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Abstract
A long line of work has studied the pseudorandomness properties of walks on expander graphs.
A central goal is to measure how closely the distribution over n-length walks on an expander
approximates the uniform distribution of n-independent elements. One approach to do so is to label
the vertices of an expander with elements from an alphabet Σ, and study closeness of the mean of
functions over Σn, under these two distributions. We say expander walks ε-fool a function if the
expander walk mean is ε-close to the true mean. There has been a sequence of works studying this
question for various functions, such as the XOR function, the AND function, etc. We show that:

The class of symmetric functions is O(|Σ|λ)-fooled by expander walks over any generic λ-expander,
and any alphabet Σ . This generalizes the result of Cohen, Peri, Ta-Shma [STOC’21] which
analyzes it for |Σ| = 2, and exponentially improves the previous bound of O(|Σ|O(|Σ|)λ), by
Golowich and Vadhan [CCC’22]. Moreover, if the expander is a Cayley graph over Z|Σ|, we get a
further improved bound of O(

√
|Σ|λ).

Morever, when Σ is a finite group G, we show the following for functions over Gn:
The class of symmetric class functions is O

(√
|G|

D
λ
)

-fooled by expander walks over “structured”
λ-expanders, if G is D-quasirandom.
We show a lower bound of Ω(λ) for symmetric functions for any finite group G (even for
“structured” λ-expanders).
We study the Fourier spectrum of a class of non-symmetric functions arising from word maps,
and show that they are exponentially fooled by expander walks.

Our proof employs Fourier analysis over general groups, which contrasts with earlier works that
have studied either the case of Z2 or Z. This enables us to get quantitatively better bounds even for
unstructured sets.
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1 Introduction

Expander graphs are fundamental pseudorandom objects with a vast range of applications
in computer science and mathematics [13, 26, 17]. These graphs combine two opposing
properties of being well-connected yet sparse. In many ways, they exhibit behavior that
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49:2 Pseudorandomness of Expander Walks via Fourier Analysis on Groups

is surprisingly close to truly random, thereby being used to replace randomness and yield
several explicit constructions. For instance, explicit codes approaching the random guarantees
of the Gilbert–Varshamov [7, 27] bound [24] or the generalized Singleton [23, 21] bound can
be constructed using expanders [16]. Moreover, expanders can be used to construct a variety
of pseudorandom generators [14, 12].

Walks on expander graphs not only mix fast, but they are an important derandomization
tool for the Chernoff bound [8, 6], the hitting set property [1, 25], etc. These tasks can
be phrased in a more general and unified way as how well expander walks fool a Boolean
function f : {0, 1}n → {0, 1}. In this setting, the vertices, VX , of an expander graph X, are
labelled with bits {0, 1} and instead of evaluating f under the uniform distribution on n

bits, we evaluate it under the distribution on {0, 1}n induced by taking a random walk on X
of length n. To quantify the error incurred in this process of replacing true randomness by
expander walks, it is convenient to define EX(f) as:

EX(f) =
∣∣Es∼V n

X
[f(s)] − Es∼RWn

[f(s)]
∣∣ .

In this language, by choosing f to be the AND function on n bits, we recover the expander
hitting set property application. The choice of f as a (suitable) threshold function on n bits
leads to the expander Chernoff bound. The choice of f as the XOR function on n bits (and
a carefully constructed X) leads to the breakthrough code construction of Ta-Shma [24].

Using this unified perspective, Cohen, Peri, and Ta-Shma [4] developed a systematic
framework to analyze expander random walks and obtain bounds on EX(f). Their framework
is based on Fourier analysis and exploits the fact that any Boolean function f : {0, 1}n →
{0, 1} can be expressed in the Fourier basis as a linear combination of characters, which
are XOR functions in this case. They obtained bounds on EX(f) in terms of the spectral
expansion λ of the (normalized) adjacency matrix of X.

A series of works [10, 3, 9] have since extended the [4] framework to functions of the form
f : Σn → C, where Σ is a finite alphabet. These works study symmetric functions – functions
that are invariant under any permutation of the input coordinates – and functions computed
by restricted circuit classes such as AC0. Golowich and Vadhan [10] get the following bound
for symmetric functions:

|EX(f)| ≤ (|Σ|O(|Σ|) · λ).

They asked whether such an exponential dependence on |Σ| is optimal. In this work, we
improve this bound to O(|Σ| ·λ) by viewing a function f : Σn → C as a function f : Zn|Σ| → C
which enables us to use a Fourier basis. More interestingly, this change of perspective
motivates us to consider graphs that can utilize this algebraic structure, such as Cayley
graphs over Z|Σ|. This idea helps us get a bound of O(

√
|Σ| ·λ) for Cayley expanders, further

improving upon our bound of O(|Σ| · λ) for arbitrary expanders.

Functions over Groups

More broadly, the above suggests investigating functions over general finite groups (instead
of just Z|Σ|) and considering expanders with a compatible algebraic structure. This opens
up interesting directions to study:
1. What novel classes of functions f : Gn → C can we study that utilize the group operation,

or have richer symmetries coming from the group? For instance, class functions, i.e.,
functions that satisfy f(x) = f(gxg−1) for every x, g ∈ G.

2. Can one obtain stronger bounds on EX(f) for such function classes when the expander
X has algebraic structure?

3. How can one utilize the pseudorandomness properties of the group itself, such as quasir-
andomness?
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While these questions are very natural in their own right, studying functions over general
groups has been fruitful in the context of complexity theory. For instance, the famed
Barrington’s theorem [2] effectively reinterprets a Boolean function as a function over the
permutation group. More recently, [15] showed that one can obtain improved expanders by
studying pseudorandomness for functions over the permutation group.

1.1 Our Results
We initiate a study of this general setup and make progress in answering these questions.
We (i) give a general lemma about the pseudorandomness for matrix-valued functions (over
arbitrary expanders), which is needed to work with Fourier decompositions of non-abelian
groups, (ii) analyze specific function classes of symmetric functions and word functions over
a group G, and (iii) we study symmetric class functions over structured expanders, and show
that the quasirandomness of the group G synergizes with the randomness of the expander
X to yield improved bounds, and finally, (iv) we prove a lower bound for the fooling of
symmetric functions even over such structured expanders.

1.1.1 Pseudorandomness of generic expanders
We begin by considering an abstract problem about expander walks. Let X be an expander
and consider a set of k matrix-valued mean-zero functions:{

fj : X → Cdj×dj | j ∈ [k]
}
, max

x
∥fj(x)∥op ≤ 1.

Given an ordered subset S = {i1 < i2 < · · · < ik−1 < ik} of indices, we wish to study the
expression,

EX,S (f1 ⊗ · · · ⊗ fk) :=
∥∥Ex⃗∼RWn

[f1(xi1) ⊗ · · · ⊗ fk(xik )]
∥∥

op

Note that the above expression is identically 0 if X is a complete graph (with self-loops) as
the functions, fi, have zero mean. The goal is to show that above quantity is small when
we have a λ-expander. Analyzing special cases of such quantity is at the heart of several
past works [4, 15, 20] that studied pseudorandomness of expander walks. For the setting of
matrix-valued functions, the result of [15] gives the following bound on the expression:

▶ Theorem 1 ([15]). Let X be any λ-expander and {f1, . . . , fk} be a collection of mean-zero
normalized matrix-valued functions for k ≥ 2. Then for any k-sized subset of indices, S,

EX,S (f1 ⊗ · · · ⊗ fk) ≤ (2λ)⌊ k
2 ⌋.

The above result is agnostic to the set S and gives a general worst-case bound. But this
is too pessimistic when S has large gaps. For instance, if S = {1, 4, 9}, the above result gives
a bound of λ which is far from the optimal (could be as small as λ8). We prove a result that
takes the structure of S into account and gives an improved guarantee when S has large
gaps.

▶ Theorem 2 (Matrix-Valued Fooling, Theorem 19). Let X be any λ-expander and {f1, . . . , fk}
be a collection of mean-zero matrix-valued functions for k ≥ 2. Then for any k-sized subset
of indices, S,

EX,S (f1 ⊗ · · · ⊗ fk) ≤ λη(S) ≤ (4λ)⌊ k
2 ⌋ .

where η(S) is an explicit function.

APPROX/RANDOM 2025
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The above bound is an improvement (over Theorem 1) when S has large gaps. Theorem 2
generalizes the result of [4], who achieved the same improvement over the result of Ta-
Shma [24] for {±1}-valued functions. This quantitative improvement was crucially used
by [4] to prove their result about fooling functions over {0, 1}n, and we use it similarly to
prove it for functions over an arbitrary alphabet, Σn.

The above theorem connects with fooling functions via Fourier analysis. Let G be a
group, and f : Gn → C be any function. Consider a labeling1 map, φ : X → G. Then,
f ◦ φ : Xn → C, and the term we wish to bound is:

EX(f) :=
∣∣∣ E
x⃗∼RWn

[
f

(
φ(x1), . . . , φ(xn)

)]
− E
x⃗∼Unifn

[
f

(
φ(x1), . . . , φ(xn)

)]∣∣∣ .
Furthermore, since f is a function on a product group, Gn, we can apply the general Fourier
transform to express f as a linear combination of matrix-valued tensor functions2. These
tensor functions (when composed with φ) can be analyzed using Theorem 2. This can
be seen as a generalization of the Fourier analytic approach of [4], who study symmetric
functions over Zn2 . As a first application, we use our generalization from Zn2 to Zn|Σ|, to
prove Theorem 3. Additionally, the ability to work with a general Fourier basis is utilized for
other results where the function uses group structure for a given (potentially non-Abelian)
group G, such as for group products (Theorem 5), and our general lower bound (Theorem 9).

1.1.2 Fooling symmetric functions and word functions

We analyze the fooling of symmetric functions, ie functions f : Σn → C that is invariant
under permuting the input coordinates, for any finite alphabet Σ.

▶ Theorem 3 (Fooling symmetric functions, Theorem 32). Let f be any symmetric function,
f : Σn → C where Σ is any finite set. Let X be a λ-expander such that λ < 1

16e|Σ| . Then for
any unbiased labelling of X with Σ,

|EX(f)| ≤ (32eλ|Σ|) · ∥f∥2 .

Moreover, if ∥f∥2 = on(1) – for example, the weight indicator function which satisfies
∥f∥2 = n−1/4 – one obtains a vanishing decay.

This improves the previous best bound of (|Σ|O(|Σ|) · λ) due to Golowich and Vadhan [10].
Our analysis relies on using a Fourier basis for such functions that can be obtained by viewing
Σ instead as ZΣ, and then applying Theorem 2. However, our proof is agnostic to this specific
choice of group and can instead work with a Fourier basis over any group (of size |Σ|) by
using Theorem 2.

Word Functions and Group Products

Going beyond symmetric functions, we analyze “non-commutative” monomial functions,
which we call word functions.

1 We only work with unbiased labelings, i.e., those that induce the uniform distribution on G.
2 Theorem 2 enables the possibility of working with orthonormal bases other than the Fourier basis.

Any reasonably “flat” orthonormal basis where the basis elements satisfy certain pointwise bound and
contains the invariant vector (i.e., the all 1 vector) can be used.
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▶ Definition 4 (Monomial word function). For an ordered subset S ⊆ [n], a monomial word is
a map, wS : Gn → G, defined as wS =

∏
s∈S g

es
s where eS ∈ {±1}. A function f : Gn → C

is a monomial word function of degree k, if f = h(wS(g1, · · · , gn)) for some S of size k and
a function h : G → C.

We give a complete characterization of the Fourier spectrum of monomial word functions,
and show that these have Fourier support on the highest level and thus are analogs of the
PARITY function over Zn2 . Moreover, this support is sparse (see Lemma 34), and this
enables us to use Theorem 2. We thus deduce that such functions are exponentially fooled
by expander walks.
▶ Theorem 5 (Fooling word functions, Theorem 35). Let f : Gn → C be a word function of
degree k corresponding to a set S. Then for any expander X with an unbiased G-labelling,

|EX(f)| ≤ λη(S) · |G| k
2 · ∥f∥2 ≤ (2λ)⌊ k

2 ⌋ · |G| k
2 · ∥f∥2.

One important case of this class of functions is the group product functions, namely,
Boolean valued functions f that take x1, . . . , xk ∈ G as input and output 1 if and only if the
product is equal to some target element t ∈ G. Fooling group product functions is a crucial
component in the construction of some pseudorandom generators for branching programs,
e.g., [18, 5].

We sharpen Theorem 5 for group product functions by removing the dependence on |G|
in the error bound while achieving the same exponential decay in terms of expansion.
▶ Theorem 6 (Fooling Group Products, Theorem 37). Let G be any finite group, t ∈ G,
and f(x⃗) = 1{x1···xk=t} be a group product. Then for any expander X with an unbiased
G-labelling,

|EX(f)| ≤ (2λ)k/2 .

1.1.3 Pseudorandomness of structured expanders
The above results hold for generic expanders, but since our function is defined on a group, it
is natural to consider “structured” expanders that gel well with the group. In the case of
Abelian groups, these are just Cayley graphs, using which we obtain a further improvement
to Theorem 3.
▶ Theorem 7 (Abelian Groups, Corollary 27 and Proposition 42). Let G be an Abelian group
and X be a Cayley graph on G and let {χj | j ∈ [k] } be a set of non-trivial characters of G.
Then for any ordered subset S of size k,

EX,S(χ1 ⊗ · · · ⊗ χk) ≤ λη(S) · 1{χ1···χk=triv} .

As a consequence, for every symmetric function f : Σn → C and Cayley expander X,∣∣EX(
f

)∣∣ ≤ O
(√

|Σ| · λ
)

· ∥f∥2 .

For G = Z2, this result says that the odd degree characters are perfectly fooled, and
thus, every odd function f : Zn2 → C is perfectly fooled by such a structured expander. This
already illustrates the improvement over generic expanders.

To generalize this to general non-abelian groups, we need to restrict to class functions,
i.e., functions such that f(gxg−1) = f(x) for every x, g ∈ G. Note that for Abelian groups,
every function is a class function, as the condition is trivially true due to commutativity.
Moreover, we will need a stronger notion of a “pseudo Cayley graph” for which we omit the
formal definition here (see Definition 21). The key property of these graphs is that their
eigenvectors are given by the Fourier basis functions.

APPROX/RANDOM 2025
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Tighter Bound for Quasirandom Groups

An often seen phenomenon is that one gets better pseudorandomness properties for groups
that are highly non-abelian. One way to quantify this is the notion of a D-quasirandom
groups introduced in a seminal work by Gowers [11] which is a group in which the smallest
(non-trivial) irreducible representation (see Definition 13) has dimension D. Abelian groups
are 1-quasirandom, whereas on the other extreme, there are matrix groups that are |G| 1

3 -
quasirandom (see [11]). We show that such a gain does indeed occur in our setting as
well.

▶ Theorem 8 (General Groups, Corollary 27 and Proposition 42). Let G be a D-quasirandom
group and let X be a “pseudo Cayley” graph on G. Let {χj | j ∈ [k] } be a set of non-trivial
characters of G, normalized by their dimension. Then for any ordered subset S of size k,

EX,S(χ1 ⊗ · · · ⊗ χk) ≤ λη(S) ·
〈
χtriv, χ1 · · ·χk

〉
.

As a consequence, for every symmetric class function f : Gn → C,

∣∣EX(
f

)∣∣ ≤ O

(√
|G|
D

· λ
)

· ∥f∥2.

Apart from the quasirandomness factor, the key improvement from Theorem 2 here is
the extra factor of

〈
χtriv, χ1 · · ·χk

〉
. This counts the fractional dimension of the trivial irrep

inside the tensor representation ρ1 ⊗ · · · ⊗ ρk. This quantity is much smaller than one, for
instance, when k = 2, it is at most 1

D2 . Moreover, this quantity can be computed explicitly
using basic representation theory, which yields a more precise upper bound.

1.1.4 Lower Bounds
We show that our dependence on λ in the bound of |EX(f)| in Theorem 3 cannot be improved
in general, no matter the choice of group G. Let, A ⊆ G and t ∈ [n]. We define a symmetric
boolean function ThA,t as :

ThA,t(x⃗) = 1 if |{i | xi ∈ A}| ≥ t; 0 otherwise.

▶ Theorem 9 (Lower Bound for any group). Let G be any finite group, and A ⊆ G be any
subset such that |A|

|G| = 1
2 . There exists an λ-expander X such that for every n large enough,∣∣∣EX(

Th
A,

n+1−
√

n
2

)∣∣∣ ≥ Ω
(
λ

)
.

This lower bound holds even when X is a “pseudo Cayley graph” (as in Theorem 8) on G.

This lower bound places a limitation on how much the quasirandomness of the group or
the algebraic structure of the expander can be leveraged in terms of the pseudorandomness
of expander walks with respect to symmetric functions.

Regardless of how “far” from Abelian the group G is, a lower bound of Ω(λ) still persists.
This lower bound rules out the possibility of an upper bound of, say, λ

D for a D-quasirandom
group in Theorem 3. More importantly, it shows that even if one uses an expander with such
Cayley-like algebraic structure, one cannot improve the linear dependence on λ.

We stress that proving this lower bound for general finite groups is substantially more
challenging than for the Zk2 case [3]. In general, this requires the function and the graph
to “interact” in a non-trivial way, but now, in the presence of (possibly) higher-dimensional
representations, this is substantially more delicate to achieve (see Section 1.2).
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1.2 Proof techniques
A generalized ”Ignore First Step” Trick

To prove our first main result (Theorem 2), we generalize the technique of [20] (also,
subsequently used in [19]) that introduced a trick that they called “Ignore First Step” Trick.
We generalize this in two significant ways. We first extend it to the setup of general matrix-
valued functions. More importantly, we perform a finer analysis to obtain a dependence on λ
that takes into account the subset of indices S. This is necessary to yield a bound of λη(S)

as opposed to λ⌊k/2⌋ (even for scalar-valued functions) that would be implied by [20].
We give a quick overview of this technique in the very special setup of {±1}-valued

functions that are all identical. We wish to analyze the term:

E
(x1,...,xn)∼RWn

[f1(x1) · · · fk(xk)].

This corresponds to S = {1, . . . , k}. Let us start with k = 2. This case can be directly
handled by the expander mixing lemma, which says that for a λ-spectral expander,∣∣∣ E

(x1,x2)∼RW2
[f(x1) f(x2)] −

(
E

x∼RW1
[f(x)]

)2∣∣∣ ≤ λ · E
x∼RW1

[
|f(x)|2

]
.

One interpretation of this lemma is that it reduces the analysis of the mean of the product
function over 2-length walks to the analysis of the mean and variance of the function over
a walk of length 1. The main idea behind the technique is to do such a reduction from a
length k-walk to analyzing mean and variance over (k − 1)-length walks.

We do not get into the details of this reduction but explain the trick used to bound such
variance terms, the simplest case of which is when k = 3. For a vertex x, let RW1(x) be the
distribution of 1-length walks starting from x. The term we need to analyze is,

E
x∼RW1

[∣∣∣ E
y∼RW1(x)

[f(x)f(y)]
∣∣∣2

]
= E

x∼RW1

[
|f(x)|2 E

y,z∼RW1(x)

[
f(y)f(z)

]]
The key technical point is the following. The expression on the right formally depends

on x but since f(x)2 = 1, this dependence is virtual. More importantly, the distribution on
y, z in this expression is the same as sampling y, z independently (of x) at distance 2 in the
graph,

E
x∼RW1

[
E

y,z∼RW1(x)

[
f(y)f(z)

]]
= E

(y,z)∼RW′
2

[
f(y)f(z)

]
.

The right-hand side can now be analyzed by applying the above expander mixing lemma
on the graph X2. Thus, this trick gets rid of the first variable x, and reduces the variance of
2-length walks to the mean of 1-length walk (on the squared graph).

Our proof follows a similar approach, but there are two key complications. One, the
functions we need to analyze are matrix-valued, and secondly, the above analysis does not
utilize the gaps in the index set S, and therefore would give a bound akin to [15, 24] which
is too weak for our purposes.

Let S = (i1, · · · , ik), and let ∆j := ij+1 − ij be the jth gap. To bound the recurrence
more tightly, we view the random walk as a sequence of k steps, where the jth step is on the
graph X∆j . To implement this approach in the general setup of tensors of operator-valued
functions, we introduce auxiliary functions such as,

gj(x⃗) := Id1 ⊗ · · · ⊗ Idj−1 ⊗ fj(xij ) ⊗ fj+1(xij+1) · · · ⊗ fk(xik ),

that capture the intermediate state of this random process after j steps. This lets us
utilize the large gaps, i.e., |∆j | in S , to obtain a sharper bound (λη(S) instead of λ⌊ k

2 ⌋).

APPROX/RANDOM 2025
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Beyond Spectral Gap via structured graphs

The above technique is quite general and works beyond the setup of groups, thereby yielding
a general result (Theorem 2). Moreover, it only uses the fact that X is an expander
i.e., that it satisfies a spectral gap. While this leads to operator norm bounds, it is not
amenable to analyzing trace norms, and one has to appeal to generic bounds such as
∥M∥tr ≤ dim(M) · ∥M∥op which is suboptimal in many cases. The key insight behind our
second main result (Theorem 8) is to use additional spectral information (eigenvectors) about
the expander X, and not just its spectral gap. To do so, we define the notion of pseudo
Cayley graphs.

Pseudo Cayley Graphs

These are graphs such that the characters of the group G are its eigenvectors. More precisely,
there exists a labeling of its vertices, φ : X → G, such that χ ◦ φ is an eigenvector of the
graph adjacency matrix AX for every character χ of G. Note that this property is true for
Cayley graphs over Abelian groups. Moreover, one can also build examples over non-Abelian
groups (see Example 22).

To make use of the above structure, we use a key fact from representation theory, which
says that the product of characters over any finite group G can be decomposed a linear sum,

χα(g) · χβ(g) =
∑
γ

cα,βγ · χγ(g).

These coefficients are called Clebsch–Gordan coefficients for G. Therefore, our expression can
be inductively unrolled by alternating the operations– (i) taking a step of the walk (which
can be handled now that characters are eigenvectors), and (ii) decomposing the product of
characters as a linear sum. This leads to a precise calculation of the mean over random walks
(see Theorem 24) as opposed to an upper bound for the operator norm.

Lower Bound

This precise calculation comes in handy not just to prove the sharper bound in Theorem 8,
but also for the lower bound. The candidate hard function is a generalization of the Boolean
threshold function which was used in the analysis of [4]. However, their construction of the
graph is specific to Z2 and does not generalize to other groups (even Zp). Moreover, in Abelian
groups the representations are 1-dimensional irreps and thus, |tr(M)| = ∥M∥op = ∥M∥tr.
However, in higher dimensions even if ∥M∥op ≥ λ, the trace, tr(M) can be zero which is
actually the quantity which we need to lower bound. To tackle this, we compute this trace
exactly at level 2 (Corollary 45) and combine it with the precise computation of the mean
for pseudo Cayley graphs (see Theorem 24).

2 Preliminaries

2.1 Random walks on expander graphs
Throughout the paper, X = (V,E) will be a d-regular λ-expander graph. We write AX to
denote the degree normalized adjacency operator of X.

▶ Definition 10 ((d, λ)-expander). A graph d-regular graph X = (V,E) is called (d, λ)-
expander if max{|λ2|, |λN |} ≤ λ where λ1 ≤ λ2 ≤ · · · ≤ λN are the eigenvalues of AX .
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We write x ∼ y denote sampling of an edge, (x, y) from X. A key tool in analyzing
expanders is the expander mixing lemma:

▶ Lemma 11 (Expander mixing lemma). Let X be a λ-spectral expander and f, g : X → Cn be
two vector-valued functions on the vertex set X. Let, µf = Ex∼X [f(x)] and ∥f∥2

2 = E[|f(x)|2].
Then we have:∣∣Ex∼y[⟨f(x), g(y)⟩] − ⟨µf , µg⟩

∣∣ ≤ λ · ∥f∥2∥g∥2.

Random walk notation

We find it helpful to define a few shortands associated with random walks on X = (V,E) to
streamline our presentation. We list them below.

We write ′′x⃗ ∼ RW′′
n to denote uniform sampling of an (n− 1)-step (or, n vertices long)

random walk, (x1, x2, . . . , xn) =: x⃗ on X.
Given, x ∈ V , the notation ′′x⃗ ∼ RWn(x)′′ denotes uniform sampling of an (n− 1)-step
(or, n vertices long) random walk, x⃗ conditioned on x1 = x.
The expression ”x ∼k y” denotes sampling a pair, (x, y), of vertices from X that are at a
distance of k.

▶ Fact 12 (Distribution for a single). Fix any k ∈ [n]. Then, the marginal distribution on xk
when x⃗ ∼ RWn is uniform over X.

2.2 The main quantity
Let G be any finite group and X = (V,E) be an expander graph. A G-labeling (or, simply
labeling), φ, of X is a map φ : X → G. Given any such labeling φ, we say φ, is unbiased if

Pr
x∼X

[φ(x) = g] = |G|−1 for all g ∈ G

In this work, our focus is functions of the form f : Gn → C. We will always assume that the
labelling is unbiased and use f(x) to denote f ◦ φ to prevent clutter.

2.3 Inner products and norms
Let Cd be the d-dimensional complex inner product space equipped with the inner product.
We denote by Ud the group of d-dimensional unitary matrices. Let A,B ∈ Cd×d be two
complex matrices. We have the following inner products and norms:

⟨u, v⟩ := Ei∼[d][uiv∗
i ]

⟨A,B⟩HS := tr(A∗B) = tr(B∗A)
∥A∥2

HS = tr(A∗A) =
∑
i,j |Ai,j |2

∥A∥tr = tr(
√
A∗A)

∥A∥op = sup ∥x∥=1 ∥Ax∥ where ∥·∥ denotes the norm associated with Cd.

2.4 Fourier Analysis on Finite Groups
We always use G to denote an arbitrary finite group (not necessarily abelian) unless specified
otherwise. Denote by L2(G) = {f : G → C}, the space of complex-valued functions equipped
with the following inner product,

⟨f, g⟩ = E
x∼G

[(
g(x)∗f(x)

)]
.

This induces the norm is ∥f∥2 = Ex∼G
[
|f(x)|2

]
.
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49:10 Pseudorandomness of Expander Walks via Fourier Analysis on Groups

Group Representations

We will use the notion of a group representation3. Weyl’s unitary trick, says that for a large
family of groups (which includes all finite groups), every representation can be made unitary
and thus, we can restrict to studying these.

▶ Definition 13 (Irreducible Group Representation). Let G be a finite group. A unitary
representation of G is a group homomorphism ρ : G → Ud for some d, i.e., ρ(g1g2) =
ρ(g1)ρ(g2) for every g1, g2 ∈ G. The character, χρ : G → C associated with ρ is the function:
χρ = tr ◦ ρ. Note, that characters are not necessarily homomorphisms. A representation is
called irreducible (or irrep) if there exists no subspace of V ⊆ Cd such that ρ(g)V ⊆ V for
all g ∈ G. The set of irreps of G is denoted as Ĝ.

When G is abelian, all irreducible representations are one-dimensional. Thus, in this
case, the set of characters, and the set of irreps coincide. Moreover, for abelian G, the set of
characters form an orthogonal basis of C[G]. This does not hold for arbitrary finite groups G.
Nevertheless, even for arbitary finite groups, the set characters do satisfy the orthogonality
conditions.

▶ Fact 14. Let, ρ, γ ∈ Ĝ be two irreducible representations. Then,

⟨χρ, χγ⟩ =
{
dρ, if ρ = γ,

0, otherwise.

Moreover, for any non-trivial representation ρ of any finite group G, Eg∈Gρ(g) = 0.

2.5 Complex valued functions on groups
For every finite group G, the set of functions given by the matrix entries of the irreps, i.e.,
{ρij | ρ ∈ Ĝ, i, j ∈ [dρ]}, form an orthogonal basis for the space of all functions, L2(G).

▶ Definition 15 (Fourier Coefficient). For any irrep ρ, we have f̂(ρ) := Ex
[
f(x) · ρ(x)

]
. The

Fourier coefficient of the trivial irrep as µ(f) := f̂(ρtriv).

▶ Fact 16. The following identities hold for the Fourier transform,
1. (Fourier inversion) f(x) =

∑
ρ∈Ĝ dρ

〈
f̂(ρ), ρ(x)

〉
.

2. (Plancharel’s identity) ∥f∥2 =
∑
ρ∈Ĝ dρ∥f̂(ρ)∥2

HS.

Product Groups

In this paper, we will work with product groups. The following fact characterizes the
irreducible representations of Gn in terms of irreps of G.

▶ Fact 17. Ĝn = {ρ1 ⊗ · · · ⊗ ρn | ρi ∈ Ĝ}. We use ρ⃗T to represent ρ1 ⊗ · · · ⊗ ρn such that
T = {i | ρi ̸= triv}. Moreover, |ρ⃗| := |T |.

▶ Definition 18 (Degree Decomposition). For f : Gn → C, we use fk to denote the function
corresponding to its kth-level, i.e., fk(x⃗) =

∑
ρ⃗,|ρ⃗|=k dρ⃗

〈
f̂(ρ⃗), ρ⃗(x⃗)

〉
. In the Boolean case

(Zn2 ), this is also referred to as the degree k component of f .

3 Additional background on representation theory of finite groups can be found in [22].
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3 Expander Walks and Product functions

In this section, we will prove the main claim about the fooling of tensored product matrix-
valued functions. This can be seen as the matrix-valued generalization of [4]. We will then
apply it to our Fourier basis elements, i.e., irreps which are tensor product functions, to
obtain our main result for general functions. To state our theorem, we will need a few pieces
of notations borrowed from [4] that we describe below.

Notation

Let S = {i1 < i2 < · · · < ik−1 < ik} be an ordered subset of {1, 2, . . . , n}. We define the
following key quantities:

Ik =
{

{1, k − 1} ⊆ I ⊆ [k − 1] | ∀ 1 < j < k − 1, {j, j + 1} ∩ I ̸= ∅
}

.
∆j(S) = ij+1 − ij .

In this section, we can state our main theorem that we prove in this section.

▶ Theorem 19. Let, X be an λ-expander graph and let S = {i1 < i2 < · · · < ik−1 < ik} be
an ordered subset of [n]. Let {fj : X → Mdj (C) | j ∈ [k] } be set of matrix valued functions
such that Ex∼X [fj(x)] = 0, and maxx∥fj(x)∥op ≤ 1. Then,∥∥Ex⃗∈RWn

[f1(xi1) ⊗ · · · ⊗ fk(xik )]
∥∥

op ≤
∑

I∈I(k)

λ
∑

i∈I
∆i(S)

.

Proof. See the full version of the paper for this proof. ◀

▶ Corollary 20 (Operator version of [4]). Let X be a λ expander and φ : V (X) → G be
an unbiased labeling. Let S = {ii, · · · , ik} ⊆ [n]. Then for any set of non-trivial irreps
{ρ1, . . . , ρk} of G,∥∥Ex⃗∈RWn

[ρ1(φ(xi1)) · · · ⊗ ρk(φ(xik ))]
∥∥

op ≤
∑
I∈Ik

λ

∑
j∈I

∆j(S)
.

Proof. We only need to check that a non-trivial irrep satisfies the conditions of Theorem 19.
The max operator norm is 1 as representations map to unitary matrices. The mean zero
condition holds from the fact we work with unbiased labelings and from Fact 14. ◀

3.1 Walks on “structured” Cayley graphs
In this section, we will specialize our results and work with a class of Cayley-like graphs.
These graphs generalize a very useful property of Cayley graphs over Abelian groups, namely
that, its eigenvectors are characters. This knowledge of the graph eigenvectors will enable us
to sharpen our computation of the random walk expectation.

▶ Definition 21 (Pseudo Cayley graph). A graph X is pseudo-Cayley with respect to G if
there is an unbiased labeling φ : X → G such that for every Fourier basis element ρij, the
function, ρij ◦ φ, is an eigenvector of AX with eigenvalue λρ.

When working with such graphs, we will implicitly use such a labeling and thus write
χ(v) as a shorthand for χ ◦ φ(v).

▶ Example 22. Let H,G be groups such that there exists a surjective homomorphism
φ : H → G. Then, the complete graph on H (without self-loops), i.e., X = Cay(H,H \ {1})
is pseudo Cayley with respect to G, with φ as the labeling. In particular, one may take
H = Gr for any r ≥ 1. Moreover, it inherits the eigenvalues of X.
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3.1.1 Decay for walks on Pseudo Cayley graphs

We now prove a finer bound for the decay obtained by performing walks on such an X.
The labeling function is just the identity map on G. which is an unbiased labeling. This
improves Theorem 2 by providing an explicit description of the mean EX(ρ⃗) and not just a
norm bound on it. This will be used to give better bounds for conjugacy-invariant function
i.e., class functions in Section 5.1. We start with a key fact from representation theory.

▶ Fact 23 (Decomposition of tensor representations). Let, α, β ∈ Ĝ be two irreps of a finite
group G. There exists a change of basis transformation Nα,β, and non-negative integer
coefficients {cα,βγ | γ ∈ Ĝ} such that for any g ∈ G:

Nα,β
(
α(g) ⊗ β(g)

)
N∗
α,β = ⊕

γ∈Ĝγ
⊕cα,β

γ ,

χα(g) · χβ(g) =
∑
γ

cα,βγ · χγ(g),

cα,βtriv = 1{α=β∗}.

These coefficients are called Clebsch-Gordan coefficients for G.

The proof is an inductive unfolding of the expression by applying Fact 23 and then using
that the characters are eigenvectors.

▶ Theorem 24 (Precise Computation of Expectation). Let X be a pseudo-Cayley graph with
respect to G, with eigenvalues {λα | α ∈ Ĝ}. Let S = {i1, . . . , ik} be any ordered subset of
[n], and {ρ1, . . . , ρk} be non-trivial irreps of G and {χi} their associated characters. Then
for any k ≥ 2,

E
x⃗∼RWn

[χ1(xi1) · · ·χk(xik ))] =
∑

γ1,...,γk−2∈Ĝ

k−1∏
i=1

(
cρi,γi
γi−1

λ∆i(S)
γi

)
.

where γ0 = triv, γk−1 = ρk are fixed in the summation.

Proof. See the full version of the paper for this proof. ◀

We now derive two consequences from the above theorem that we will use later. We
start with a simple one that we have already computed as the base case in our above proof.
We write out separately as it we will utilize this case later. Moreover, it is conceptually
important because it captures the operation of projecting to the space of G-invariants.

▶ Corollary 25. Let X be any pseudo Cayley graph. and let ρ⃗ be such that |ρ⃗| = 2 where
ρi = α and ρj = β for α, β ∈ Ĝ and 1 ≤ i < j ≤ n. Then,

EX(ρ⃗) = 0 if α ̸= β∗,

EX(ρ⃗) = λα(X)j−i · E
g∼G

[α⊗ α∗(g)] =: λj−iα · Mα.

Here, Mα is a d2
α × d2

α matrix with tr(Mα) = 1.

Proof. This is the same computation as in the proof for the base case of k = 2 but now
utilizing the matrix decomposition of α⊗ β from Fact 23. ◀
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Notice in the statement of Theorem 24 that if we have terms with many of the γi being
trivial, then this expectation can be large, as λtriv = 1. To see this, assume the extreme case
when every λγ = 1. Then, the term is just an inductive way to count the multiplicity of
the trivial rep in the tensor-rep, ρ1 ⊗ · · · ρn. To give a better bound, we make the following
important observation that as no two consecutive γj , γj+1 can be trivial. We recall the
definition of Ik,

Ik =
{

{1, k − 1} ⊆ I ⊆ [k − 1] | ∀ 1 < j < k − 2, {j, j + 1} ∩ I ̸= ∅
}

▶ Observation 26. Let ρ be any non-trivial irrep of G. Then, cρ,triv
triv = 0. Let

{γ0, γ1, · · · , γk−1} be a sequence of irreps such that γ0 = triv and γk−1 ̸= triv. Define,
Tγ := {i | γi ̸= triv}. Then,

k−1∏
i=1

cρi,γi
γi−1

= 0 if Tγ ̸∈ Ik .

Proof. By definition, cρ,triv
triv is the multiplicty of the trivial representation in ρ⊗ triv which

is zero as ρ is a non-trivial irrep. Now, if Tγ ̸∈ Ik, either 1 ̸∈ Tγ or there exists j such that
{j − 1, j} ̸∈ Tγ . This is because k− 1 ∈ Tγ by definition. In the first case, γ0 = γ1 = triv. In
the second, we have γj , γj−1 = triv. So we have that either the first term or the jth-term in
the product is zero. ◀

This shows that the term in Theorem 24 only sums over a subset of all possible sequences
of irreps. To formalize this we make the following definition

▶ Corollary 27. Let {ρ1, . . . , ρk} be a set of k non-trivial irreps of G, and {χ1, . . . χk} be the
corresponding characters. Let X be any pseudo Cayley graph on G. Then for any subset S
of size k,

|EX,S(χρ⃗)| ≤
〈
χtriv, χ1 · · ·χk

〉
· max
T∈Ik

λ
∑

i∈T
∆i(S)

.

Proof. See the full version of the paper for this proof. ◀

4 Fooling Symmetric Functions and Word Functions

The main goal is to study the pseudorandomness of expander walks via families of test
functions. For a function, f : Gn → Ck×k, we wish to analyze

EX(f) = E
x⃗∼RWn

[f(x1, . . . , xn)] − E
x⃗∼Unifn

[f(x1, . . . , xn)] .

We have already analyzed this for tensor functions (Theorem 2). Using Fourier transform,
we will first see how studying the fooling of arbitrary functions reduces the problem to
measuring the fooling of tensor product of irreducible representations.

4.1 A general reduction to fooling irreps
▷ Claim 28. Let, f : Gn → C be any function, and denote its degree-i component as fi.
Then,

EX(f) =
∑
i≥2

EX(fi), and

∣∣ EX(fi)
∣∣ ≤

∑
ρ⃗,|ρ⃗|=i

dρ⃗
∥∥f(ρ̂)

∥∥
tr ·

∥∥EX(ρ⃗)
∥∥

op, ∀i ∈ [n].

Proof. See the full version of the paper for this proof. ◁
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4.2 Fooling symmetric functions

Let f : Gn → C be a function that is invariant under any permutation of the input tuple.
Such a function only depends on the counts of each group element in the tuple and, therefore,
can be viewed as a symmetric function on Zn|G|+1. Appealing to the results of Golowich–
Vadhan [10], one gets a decay of O(|G|O(|G|)λ). We obtain an exponentially better bound of
O(|G|λ) by utilizing a Fourier basis for G.

Preparatory lemmas

In the Boolean case, the Fourier coefficient of a symmetric function f , is unchanged under
permutation of the non-trivial coordinates, i.e., f̂(χT ) = f̂(χT ′) for any subsets T, T ′ of size
k. Unsurprisingly, this extends to the case of general groups.

▶ Observation 29 (Fourier Coefficient under permutation). Let ρ1, · · · ρk be any k non-trivial
irreps and let T = {t1, · · · , tk} be some ordered subset of [n]. Denote by ρ⃗T the irrep with
(ρ⃗T )tj = ρj and trivial otherwise. Let σ be the permutation that maps T → T ′ for any other
T of size k. Then for any symmetric function f ,

f̂(ρ⃗T ) = f̂(ρ⃗T ′).

In particular, all norms are preserved.

We now obtain a trivial upper bound on the trace-norm of the Fourier transform, in
terms of the L2 norm. This is a fairly standard application of Cauchy-Schwarz.

▶ Lemma 30 (Trace norm to L2-norm). For any symmetric function f : Gn → C,

∑
ρ⃗=ρ1⊗···ρk⊗I···⊗I,ρi ̸=triv

dρ⃗
∥∥f̂(ρ⃗)

∥∥
tr ≤ |G|

k
2√(
n
k

) · ∥fk∥2 .

Proof. See the full version of the paper for this proof. ◀

We now recall the key combinatorial bound from [4]

▶ Lemma 31 ([4, Lemma 4.4]). For any 2 ≤ k ≤ n, and λ < 1/2 we have

β(k) =
∑

|S|=k

λ∆(S)/2 ≤ 2k
(
n− 1
⌊k/2⌋

)( λ

1 − λ

)k/2
≤

(
n

k

) 1
2

(16eλ)k/2.

Proof. The first inequality is from the reference and the second follows by observing that(
n− 1
⌊k/2⌋

)2
≤

(
n

k

)
(2e)k, and for λ < 1/2,

(
λ

1 − λ

)
≤ 2λ. ◀

▶ Theorem 32. Let f be any symmetric function over Gn where G is any finite group. Let
τ = 16eλ|G|. Then, for any k ≥ 2,

|EX(fk)| ≤ τk/2 · ∥f∥2. And thus, |EX(f)| ≤ 2τ · ∥f∥2, if τ < 1.
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Proof. We will use ρ⃗S to denote the representation given by ρi =.

|E(fk)| ≤
∑

ρ⃗∈Irrep(Gn),|ρ⃗|=k

dρ⃗∥f̂(ρ⃗)∥tr ·
∥∥EX(ρ⃗)

∥∥
op (Using Claim 28)

≤
∑
ρ⃗

dρ⃗∥f̂(ρ⃗)∥tr
∑
S∈(n

k)
∥EX(ρ⃗S)∥op (Using Observation 29)

≤
∑
ρ⃗

dρ⃗∥f̂(ρ⃗)∥tr
∑
S∈(n

k)
λ∆(S)/2 (Using Corollary 20)

≤
∑
ρ⃗

dρ⃗∥f̂(ρ⃗)∥tr ·
(
n

k

) 1
2

(16eλ)k/2 (Using Lemma 31)

≤ (16eλ)k/2 · |G|k/2 · ∥f∥2 (Using Lemma 30)

= (τ)k/2∥f∥2.

To get the last inequality, we use Claim 28 and obtain that:

|EX(f)| ≤
∑
i≥2

|EX(fi)| ≤
(∑
k≥2

τk/2
)

∥f∥2 ≤ 2τ∥f∥2 if τ < 1. ◀

4.3 Word functions

A word map of a finite group G is an element of the free group on G. Given any h : G → C
and a word map w : Gn → G, one can consider the composed map h(w(·)) : Gn → C, which
is commonly referred to as a word function. Word functions are ubiquitous in mathematics
and computer science literature.

The main result of this section is to give a complete characterization of the Fourier
spectrum of a certain subclass of word functions that will be termed monomial word functions.
In particular, first we will show that these have Fourier support on the highest level and
thus are analogs of the PARITY function over Zn2 . Moreover, this support is also sparse.
Combining this with Corollary 20, we deduce that such functions are exponentially fooled by
expander walks.

▶ Definition 33 (Monomials and Word function). For an ordered subset S ⊆ [n], a word map
of degree k = |S| is a G-valued function wS : Gn → G, defined as wS =

∏
s∈S g

es
s where

eS ∈ Z. A word is monomial if the variables are non-repeating and the exponent is ±1. A
function f : Gn → C is a monomial word function of degree k, if f = h(w(g1, · · · , gn)) for a
monomial word w of degree k and a function h : G → C.

In the second half of this section, we consider a subclass of functions within monomial
word functions that we call monotone word functions. Essentially, these are word functions
for which corrresponding word, w is monotone i.e., w = xi1 · · ·xik for i1 ≤ · · · ik. We
already mentioned that for monomial word functions gets fooled by expander walks upto
an exponentially decaying error. However, the error bound has dependence on |G|. For
monotone word functions we remove this dependence while achieving the same decay in
terms of expansion.
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4.3.1 Fourier Spectrum of Word functions
We begin by proving a structural claim about the fourier coefficients of word functions. The
claim that we prove below essentially says that a word function f : Gn → C that only utilizes
a subset S ⊆ [n] of the input co-ordinates is only supported on representations ρ⃗ such that
ρi = triv for i /∈ S and ρi ∈ {ρ, ρ∗} otherwise. Note that, the fourier structure of these word
functions on more general groups closely resemble the special case of parities.

▶ Lemma 34 (Fourier Mass Support). Let f : Gn → C be a word function of degree k

corresponding to a set S. Let S+ (resp. S−) be the subset of elements such that es = 1 (resp.,
−1). Then, f̂(ρ⃗) ̸= 0 only if
1. For every i ̸∈ S, ρi = triv.
2. For every i ∈ S+ ρi = ρ for some ρ ∈ Irrep(G).
3. For every i ∈ S− ρi = ρ∗ for the same ρ as above.

Proof. See the full version of the paper for this proof. ◀

4.3.2 Fooling Word Functions
Before we state our first theorem in this section we recall two notations from Section 3.
Let S = {i1 < i2 < · · · < ik−1 < ik} be an ordered subset of {1, 2, . . . , n}. We define the
following key quantities:

Ik =
{

{1, k − 1} ⊆ I ⊆ [k − 1] | ∀ 1 < j < k − 1, {j, j + 1} ∩ I ̸= ∅
}

.
∆j(S) = ij+1 − ij .

We have the following theorem on monomial word functions.

▶ Theorem 35 (Fooling for degree k word functions). Let f : Gn → C be a monomial word
function of degree k corresponding to a set S. Then for any expander X with an unbiased
G-labelling,

|EX(f)| ≤
∑
I∈Ik

λ

∑
j∈I

∆j(S) · |G|k/2 · ∥f∥2 .

In particular, we have |EX(f)| ≤ λ−1(λ|G|)k/2 · ∥f∥2

Proof. Let ρS denote the representation ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn where ρi = ρ if i ∈ S+
I , ρi = ρ∗

if i ∈ S−
I , and is trivial otherwise, i.e., ρi = 1. From Lemma 34, we know that the only

non-zero Fourier coefficients are for such ρS . Thus we will consider these irreps for expander
walk fooling.

E(f) ≤
∑

ψ∈Irrep(Gn)

dψ∥f̂(ψ)∥tr ·
∥∥∥ E
g⃗∼Xn

[ψ(g⃗)]
∥∥∥

op
(Using Claim 28)

≤
∑

ρ∈Irrep(G)

dρS ∥f̂(ρS)∥tr ·
∥∥∥E⃗
g

[
ρS(g⃗)

]∥∥∥
op

(Using Lemma 34)

≤
∑
I∈Ik

λ

∑
j∈I

∆j(S) ∑
ρ∈Irrep(G)

dkρ∥f̂(ρS)∥tr (Using Corollary 20)

≤
∑
I∈Ik

λ

∑
j∈I

∆j(S) · |G|k/2 · ∥f∥2.

The last line follows from Cauchy-Schwarz and Hölder’s inequality. ◀
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We now give an alternate proof of the above result in the special case that the word
is monotone i.e., w = xi1 · · ·xik for i1 < · · · < ik. The change is that we now the Fourier
decomposition of h : G → C i.e., over G rather than of f directly. To analyze this, we will
need the result from [15].

▶ Theorem 36 ( [15]). Let X be any λ-expander with an unbiased labelling of G. Then for
any non-trivial irrep ρ of G,

∥EX(ρ(x1 · · ·xk))∥op ≤ λk/2.

The result in [15] works for any product function and thus if xi contains an inverse then,
we can pick fi = ρ∗ instead of ρ as ρ∗(xi) = ρ(xi−1)

▶ Theorem 37. Let f(x⃗) = h(x1 · · ·xk) be a monotone word function for some h : G → C.
Then for any expander X with an unbiased G-labelling,

|EX(f)| ≤
(√

|G| · ∥f∥2

)
· (2λ)k/2.

In particular, for f(x⃗) = 1{x1···xk=t} for any t ∈ G, one has |EX(f)| ≤ (2λ)k/2.

Proof. We assume that the word does not contain inverses and is x1 · · ·xk which is true up
to renumbering the coordinates. By the Fourier transform on G,

h(t) =
∑

ρ∈Irrep(G)

dρ
〈
ĥ(ρ), ρ(t)

〉
.

Now we feed in t = x1 · · ·xn into the function h.

f(x⃗) = h(x1 · · ·xk) =
∑

ρ∈Irrep(G)

dρ
〈
ĥ(ρ), ρ(x1 · · ·xk)

〉
EX(f) =

∑
ρ∈Irrep(G)

dρ
〈
ĥ(ρ), EX(ρ(x1 · · ·xk))

〉
|EX(f)| ≤

∑
ρ∈Irrep(G),ρ̸=triv

dρ∥ĥ(ρ)∥tr ∥EX(ρ(x1 · · ·xk))∥op

≤ λk/2 ·
√

|G| · ∥h∥2 = λk/2 ·
√

|G| · ∥f∥2.

The last equality is a simple calculation that uses that for any fixed x1, . . . , xi the word
x1 · · ·xi · g is uniform over G if g is sampled uniformly from G.

∥f∥2
2 = E

x1,··· ,xk

[
|h(x1 · · ·xk)|2

]
= E
x1,··· ,xk−1

[
E
xk

[
|h(x1 · · ·xk)|2

]]
= E
x1,··· ,xk−1

[
∥h∥2

2
]
.

When h = 1x=t, then ∥h∥2 = |G|−1/2 and the second claim follows. ◀

5 Function Classes with Group Symmetry

A general group G has a much richer symmetry structure than Z2, and this opens up the
possibility of studying functions, f : Gn → C, that respect this additional symmetry (beyond
permutation of coordinates).
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5.1 Symmetric Class Functions
A function over Gn is a class function if it is invariant under conjugation, i.e., for any
x⃗, g⃗ ∈ Gn, f(g1x1g1

−1, . . . , gnxngn
−1). In other words, the function value depends only on

the input’s conjugacy class. In this subsection, we will give a better bound for symmetric
class functions than the one for general symmetric functions. The improvement for class
functions will come from a precise calculation of our EX(f) expression, without resorting to
a Cauchy-Schwarz–type bound to go from L1-norm to L2-norm (Lemma 30). To do this, we
need to use the group structure.

Representation theory facts

We now state some basic facts about the representation theory of groups that we will need only
in this subsection. These are well-known facts and proofs can be found in any introductory
text.

▶ Fact 38 (Class Function Fourier Coefficients). For any class function f : H → C,

f̂(ρ⃗) = cρ⃗Idρ⃗
, ∥f∥2

2 =
∑
ρ⃗

dρ∥f̂(ρ⃗)∥2
HS =

∑
ρ⃗

d2
ρcρ⃗

2.

▶ Fact 39 (Schur Orthogonality Relation). For any g, h ∈ G, we denote g ∼ h if they belong
to the same conjugacy class, say Cg. Then, we have,

∑
ρ∈IrrepG

χρ(g)χρ(h) = |G|
|Cg|

· 1{g∼h}.

▶ Fact 40. Let G be a D-quasirandom, i.e., the smallest non-trivial irrep has dimension D.
Let C(G) denote the conjugacy classes of G. Then,

|C(G)| = |Ĝ| ≤ |G|
D2 + 1.

Proof. The first equality follows from the fact that characters form a basis for class functions
(or in other words, the character table is square). The second follows from the following:∑

ρ∈Ĝ

d2
ρ = |G| ≥ 1 +D2 · (|C(G)| − 1). ◀

We are now ready to assemble the above facts to bound Eg∼G[χρ1⊗···⊗ρk
] which counts the

multiplicity of trivial rep in ρ1 ⊗ · · · ⊗ ρk. This claim allows us to improve upon Lemma 30
which would be analogous to a bound of |G|k in the below term.

▶ Corollary 41. For any finite group G denote by C(G) the conjugacy classes of G. For any
k ≥ 1,

η2
k,G :=

∑
ρ1,··· ,ρk∈Irrep\triv

(
E
g
[χρ1⊗···⊗ρk

]
)2

≤
∑

C∈C(G)

|G|k−2

|C|k−2 + 1.

In particular, if G is D-quasirandom, then η2
k,G ≤ 4 · |G|k−1

D2 .

Proof. See the full version of the paper for this proof. ◀
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▶ Proposition 42. Let G be a D-quasirandom group and f : Gn :→ C be a class function
that is also symmetric. Let X be a pseudo Cayley graph with expansion λ. Then,

|EX
(
f

)
| ≤ O

( |G| 1
2

D
λ

)
· ∥f∥2.

In particular, for every symmetric function on an Abelian group, we get a bound of O(
√

|G|·λ).

Proof. We first prove a bound for the degree k component of f .

EX
(
fk

)
=

∑
ρ⃗∈Irrep(Gn)

dρ⃗cρ⃗ · EX(χρ⃗)

=
∑

ρ1,···ρk∈Irrep(G)\triv

∑
S⊆(n

k)
dρ⃗cρ⃗ · EX(χρ⃗)

∣∣EX(
fk

)∣∣ ≤
∑

ρ1,···ρk∈Irrep(G)\triv

dρ⃗
∑
S⊆(n

k)
|cρ⃗| · |EX(χρ⃗)|

≤
∑

ρ1,···ρk∈Irrep(G)\triv

|dρ⃗cρ⃗| ·
(
E
g
[χρ⃗]

) ∑
S⊆(n

k)
λ∆(S)/2

≤ β(k)
∑

ρ1,···ρk∈Irrep(G)\triv

|dρ⃗cρ⃗| ·
(
E
g
[χρ⃗]

)
≤ β(k)

√ ∑
ρ1,···ρk

|dρ⃗cρ⃗|2 ·
√ ∑
ρ1,···ρk

(
E
g
[χρ⃗]

)2

≤ β(k) · ∥fk∥2√(
n
k

) ·
√
η2
k,G

≤
(

16eλ
)k/2

· ηk,G · ∥fk∥2

≤
(

16eλ · 2|G|
)k/2

· 1
D

√
|G|

· ∥f∥2.

Therefore,

|EX(f)| ≤
n∑
k=2

∣∣EX(
fk

)∣∣ ≤
(64eλ|G|
D

√
|G|

)
· ∥f∥2 = O

(
λ

√
|G|
D

)
· ∥f∥2 . ◀

5.2 Diagonal action and G-invariant functions
▶ Definition 43 (Diagonal action and Projection). Let h ∈ G and f : Gn → C. Define
(h · f)(x⃗) := f(hx1, . . . , hxn) = f(h · x⃗). The projection to the space of functions invariant
under this action is PGf(x⃗) := Eh∼G[(h · f)(x⃗)].

This generalizes the notion of even and odd functions over Zn2 which are the special cases
when PG(f) = f and PGf = 0, respectively. We now make a simple observation that walks
over Cayley graphs smooth out the function via this projection.

▶ Observation 44. If X is a Cayley graph, then EX(f) = EX(PGf).

We will now compute the Fourier spectrum of PGf and utilize this to get a precise
calculation of level-2 mass. While this can be generalized to state a more general claim, we
just include the version we will need later for the lower bound.
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▶ Corollary 45. Let f : G×G → C, and X be a quasi-Ableian Cayley expander such that
all non-trivial eigenvalues are λ. Then,

EX(f) = λ ·
(
PGf (⃗1) − µ(f)

)
.

Proof. See the full version of the paper for this proof. ◀

6 Lower Bounds for decay of Symmetric functions

6.1 Fourier Coefficient of Threshold Function
Threshold Function

Let, A ⊆ G and t ∈ [n]. We define a boolean function ThA,t as :

ThA,t(x⃗) = 1 if |{i | xi ∈ A}| ≥ t; 0 otherwise.

▷ Claim 46. Let, ρ⃗ = ρ1 ⊗ ρ2 ⊗ . . . ρn ∈ Ĝn such that ρi = α, ρj = α∗ for some α ∈ Ĝ and
1 ≤ i < j ≤ n and ρk = triv for any k ̸∈ {i, j}. Then,

T̂hA,t(ρ⃗) =
(
an−2
t−2 − an−2

t−1
|G|n−2

)
· 1̂A(α) ⊗ 1̂A(α∗)

where ant :=
(
n
t

)
|A|t|Ac|n−t.

Proof. See the full version of the paper for this proof. ◁

▶ Proposition 47. If |A| = |G|
2 and t = n+1−

√
n

2 , then

CA,n,t :=
(
an−2
t−1 − an−2

t−2
|G|n−2

)
≥ Ω

( 1
n− 1

)
.

Proof. See the full version of the paper for this proof. ◀

▷ Claim 48 (Lower Bound on fooling level-2 component). Let X be a pseudo Cayley graph
such that all non-trivial eigenvalues are equal to λ < 1/2. Let A be any subset of G. Then
for the level-2 component of the threshold function, the following holds:∣∣EX(

(ThA,t)2
)∣∣ ≥ (n− 2) · λ · CA,n,t · µA · µAc .

Proof. See the full version of the paper for this proof. ◁

▶ Theorem 49. Let G be any finite group, A ⊆ G such that |A|
|G| = 1

2 , and X = Cay(Gr, Gr \
{1}) be the complete graph on Gr without self-loops for some r ≥ 4. Then for every n large
enough,∣∣∣EX(

Th
A,

n+1−
√

n
2

)∣∣∣ ≥ Ω
(
λ(X)

)
.

Proof. Using Claim 28 we can separate the calculation into fooling the level-2 function and
those beyond it, and thus for any function we have:

EX(f) =
n∑
i=2

EX(f),

∣∣EX(f)
∣∣ ≥

∣∣EX(f2)
∣∣ −

∣∣∣ n∑
k=3

EX(fk)
∣∣∣ .
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We now let f be the threshold function, f = Th
A,

n+1−
√

n
2

. The graph X has all non-trivial
eigenvalues to be equal to −1

|G|r < 1/2. We can then apply Claim 48, which when combined
with Proposition 47, we get

∣∣EX(f2)
∣∣ ≥ Ω(λ). To bound the remaining part, we use our

upper bound Theorem 32 and obtain that,∣∣∣ n∑
i=3

EX(fi)
∣∣∣ ≤ 2(16e|G|λ) 3

2 · ∥f∥2 ≤ o
(
λ

3(r−1)
2r

)
= o(λ). ◀
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