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Abstract
The hardcore model is one of the most classic and widely studied examples of undirected graphical
models. Given a graph G, the hardcore model describes a Gibbs distribution of λ-weighted
independent sets of G. In the last two decades, a beautiful computational phase transition has been
established at a precise threshold λc(∆) where ∆ denotes the maximum degree, where the task of
sampling independent sets transitions from polynomial-time solvable to computationally intractable.
We study the critical hardcore model where λ = λc(∆) and show that the Glauber dynamics, a
simple yet popular Markov chain algorithm, mixes in Õ(n7.44+O(1/∆)) time on any n-vertex graph of
maximum degree ∆ ≥ 3, significantly improving the previous upper bound Õ(n12.88+O(1/∆)) by the
recent work [3]. The core property we establish in this work is that the critical hardcore model is
O(

√
n)-spectrally independent, improving the trivial bound of n and matching the critical behavior

of the Ising model. Our proof approach utilizes an online decision-making framework to study a site
percolation model on the infinite (∆ − 1)-ary tree, which can be interesting by itself.
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1 Introduction

The hardcore model is one of the most fundamental undirected graphical models that has been
extensively studied in statistical physics, social science, probability theory, combinatorics,
and computer science.

Given a graph G = (V,E), we let I(G) denote the collection of all independent sets of G,
where we recall that an independent set is a subset of vertices inducing no edges. The Gibbs
distribution µG,λ associated with the hardcore model on G is parameterized by a vertex
weight λ > 0 called the fugacity. Each independent set σ ∈ I(G) receives a probability
density given by

µG,λ(σ) = λ|σ|

ZG,λ
,

where ZG,λ is a normalizing constant call the partition function and is defined as

ZG,λ =
∑

σ∈I(G)

λ|σ|.

Perhaps the most amazing property of the hardcore model is the phase transition
phenomenon associated with it. In fact, the hardcore model was originally proposed by
statistical physicists to study and understand the phase transition in systems of hardcore
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51:2 Improved Mixing of Critical Hardcore Model

gas particles. Let ∆ ≥ 3 denote the maximum degree of the underlying graph. The tree-
uniqueness threshold λc(∆) := (∆−1)∆−1

(∆−2)∆ characterizes the uniqueness of the hardcore Gibbs
measure on the infinite ∆-regular tree. Furthermore, it also describes the existence of long-
range correlations. Let each vertex be associated with a Bernoulli random variable, called
the spin, indicating whether the vertex is occupied (i.e., included in the independent set) or
unoccupied (i.e., not included in the independent set). Then, for small fugacity λ ≤ λc(∆)
the configuration at distance ℓ from the root has a vanishing influence on the root as ℓ tends
to infinity, while for large fugacity λ > λc(∆) the correlation is always bounded away from
zero.

In the past two decades, a beautiful computational phase transition has been fully
established for the problem of sampling from the hardcore model on graphs of maximum
degree ∆, precisely around the uniqueness threshold λc(∆). For λ < λc(∆), there exist
deterministic approximate counting algorithms for estimating the partition function [28, 2, 21],
which in turn gives approximate samplers via standard reduction. Meanwhile, for λ > λc(∆),
no polynomial-time approximate counting and sampling algorithms exist assuming RP ̸= NP
[23, 24, 14].

While all deterministic approximate counting algorithms run in polynomial time, they
suffer from a pretty slow runtime. For example, Weitz’s algorithm [28] runs in time nO( 1

δ log ∆)

where ∆ denotes the maximum degree and δ ∈ (0, 1) the slackness of the fugacity (i.e.,
λ = (1− δ)λc(∆)). In practice, Markov chain Monte Carlo (MCMC) algorithms provide a
simpler and significantly faster method for generating random samples from high-dimensional
distributions, including the hardcore model studied in this work. Among them, the Glauber
dynamics (also known as the Gibbs sampler) is one of the most important and popular
examples. The Glauber dynamics performs a random walk in the space I(G) of independent
sets and, in each step, either stays the same or moves to an adjacent set whose Hamming
distance to the current set is 1. More specifically, from the current independent set σt ∈ I(G),
the algorithm picks a vertex v ∈ V uniformly at random and updates its spin: Let S = σt\{v};
if S ∪ {v} /∈ I(G) then set σt+1 = S = σt; otherwise, set σt+1 = S ∪ {v} with probability
λ/(1 + λ) and, mutually exclusively, set σt+1 = S with probability 1/(1 + λ).

Let PGD denote the transition matrix of the Glauber dynamics. From basic Markov
chain theories it is easy to show that the Glauber dynamics PGD is irreducible, aperiodic,
and reversible with respect to the Gibbs distribution µG,λ, which is the unique stationary
distribution (i.e., µG,λPGD = µG,λ). The mixing time of the Glauber dynamics is defined as

Tmix(PGD) = max
σ0∈I(G)

min
t∈Z≥0

{
dTV

(
P t

GD(σ0, ·), µG,λ

)
≤ 1

4

}
,

where σ0 is the initial independent set, P t
GD(σ0, ·) is the distribution of the chain after t steps

when starting from σ0, and dTV(·, ·) denotes the total variation distance.
In the past years, exciting progress has been made in understanding the mixing time of

Glauber dynamics for the hardcore model. Anari, Liu, and Oveis Gharan introduced a highly
powerful technique known as spectral independence [1], leading to significant advancements
in this area, including resolutions to major open problems regarding mixing properties. We
refer to [18, 25] for a thorough introduction of this technique. In the subcritical regime
(i.e., λ < λc(∆)), the mixing time of the Glauber dynamics was shown to be nearly linear
O(n logn) [1, 9, 5, 7]. Meanwhile, it was long known that in the supercritical regime (i.e.,
λ > λc(∆)), the mixing time could be exponentially large exp(Ω(n)) as witnessed by random
∆-regular bipartite graphs [19].
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In a very recent work [3], the mixing property is further investigated at the critical
point (i.e., λ = λc(∆)). For the upper bound, the mixing time of Glauber dynamics is
Õ(n2+4e+O(1/∆)) on any n-vertex graph of maximum degree ∆. For the lower bound, there
exists an infinite sequence of graphs such that the mixing time is Ω(n4/3), which is, in
particular, super-linear.

In this work, we present an improved mixing time upper bound for the Glauber dynamics
on the critical hardcore model.
▶ Theorem 1. Let α ≥ 0 be a constant. For any n-vertex graph G = (V,E) of maximum
degree ∆ ≥ 3, the Glauber dynamics for the hardcore model on G with fugacity λ ≤ (1 +

α√
n

)λc(∆) satisfies

Tmix(PGD) = Oα

(
n2+2e+ 2e

∆−2 log ∆
)
.

Our upper bound scales as Õ(n7.44+O(1/∆)), significantly improving the Õ(n12.88+O(1/∆))
mixing time established in [3].

Similar to [3], Theorem 1 is established via the spectral independence framework. Our
main contribution is to show that the critical hardcore model satisfies spectral independence
of order O(

√
n), improving the trivial bound of n used in [3]. We show this new spectral

independence result in a novel way by studying an online decision-making problem, which
allows us to understand a site percolation model on the infinite tree, from which spectral
independence readily follows. We provide an overview of the necessary background and
known results on spectral independence, as well as our new contribution and proof approach
in Section 2.

2 Proof Overview

2.1 Notations and definitions
Denote the set of non-negative integers by Z≥0, and the set of positive integers by Z+. For
any integers a, b ∈ Z, define a ∧ b by the minimum of a and b, i.e, a ∧ b := min{a, b}.

Let Ber(p) denote the Bernoulli distribution with success probability p ∈ [0, 1]. Let
Bin(n, p) denote the binomial distribution with number of trails n ∈ Z+ and success probab-
ility p ∈ [0, 1]. Let dTV(·, ·) denote the total variation distance. For any random variables
X,Y , let X d= Y denote that X and Y are equal in distribution.

Let G = (V,E) be a graph. For any S ⊆ V , let ∂S denote the set of neighbors of S in G,
i.e., ∂S = {v ∈ V \ S | ∃u ∈ S, {u, v} ∈ E}; and let G[S] denote the subgraph induced in G

by S, i.e., the graph with vertex set S and edge set consisting of all edges of G that have
both endpoints in S.

Let T = (V,E) be a tree rooted at r. For every vertex v ∈ V , let Tv denote the subtree
of T rooted at v that consists of all descendants of v; in particular, Tr = T . For any v ∈ V ,
let L(v) denote the set of children of v in T .

We end this subsection by defining the (t-fold) convolution of distributions on Z.
▶ Definition 2 ((t-fold) Convolution). Let µ, ν be two distributions on Z. Define a new
distribution µ ∗ ν on Z by

µ ∗ ν(k) =
+∞∑

i=−∞
µ(i)ν(k − i), ∀k ∈ Z.

We call µ ∗ ν the convolution of µ and ν. Define µ∗t where t ∈ Z+ inductively by µ∗1 = µ

and µ∗t = µ∗(t−1) ∗ µ for t ≥ 2. We call µ∗t the t-fold convolution of µ with itself.

APPROX/RANDOM 2025
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2.2 Spectral independence via coupling on trees
The core result of this work is to establish the O(

√
n)-spectral independence for the critical

hardcore model, from which Theorem 1 readily follows by sophisticated spectral independence
techniques that have been developed in a recent line of works.

The following notion of influences is needed to define the meaning of spectral independence.

▶ Definition 3 (Influence, [1]). Let µ be a distribution over {0, 1}n. For any i, j ∈ [n] such
that Prµ [σi = 0] > 0 and Prµ [σi = 1] > 0, define the (pairwise) influence from i to j as

Ψµ(i, j) := Pr
σ∼µ

[σj = 1 | σi = 1]− Pr
σ∼µ

[σj = 1 | σi = 0] .

In the setting of the hardcore model, the influences describe the correlation between
two vertices, represented as Bernoulli random variables indicating whether the vertices are
occupied. Roughly speaking, the influence of one vertex on the other represents the difference
of the marginal distribution on the second vertex when flipping the first vertex from occupied
to unoccupied.

▶ Theorem 4 (O(
√
n)-Spectral independence of critical hardcore model). Let α ≥ 0 be a

constant. Consider the hardcore model on an n-vertex graph G = (V,E) of maximum degree
∆ ≥ 3 with fugacity λ ≤ (1 + α√

n
)λc(∆). Then, for any vertex u ∈ V , we have∑

v∈V

∣∣ΨµG,λ
(u, v)

∣∣ ≤ C0
√
n,

where C0 = C0(α) > 0 is a constant depending only on α.

Theorem 4 states that the hardcore model in the regime of interest satisfies ℓ∞ spectral
independence with constant O(

√
n) (see the full version of the paper [8] and also [13]). An

analogous result for the Ising model was previously shown in [3].
Many methods have been introduced to establish the spectral independence property

for various families of distributions. Here we adopt the coupling independence approach
introduced in [6] and apply it on a related tree, known as the self-avoiding walk tree [28].
The formal definition and construction of this tree are omitted in this paper as we only need
its existence, and we refer interested readers to the works [28, 10].

We are interested in coupling two hardcore models on this tree, where in one copy the
root is fixed to be occupied while in the other it is fixed to be unoccupied. As we shall see
soon in Proposition 5, controlling the number of discrepancies between these two copies
under a simple coupling procedure enables us to deduce spectral independence. To formally
describe this coupling, we first need a few definitions. Let T = (V,E) be a tree rooted at r
of maximum degree at most ∆. Consider the hardcore model on T with fugacity λ > 0. For
each vertex v, let pv denote the probability that v is occupied in the hardcore model on the
subtree Tv, i.e., pv := PrµTv,λ

[σv = 1], where we recall that Tv is the subtree of T rooted at
v that consists of all descendants of v.

We now describe a natural vertex-by-vertex greedy coupling for the hardcore model on T
when the spin at root r is flipped.

Initialization: Xr = 1 and Yr = 0;
While there exists v ∈ V whose parent u has already been revealed in X and Y :

If Xu = Yu, then couple the whole subtree Tv perfectly, i.e., XTv
= YTv

;
If Xu = 1 and Yu = 0, then set Xv = 0 and sample Yv ∼ Ber(pv);
If Xu = 0 and Yu = 1, then sample Xv ∼ Ber(pv) and set Yv = 0;

Return (X,Y ).
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It is straightforward to check that when the greedy coupling ends, X is an independent set
distributed as PrµT,λ

[ · | σr = 1] and Y as PrµT,λ
[ · | σr = 0].

▶ Proposition 5 (Coupling on trees implies spectral independence, [4, Lemma 39], [6, Proposition
4.3]). Consider the hardcore model on an n-vertex graph G = (V,E) of maximum degree
∆ ≥ 3 with fugacity λ > 0. For any u ∈ V , there exists a tree T = TSAW(G, u) rooted at r
with maximum degree at most ∆, such that if (X,Y ) ∼ C is the greedy coupling on T , then it
holds∑

v∈V

∣∣ΨµG,λ
(u, v)

∣∣ ≤ E
(X,Y )∼C

[|X ⊕ Y | ∧ n] ,

where X⊕Y denotes the symmetric difference of two sets X,Y , and recall that |X⊕Y |∧n :=
min {|X ⊕ Y |, n}.

Hence, to establish Theorem 4, it suffices to bound the expected number of disagreements
in the greedy coupling for the hardcore model on trees when the spins at the root are distinct.

2.3 Coupling on trees via site percolation
From the greedy coupling procedure above, we observe a natural site percolation on the
tree T describing the appearance of disagreements. Every vertex v is open with probability
pv independently, representing the occurrence of a disagreement at v, that is, Xv ̸= Yv;
otherwise, the vertex v is closed. The root r is always open, i.e., pr = 1, since Xr ̸= Yr.
Our goal is to bound the size of the open cluster containing the root, consisting of all open
vertices that are connected to the root via a path of open vertices.

We now introduce some notations for the site percolation model. Let T = (V,E) be a
tree rooted at r. For any v ∈ V , let pv be the probability that v is open, and we call pv the
occupation probability of v. For simplicity, we assume pr = 1. Let P = {pv}v∈V be the list of
occupation probabilities for all vertices, and call it the occupation probability list of the site
percolation model. Finally, for the site percolation on T with occupation probability list P ,
let N(T, P ) denote the random variable representing the size of the open cluster containing
the root.

From the construction of the greedy coupling and the site percolation above, we see that
|X ⊕ Y | d= N(T, P ), where pv = PrµTv,λ

[σv = 1] for each v ∈ V \ {r}; see the full version
of the paper [8] for a formal statement. Thus, the problem is reduced to studying a site
percolation model.

In order to study this site percolation model, we need to know the conditions satisfied
by the occupation probabilities {pv}. Since these probabilities correspond to the marginal
probability of the roots in the respective subtrees, they satisfy a well-known recurrence called
the tree recursion (see Fact 21). In this work, we present a new inequality satisfied by these
marginal probabilities, which is crucial in obtaining our main spectral independence result.
In particular, Equation (1) below provides a stronger and simpler contraction property of the
tree recursion, which was not known in the literature as far as we are aware. For simplicity,
here we consider only the exact critical fugacity λ = λc(∆).

▶ Lemma 6 (Special case of Lemma 20; see also [17]). Let T = (V,E) be a tree rooted at r
with maximum degree at most ∆. Consider the critical hardcore model on T with fugacity
λ = λc(∆). For each vertex v ∈ V , let pv denote the probability that v is occupied in the
critical hardcore model on the subtree Tv rooted at v, i.e., pv := PrµTv,λ

[σv = 1]. Then, for
every non-root vertex v ∈ V \ {r}, it holds

APPROX/RANDOM 2025
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pv

∑
w∈L(v)

pw ≤
1

∆− 1 , (1)

where we recall that L(v) denotes the set of children of v.

▶ Remark 7. In [17], a potential function approach was applied to study the contraction of
the tree recursion for the subcritical hardcore model. Uncovering their result ([17, Lemma
12]), the corresponding condition they established at criticality can be stated as

√
pv

∑
w∈L(v)

√
pw ≤ 1. (2)

Our bound Equation (1) is stronger than Equation (2) since |L(v)| ≤ ∆− 1. In fact, going
through the proof in [17], one is able to recover the stronger inequality Equation (1) though
it was not stated explicitly. In this work, we provide a simpler proof of Equation (1) (and
hence Equation (2)). To establish the O(

√
n)-spectral independence at criticality, we do

require the stronger inequality Equation (1), while the weaker Equation (2) is not sufficient.

We are now ready to state our main percolation result, from which spectral independence
Theorem 4 readily follows.

▶ Theorem 8 (Main result for site percolation). Consider the site percolation model on the
infinite d-ary tree Tary

d = (V,E) rooted at r with occupation probability list P = {pv}v∈V

where pr = 1. Let N = N(Tary
d , P ) be the size of the open cluster containing the root. Suppose

the following hold:
1. For every non-root vertex v ∈ V \ {r}, it holds

pv

∑
w∈L(v)

pw ≤
1
d

; (3)

2. At the root r, it holds∑
w∈L(r)

pw ≤ c, (4)

where c > 0 is a constant.
Then, we have that for any n ∈ Z≥0,

E [N ∧ n] = O(
√
n),

where the constant in big-O depends only on c.

At this point, we transfer our original problem of bounding the mixing time and proving
critical spectral independence into a problem of site percolation on trees. In [3], the same
strategy was applied to the critical Ising model, another canonical example of graphical
models. There, the occupation probabilities are much simpler; in fact, they can all be set to
pv = 1/d, which is a uniform upper bound on the pairwise influence on v from its parent.
We remark that the main distinction of [3] and our work lies in the application of Lemma 6
(corresponding to the condition Equation (3)) which substantially extends the uniform setting,
pv = 1/d for all v, appeared in the critical Ising model.



Z. Chen and T. Jiang 51:7

2.4 Site percolation on trees via online decision making

The main part of the paper aims to prove Theorem 8. We introduce a novel approach to study
such a site percolation model on the infinite tree, by considering an online decision-making
game.

Our strategy is to upper bound E [N ∧ n] by understanding the worst-case choice of
occupation probabilities {pv}. We do this by changing the perspective and thinking as an
adversary who is allowed to pick the occupation probabilities. Namely, we study an online
decision-making problem where a player is allowed to pick the occupation probabilities {pv}
every time we need to reveal the status (open or closed) of a few vertices. These probabilities
can be arbitrary as long as they satisfy the requirements Equation (3), and the goal of the
player is to maximize E [N ∧ n].

To be more specific, let At denote the number of active vertices at time t, where a vertex is
said to be active if (i) it is open; (ii) there is an open path from it to the root; (iii) the status of
its children has not been fully revealed. At the beginning, A0 = 1 since only the root is open
and we have not revealed any other vertex. Then, the player picks the occupation probabilities
for both the children and the grandchildren of r; these probabilities are required to satisfy
Equation (3). By sampling from the corresponding Bernoulli distributions independently,
we reveal the number of grandchildren of r, denoted as X1, that are active (i.e., open
and connected to r). With r being deactivated, the number of active vertices becomes
A1 = A0 − 1 +X1 = X1. The game is then repeated. Whenever there exists an active vertex
v at round t, the player picks occupation probabilities of the children and grandchildren of v
satisfying Equation (3), and, after the number Xt of open grandchildren connected to v is
revealed, updates At = At−1 − 1 +Xt. This process stops when there are no active vertices,
i.e., when At = 0.

We remark that we consider only active vertices at even levels because Equation (3)
imposes requirements on two adjacent levels.

Suppose the game stops after k rounds. Then, the number of open vertices connected
to the root at even levels is precisely k, since every such vertex becomes active at some
point and is deactivated at some other time. Therefore, controlling the number of rounds
played in the game allows us to bound E [Ne ∧ n] where Ne is the number of vertices at
even levels that are in the open cluster containing the root in the site percolation. (Since
E [Ne ∧ n] =

∑n
m=1 Pr [Ne ≥ m], in the actual proof we aim to bound Pr [Ne ≥ m] for every

m for simplicity. And we can bound Pr [Ne ≥ m] by the maximum probability that the
game lasts for at least m rounds.) Finally, combining the upper bound of E [Ne ∧ n] with
Equation (4), it is then not hard to upper bound E [N ∧ n] as wanted.

Therefore, our goal is to determine the optimal strategy of the player when such an
online decision-making game is played. We deal with this in Section 3 where we state and
prove our main result, Theorem 19. While a natural guess of the optimal strategy is to set
every occupation probability pv to be 1/d so that Equation (3) is satisfied, we show that
the optimal strategy of the player should set pvpw = 1/d for one child w ∈ L(v) of v and
set pw′ = 0 for all other children w′ ∈ L(v). We remark that such choices of {pv} are not
realizable as marginal probabilities in the hardcore model since they do not satisfy the tree
recursion and are way too large (in reality, pv = O(λ) = O(1/d) at criticality); however, they
are sufficient to provide meaningful upper bounds on E [N ∧ n] as we need.

We present the proof of Theorem 8 about site percolation on the infinite tree in Section 4,
utilizing Theorem 19. Finally, we deduce spectral independence (Theorem 4) and rapid
mixing (Theorem 1) from Theorem 8; see the full version of the paper [8] for details.

APPROX/RANDOM 2025
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Algorithm 1 Online decision-making game.

Input: A family P of distributions on Z≥0, initial number of tokens a ∈ Z≥0
Initialization: t← 0, A0 ← a

1: while At ≥ 1 do
2: t← t+ 1;
3: Player chooses a distribution πt ∈ P;
4: Sample Xt ∼ πt;
5: At ← At−1 − 1 +Xt;
6: end while

3 Online Decision-Making Problem

In this section, we introduce an online decision-making problem that serves as a key tool in
proving our main result for site percolation (Theorem 8), and show the optimal strategy as
our main result for this section.

First of all, we describe the setup of the online decision-making game in Section 3.1. Then,
we define a partial order called second-order stochastic dominance, which plays an important
role in finding the optimal strategy, and show some basic properties in Section 3.2. After
that, we introduce the Poisson binomial distribution in Section 3.3 and some properties of the
random walk hitting time in Section 3.4, which are crucial in the proof of the optimal strategy.
Finally, in Section 3.5, we state and prove our main result for the online decision-making
game and show the optimal strategy of the game.

3.1 Setup of online decision making

We now describe precisely an online decision-making game under a slightly more general
setting.

In the online decision-making game, the player maintains some number of tokens (corres-
ponding to active vertices). Let At denote the number of tokens the player owns after round
t. At the beginning, the player has A0 = a tokens. There is a family P of distributions on
non-negative integers Z≥0 (corresponding to choices of occupation probabilities). For round
t, the player spends one token, assuming At−1 ≥ 1, and chooses a distribution πt ∈ P . Then,
a sample Xt ∼ πt is generated independently, and the player receives Xt tokens as a reward.
The number of tokens the player owns then becomes At = At−1 − 1 +Xt. The game ends
when the player uses up all the tokens, i.e., the first time At = 0. We denote this stopping
time by τ . Note that it is possible the game never stops, in which case τ =∞. The goal of
the player is to survive for m rounds for some given integer m ∈ Z≥0. That is, the player
wins if and only if τ ≥ m. We present the process of the online decision-making game in
Algorithm 1.

Define a strategy S for the player by a mapping S : Z+ × Z+ → P. For any k, a ∈ Z+,
S(k, a) is defined by the distribution the player will choose when they needs to survive for k
more rounds to win and currently has a tokens. For example, if the winning requirement
is m rounds, then at the beginning of round t, the player will choose the distribution
πt = S(m− t+ 1, At−1) assuming At−1 ≥ 1.

For m, a ∈ Z≥0, define the winning probability under strategy S to be

φS
m(a) := PrS [τ ≥ m | A0 = a] .
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Namely, φS
m(a) is the probability that the game lasts for at least m rounds, assuming the

player has a tokens at the beginning and uses strategy S. We further define

φ∗
m(a) := sup

S
φS

m(a).

The following lemma establishes a simple recursive formula for the optimal winning
probabilities and the existence of an optimal strategy.

▶ Lemma 9. Let P be a family of distributions on Z≥0. Suppose the metric space (P, dTV)
is compact, where we recall dTV is the total variation distance. Then the following holds:
1. For all m, a ∈ Z+,

φ∗
m(a) = max

π∈P
E

X∼π

[
φ∗

m−1(a− 1 +X)
]

;

2. There exists a strategy S∗ : Z+ × Z+ → P such that φ∗
m(a) = φS∗

m (a) holds for any
m, a ∈ Z+.

Proof. We note that φS∗

m (a) is well-defined if S∗(k, ·) is defined for all 1 ≤ k ≤ m, and the
result of S∗(k, ·) (k > m) does not matter. In our proof, when we write φS∗

m (a), we only
guarantee that for all 1 ≤ k ≤ m, S∗(k, ·) is defined.

We verify the recurrence and define the strategy inductively on m.
For the base case m = 1, by definition, φ∗

1(a) = 1[a ≥ 1], and φ∗
0(a) = 1 for all

a ∈ Z≥0. Then Item 1 immediately follows. Furthermore, we can define S∗(1, ·) := π0 so
that φ∗

1(a) = φS∗

1 (a) holds for any a ∈ Z+, where π0 ∈ P is an arbitrary distribution.
Now suppose m ≥ 2. Suppose Items 1 and 2 hold for m − 1. Let a ∈ Z+. Suppose

the player chooses π ∈ P in the first round and obtains X ∼ π tokens; hence, after the
first round, the player has A1 = A0 − 1 + X = a − 1 + X tokens. Then to maximize
the winning probability, i.e., to maximize the probability that survive for at least m − 1
rounds when having a − 1 + X tokens initally, the player should use strategy S∗(k, ·)
(k = 1, · · · ,m− 1), and then the winning probability is φ∗

m−1(a− 1 +X) by the induction
hypothesis φ∗

m−1(a− 1 +X) = φS∗

m−1(a− 1 +X). Therefore, if the player chooses π ∈ P in
the first round, the maximum winning probability for the player is EX∼π

[
φ∗

m−1(a− 1 +X)
]
.

Hence, to obtain the maximum winning probability, we need to choose an optimal π which
maximizes EX∼π

[
φ∗

m−1(a− 1 +X)
]
. By compactness, such optimal π exists, therefore Item 1

for m holds, and we can define S∗(m, ·) by S∗(m, a) := arg maxπ∈P EX∼π

[
φ∗

m−1(a− 1 +X)
]

for all a ∈ Z+. Then it is straightforward that φ∗
m(a) = φS∗

m (a) holds for any a ∈ Z+. ◀

3.2 Second-order stochastic dominance
Our goal is to find an optimal strategy for the online decision-making game. A first
thought that one may consider is to use first-order stochastic dominance (also simply
called stochastic dominance). For any two distributions µ, ν over Z≥0, µ is (first-order)
stochastically dominated by ν if and only if Prµ [X ≥ i] ≤ Prν [Y ≥ i] for all i ∈ Z≥0. An
immediate corollary is that µ is stochastically dominated by ν implies Eµ [X] ≤ Eν [Y ]. If
there is a largest distribution under stochastic dominance in P, then it can be easily proved
that the player can attain the maximum winning probability when always picking the largest
distribution. However, the largest distribution under stochastic dominance does not exist in
our case, since any two different distributions with the same mean are not comparable under
stochastic dominance. In fact, in our application, there are infinitely many distributions
attaining the largest mean in P. Therefore, there is no largest distribution under stochastic
dominance and we need something else.
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It turns out that second-order stochastic dominance (see, e.g., [16, 15] for more background
and applications) can address the problem of the lack of a largest distribution. However, as a
trade-off, it is not always true that the player can achieve the maximum winning probability
when always choosing the largest distribution under second-order stochastic dominance.
Nonetheless, if the largest distribution satisfies some nice properties (see Theorem 19 for
details), this is indeed true.

We now define second-order stochastic dominance.

▶ Definition 10 (Second-order stochastic dominance). We define a partial order “⪯(2)”
called second-order stochastic dominance on the family of distributions on Z≥0 with finite
expectations. For two distributions µ, ν on Z≥0 with finite expectations, µ ⪯(2) ν if and only
if

E
X∼µ

[X ∧ i] ≤ E
Y ∼ν

[Y ∧ i] , ∀i ∈ Z+.

The following proposition shows some classical equivalent definitions of second-order
stochastic dominance.

▶ Proposition 11 (Equivalent definitions of second-order stochastic dominance [20, Theorem
8.1.1], see also [22]). Let µ, ν be distributions on Z≥0 with finite expectations. The following
definitions are equivalent:
1. µ ⪯(2) ν;
2. (Increasing concave order) For any non-decreasing concave function f , it holds:

E
X∼µ

[f(X)] ≤ E
X∼ν

[f(X)] ;

3. There exists a coupling C of µ and ν such that

E
(X,Y )∼C

[X − Y | Y = i] ≤ 0, ∀i ∈ Z≥0.

The following two lemmas offer easy ways to find an “upper bound” of a given distribution
in the sense of “⪯(2)”, and are helpful to us in identifying the largest distribution in P.

▶ Lemma 12. Let µ be a distribution on Z≥0 with expectation Eµ [X] ≤ γ ≤ 1. Then
µ ⪯(2) Ber(γ).

Proof. For any i ∈ Z+, we have

E
X∼µ

[X ∧ i] ≤ E
X∼µ

[X] ≤ γ = E
Y ∼Ber(γ)

[Y ∧ i] ,

which implies µ ⪯(2) Ber(γ). ◀

▶ Lemma 13. If µ1 ⪯(2) ν1 and µ2 ⪯(2) ν2, then µ1 ∗ µ2 ⪯(2) ν1 ∗ ν2, where the operator “*”
represents convolution (see Definition 2).

Proof. Let X1, X2 be independent random variables with distributions µ1, µ2 respectively.
Let Y1, Y2 be independent random variables with distributions ν1, ν2 respectively. We also
assume X1, Y2 are independent and X2, Y1 are independent. For i = 1, 2, by µi ⪯(2) νi and
Proposition 11, there exists a coupling Ci of (Xi, Yi), such that

E
(Xi,Yi)∼Ci

[Xi − Yi | Yi = j] ≤ 0, ∀j ∈ Z≥0. (5)
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Let X = X1 +X2, Y = Y1 + Y2. Then µ1 ∗ µ2 is the law of X, and ν1 ∗ ν2 is the law of Y .
Let C be the joint distribution of (X,Y ) assuming (Xi, Yi) ∼ Ci (i = 1, 2). It is clear that C
is a coupling of µ1 ∗ µ2 and ν1 ∗ ν2. For any k ∈ Z≥0,

E
(X,Y )∼C

[X − Y |Y = k] =
2∑

i=1
E

(X1,Y1)∼C1,
(X2,Y2)∼C2

[Xi − Yi|Y = k]

=
2∑

i=1

k∑
j=0

Pr
(X1,Y1)∼C1,
(X2,Y2)∼C2

[Yi = j|Y = k] E
(Xi,Yi)∼Ci

[Xi − Yi|Yi = j]

≤ 0,

where the last inequality follows from Equation (5). Then Lemma 13 follows from Proposi-
tion 11. ◀

3.3 Poisson binomial distribution
As hinted by Item 2 of Proposition 11, in order to apply second-order stochastic dominance,
we hope to have some non-decreasing concave functions as the objective/utility function
in our decision making. It turns out that when the largest distribution (under “⪯(2)”) is a
Poisson binomial distribution (see, e.g., [26] for a thorough introduction) with expectation at
least 1, the maximum winning probability φ∗

m(a) is non-decreasing and concave with respect
to a.

We first define the Poisson binomial distribution.

▶ Definition 14 (Poisson binomial distributions (random variables)). We call a random variable
X a Poisson binomial random variable if it can be expressed as a finite sum of independent
Bernoulli random variables, i.e., X =

∑ℓ
i=1 Xi where ℓ ∈ Z+, Xi ∼ Ber(pi) are independent.

We call a distribution a Poisson binomial distribution if it is the distribution of a Poisson
binomial random variable.

An immediate property is the following.

▶ Fact 15. If X and Y are two independent Poisson binomial random variables, then X +Y

is also a Poisson binomial random variable.

The crucial property that guarantees the concavity of the maximum winning probability
is that a Poisson binomial random variable is unimodal with a mode near the mean of the
random variable. We next define unimodality and state the property.

▶ Definition 16 (Unimodality [12]). Let π be a distribution on Z. Let m be an integer. The
distribution π is called unimodal about m if

π(i) ≥ π(i− 1), ∀i ≤ m and π(i) ≥ π(i+ 1), ∀i ≥ m,

and we call m a mode of π.
Let Z be a random variable with distribution π. The random variable Z is called unimodal

about m if π is unimodal about m.

▶ Proposition 17 (Darroch’s rule for the mode [11]). Let Z be a Poisson binomial random
variable. Let q be the expectation of Z. Then there exists m ∈ {⌊q⌋ , ⌊q⌋+ 1} if q /∈ Z, or
m = q if q ∈ Z, such that Z is unimodal about m. In particular,

Pr [Z = i] ≥ Pr [Z = i− 1] , ∀i ≤ q and Pr [Z = i] ≥ Pr [Z = i+ 1] , ∀i ≥ q.
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3.4 Random walk hitting time
The following proposition of the random walk hitting time will be used in deriving the
formula of the maximum winning probability and proving the concavity of the maximum
winning probability.

▶ Proposition 18. Let {Wt}∞
t=0 be a random walk on Z. Specifically, Wt =

∑t
i=1 Yi,

where Yi are independent and identically distributed integer-valued random variables sat-
isfying Pr [Y1 ≥ −1] = 1 (left-continuous). For any a ∈ Z+, define the hitting time
τ−a := min {t ≥ 0 |Wt = −a}, with the convention that τ−a := ∞ if Wt ̸= −a for all
t ≥ 0. Then the following holds:
1. ([27]) For every m, a ∈ Z+,

Pr [τ−a = m] = a

m
Pr [Wm = −a] ;

2. For any a ∈ Z+,

Pr [τ−a =∞] = 1−
(

1− Pr [τ−1 =∞]
)a

≤ aPr [τ−1 =∞] .

We refer the readers to [27] for the proof of Item 1, and the full version of the paper [8] for
the proof of Item 2.

3.5 Determining optimal strategy
In this subsection, we show our main result for the online decision-making game. The
following theorem implies that if the largest distribution π∗ (under “⪯(2)”) of P exists and
is a Poisson binomial distribution with expectation at least 1, then an optimal strategy S∗

for the player is S∗ ≡ π∗, in other words, the player can achieve the maximum winning
probability when always choosing the largest distribution.

▶ Theorem 19 (Main result for online decision making). Let P be a family of distributions on
Z≥0. Suppose the metric space (P, dTV) is compact. Suppose there exists a largest distribution
in P under the partial order “⪯(2)”, denoted by π∗. Furthermore, suppose π∗ is a Poisson
binomial distribution with expectation at least 1. Then the following holds:
1. (Recurrence) For any m, a ∈ Z+,

φ∗
m(a) = E

X∼π∗

[
φ∗

m−1(a− 1 +X)
]

;

Namely, the player will pick π∗ to achieve the maximum winning probability, and the
optimal strategy is S∗(m, a) = π∗ for all m, a ∈ Z+.

2. (Formula) Let Z1, Z2, · · · be independent and identically distributed random variables
with distribution π∗, and let St =

∑t
i=1(Zi − 1). For any a ∈ Z+, define τ−a := min{t ≥

0 | St = −a}, with the convention that τ−a := ∞ if St ̸= −a for all t ≥ 0. For any
m, a ∈ Z+, it holds that

φ∗
m(a) = Pr [τ−a ≥ m] =

∑
t≥m

a

t
Pr [St = −a] + Pr [τ−a =∞] ;

3. (Concavity) For any m ∈ Z+, the function φ∗
m is concave:

2φ∗
m(a) ≥ φ∗

m(a− 1) + φ∗
m(a+ 1), ∀a ∈ Z+.
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We will prove by induction on m. The recurrence follows from the concavity of the
maximum winning probability and Proposition 11 about second-order stochastic dominance.
Given the recurrence, we obtain the formula using Proposition 18 about the random walk
hitting time. Finally, we derive concavity using the formula and the fact that π∗ is a Poisson
binomial distribution and hence satisfies unimodality with mode near the mean.

Proof. We prove by induction on m.
Base case: m = 1. By definition, φ∗

1(a) = 1[a ≥ 1]. It is easy to check that Items 1 and 3
hold for m = 1. For Item 2, the first equality holds trivially for m = 1, the proof for the
second equality for m = 1 is the same as that for arbitrary m ≥ 2, i.e., applying Item 1 of
Proposition 18, which we will show in the inductive step below.
Inductive step. For any m ≥ 2, suppose Items 1–3 hold for m− 1, and we aim to prove
Items 1–3 hold for m.

1. Recurrence for m
By Lemma 9, it holds that

φ∗
m(a) = max

π∈P
E

X∼π

[
φ∗

m−1(a− 1 +X)
]
. (6)

By definition, it is clear that φ∗
m−1(a− 1 +X) is a non-decreasing function with respect to

X. By Concavity for m− 1, φ∗
m−1(a− 1 +X) is a concave function with respect to X. By

assumption, π ⪯(2) π
∗ holds for any π ∈ P . For any π ∈ P , applying the equivalence between

Item 1 and Item 2 of Proposition 11 with µ = π, ν = π∗ and f(X) = φ∗
m−1(a− 1 +X), it

holds that

E
X∼π

[
φ∗

m−1(a− 1 +X)
]
≤ E

X∼π∗

[
φ∗

m−1(a− 1 +X)
]
. (7)

Equation (6) and Equation (7) imply Recurrence for m.
2. Formula for m
We first explain why φ∗

m(a) = Pr [τ−a ≥ m] is true intuitively. Recall that Z1, Z2, · · · are
independent and identically distributed random variables with distribution π∗, representing
the player choosing the largest distribution π∗ every time. Then St =

∑t
i=1(Zi−1) represents

the net income of tokens after round t when the player chooses the largest distribution π∗

every time. Then, τ−a is the first time that the net income of tokens is −a, i.e., the time the
game stops if the player initially gets a tokens. Therefore, Pr [τ−a ≥ m] is the probability that
the game lasts for at least m rounds when the player chooses the largest distribution π∗ every
time. Then φ∗

m(a) = Pr [τ−a ≥ m] follows from the fact that maximum winning probability
can be obtained from choosing π∗ every time, where the fact follows from Recurrence for
1, 2, · · · ,m.

We next prove φ∗
m(a) = Pr [τ−a ≥ m] formally from the induction hypothesis. For any

a ∈ Z+, we have that

φ∗
m(a) = E

X∼π∗

[
φ∗

m−1(a− 1 +X)
]

(Recurrence for m)

=
∞∑

i=0
π∗(i) Pr

[
τ−(a−1+i) ≥ m− 1

]
(Formula for m− 1)

=
∞∑

i=0
Pr [Z1 = i] Pr [τ−a ≥ m | Z1 = i]

= Pr [τ−a ≥ m] ,

as desired.
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For the the second equality of Formula for m, we apply Item 1 of Proposition 18 with
Yt = Zt − 1 and Wt =

∑t
i=1 Yi =

∑t
i=1(Zi − 1) = St. Then it follows

Pr [τ−a ≥ m] =
∞∑

t=m

Pr [τ−a = t] + Pr [τ−a =∞]

=
∞∑

t=m

a

t
Pr [St = −a] + Pr [τ−a =∞] ,

as desired.
3. Concavity for m
For any a ≥ 2, it holds that

2φ∗
m(a) = E

X∼π∗

[
2φ∗

m−1(a− 1 +X)
]

(Recurrence for m)

≥ E
X∼π∗

[
φ∗

m−1(a− 2 +X) + φ∗
m−1(a+X)

]
(Concavity for m− 1)

= E
X∼π∗

[
φ∗

m−1(a− 2 +X)
]

+ E
X∼π∗

[
φ∗

m−1(a+X)
]

= φ∗
m(a− 1) + φ∗

m(a+ 1). (Recurrence for m)

It remains to prove the case a = 1, i.e.,

2φ∗
m(1) ≥ φ∗

m(2).

By Formula for m,

φ∗
m(1) =

∞∑
t=m

1
t

Pr [St = −1] + Pr [τ−1 =∞]

=
∞∑

t=m

1
t

Pr
[

t∑
i=1

Zi = t− 1
]

+ Pr [τ−1 =∞] ,

φ∗
m(2) =

∞∑
t=m

2
t

Pr
[

t∑
i=1

Zi = t− 2
]

+ Pr [τ−2 =∞] .

It suffices to prove

Pr
[

t∑
i=1

Zi = t− 1
]
≥ Pr

[
t∑

i=1
Zi = t− 2

]
, ∀t ∈ Z+, (8)

and

2 Pr [τ−1 =∞] ≥ Pr [τ−2 =∞] . (9)

For any t ∈ Z+, since π∗ is a Poisson binomial distribution, by Fact 15,
∑t

i=1 Zi is a
Poisson binomial random variable. By Proposition 17, we have

Pr
[

t∑
i=1

Zi = j

]
≥ Pr

[
t∑

i=1
Zi = j − 1

]

for any j ≤ q, where q = E
[∑t

i=1 Zi

]
= tE [Z1] ≥ t, which implies Equation (8).

Applying Item 2 of Proposition 18 with a = 2 yields Equation (9). ◀
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4 Site Percolation on Infinite Tree

In this section, we aim to prove the main result for the site percolation model Theorem 8
and show that it can be applied to the critical hardcore model.

In Section 4.1, we prove Lemma 6 about a contraction property of the tree recursion
of the hardcore model, which indicates that the main result for the site percolation model
Theorem 8 can be applied to the critical hardcore model. In Section 4.2, we prove the main
result for the site percolation model Theorem 8 by applying the online decision-making game
introduced in Section 3.

4.1 Contraction of tree recursion: Proof of Lemma 6
In this subsection, we prove a general version of Lemma 6. In the general version, we extend
the domain of the fugacity λ from at most the critical fugacity to at most (1 + ε) times
the critical fugacity. And the original version (Lemma 6) can be obtained simply by letting
ε = 0.

▶ Lemma 20 (General version of Lemma 6). Let T = (V,E) be a tree rooted at r with
maximum degree at most ∆. Let ε ≥ 0 be a constant. Consider the hardcore model on
T with fugacity λ ≤ (1 + ε)λc(∆). For each vertex v ∈ V , let pv denote the probability
that v is occupied in the hardcore model with fugacity λ on the subtree Tv rooted at v, i.e.,
pv := PrµTv,λ

[σv = 1]. Then, for every non-root vertex v ∈ V \ {r}, it holds

pv

∑
w∈L(v)

pw ≤
1 + eε
∆− 1 .

The following well-known fact gives a natural recurrence of the probability of the root
being occupied in the hardcore model of subtrees.

▶ Fact 21 (Tree recursion, [28]). For {pv} defined in Lemma 20, and for any v ∈ V , it holds
that

pv

1− pv
= λ

∏
w∈L(v)

(1− pw).

Proof of Lemma 20. Fix v ∈ V \ {r}. Let d = ∆− 1. Then v has at most d children, i.e.,
|L(v)| ≤ d.

By tree recursion Fact 21, we have

pv

1− pv
= λ

∏
w∈L(v)

(1− pw) ≤ λ

1− 1
d

∑
w∈L(v)

pw

d

= λ(1− p̄)d,

where p̄ = 1
d

∑
w∈L(v) pw, and the inequality follows from the AM-GM inequality and

|L(v)| ≤ d. Therefore,

pv

∑
w∈L(v)

pw ≤
λ(1− p̄)d

1 + λ(1− p̄)d

∑
w∈L(v)

pw = dp̄
λ(1− p̄)d

1 + λ(1− p̄)d
.

Set

f(x) = x
λ(1− x)d

1 + λ(1− x)d
, x ∈ [0, 1].
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Since p̄ ∈ [0, 1], we have pv

∑
w∈L(v) pw ≤ dmaxx∈[0,1] f(x). We next bound maxx∈[0,1] f(x).

By standard calculus calculation, we have

f ′(x) = λ(1− x)d−1

(1 + λ(1− x)d)2 (λ(1− x)d+1 + (1 + d)(1− x)− d).

Set g(x) = λ(1−x)d+1+(1+d)(1−x)−d. Since the first factor of f ′(x) is always non-negative,
the sign of f ′(x) depends on the second factor, i.e., g(x). Clearly, g(x) is decreasing on [0, 1],
g(0) > 0, g(1) < 0, by the Intermediate Value Theorem, there exists a unique zero of g(x) on
[0, 1], denoted by x̂. Then,

max
x∈[0,1]

f(x) = f(x̂) = x̂

(
1− 1

1 + λ(1− x̂)d

)
= x̂

(
1− 1

1 + d
1−x̂ − (1 + d)

)
(by g(x̂) = 0)

= x̂+ x̂− 1
d

.

Therefore,

pv

∑
w∈L(v)

pw ≤ d max
x∈[0,1]

f(x) = (d+ 1)x̂− 1.

When ε = 0, λ ≤ λc(∆), it holds that

g

(
1
d

)
≤ λc(∆)

(
1− 1

d

)d+1
+ (1 + d)

(
1− 1

d

)
− d = 0.

By g(x) is decreasing on [0, 1], we have x̂ ≤ 1
d . Then,

pv

∑
w∈L(v)

pw ≤ (d+ 1)x̂− 1 ≤ 1
d
,

as desired.
We next prove for ε > 0. Consider f(x) = x λ(1−x)d

1+λ(1−x)d as a function with respect to both

x and λ. Let h(λ, x) = f(x) = x λ(1−x)d

1+λ(1−x)d . Then, by the result of the case ε = 0, we have
h(λ, x) ≤ 1

d2 for all λ ≤ λc(∆), x ∈ [0, 1]. For all λ > 0, x ∈ [0, 1],

h′
λ(λ, x) = x(1− x)d

(1 + λ(1− x)d)2 ≤ x(1− x)d ≤ 1
d

(
(dx+ d (1− x))

d+ 1

)d+1
= 1
d

(
d

d+ 1

)d+1
,

where the last inequality follows from the AM-GM inequality. Then, by the Mean Value
Theorem, for any λ ≤ (1 + ε)λc(∆), x ∈ [0, 1], it holds that

h(λ, x) = h(λc(∆), x) + h′
λ(λ∗, x)(λ− λc(∆)) ≤ 1

d2 + 1
d

(
d

d+ 1

)d+1
ελc(∆)

= 1
d2

(
1 + ε

(
1 + 1

d2 − 1

)d+1
)
≤ 1
d2

(
1 + εe

1
d−1

)
≤ 1 + eε

d2 ,

where λ∗ is a real number between λc(∆) and λ, and the second inequality follows from
1 + x ≤ ex. Therefore, when λ ≤ (1 + ε)λc(∆), f(x) ≤ 1+eε

d2 holds for any x ∈ [0, 1]. Then,

pv

∑
w∈L(v)

pw ≤ d max
x∈[0,1]

f(x) ≤ 1 + eε
d

,

as desired. ◀
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4.2 Site percolation on trees: Proof of Theorem 8

In this subsection, we prove a general version of Theorem 8. In the general version, we extend
the upper bound of pv

∑
w∈L(v) pw from 1

d to 1
d (1 + c1√

n
). We note the latter upper bound

can be derived from Lemma 20. The original version (Theorem 8) can be obtained simply by
letting c1 = 0, c2 = c.

▶ Theorem 22 (General version of Theorem 8). Consider a site percolation model on the
infinite d-ary tree Tary

d = (V,E) rooted at r with occupation probability list P = {pv}v∈V

where pr = 1. Let N = N(Tary
d , P ) be the size of the open cluster containing the root. Let

n ∈ Z+ be a positive integer. Suppose the following conditions hold:

1. For every non-root vertex v ∈ V \ {r}, it holds pv

∑
w∈L(v) pw ≤ 1

d

(
1 + c1√

n

)
, where

c1 ≥ 0 is a constant;
2. At the root r, it holds∑

w∈L(r)

pw ≤ c2, (10)

where c2 > 0 is a constant.
Then, it holds that E [N ∧ n] = O(

√
n), where the constant in big-O depends only on c1, c2.

We first show an upper bound with respect to Ne, the number of vertices at even levels
that are in the open cluster containing the root, and it is straightforward to prove the upper
bound with respect to N when combining Equation (10).

▶ Lemma 23. Under the setting of Theorem 22, let Ne be the number of vertices at even
levels that are in the open cluster containing the root. Then, we have

E [Ne ∧ n] = O(
√
n),

where the constant in big-O depends only on c1.

Proof of Theorem 22. Let r1, · · · , rd be d children of r. Recall that Ne is the number of
vertices at even levels that are in the open cluster containing the root. For i = 1, 2, · · · , d, let
Ni be the number of vertices at odd levels that are both in the open cluster containing the
root and Tri

, where we recall Tri
denotes the subtree rooted at ri. Let Bi = 1[ri is open] (i =

1, · · · , d). Then,

E [N ∧ n] = E

[(
Ne +

d∑
i=1

Ni

)
∧ n

]

≤ E

[
Ne ∧ n+

d∑
i=1

(Ni ∧ n)
]

= E [Ne ∧ n] +
d∑

i=1
Pr [Bi = 1]E [Ni ∧ n|Bi = 1] .

By Lemma 23, E [Ne ∧ n] = Oc1(
√
n). Similarly, E [Ni ∧ n|Bi = 1] = Oc1(

√
n) for any

1 ≤ i ≤ d.
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Therefore, there exists a constant K = K(c1) depending only on c1, such that

E [N ∧ n] ≤ E [Ne ∧ n] +
d∑

i=1
Pr [Bi = 1]E [Ni ∧ n|Bi = 1]

≤ K
√
n

(
1 +

d∑
i=1

Pr [Bi = 1]
)

≤ K
√
n(1 + c2). (Equation (10))

This shows E [N ∧ n] = Oc1,c2(
√
n) as desired. ◀

We next prove Lemma 23 by considering the process of site percolation described in
Section 2.4.

Proof of Lemma 23. Recall that in Section 2.4, we introduced a process of site percolation
working in rounds that reveals the status of all children and grandchildren of an active vertex
in each round. We note that the process in Section 2.4 is described under an adversary
setting. Here, we restate this process more precisely for a fixed site percolation model. For
convenience, we call it the site percolation process.

Let At be the number of active vertices after round t. Let Ut be the set of active vertices
after round t. We label all the vertices in V by 1, 2, · · · . At first, only the root is open and
active, and the status of all other vertices is unrevealed. Therefore, A0 = 1, U0 = {r}. For
any t ∈ Z+, at the beginning of round t, assuming At−1 ≥ 1, we choose the active vertex
with the least label in the current set of active vertices Ut−1, denoted by vt. Then reveal the
status of all the children and grandchildren of vt. To be specific, for each child or grandchild
of vt, denoted by u, sample Bu ∼ Ber(pu) independently, then let u be open if Bu = 1; be
closed if Bu = 0. Let Qt be the set of activated grandchildren of vt. We note that if a
grandchild is activated, then it is open; however, the converse does not hold. Let Xt be
the number of activated grandchildren of vt, i.e., Xt = |Qt|. Then Ut = Ut−1 \ {vt} ∪ Qt,
and At = At−1 − 1 +Xt. The process stops when there are no active vertices, i.e., the first
time At = 0. If the process stops after k rounds, we have Ne = k, because every vertex in
the open cluster containing the root at even levels becomes active at some time and will be
deactivated later in the process, and the number of rounds equals the number of deactivated
vertices. If the process never stops, we have Ne =∞.

Let V be the set of all possible active vertex sets of the site percolation process. For
any m, a ∈ Z≥0, S ∈ V with a = |S|, define the winning probability ψm(a, S) of the size
percolation process by the probability that the site percolation process will last for at least
m more rounds when currently there are a active vertices and the set of active vertices is S.
Then, for any m ∈ Z+, we have Pr [Ne ≥ m] = ψm(1, {r}).

Let πt be the law of Xt. We next find a family of distributions that contains all possible
πt. Let u1, · · · , ud be d children of vt. Let Zi be the number of children of ui that are
activated in round t. Then, we have

Xt =
d∑

i=1
Zi and E [Zi] = pui

∑
w∈L(ui)

pw ≤
1
d

(
1 + c1√

n

)
.

Then, πt = ζ1 ∗ ζ2 ∗ · · · ∗ ζd, where ζi is the law of Zi. Let D be a family of distributions
defined by

D =
{
µ1 ∗ · · · ∗ µd

∣∣∣∣Eµi [X] ≤ 1
d

(
1 + c1√

n

)
, i = 1 · · · , d

}
,
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where µ1, · · · , µd are distributions on Z≥0. Then for any t ∈ Z+, πt ∈ D, i.e., D is a family
of distributions that contains all possible πt.

The site percolation process defined above can be considered as a strategy of the online
decision-making game introduced in Section 3 with P = D. (We note that this strategy is
slightly different from the strategy defined in Section 3.1, which we will discuss later.) This
inspires us to consider the online decision-making game with P = D.

We next check D satisfies the conditions in Theorem 19. It is easy to check that the
metric space (D, dTV) is compact. Let γ = 1

d

(
1 + c1√

n

)
. We next show Bin(d, γ) is the

largest distribution in D under “⪯(2)”. First of all, Bin(d, γ) = (Ber(γ))∗d ∈ D, where we
recall that for a distribution µ, µ∗t is the t-fold convolution of µ with itself (see Definition 2).
For any µ ∈ D, we may assume µ = µ1 ∗ · · · ∗ µd, where µ1, · · · , µd are distributions on
Z≥0 with expectations at most γ. For any 1 ≤ i ≤ d, since Eµi

[X] ≤ γ, by Lemma 12, we
have µi ⪯(2) Ber (γ). By Lemma 13, we have µ = µ1 ∗ · · · ∗ µd ⪯(2) Ber (γ) ∗ · · · ∗ Ber (γ) =
(Ber (γ))∗d = Bin (d, γ). Therefore, Bin(d, γ) is the largest distribution in D under “⪯(2)”.
Furthermore, it is clear that Bin(d, γ) is a Poisson binomial distribution with expectation
dγ = 1 + c1√

n
≥ 1.

Therefore, by Theorem 19, for the online decision-making game with P = D, there is
a optimal strategy S∗(m, a) ≡ π∗ := Bin(d, γ), and the player can achieve the maximum
wining probability by using this strategy, i.e., by choosing πt = π∗ := Bin(d, γ) for each
round t ∈ Z+.

As we mentioned above, the site percolation process can be considered as a strategy for
a player playing the online decision-making game with P = D. However, the strategy of
the player here is distinct from the strategies defined in Section 3.1, in the sense that the
player (the site percolation process) maintains extra storage and uses external randomness
(i.e., the evolution of the set of active vertices) beyond provided in the game (the target
number of rounds to survive and the number of tokens) to make a decision in each round.
However, it is not hard to see intuitively that an optimal strategy should not require any
other information and should depend only on m, the target number of rounds to survive,
and a, the current number of tokens. Namely, the strategy from the site percolation process
is no better than an optimal oblivious strategy as defined in Section 3.1. We formally state
this in the following claim, whose proof is similar to Lemma 9.

▷ Claim 24. For any m ∈ Z+, a ∈ Z≥0, S ∈ V with a = |S|, it holds that

ψm(a, S) ≤ φ∗
m(a),

where φ∗
m(a) is the maximum winning probability of the online decision-making game with

P = D when the player needs to survive m more rounds to win and the current number of
tokens is a.

Claim 24 implies Pr [Ne ≥ m] = ψm(1, {r}) ≤ φ∗
m(1) holds for any m ∈ Z+. We next

bound φ∗
m(1). By Item 2 of Theorem 19, we have for any m, a ∈ Z+,

φ∗
m(a) = Pr [τ−a ≥ m] ,

where τ−a is defined in the same way as in Item 2 of Theorem 19. To be specific, let Z1, Z2, · · ·
be independent and identically distributed random variables with distribution π∗ = Bin(d, γ),
and let St =

∑t
i=1(Zi − 1), then τ−a is defined by τ−a := min{t ≥ 0 | St = −a}, with

the convention that τ−a := ∞ if St ̸= −a for all t ≥ 0. Then Pr [Ne ≥ m] ≤ φ∗
m(1) =

Pr [τ−1 ≥ m] holds for any m ∈ Z+.

APPROX/RANDOM 2025
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Let P ∗ = {p∗
v}v∈V be an occupation probability list satisfying p∗

r = 1, and p∗
v = γ for all

v ∈ V \ {r}. It is straightforward to check that τ−1
d= N(Tary

d , P ∗), where N(Tary
d , P ∗) is

the random variable representing the size of the open cluster containing the root in the site
percolation on Tary

d with occupation probability γ for all non-root vertices. For simplicity of
notation, we write N∗ as shorthand for N(Tary

d , P ∗). By [3, Lemmas 4.7 and 4.8], we have

Pr [N∗ =∞] = Oc1(n− 1
2 ) and Pr [N∗ = ℓ] = O(ℓ− 3

2 ).

Then, for any m ∈ Z+,

Pr [Ne ≥ m] ≤ Pr [τ−1 ≥ m] = Pr [N∗ ≥ m]

=
∞∑

ℓ=m

Pr [N∗ = ℓ] + Pr [N∗ =∞]

≤ K1

( ∞∑
ℓ=m

ℓ− 3
2 + n− 1

2

)
≤ K2

(
m− 1

2 + n− 1
2

)
,

where K1 = K1(c1),K2 = K2(c1) are constants depending only on c1. Therefore,

E [Ne ∧ n] =
n∑

m=1
Pr [Ne ≥ m] ≤

n∑
m=1

K2

(
m− 1

2 + n− 1
2

)
= Oc1(

√
n),

as desired. ◀

To complete the proof of Lemma 23, we prove Claim 24 by induction.

Proof of Claim 24. We prove by induction on m.
For the base case m = 1, by definition, it is easy to check

ψ1(a, S) = φ∗
1(a) = 1[a ≥ 1]

holds for any a ∈ Z≥0, S ∈ V with a = |S|.
Now suppose m ≥ 2 and Claim 24 holds for m− 1. We aim to prove Claim 24 holds for

m.
For a = 0, by definition, ψm(0,∅) = φ∗

m(0) = 0. We now assume a ≥ 1. For any S ∈ V
with |S| = a, consider that at the beginning of some round of the site percolation process,
the current set of activated vertices is S, and the process needs to last for m more rounds to
win. Let X be the number of vertices activated in this round, and S′ be the set of active
vertices after this round. Let π̂ be the law of X. Then π̂ ∈ D. After this round, the site
percolation process needs to last for m − 1 more rounds to win, and there are a − 1 + X

active vertices, and the set of active vertices is S′. Let L be the law of (X,S′). Then,

ψm(a, S) = E
(X,S′)∼L

[ψm−1(a− 1 +X,S′)]

≤ E
(X,S′)∼L

[
φ∗

m−1(a− 1 +X)
]

(induction hypothesis)

= E
X∼π̂

[
φ∗

m−1(a− 1 +X)
]

≤ sup
π∈D

E
X∼π

[
φ∗

m−1(a− 1 +X)
]

(π̂ ∈ D)

= φ∗
m(a). (Lemma 9)

Therefore, Claim 24 holds for m. By the induction principle, Claim 24 holds for all m ∈ Z+.
◁
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