − Pr[¬EV ]) ≥ |F|/2. Then, we can fix a codeword M ∈ C such that the size of the

set

FM := {V ∈ F : EV happens}

is at least |F|/2.
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Let A0 ∈ Fn×b
q such that ⟨A0⟩ = V0. By the definition of FM , for each V ∈ FM , there

exists a codeword MV ̸= M such that the kernel subspace of M − MV contains V . Since
MV A0 ∈ Fm×b

q for any codeword MV and ℓqbm < |F|/2 ≤ |FM |, by the pigeonhole principle,
there exists distinct V1, . . . , Vℓ ∈ FM such that MV1A0 = · · · = MVℓ

A0. Moreover, by
the definition of FM , for i = 1, . . . , ℓ, there exists Ai ∈ Fn×αn

q with ⟨Ai⟩ = Vi such that
(M − MVi)Ai = 0.

Assume MVi
= MVj

for some i ̸= j. Then (M − MVi
)Ai = 0 and (M − MVi

)Aj = 0. Let
A ∈ Fn×dim(Vi+Vj)

q such that ⟨A⟩ = Vi +Vj . As the columns of A are in Vi +Vj = ⟨Ai⟩+ ⟨Aj⟩,
we have (M − MVi)A = 0, i.e., Vi + Vj is contained in the kernel subspace of M − MVi .
Since M and MVi

are in code C of minimum distance at least (1 − R − ε)n + 1, we have
rank(M − MVi) ≥ (1 − R − ε)n + 1. This implies that the kernel subspace of M − MVi

is at most (R + ε)n − 1. So dim(Vi + Vj) ≤ (R + ε)n − 1. However, as Vi, Vj ∈ F and
thus dim(Vi + Vj) ≥ βn = (R + ε)n, which yields a contradiction. Thus, we conclude that
MV1 , . . . , MVℓ

are all distinct.
Since V 0 ∩ V0 = {0}, there exists B0 ∈ Fn×(n−b)

q such that ⟨B0⟩ = V 0 and
(
A0 B0

)
∈

Fn×n
q has full rank. Let Y ∈ Fm×n

q such that (MV1 − Y )A0 = · · · = (MVℓ
− Y )A0 = 0 and

(M − Y )B0 = 0. This can be achieved by choosing Y =
(
MV1A0 MB0

) (
A0 B0

)−1.
For i ∈ [ℓ], we have (M − Y )Ai = 0 since ⟨Ai⟩ = Vi, Vi ⊆ V 0, V 0 = ⟨B0⟩, and

(M − Y )B0 = 0. And for i ∈ [ℓ], we know (M − MVi
)Ai = 0, which implies

(MVi
− Y )Ai = (MVi

− M)Ai + (M − Y )Ai = 0 and (MVi
− Y )A0 = 0.

Since V0 ∩ ⟨Vi⟩ ⊆ V0 ∩ V 0 = {0} for i ∈ [ℓ], we have dim(V0 + Vi) = dim V0 + dim Vi = b + αn

and hence

rank(MVi − Y ) ≤ n − (b + αn) ≤ (1 − R − 3ε)n,

as b = 4εn. As (M − Y )B0 = 0, we have rank(M − Y ) ≤ n − dim(V 0) = b = 4εn. It follows
that

rank(M − Y ) +
ℓ∑

i=1
rank(MVi

− Y ) ≤ 4εn + ℓ(1 − R − 3ε) ≤ ℓ(1 − R − ε)n.

as ℓ ≥ 2. This contradicts the claim that C is
(

ℓ(1−R−ε)
ℓ+1 , ℓ

)
-avearge-radius list decodable. ◀

We now show how to remove the minimum distance requirement in Theorem 24.

▶ Corollary 25. Let ℓ ≥ 2. For any r ∈ [0, 1], any rank-metric code C ⊆ Fn
qm of rate R that

is
(

ℓ(1−R−ε)
ℓ+1 , ℓ

)
-avearge-radius list decodable must have m = Ω( Rn

ε ).

Proof. Compared to Theorem 24, this statement only remove the minimum distance require-
ment. Thus, if we find a subcode of C with minimum distance (1 − R − ε) and the same rate
R, then we can apply the argument in Theorem 24 directly to obtain the desired result. To
achieve this goal, we prove the claim that for any M ∈ C, there are at most ℓ − 1 codewords
T1, . . . , Tℓ−1 in C that is within minimum distance at most (1 − R − ε)n from M1. Assume
not and we find T1, . . . , Tℓ such that rank(M − Ti) ≤ (1 − R − ε)n. Let M be the center and
we claim that

rank(M − M) +
ℓ∑

i=1
rank(M − Ti) ≤ ℓ(1 − R − ε).
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Thus, C is not
(

ℓ(1−R−ε)
ℓ+1 , ℓ

)
-avearge-radius list decodable code and a contradiction happens.

Therefore, we can find a subcode C1 ⊆ C of size at least |C|
ℓ such that the minimum distance

of C1 is at least (1 − R − ε)n. We can apply the same argument in Theorem 24 to obtain
the desired result. ◀

B Proof of Theorem 19

Proof. For i ∈ [t], let Ai ⊆ Fn×dim Vi
q such that ⟨Ai⟩ = Vi. By Lemma 2, there exist

full-rank matrices Bi ∈ Fn×dim(V ⊥
i )

q , Ci ∈ Fn×dim(Vi)
q , and Di ∈ Fn×dim(V ⊥

i )
q such that

CiA
⊤
i + DiB

⊤
i = In and ⟨Di⟩ = V ⊥

i . Define the linear map ϕ such that it sends a row vector
v := (y, x2, · · · , xt) ∈ ker(RG,V[t]) to

ϕ(y, x2, · · · , xt) =
(

− yB1, (y − x2G)B2, . . . , (y − xtG)Bt

)
.

Since Bi is an n × (n − dim(Vi)) matrix over Fq, ϕ(v) is a vector of length
∑t

i=1(n − dim(Vi))
which is exactly the number of columns of MH,V⊥

[t]
. Next, we show that ϕ(v) belongs to

ker(MH,V⊥
[t]

). To see this, we observe that Hy⊤ = H(y − x2G)⊤ = · · · = H(y − xtG)⊤.
Also,

Hy⊤ = H
(
C1 D1

)(A⊤
1

B⊤
1

)
y⊤ = H

(
C1 D1

)( 0
B⊤

1 y⊤

)
= HD1B⊤

1 y⊤

and

H(y − xiG)⊤ = H
(
Ci Di

)(A⊤
i

B⊤
i

)
(y − xiG)⊤ = H

(
Ci Di

)( 0
B⊤

i (y − xiG)⊤

)
= HDiB

⊤
i (y − xiG)⊤.

This implies that HD1B⊤
1 y⊤ = HDiB

⊤
i (y − xiG)⊤ for i = 2, . . . , t, and thus ϕ(v) belongs

to ker(MH,V⊥
[t]

).
It remains to show that ϕ is an injection. It suffices to show that ϕ(v) = 0 implies

v = 0 as ϕ is a linear map. As y⊤ =
(
C1 D1

)(A⊤
1

B⊤
1

)
y⊤ =

(
C1 D1

)( 0
B⊤

1 y⊤

)
, we know

that yB1 = 0 implies y = 0. Similarly, as (y − xiG)⊤ =
(
Ci Di

)(A⊤
i

B⊤
i

)
(y − xiG)⊤ =

(
Ci Di

)( 0
B⊤

i (y − xiG)⊤

)
, we know that (y − xiG)Bi = 0 implies y − xiG = 0 for

i = 2, . . . , t. So ϕ(v) = 0 implies v = 0. ◀

C Proof of Theorem 20

Proof. Let n′ = dim(V ). Let A ⊆ Fn×n′

q such that ⟨A⟩ = V . Let U[t] = (U1, . . . , Ut) ⊆ (Fn′

q )t

be given in Lemma 11 and we have dim(Ui) = dim(Vi ∩ V ). Note that

dim(U[t]) =
∑
i∈[t]

dim(Ui)−dim(
t∑

i=1
Ui) ≥ dim(V[t])−(n−dim(V ))(t−1) ≥ (1+λ)(t−1)k−λk

(13)
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and

dim(UJ) ≤ dim(VJ) ≤ (1 + λ)(|J | − 1)k (14)

for any nonempty set J ⊆ [t].
By Lemma 11, to prove ker(RV

G,V[t]
) = 0, it suffices to show that ker(RG1,U[t]) = 0 for

G1 = GA. Here GA = (Zqi−1

j )[k]×[n′] is also a generator matrix of a symbolic Gabidulin code
C by letting (Z1, . . . , Zn′) = (X1, . . . , Xn)A. Moreover, by replacing Fn′

q with V ′ :=
∑t

i=1 Ui

and identifying view Ui as a subspace of V ′, we may assume
∑t

i=1 Ui = Fn′

q .
It follows from (13) and (14) that dim(Ui) ≥ dim(U[t])−dim(U[t]/{i}) ≥ k. So dim(U⊥

i ) ≤
n′ − k. Let H1 be the parity-check matrix of C, i.e., G1H⊤

1 = 0. Define U⊥
[t] = (U⊥

1 , . . . , U⊥
t ).

Then, by Definition 18, we have

MH1,U⊥
[t]

=


H1D1 H1D2 0 · · · 0
H1D1 0 H1D3 · · · 0

...
...

...
. . .

...
H1D1 0 0 · · · H1Dt

 (15)

where Di ⊆ Fn′×dim(U⊥
i )

q with ⟨Di⟩ = U⊥
i . By Theorem 16, we have

dim(
t⋂

i=1
⟨H1Di⟩) = max

P1⊔···⊔Ps=[t]

( s∑
i=1

dim(
⋂

j∈Pi

U⊥
j ) − (s − 1)(n′ − k)

)
. (16)

We proceed to compute the RHS of (16). For s = 1 and P1 = [t], as
∑

i∈[t] Ui = Fn′

q , we
conclude⋂

j∈[t]

U⊥
i

(1)= (
∑
i∈[t]

Ui)⊥ = 0. (17)

For s ≥ 2 and nonempty sets P1, . . . , Ps that forms a partition of [t], we have

s∑
i=1

dim(
⋂

j∈Pi

Uj) (1)=
s∑

i=1

(
n′ − dim(

∑
j∈Pi

U⊥
j )
)

= sn′ +
s∑

i=1
dim(UPi

) −
s∑

i=1

∑
j∈Pi

dim(Uj)

(14)
≤ sn′ + (λ + 1)

s∑
i=1

(|Pi| − 1)k −
t∑

j=1
dim(Uj) = sn′ + (λ + 1)k(t − s) − dim(U[t]) − n′

(13)
≤ sn′ + (λ + 1)k(t − s) − (1 + λ)(t − 1)k + λk − n′ ≤ (s − 1)(n′ − k).

(18)

Combining (16), (17), and (18), we conclude that
⋂t

i=1⟨H1Di⟩ = 0. Now, by Lemma 9, this
implies

rank(MH,V⊥
[t]

) =
t∑

i=1
dim(⟨HDi⟩) − dim(

t⋂
i=1

⟨H1Di⟩) =
t∑

i=1
dim(⟨HDi⟩) =

t∑
i=1

rank(Di)

The last equality holds since by Lemma 8, the rank of HDi equals rank(Di), as Di ⊆
Fn′×dim(U⊥

i )
q is of full rank and dim(U⊥

i ) = n′ − dim(Ui) ≤ n′ − k. Since the number
of columns in MH,V⊥

[t]
is
∑t

i=1 rank(Di) which is equal to its rank, the only solution in
ker(MH,V⊥

[t]
) is 0. The proof is completed. ◀
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