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—— Abstract

The Metropolis process (MP) and Simulated Annealing (SA) are stochastic local search heuristics

that are often used in solving combinatorial optimization problems. Despite significant interest,
there are very few theoretical results regarding the quality of approximation obtained by MP and
SA (with polynomially many iterations) for NP-hard optimization problems.

We provide rigorous lower bounds for MP and SA with respect to the classical maximum
independent set problem when the algorithms are initialized from the empty set. We establish
the existence of a family of graphs for which both MP and SA fail to find approximate solutions
in polynomial time. More specifically, we show that for any ¢ € (0,1) there are n-vertex graphs
for which the probability SA (when limited to polynomially many iterations) will approximate
the optimal solution within ratio 2 (nl%g) is exponentially small. Our lower bounds extend to
graphs of constant average degree d, illustrating the failure of MP to achieve an approximation
ratio of € (@) in polynomial time. In some cases, our lower bounds apply even when the
temperature is chosen adaptively. Finally, we prove exponential-time lower bounds when the inputs
to these algorithms are bipartite graphs, and even trees, which are known to admit polynomial-time
algorithms for the independent set problem.
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1 Introduction

Simulated Annealing [42, 60] (SA) is a family of randomized local search heuristics, widely
applicable for combinatorial optimization problems. In the maximization version we are
given a finite search space C of feasible solutions, and a cost f(z), for every solution x € C.
Additionally, for every solution z € C there is a set N(z) C C of neighboring solutions
accessible via a single move of the search algorithm. In contrast to hill-climbing methods that
consistently choose an element y € N(x) with f(y) > f(x), SA may choose a neighboring
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solution y satisfying f(y) < f(z) with probability e~ 7 where A := flx)— f(y) and T > 0 is
a temperature parameter, that governs the behavior of the algorithm. Typically one gradually
reduces the temperature over time using a predetermined cooling schedule allowing for a
more exploratory algorithm in the early stages. The idea is that since the algorithm is
allowed to accept downhill moves it should be able to escape local maxima and find (hopefully
in polynomial time) near-optimal solutions. The case where the temperature T is fixed
throughout the algorithm has received attention as well [51]: in this case, the algorithm is
called the Metropolis process (MP).

Since its inception in the 1980s SA was found empirically to be highly effective for
numerous optimization problems in diverse fields such as VLSI design, pattern recognition,
and quantum computing. The great popularity of SA is acknowledged in several dedicated
books, articles, surveys, and textbooks concerned with algorithm design [43, 14, 1, 4, 39, 40].

Considering the wide applicability of SA for optimization problems, one may wonder what
rigorous results can be obtained regarding the algorithm’s performance. It is well-known [26]
that for a suitable cooling schedule, SA, if run for sufficiently many iterations, will almost
surely converge to a global optimizer. However, there is no guarantee that the running time
will be polynomial in the size of the input. This begs the question of what can be said with
respect to SA when it is constrained to run for polynomially many steps. This question
is explicitly mentioned as challenging in several papers [2, 4, 25, 37]. For example, it is
mentioned in [2] that “The polynomial time behavior of simulated annealing is notoriously
hard to analyze rigorously”. In the field of approximation algorithms for NP-hard optimization
problems not much seems to be known with respect to upper and lower bounds regarding the
approximation factor that can be achieved efficiently with SA. The situation for MP is similar:
Little is known about the approximation ratio achievable by MP (when run for polynomially
many steps) for NP-hard optimization problems. As stated by [37], “Rigorous results...about
the performance of the Metropolis algorithm on non-trivial optimization problems are few
and far between”. Despite some recent developments [13, 12, 47], the literature on rigorous
results for MP and SA remains sparse and experts have noticed the “gap between theory
and practice...for Simulated Annealing” [15].

The lack of runtime complexity lower bounds for SA and MP is not a coincidence, since
some natural approaches run into difficulties. One direction to prove time lower bounds for
MP and SA is to rely on known bounds for the mixing time of the relevant Markov chains.
For such bounds, there is a wealth of existing established techniques [46, 52, 20, 9, 16, 6, 54].
In particular, it is well known that for a fixed fugacity parameter A\, the Metropolis process for
independent sets converges to a stationary distribution known as the hardcore model. This
distribution assigns to each independent set I the value AI /Z where Z is the normalizing
constant. There are numerous lower bounds for the mixing time of Markov chains converging
to the hardcore model [22, 23, 55, 58, 54]. However, slow mixing does not necessarily imply
anything about the efficiency of MP as an approximation algorithm. For example, a simple
conductance argument shows that MP has exponential mixing time, with any temperature
parameter, when searching for the maximum independent set in the complete bipartite graph
K, . On the other hand, it is easily seen that with an appropriate temperature, MP will
find an optimal independent set in K, , in polynomial time. Furthermore, lower bounds
on mixing times imply the existence of a “bad” initial state from which the expected time
of the chain to mix is super-polynomial. These kinds of statements do not usually carry
information about initialization from specific states, as done in practice. For example, as
observed in [35] and further elaborated in [12], conductance lower bounds on the mixing
time do not imply comparable lower bounds on the time it takes MP for the independent
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set problem to find an optimal or even near-optimal solution when using the natural empty
state initialization. Finally, as noted in [35], common techniques to prove mixing times
lower bounds for homogeneous Markov chains do not generalize in a straightforward way to
inhomogeneous chains such as SA.

A brief summary of our results

The overarching aim of this paper is to advance our understanding of the theoretical guarantees
afforded by the above-mentioned algorithms and investigate the possible limitations and
hard instances. Specifically, we focus on the mazimum independent set problem. Recall that
given a graph G, an independent set in GG is a subset of vertices that spans no edge. The
cardinality of a maximum independent set in G is denoted by a(G). Computing o(G) exactly
or approximately is a classical NP-hard problem. We establish super polynomial lower bounds
on the number of iterations required by MP or SA to obtain a reasonable approximation
for a(G) for several different families of graphs: dense graphs, graphs of bounded average
degree, bipartite graphs, and trees (for more details please see Section 3). For each such class,
we prove corresponding lower bounds, that differ in the obtained approximation ratio and
allowed cooling schedule, used in SA. Notably, for dense graphs, which represent the most
general category, we present particularly robust results that extend beyond SA, applying
to any cooling schedule, even adaptive ones. While the specifics of our results, and their
proofs, differ across graph classes, the common thread is this: We establish the existence of
graph families where either MP or SA must run for an exponentially large number of steps
to approximate the maximum independent set. The only exception is our lower bound for
trees where we study the time to find the optimal solution (as we will see in this case that
MP does succeed in efficiently finding an approzimate solution for tree instances). Finally,
we observe that our results imply that SA cannot sample a uniformly random independent
set efficiently when the input is a bipartite graph, answering a recent question raised in [32].

Proving lower bounds for MP and SA has proven difficult to achieve even for instances
where the independent set problem (or equivalently the clique problem) is believed to be

intractable such as sparse random graphs [13] and the planted clique problem [12, 35].

Despite significant effort, it is not known whether MP and SA in their full generality can
find efficiently the optimal solution in these instances. Tackling first the easier challenge of
proving the limitations of these algorithms for worst-case instances could be instrumental in
proving superpolynomial-time lower bounds for MP for finding nearly optimal solutions in
sparse random graphs or random graphs containing a planted clique.

It is well known that the independent set problem is NP-hard not only to compute exactly
but also to approximate [30, 63, 5]. Nevertheless, the study of unconditional limitations for
the quality of approximate solutions to NP-hard problems that can be achieved efficiently
by specific algorithmic methods such as linear and semi-definite programming has received
significant attention [45, 21, 62]. We believe that proving unconditional limitations for the
quality of approximation that can be efficiently achieved by widely used algorithmic methods
such as SA and MP is of interest as well. One takeaway of the current work is that rigorous
mathematical study of these algorithms can be achieved from first principles. We hope that
this will encourage the mathematical study of the performance of SA and MP for additional
NP-hard optimization problems.

The exact dynamics of the Metropolis process, Simulated Annealing, and the various
variants we consider for the independent set problem are introduced in Section 2, and we
refer the reader there for exact definitions. Let us mention that the main differences between
the different algorithms lie in how the temperature, also called (inverse) fugacity, changes
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Algorithm 1 Universal Metropolis Process (UMP).

Input: G = (V, E) a graph, T the number of steps, {\;}7_; a fugacity schedule
1: Ig < 0; > Empty IS initialization
2: fort+ 1to T do
3 Sample a vertex vy € V uw.a.r.;
4: Sample a real ¢; € [0,1] v.a.r;
5 I, + UPDATE(L;—1, v, Gty At); > Algorithm 2
6: end for

Output: I« where t* = argmax |1
te{1,...,T}

Algorithm 2 UPDATE(Z,v,(, A).

Input: I an IS, v a vertex, ¢ € [0,1], A € [1, 0]
1: if v ¢ I then
, ITUw, if ITUw is an IS;
2: I +
1, otherwise.
3: else (i.e,, v e)

. 1.
4: I« I\”: lfCSX7
I, otherwise.
6: end if
Output: I’

over the execution of the algorithm. In the classical Metropolis process, the temperature
is fixed and does not change, while for Simulated Annealing there is some fixed schedule
for decreasing the temperature over time. Some of our results also apply to a more general
class of algorithms where the temperature can be chosen adaptively during the algorithm’s
execution. In the sequel, for simplicity we shall colloquially refer to all these algorithms as
the Metropolis process (MP) and make sure to mention the different temperature schedules
when relevant.

2 The Metropolis Process

In this section, we introduce the different variants of the Metropolis process for which we
prove lower bounds. Our description differs slightly from the algorithm described in the
introduction; we will work on a logarithmic scale for the temperature and parametrize the
algorithm by the inverse of the temperature, also called fugacity. Ultimately this is a choice
for convenience and the two descriptions are equivalent.

All considered algorithms for finding (random) large independent sets of a given input
graph fall under one very general stochastic process, called the Universal Metropolis Process
(UMP). Among others, UMP incorporates the Randomized Greedy algorithm, the Metropolis
process, and the Simulated Annealing process. Let G = (V, E) be an input graph, and T' € N
be the number of steps of the process. For each ¢ > 1, let Ay € [1,00] be the fugacity, or
inverse-temperature, at time t. We refer to the collection {\;}$2; of all fugacities as the
fugacity schedule of the process. With these definitions, the Universal Metropolis Process is
described by Algorithms 1 and 2.
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We observe that:

If Ay = oo for all £ > 0, then UMP corresponds to the Randomized Greedy algorithm where
in each iteration a vertex is chosen randomly and added to the maintained independent
set if it is not a neighbor of a previously added vertex. As the deletion probability is zero,
no deletions of added vertices are possible.

If Ay = A for all ¢ > 0 and for some A € [1,00), independent of ¢, then UMP corresponds
to the Metropolis process with fugacity A, which is a Markov chain whose stationary
distribution is the Gibbs distribution u of the hardcore model on G (i.e., pu(I) oc Al for
each independent set I of G).

If {\:} forms a predetermined non-decreasing sequence, i.e. A} < Ag < ---, then UMP
corresponds to the Simulated Annealing algorithm with fugacity schedule {A;}.

Of course, UMP goes beyond these three well-known cases and allows for, say, non-
monotone fugacities schedules (that could depend on the input graph G in complicated ways).
In general, if {\;} is some arbitrary deterministic sequence or if it is random, but independent
from the randomness of {I;}, we shall call it a non-adaptive schedule. On the other hand, if
At can depend on {I,}'Z} (and so it is necessarily random), we call the schedule adaptive.
As an example for an adaptive schedule, one may set \; = \Itlﬁ where I; is the currently
maintained independent set, resulting with decreased deletion probability as the cardinality
of I; increases.

3  Our results

Our main result consist of exponential lower bounds on the time complexity of MP when
approximating the value of a(G). We construct infinite families of graphs G1,Ga, ..., Gy, ...
(with G,, having n vertices) such that the following holds. There is a function p: N — (0,1)
and a constant 7 > 0, such that if MP runs for fewer than e™” iterations the probability it will
find an independent set in G, larger than p(n)a(G,,) is at most e=™". In other words, when
run for less than an exponential number of steps, MP gives a multiplicative approximation
of at most p(n) to a(G,). As an instructive case, for general graphs, we show that one
can take p(n) = ﬁ, while a(G,,) = n'~¢, for some £ > 0 arbitrarily small. Thus, even
though G,, contains an independent set of nearly linear size, MP may struggle to even find
an independent set of size n®. All of our results hold when MP is initialized from the empty
set. As previously noted, proving lower bounds for these algorithms when starting from a
given state has proven challenging.

Results for general graphs

Our first main result is rather general and establishes lower bounds for the classical Metropolis
process (with constant temperature) on graphs parametrized by their average degree. In
Section 3.1 we outline the key ideas used in the proof and the complete proof can be found
in [11].

» Theorem 1. Let {d,}°, satisfy d,, > C for some large enough constant C > 0, and

d,=o0 (ﬁ) There exists a sequence of graphs {Gp}n>0 satisfying:

G, has ©(n) vertices, the average degree of Gy, is ©(dy), and a(G,,) = @(m).
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If {I; }1+>0 is the process of independent sets maintained by MP with any fized' temperature,

Pl max IItIZC'loil(id")a(Gn) gexp(n)v

t<exp ﬁ n dn lOg(dn)

where C' > 0 is a universal constant.

Let us unpack Theorem 1 and consider the extreme cases for the average degree. The
largest degree we can take and still obtain super-polynomial bounds is d,, = Wog(n)' In this
case, Theorem 1 guarantees that G,, has an independent set of nearly linear size W{)g(n).
However, with any fixed temperature, if MP runs for only a polynomial number of steps, it
will fail to find an independent set of even polynomial size and will only result in a set of size
polylog(n). To get exponential lower bounds we can slightly lower the average degree and
take d,, = n'~¢ for any fixed € > 0. For these slightly sparser graphs, if MP runs for exp(n®)
iterations, it will only find a set of size at most O(n®). To put this result in context, as was
mentioned above, it is known that it is NP-hard to approximate the maximum independent
set to within an O () factor [30, 63, 41] for any ¢ € (0,1). Thus, the exponential lower
bound is predicted by this hardness result and should be seen as an unconditional proof of
this prediction for MP.

Theorem 1 also applies when the average degree of the graph is a constant, that does

not depend on the number of vertices. For these sparse graphs, there is extensive literature
surrounding the question of approximating the maximum independent set [28, 5, 29, 3].
Hence, it is interesting to study the approximation achieved by MP (with polynomial running
time) for sparse graphs. Theorem 1 allows to take d,, = d, for some large enough constant
average degree d > 0 and obtain a sparse graph. For our sparse graphs, MP will only find
an O (@) approximation of a(G). As an algorithmic counterpart to our lower bound,
the randomized greedy algorithm will find an independent set of expected size at least 75.
Below, in Section 2 we explain how the randomized greedy algorithm can be instantiated as
an MP algorithm, which shows that our lower bound is tight up to the log(d) factor.

Simulated Annealing in dense graphs

To go beyond MP, and allow the temperature to change over time, we specialize Theorem 1
to denser graphs. A key appealing feature of our result in this case is that the theorem
applies to any sequence of temperatures. In particular, the sequence can be adaptive (see
Section 2 for the exact meaning of an adaptive sequence) and may be changed adversarially
during the algorithm’s execution.

» Theorem 2. For every e € (0, %), there exists a sequence of graphs {Gp}n>0 satisfying:
G, has ©(n) vertices and o(G,) = O(n1~%).
For any temperature schedule, which can be adaptive, if {I;}1>0 is the process of inde-
pendent sets maintained by MP, then

n

P max |[I;| >2n® | <e ™,
t<en”

for some constant n > 0.

! By fixed we mean that the temperature does not change during the algorithm. The temperature
parameter may depend on n.
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As mentioned above, when the temperature is some predetermined sequence that decreases
over time, the MP algorithm is also known as Simulated Annealing. Therefore, by considering
this temperature scheduling, Theorem 2 bounds the best approximation ratio SA can achieve.
As discussed, this bound precisely matches the best-known results that follow from NP-
hardness and again serves as proof of their prediction. The theorem goes beyond SA and,
unsurprisingly, shows that there is no way to change the temperature schedule (even if
one is allowed to make changes during execution) to go beyond the hurdle suggested by
NP-hardness results. Adaptive changes to the temperature in the SA algorithm have been
suggested before [33]. We are not aware of previous rigorous results about the benefits or
limitations of adaptivity when using these methods to efficiently solve NP-hard optimization
problems.
The proof of Theorem 2 appears in the full version of this paper [11].

Results for bipartite graphs

A key feature of our construction of hard instances for bipartite graphs is that they are
built from bipartite graphs. These graphs are then augmented by blowing up some vertices
into cliques, losing the bipartite structure. Given our construction, it is also interesting to
study the performance of MP on general bipartite graphs. The point is that, in this case,
there exists a simple linear time algorithm to obtain a % approximation of a(G) by finding a
bipartition. Furthermore, the standard linear programming relaxation for the independent
set problem can recover the exact size of a(G) in polynomial time. Keeping in mind the
tractability of the problem for bipartite graphs, it seems natural to expect that there exists
some variant of MP that will fare similarly in these instances. On the contrary, our next
result shows that in general, MP with any temperature schedule fails to come close to the
performance of the mentioned algorithms.

» Theorem 3. Let d,, < lolgég). There exists a sequence of bipartite graphs {Gy}n>0
satisfying.
G, has ©(n) vertices, average degree ©(d,,).
For any temperature schedule, which can be adaptive, if {I,}1>0 is the process of inde-
pendent sets maintained by MP, then

1 d’I’L n
P (max 1] > (4 + 0(1))(”3()04(@)) <e ™,
t<en” dn
for some constant n > 0.

Theorem 3 implies that there exist n-vertex bipartite graphs for which SA cannot efficiently
approximate the size of the largest independent set within a ratio better than O (m)
We did not attempt to optimize the hardness ratio as our main point is that MP, with any
temperature (thus also covering SA), fails to find an approximate solution even in instances
where the independent set problem is tractable. It is possible that stronger inapproximability
results hold for SA: It might be that it fails to efficiently approximate the independent set
problem in n-vertex bipartite graphs within a ratio larger than 1/n¢ for some ¢ € (0,1).
Studying this question is left for future work.

A direct consequence of our time lower bound for SA is that SA (with empty state
initialization) cannot (even approximately) sample efficiently uniformly random independent
sets in bipartite graphs. It is a central open question in approximate counting whether it is
possible to approximately sample in polynomial time a uniformly distributed independent
set in a bipartite graph [7]. As noted, [32] asked whether SA can be used for this purpose

and we answer this question negatively.
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The proof of Theorem 3 and its implications for approximate counting can be found in
section Section 5.

Performance of Simulated Annealing on trees

Theorem 3 shows that, even on tractable instances, MP and its variants achieve significantly
worse approximation when compared to polynomial-time algorithms. In our final hardness
result, we further emphasize this point by considering the, arguably, easiest class of graphs
for the independent set problem: trees. Trees are a strict and simpler sub-class of bipartite
graphs. A simple greedy algorithm will return the maximum independent set in polynomial
time [43]. In our next theorem, we give a complete characterization of the performance of
MP, with a non-adaptive temperature schedule (like in SA), on trees. In particular, we show
that MP is not competitive with polynomial-time algorithms: with less than an exponential
number of iterations, there are trees where it will fail to find the maximum independent set.
We complement this hardness result by establishing that MP can return an arbitrarily good
approzimation to a(G) in polynomial time.

» Theorem 4. The following hold:
There exists a sequence of n-vertex trees {Fy,}n>0 such that for any constant n € (0, %),
if {I }4+>0 1s the process of independent sets maintained by MP with any non-adaptive
sequence of fugacities,

IE”( max || = a(Fn)> < e V),

t<exp(nm)

For any constant § € (0,1) and any n-vertex forest F,, there exists A = A(,n) such that,
if {I:}1>0 is the process of independent sets maintained by MP with fized fugacity X,

IE”( max |[;] > (1 — 5)a(Fn)> >1-—o0(1).
t<poly(n)

The proof of Theorem 4 can be found in Section 6. Our time lower bound for finding optimal
solutions in trees holds only for non-adaptive schedules. Obtaining an analgous lower bound
for adaptive schedules is an interesting question for future research.

Greedy algorithms vs. MP

As a final remark, one may wonder if there are instances where MP (when restricted to
polynomially many iterations) is superior to the well-studied greedy [27] and randomized
greedy [24] algorithms for the maximum independent set problem. If this was not the
case, one could prove lower bounds for MP by constructing hard instances for greedy
algorithms. While greedy algorithms were shown to achieve comparable results to MP for
certain problems [38, 8] we provide simple examples in [11] where greedy algorithms achieve
significantly worse approximation compared to MP in approximating the independent set
problem.

3.1 Proof approach

We first explain our proof approach for Theorems 1 and 2 which establish the failure of
the Metropolis process for finding large independent sets in graphs of given edge density
characterized by the average degree. We prove this by carefully constructing a family of
random graphs. Naively, we would hope to use Erdés-Rényi random bipartite graphs which
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are significantly unbalanced as bad instances. More specifically, suppose that the vertex set

is partitioned into V = L U R and every edge connects one vertex from L and one from R.

Ideally, we want to have |L| < |R|, and be able to show that the Metropolis process is more

likely to pick up vertices in L, and thus reaches independent sets mostly contained in L.

However, a moment of thought immediately shows this cannot be the case. Especially, if in
each step the Metropolis process picks a vertex uniformly at random, then vertices in R are
more likely to be chosen and MP will get independent sets of large overlap with R, which is
nearly optimal.

Instead of simply using an Erdés-Rényi random bipartite graph, we further augment it
with a blowup construction. More specifically, we replace each vertex v € L from the smaller
side with a clique of size ¢ and connect this clique to all neighbors of u. We pick ¢ sufficiently
large so that ¢|L| > |R|. This immediately provides two advantages. First, in every step,
MP is more likely to choose vertices from the new L, now a disjoint union of |L| cliques of
size £, because ¢|L| > |R|. Second, independent sets of the blowup graph are in one-to-one
correspondence to independent sets of the original graph since each clique can have at most
one occupied vertex. Furthermore, it is much more difficult to remove an occupied vertex in
order to make the corresponding clique unoccupied, since the MP has to pick the correct
occupied vertex among all vertices in the clique.

We can then argue that the MP will not be able to find a large independent set for these
blowup graphs with polynomially many steps. Suppose that |L| = n and |R| = kn and that
> k> 1. Then, after a suitable burn-in phase, we will show that the MP will pick at most
a tiny fraction of vertices in R, and at least a constant fraction of vertices in L. Thus, within
the burn-in phase, MP only reaches independent sets mostly contained in L. In particular,
there is a set L1 C L of at least n/10 occupied vertices in L, and a set Ry C R of at least
(k — 1)n unoccupied vertices in R, at the end of the burn-in phase. These vertices induce a
smaller Erdos-Rényi random bipartite graph and the MP on it with the initialization L; will
contain vertices mostly from L; and barely from Ry, via simple conductance (i.e., bottleneck)
arguments. Thus, within polynomially many steps the MP cannot reach independent sets
with too many vertices from Ry. In fact, the obtained independent set contains at most n
vertices from Ry with high probability and consequently has size at most 3n since |L| =n
and |R\ Ry| < n. Meanwhile, R is an independent set of size kn > 3n, exhibiting the failure
of MP. We remark that the whole argument works even for constant k, ¢ and edge density
O(1/n) so that the average degree is constant, though all “>>” will be replaced with explicit
inequalities.

Our construction of the bipartite graphs, appearing in Theorem 3, is based on the t-blowup
operation. In this blowup, every vertex is replaced by an independent set (“cloud”) of size t
and two clouds that correspond to neighboring vertices (before the blowup) are connected
by a complete bipartite graph. The main observation is that once a vertex from a cloud is
chosen, MP is much more likely to keep adding vertices to the cloud as opposed to deleting
vertices from it. By taking many (identical) duplicates of the ¢-blowup of an initial bipartite
graph, we get that for a large fraction of the duplicates no cloud is deleted (assuming a
vertex from it is chosen by the algorithm) in polynomial time, hence resulting in essentially
the randomized greedy algorithm where deletions do not occur. To conclude the proof we
need to provide a bipartite graph for which randomized greedy does badly: This can serve
as the “base graph” on which we perform the blow-up and duplication. We prove that the
random balanced bipartite graph of size 2n with edge probability d/n, for a large enough
constant? d > 0, is with high probability a hard instance for randomized greedy. Our proof

2 Our lower bounds can be extended to d = O(log(n)).
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follows a martingale argument and may be of independent interest. The limitation of greedy
algorithms for coloring (and implicitly independent set) has been observed before [44] for
random multipartite graphs m-vertex graphs where the partition includes m®") parts. We
are not aware of a previous hardness result for the randomized greedy for approximating the
size of the maximum independent set in bipartite graphs.

For trees, the core ingredient of the hard instance is a “star-shaped” tree composed of
a root r connected to k nodes ai,...,a;, and each node a; has a single leaf neighbor b;.
The unique maximum independent set consists of r together with all the v;’s. In the first
m = k'/27¢ iterations, MP will add roughly m/2 neighbors of r. Let I denote the set of
indices 4 for these chosen neighbors. The crux of the argument is to track the configuration
of the branches I and show that they behave roughly like an i.i.d. collection of random
variables supported on three states (free, a; chosen, b; chosen) where the probability a; is
chosen is at least 1/4. Tt follows that with high probability, some a; will be occupied for
exponential time, blocking the root r from ever being added. The argument is completed
by duplicating many copies of the hard tree, ensuring the probability that the process runs
for less than exponentially many iterations is exponentially small. Finally, the forest can be
made into a tree by connecting all the roots of the trees to a single additional vertex. The
upper bound, showing that MP can efficiently approximate the optimum solution in a tree
within a factor of 1 — § for arbitrary § € (0, 1), is a simple consequence of the rapid mixing
of MP for trees [10, 17], taking A to be a sufficiently large constant to ensure the partition
function is concentrated on large independent sets. The complete proofs of upper and lower
bounds of running times for trees can be found in Section 6.

4  Further Related work

One of the earliest works studying lower bounds for the Metropolis process is due to
Jerrum [35]. In his work, he considered the planted clique problem where one seeks to
find a clique of size n® for B € (0,1) planted in the Erdés-Rényi random graph G(n, 3).
Jerrum proved using a conductance argument the existence of an initial state for which the
Metropolis process for cliques fails to find a clique of size (1 4 €) logn assuming 5 < % SO
long as it is executed for less than n(°2(") iterations.

Several open questions were raised in [35] regarding whether one could prove the same
lower bound for MP when initialized from the empty set, whether the same lower bound
holds for arbitrary 8 < 1 (as opposed to 8 < %) and whether similar lower bounds could be
extended to SA as opposed to MP. The recent paper [12] made the first substantial progress
towards answering Jerrum’s question; when the inverse temperature satisfies A < O(log(n)),
the super-polynomial lower bounds hold with respect to MP initialized from the empty set
even when 8 < 1. Under the same assumptions, the result of [12] also applies to SA (initialized
from the empty set) for a certain temperature scheduling termed simulated tempering [49].
The lower bounds in [12] do not rule out that MP could solve the planted clique problem
(even for 8 < 1/2) when the inverse-temperature is set to C'logn for a suitable constant C.
Establishing a lower bound on the running time of MP for every possible temperature is
mentioned as an open question in [12].

It is natural to compare the results in [12] to our lower bounds, such as Theorems 1
and 2 which apply without any restriction on the temperature and establish exponential (as
opposed to quasi-polynomial) time lower bounds. Moreover in the dense case, which is the
analog of G(n, %), our bounds go beyond the restriction of simulated tempering and cover
any sequence of temperatures. It should be noted however that [12] focused on resolving
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Jerrum’s questions, while our work is geared towards proving general lower bounds. Thus,
for example, in the planted clique problem a quasi-polynomial lower bound is the best one
can hope for, as MP can be shown to solve the problem with high probability in n©(c&()
iterations. In contrast, to prove our lower bounds we choose carefully crafted instances
of random distributions on graphs, which allows for more flexibility in establishing lower
bounds.

In [13] exponential lower bounds were proven with respect to the mizing time of MP for

independent sets in sparse random graphs G(n, %) assuming d is a large enough constant.

Observe however that lower bounds on the mixing time do not imply lower bounds for
the time it takes MP to encounter a good approximation of a(G). It is still open whether
MP (with empty set initialization) fails to find an independent set of size (1 + e)Wn in
polynomial time in G(n, %) While the setting and proofs in [13] are different from those in
our paper, a common theme in both papers is that a barrier for MP is the need to delete
many vertices from a locally optimal solution in order to reach a superior approximation to
the optimum.

Few additional lower bounds are known for the time complexity of SA when used to
approximately solve combinatorial optimization problems. Sasaki and Hajek [57] proved that,
for certain instances, when searching for a maximum matching in a graph, the running time
of SA can be exponential in the number of vertices (even when initialized from the empty
set). Let us stress the fact that the lower bound in [57] concerns finding an ezact solution,
rather than approximating the solution. Moreover, their family of hard instances cannot
be used to prove SA requires super-polynomial time to approximate maximum matching
(and hence the independent set problem) within a factor of « for a fixed o € (0, 1), as they
prove that for every fixed ¢ € (0,1) MP yields a 1 — e multiplicative approximation for the
maximum matching problem in polynomial time. A different proof showing that MP can
find a 1 — ¢ approximation for maximum matching in polynomial time, was discovered later
in [36].

In [61] it is shown, by providing a family of hard instances, that SA cannot find in
polynomial time a 1 + o(1) multiplicative approximation for the minimum spanning tree
problem. However, this result cannot be extended in a substantial way to show that SA fails
to find a 1 + & approximation for fized ¢ > 1: For the MST problem (with non-negative
weights), it was proven in [15] that SA can find a 1+ ¢ approximation for the optimal
solution in polynomial time for any fixed € > 0, extending an earlier result of [61]. In another
direction, [6] proves exponential lower bounds on the mixing time of SA-based algorithms,
which can be seen as a crucial hindrance for finding approximate solutions. Manthey and van
Rhijn [48] have studied recently the performance of SA for the TSP problem in certain random
instances. They conjuncture that for these random instances SA will require exponential
time to find the optimal solution.

In terms of approximation ratios that can be achieved in polynomial time by SA, [39, 40]
provide extensive empirical simulations for SA when applied to NP-hard optimization
problems such as min bisection and graph coloring. In terms of rigorous results regarding the
approximation ratio achieved efficiently by SA in the worst case, [25] provides an algorithm
inspired® by SA that achieves in polynomial time a 0.41-approximation for unconstrained
submodular maximization and a 0.325-approximation for submodular maximization subject
to a matroid independence constraint. In [59] it is proven that certain properties associated
with the energy landscape of a solution space may lead SA to efficiently find the optimal
solution.

3 The authors in [25] mention that “We should remark that our algorithm is somewhat different from a
direct interpretation of simulated annealing.” For more details, see [25].
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Compared to SA, somewhat more is known regarding lower bounds for MP. Sasaki [56]
introduced families of n-vertex instances of min-bisection and the traveling salesman problem
(TSP) where MP requires exponential time to find the optimal minimum solution. Sasaki’s
proof is based on a “density of states” argument. The main step is to show, via a conductance
argument, that when the number of optimal solutions is smaller by an exponential multiplic-
ative factor than the number of near-optimal solutions, there exists an initialization where the
expected hitting time of the optimal solution is exponential in n. It is explicitly mentioned
in [56] that the proof methods do not imply lower bounds for SA. While our hard instance
for trees has the property that the number of optimal solutions of value OPT is smaller
by an exponential factor than the number of solutions of value OPT—1, our proof that SA
requires exponential time to find the optimal solution differs from the proofs in [56] (indeed
our proof applies for SA whereas the proof in [56] applies only for the fixed temperature case).
The paper [50] contains constructions of instances of the traveling salesman problem (TSP)
where MP takes exponential time to find the optimal solution but SA with an appropriate
cooling schedule finds a tour of minimum cost in polynomial time. Both [56, 50] prove lower
bounds for ezact computation of the optimum and do not prove lower bounds for algorithms
approximating the optimum. An informative survey of these and additional results related
to SA and MP can be found in [34].

Recently, MCMC methods were shown useful in algorithmic applications despite slow
mixing [47]. For example, despite exponential mixing time of the Glauber dynamics (a lazy
version of MP) for the hardcore model in bipartite graphs [16], it can find an independent
set of size Q(loidn) in an n-vertex graph of max degree d in polynomial time.

There is an extensive literature on efficient approximation algorithms for the independent
set problem. As mentioned, for general n-vertex graphs, it is NP-hard to approximate a(Q)
within a factor of —~ for any e € (0,1) [30, 63]. Under a certain complexity-theoretic
assumption it was shown in [41] that approximating the size of an independent set in n-vertex
graphs within a factor larger than 2008 n)?/ /n (for arbitrary - > 0) is impossible. The
current best efficient approximation algorithm for the independent set problem achieves a
ratio of log(n)? ) [18]. For graphs with average degree d it has long been known that a

nloglog(n)?
simple greedy algorithm achieves an approximation of {2 (%) This bound has been gradually

improved [28, 29], and the state of the art [3] is an algorithm based on the Sherali-Adams
log(d)”
d

hierarchy achieving an approximation ratio of Q ( ) for graphs of maximum degree d

(the € sign hides poly(loglog d) multiplicative factors). The running time of this algorithm
is polynomial in n and exponential in d. This matches, up to poly(loglogd) factors, the

. . .. . . . log?(d)
lower bound in [5] showing that obtaining an approximation ratio larger than O (%)

is NP-hard in graphs of maximum degree d (assuming d is a constant independent of n).
In contrast to these lower bounds our lower bounds for the time complexity needed to
find approximate solutions apply to specific algorithms (MP and SA). On the other hand,
our results are unconditional and also apply to instances (such as bipartite graphs) where
polynomial-time algorithms are known to find the optimal solution.

5 Hardness Results for Bipartite Graphs

In this section, we focus on bipartite graphs and prove Theorem 3. The main technical
novelty of the proof is a reduction between the Metropolis algorithm and the randomized
greedy algorithm on bipartite graphs. The idea is to blow up a hard instance for randomized
greedy in a way that makes the added randomness of Metropolis inefficient.
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Recall that the randomized greedy algorithm is equivalent to the Metropolis process at 0
temperature, or alternatively A; = oco. In other words, the algorithm chooses random vertices
uniformly at random, adds them to a growing independent set whenever possible, and never
deletes them. Thus, the algorithm always terminates after each vertex is chosen at least
once, which happens in finite time almost surely. For the remainder of this section, for a
graph G, we shall denote by I¢, the (random) independent set obtained at the termination
of the randomized greedy algorithm on G.

Having introduced the randomized greedy algorithm Theorem 3 is now an immediate
consequence of the following two results.

» Proposition 5. Suppose that there exists a family of bipartite graphs {Gp}n>0 on O(n)
vertices, and a function r : N — (0,1), such that,

P (|IG"| > r(n)a(Gn)) =e ",

for some n > 0. Then, for ¢ > 0 small enough, there exists a family of bipartite graphs
{Gn}n>0 on poly(n) vertices, such if Iy stands for the metropolis process on G, with any
temperature,

P < max |1 > (T(n) + nf_g) a(Gn)> — e

t<e"”

for some n’ <.

» Proposition 6. Let d, < lolgo(g) be a sequence of numbers. There exists a sequence of

bipartite graphs Gy, on ©(n) vertices and average degree ©(d,), such that

log(d,,)

n

P (111> 4+ o) 5 a6, ) =,

for some n > 0.

Proposition 5 essentially says that hard instances for randomized greedy can be used to
construct hard instances for Metropolis, with any cooling schedule, and Proposition 6 asserts
that hard instances for randomized greedy do exist. Theorem 3 immediately follows by
coupling these two facts and appropriately choosing d,,. Thus, the rest of this section is

devoted to the proofs of the two propositions. In Section 5.1 below we prove Proposition 5.

The proof of Proposition 6 can be found in the full version [11].

Implications to sampling independent sets in bipartite graphs

Proposition 5 implies the existence of an infinite family of 2n-vertex bipartite graphs G,
with both sides of cardinality n such that the following holds. When SA is ran on G,
for polynomially many iterations, it will return with probability 1 — o(1) an independent
set of size at most n/100. Namely, the maximum cardinality of an independent set the
SA algorithm will encounter is at most n/100 ( The constant 1/100 can be improved to a
function g(n) tending to zero with n but we choose it for simplicity and as it suffices for our
purpose). It follows that SA will fail to provide a (nearly) uniform sample of independent
sets in polynomial time in G, as it will only encounter independent sets of size at most

n/100 whose total number is at most (n/21n00) < (600)"/199; a negligible fraction of the total

number of independent sets in G,, which is at least 27F1.
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5.1 From randomized greedy to Metropolis

We begin by explaining how to blow-up hard instances for randomized greedy into hard
instances for Metropolis. Let G be a graph on n vertices {v;}?_;, and denote by I¢ the
(random) independent set obtained by running randomized greedy on G. Assume that, for
some r(n) > 0, and n > 0,

P (|1 > r(n)a(G)) <e ™. (1)

Our goal is to show that there exists a graph for which similar estimates hold when we
replace randomized greedy with the metropolis process with polynomially many steps.
Let us describe the hard instance. For K, M > 10, define the the graph G** in the
following way:
1. First, let GM be the disjoint union of M copies of G.
2. GKM s obtained as the K blow-up of GM. That is, every node is replaced by an
independent set of size K, and a complete bipartite graph replaces every edge.
As usual, we shall write I; for the set maintained by MP on G and enumerate the vertices of
GEM ag Vi m,k, the k" element in the blow-up of v; in the m!* copy of G. We shall refer
to the set of vertices v;, = {vimk} | corresponding to a vertex v; and in the m'* copy,
as a cloud. Clearly, every cloud has exactly K vertices. The following quantity shall play a
central role,

vf,m = |It N {vi,m,la e ;vi,m,KHa

the load in the cloud v; ,,, at time ¢. The idea is that once a cloud becomes occupied, MP is
more likely to add more vertices from the cloud than to remove existing ones. Thus it is very
unlikely that a cloud will become empty once occupied. This should be seen as an analogy to
randomized greed; as long as no cloud has emptied one can simulate randomized greedy on a
given component of the graph. Having many different copies ensures that on most copies no
cloud will empty.

In light of this, we first show that once the load becomes positive, and so a cloud becomes
occupied, it is very unlikely to drop to 0 again.

1/3
» Lemma 7. For any ty >0, and tg <t < K*% it holds that,

C

for some absolute constant C' > 0.

Proof. Let t; > to + K3 be the first time that K3 where chosen from the cloud Vi,m, and
observe

P (3t € [to, ty] + oL, = Oult, = 1) = P (v, = K olt, = 1) > 2)

sl
Indeed, this estimate follows from a standard Balls and Bins argument. The probability that
after the first K3 choices of vertices in v; m the algorithm deletes a vertex from I is at most

o

1 K 1
— > >
K~ K K

)

%

ol

7

I
—
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since by the union bound this upper bounds the probability K 3 balls will have at least one
collision when distributed randomly across K bins. This estimate gives the right inequality
in (2). The left inequality in (2) then follows from the fact that to reach a load K3 every

1
chosen vertex, out of the K3 was added to the cloud, and so no vertex was removed.
t+t;
T,m

Conditional on the event vf’om = K% denote now Y; = v and observe that as long as

Y, < 2K% we have that, at any ¢ in which the value Y; changes,

K —2K3

P(Yi=Yig=1) > =,

2K
P
Define the stopping time 7 = min{t|Y; = 2K 3 or ¥; = 0}. Similar to the proof of Theorem 2,

since Y; is stochastically dominated by a biased random walk with the above increments and
since Yy = K3, the results in [19, (2.8), Chapter XIV.2] imply

P(Y;i—Yii=-1)<

1

o) K3 K K3 )
3 3 2K 3
PY,=0)< | ——+ < |4 <4K~ 5.

The proof concludes by iterating this argument for a polynomial number of steps and applying
a union bound. <

For fixed time ¢ > 0 we now define the number of deloaded clouds as
deload(t) := #{v; m|3t" < t” <t such that vf:m =1 and vf/;n =0}.

In words, deload(t) measures the number of clouds that were at some point occupied (had
at least one vertex chosen by the algorithm) and later become unoccupied (all vertices in
the cloud were deleted at a later point). The main upshot of the previous result is that the
number of deloaded vertices remains very small after polynomially many iterations.

1/3
» Lemma 8. Suppose that C%MI > 1. Then, for any t < K*s ,ande >0
3

M €
P (deload(t) >n° 7;(l ) = 0%,

3

K1/3

Proof. Observe that G®M™ contains nM clouds. Thus, for t < K~z , by Lemma 7,

deload(t) is stochastically dominated by B := binomial (nM7 ﬁ) Since E[B] = C”;{—J\f >1,
3 3

by Chernoff’s inequality,

P (B Z nEZ{{%) S G_Q(7LE)~

3
The proof is complete. <
We can now prove Proposition 5.

Proof of Proposition 5. Set M = n and K = nS, so that ”K% = 1. By Lemma 8, with
3

probability =) at most n¢ clouds were de-loaded by time ¢ < K Klz/g. With no loss
of generality, they belong to the first n® copies in GM, {G,,}"_,. On the other M — n®
copies, {Gp }M_, -, since no deloading happened we can couple Metropolis on G,,, with (a
lazy version of) randomized greedy on the base graph G in the following way:
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If Metropolis chooses vertex v; m, k, from cloud v; ,, we let randomized greedy choose
v; from G. Since all clouds have the same size, the probability of choosing a vertex from
cloud v; ,, is equal to the probability of choosing the vertex v;. Moreover, since edges exist
only between clouds, whenever v; ,, , can be added to I; then either v; can also be added, if
v}, =0, or v; was already added, if v}, > 0. If metropolis removes v; m x then randomized
greedy does nothing and maintains its chosen v; in the independent set. This coupling
remains valid until the first deloading happens in G,,.

Thus, by the assumption (1) on the base graph G, with probability 1 — e~ %) for every
m > ns, P(|I; NG| > r(n)Ka(G)) < e ™", where we allow metropolis to fill in all K
vertices from every occupied cloud. So, suppose that € < «, then

P (Ym > n%, |I, N Gp| < r(n)Ka(G)) >1—2Me™".
On the other hand, clearly for m < n® we have |I; N G;| < Kn. It follows that
P(|L| < Kn-n°+r(n)KMa(G)) >1—2Me™™".

Finally, by construction G*™ has a maximal independent set of size a(G)Mk, so the

approximation ratio is K”'”E(j(g?l)fKMa(G). Let us choose now M = n and K = n? to get an

— nl*E

approximation ratio of % +7(n) < 2= +r(n). Here we have used the fact that if G is a
bipartite graph on n vertices then a(G) > 3. |

6 Lower and Upper Bounds for the Time Complexity of Simulated
Annealing in Trees

Here we analyze the performance of MP on trees and forests with an aim to prove Theorem 4.
The proof of Theorem 4 is separated into two parts. First, in Section 6.1 we construct a
determinstic hard instance for MP. The hard instance is a union of identical trees, each
having weak hardness guarantees. It turns out that taking polynomially many copies of
the same tree is enough to imply exponential lower bounds, and so proves the first point of
Theorem 4. In Section 6.2 we apply recent results about mixing times of MP on graphs with
bounded treewidth to prove the second point of Theorem 4.

6.1 Exponential lower bound

We consider MP with an arbitrary non-adaptive fugacity schedule A¢, and fix a small constant
e € (0,1/2). To construct the hard instance, first consider a “star-shaped” tree T} that
consists of a root r connected to k nodes ay,...,a;, and each node a; has a single leaf
neighbor b;. That is, T} consists of a root connected to k edge-disjoint length-2 paths. Let
A={ay,...,ax} and B = {by,...,bx}. The unique optimal independent set in T} is r U B,
which has size k£ + 1.

We first describe the first phase of the algorithm and show that it is hard for MP to
include the root.

» Lemma 9 (Burn-in phase). The following holds with high (1 — ox(1)) probability. After
m = k'/27¢ iterations, MP has at least (1/2 — €)m wvertices from A (and, as a result, does
not include the root r).

Proof. With high probability, the root r is not selected during the first m iterations. By a
standard balls-and-bins argument [53], with high probability the vertices selected during the
first m iterations are all distinct, and furthermore at most one vertex from each branch is
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selected (a; or b;, but not both). Thus, MP adds all the vertices that are selected during the
first m iterations and does not delete any. With high probability, at least (1/2 — €)m of the
selected vertices belong to A. |

Now condition on the first m steps of MP and suppose the high-probability event from
Lemma 9 holds. Letting I C [k] denote the set of branches i for which MP includes a; at
the end of m steps, we have |I| > (1/2 — )m. We will now focus on only the branches I
and show that MP continues to include at least one of the corresponding a;’s for exponential
time, blocking the root r from being added.

For the analysis, it will be convenient to consider an auxiliary process MP’; defined as
follows. MP’ has the same underlying graph T} and starts at the same state as MP at
timestep m. MP’ has the same update rule as MP except it never adds the root r (even if r
is selected and none of its neighbors are present). The random choices of the two processes
are coupled so that MP and MP’ share the same state until the first time that MP adds the
root.

Fix a time horizon T > m. Our goal is to show that with high probability, at each
timestep ¢ < T, MP includes at least one of the vertices {a; : i € I'}. It suffices to show
that the same holds for MP’, as the presence of any a; prevents MP from adding the root.
Therefore we turn our attention to the analysis of MP’.

Now reveal, and condition on, the choice of which branch is selected by MP’ at each
timestep t for m < t < T. That is, we reveal the variable o; which is equal to i € I if MP’
chooses either a; or b; at step ¢, and equal to () otherwise (i.e., if MP’ selects r or a branch
outside I). The random choice between a; and b; is not revealed yet.

For i € I, let s; denote the number of timesteps ¢ (where m < ¢t < T') for which o, = i.
For each i € I, we define an associated Markov chain Xéi)7 Xl(i), . 7X§f) on the state space
{A, B,0} with initial state Xéi) = A. The state A encodes that MP’ has a; (but not b;), the
state B encodes that MP’ has b; (but not a;), and the state ) encodes that MP’ has neither
a; nor b;. Every time branch i updates (that is, ¢ such that o, = i), the Markov chain X ®
updates according to the following rules.

If the previous state is ), the new state is

A with probability 1/2,
B with probability 1/2.

If the previous state is A, the new state is

0 wop. 1/(2\),
A wop. 1—1/(2\).

If the previous state is B, the new state is

0 w.op. 1/(2\),
B w.p. 1-1/(2\).

Note that (conditioned on {o;}) the Markov chains X, ..., X)) are independent (since
MP’ never adds the root, by definition).

» Lemma 10. For any fixed i € I and any fired 0 < £ < s;, we have ]P’(Xéi) =A)>1/4.
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Proof. Proceed by induction on ¢, strengthening the induction hypothesis to include both (i)
]P’(Xéi) =A)>1/4 and (ii) IP(X[@ =A) > P(Xlgi) = B). The base case ¢ = 0 is immediate,
as X is defined to start at state A. For the inductive step, we analyze the update rules
given above. If X éi) takes values A, B, ) according to the vector of probabilities (a, b, c), then

X

= (S (1o L Ya S (1o L), b
(a’,0', ) = (2+(1 2/\t>a, 2—|—<1 2)\t>b, 2>\t(a+b)>.

By induction we have a > 1/4 and a > b. Note that from a > b we immediately have a’ > ¥/,
which proves (ii). For (i), a > b implies b < 1/2 and so

, cC 1 c+a 1-0
= — 1 - — > = — >
“ 2+< 2,\t>a 2 2 =

completing the proof. <

is distributed according to the vector of probabilities

b

N

Therefore, by independence across branches, we have for any fixed timestep ¢t (with
m < t < T), the probability that MP’ has none of the vertices {a; : ¢ € I'} is at most
(3/4)/1. Taking a union bound over ¢, the probability that MP’ intersects {a; : i € I}
until time T is at least 1 — T'(3/4)/!l. For T < exp(k'/?72%) this is 1 — o, (1), recalling
[I| > (1/2 —e)m = (1/2 — &)k*/?~¢. As discussed above, we conclude the same result for the
original process MP.

» Proposition 11. Fiz any constant n € (0,1/2) and consider MP run on Ty, with an
arbitrary non-adaptive fugacity schedule Ay. With probability 1 — o (1), MP does not add the
root r at any point during the first exp(k") iterations (and thus does not find a mazimum
independent set).

The hardness result in Theorem 4 now follows by bootstrapping Proposition 11.

Proof of first item in Theorem 4. Let us first prove the result for a forest rather than a
tree. Consider k disjoint copies of Ty, which has a total of k(2k + 1) vertices. Additional
isolated vertices can be added to create a forest of any desired size. To find the maximal
independent set in the union, MP must add the root of every copy of T;. Conditional
on the exact number of updates per copy, MP evolves independently on each copy. Thus,
the independence of the different copies and Proposition 11 yield an exponential bound
exp(—(k)) on the probability that it adds all the roots by time exp(k®).

We now modify the construction, turning the forest into a tree. Add a new vertex and
connect it to the root of each T} (and also to any isolated vertices that were added to pad the
instance size). The maximum independent set still includes the root of every Tj. If it were
not for the new vertex, we have from above that with probability 1 — exp(—£(k)), there is at
least one copy of T} where the root is never added before time exp(k®). With the new vertex
present, this copy of T}, still will never add the root before time exp(k®), as the new vertex
can only affect T}, by blocking the root from being added. This completes the proof. <

6.2 The Metropolis process can efficiently find approximate solutions on
trees

Here we show that if one seeks an approzimate solution to the size of the largest independent
set in a forest then MP finds such a solution efficiently:
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Proof of second item in Theorem 4. Let N be the maximum cardinality of an indepenltdent
set in F,. Since F), is bipartite we have that N > n/2. Set the fugacity as A > 41/0+ ol
We upper bound the contribution of independent sets whose size is smaller than (1 — §)N to

the partition function:

)\|I| < 2nA(175)N < )\N/TL
|I|<(1-=6)N

Therefore, for the stationary distribution of MP with this value of A the probability we get
an independent set of size smaller than (1 — §)N is at most 1/n. The desired result now
follows from the fact [17, 10] that MP on forests mixes in time n®!) (assuming \ is a fixed
constant independent of n) as well as the fact [46] that after ¢y« - logn iterations of MP the
total variation distance between the chain and the stationary distribution is at most 1/n.
Therefore, MP finds an independent set of size at least (1 — )N with probability at least
1—-2/n. <

» Remark 12. For graphs of treewidth ¢ it is known that the mixing time of MP is n®®

[17, 10]. Since any graph with treewidth ¢ is ¢-degenerate (has a vertex of degree at most ?)
it has an independent set of size at least n/(t+1). The argument above shows that assuming
t is constant (independent of n), MP will find a 1 — ¢ approximation to the optimal solution
in polynomial time with high probability.

7 Conclusion

We have proved super polynomial lower bounds on the time complexity of the SA and MP

when approximating the size of a maximum independent set in several graph families. Several

questions remain:
Prove that SA cannot approximate in polynomial time a(G) in graphs with constant
average degree d within a factor larger than O(logd/d). Currently we only know how to
prove this when the temperature is fixed and does not change throughout the algorithm.
Analyze the approximation ratio MP achieves in polynomial time for o(G) in planar
graphs. A concrete first step would be to analyze how well MP approximates «(G) on the
square grid.
It would be interesting to compare MP (with polynomially many iterations) to the well-
studied min-degree greedy algorithm [31, 27] which is known [27] to achieve a 3/(A + 2)-
approximation on graphs with maximum degree A. Whether this approximation ratio
can be achieved (or improved upon) by MP in polynomial time is currently open. The
new machinery introduced recently in [47] may be relevant for this question.
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