
New Constructions of Pseudorandom Codes
Surendra Ghentiyala #

Cornell University, Ithaca, NY, USA

Venkatesan Guruswami #

Simons Institute for the Theory of Computing and Department of EECS and Mathematics,
University of California, Berkeley, CA, USA

Abstract
Introduced in [9], pseudorandom error-correcting codes (PRCs) are a new cryptographic primitive
with applications in watermarking generative AI models. These are codes where a collection of
polynomially many codewords is computationally indistinguishable from random for an adversary
that does not have the secret key, but anyone with the secret key is able to efficiently decode
corrupted codewords. In this work, we examine the assumptions under which PRCs with robustness
to a constant error rate exist.
1. We show that if both the planted hyperloop assumption introduced in [6] and security of a version

of Goldreich’s PRG hold, then there exist public-key PRCs for which no efficient adversary can
distinguish a polynomial number of codewords from random with better than o(1) advantage.

2. We revisit the construction of [9] and show that it can be based on a wider range of assumptions
than presented in [9]. To do this, we introduce a weakened version of the planted XOR assumption
which we call the weak planted XOR assumption and which may be of independent interest.

3. We initiate the study of PRCs which are secure against space-bounded adversaries. We show
how to construct secret-key PRCs of length O(n) which are unconditionally indistinguishable
from random by poly(n) time, O(n1.5−ε) space adversaries.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Error-correcting codes, Watermarking, Pseudorandomness

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2025.54

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2409.07580 [16]

Funding Surendra Ghentiyala: This work is supported in part by the NSF under Grants Nos. CCF-
2122230 and CCF-2312296, a Packard Foundation Fellowship, and a generous gift from Google. This
work was done while the author was visiting the Simons Institute for the Theory of Computing.
Venkatesan Guruswami: Research supported in part by a Simons Investigator award, and NSF grant
CCF-2211972.

Acknowledgements The authors would like to thank Yinuo Zhang for helpful discussion. They
would also like to thank Sam Gunn and Noah Stephens-Davidowitz for reviewing early drafts of
this work. We also wish to thank Miranda Christ for the observation that our warmup implies that
secret-key PRCs with ω(1) alphabet size and robustness to constant rate errors is trivial to achieve.

1 Introduction

The ability of malicious actors to easily and cheaply generate large amounts of AI generated
content is becoming a larger issue as generative AI models progress. Digital watermarking
mitigates some of these concerns by offering a way to generate AI content which is later easily
recognizable (to someone with the secret key) as AI generated. One may also hope to recover
other information possibly embedded in the watermark at the time of creation, like date

© Surendra Ghentiyala and Venkatesan Guruswami;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2025).
Editors: Alina Ene and Eshan Chattopadhyay; Article No. 54; pp. 54:1–54:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sg974@cornell.edu
https://orcid.org/0009-0007-6968-4059
mailto:venkatg@berkeley.edu
https://orcid.org/0000-0001-7926-3396
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2025.54
https://arxiv.org/abs/2409.07580
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

54:2 New Constructions of Pseudorandom Codes

of generation. Cryptographic watermarking leverages cryptography to give watermarking
schemes with provable guarantees, as opposed to ad-hoc schemes. In this work, we expand
the set of assumptions under which one can achieve cryptographic watermarking.

1.1 PRCs and Applications

An exciting recent work by Christ and Gunn [9] introduced the notion of pseudorandom
error-correcting codes (PRCs) with the intent to watermark generative AI models. Informally,
pseudorandom error-correcting codes are keyed coding schemes with the following three
properties (see Definition 15 and Definition 16 for details).
1. Pseudorandomness: codewords are computationally indistinguishable from random for

any algorithm which does not have the secret key.
2. Robustness: anyone with the secret key can decode corrupted codewords with overwhelm-

ing probability.
3. Soundness: any fixed x ∈ {0, 1}n has a negligible probability (where the probability

is over the key generation algorithm) of being decoded to a message by the decoding
algorithm.

One of the beautiful insights of [9] is that PRCs can be used to watermark generative
models if one simply reinterprets the generative model as a channel which corrupts the
randomness it uses. Consider an abstracted polynomial time generative algorithm Generate
that as part of its input takes in a random input seed r ∈ {0, 1}n, and produces content t ∈
{0, 1}n. We model an adversary trying to evade detection by a channel E ′ : {0, 1}n → {0, 1}n

which corrupts the content t into t̃. Furthermore, we assume that there exists an algorithm
Recover which recovers an approximation r̃ of r from t̃. The channel E = Recover◦E ′◦Generate
then acts as a corrupting channel for the input seed r.

Say we wish to watermark the output of our generative model with some message m. Let
c be a PRC codeword for m. Notice that if we run Generate seeded with c, rather than truly
random r, we obtain several desirable properties.
1. Undetectability [10]: the pseudorandomness of PRC outputs guarantees that water-

marked content is computationally indistinguishable from unwatermarked content. This
guarantees that the quality of the outputs is not degraded by watermarking.

2. Tamper resistance: applying our PRC’s robust decoding algorithm to the tampered AI
generated content E(c) lets us recover the watermark m. Therefore, the watermark is not
removed by the tampering by E ′ to the generated content.

3. Few false positives: the soundness property guarantees that for any fixed human generated
text z1 . . . zn, with overwhelming probability, the decoding algorithm will not flag it as a
corrupted codeword (and thus watermarked text).

In this work, we are concerned with new constructions of pseudorandom codes. The
assumptions required for the construction of pseudorandom codes in [9] are relatively strong
(see Section 1.3.2), and were subsequently weakened in the case of secret-key PRCs to the
existence of a local weak pseudorandom function family [18].

We restrict ourselves to constructing zero-bit PRCs (the encoded message is always “1”,
see Definition 18) which are robust to all channels which introduce errors at a rate of 1/2− ε

(for constant ε). As shown in [9], such constructions can be bootstrapped into constant rate
PRCs (see Definition 17). Furthermore, [9, 18] show how to bootstrap such constructions
into codes which are robust to other types of errors than just substitution errors.

S. Ghentiyala and V. Guruswami 54:3

1.2 Watermarking large language models
We wish to emphasize that the framework of watermarking using PRCs is not restricted to any
one type of generative AI model. However, to help make the philosophy of watermarking using
PRCs more concrete, we review how [9] instantiate a PRC based scheme for watermarking
large language models (LLMs).

Imagine an abstracted model of an LLM which works over the binary alphabet and
always outputs text of length n. Concretely, consider an efficiently computable function
f : {0, 1}∗×{0, 1}∗ → [0, 1] which takes in the prompt and the output text so far as the input
and outputs the probability p ∈ [0, 1] that the next token will be 1. The use of the binary
alphabet in f is without loss of generality since all tokens can be represented in binary. Text
generation on a prompt y ∈ {0, 1}∗ works by iteratively sampling zi ← Ber(f(y, z1 . . . zi−1))
for all i ∈ [1, n]. The final output of the LLM is then z1 . . . zn.

Let us now consider a different procedure to sample from the same distribution. We first
sample x1 . . . xn, each independently from Ber(1/2). To generate from the LLM on a prompt
y ∈ {0, 1}∗, we iteratively sample zi for i ∈ [1, n] as follows. Let pi = f(y, z1, . . . , zi−1), if
pi ≤ 1/2, sample zi from Ber(2pixi), otherwise sample zi from Ber(1 − (1 − xi)(1 − pi)).
Note that since each xi is sampled uniformly from Ber(1/2), zi is still distributed as Ber(pi),
and therefore the output distribution of the LLM on a prompt y remains unchanged from
the previous example.

The key now is to create an LLM that samples x1 . . . xn from a pseudorandom error-
correcting code. We will call this new LLM the watermarking LLM. We assume that
the original LLM is a polynomial time algorithm (formally, we need a family of LLMs
parameterized by input length for the notion of a polynomial time algorithm to make
sense, but we omit such details for the sake of exposition). Therefore, the pseudorandomness
property guarantees that the output distribution of the watermarking LLM is computationally
indistinguishable from the case when x1 . . . xn are sampled at random, which we just saw is
the same as the original LLM output distribution.

Furthermore, notice that if 0 < pi < 1, then zi = xi with probability greater than 1/2.
Therefore, if many pi are bounded away from one, the output of the watermarking LLM
is relatively close to the codeword x1 . . . xn. The watermarking LLM takes the codeword
x1 . . . xn as one of its inputs and outputs z1 . . . zn, and in this way it functions as a corrupting
channel. For sufficiently high entropy outputs, many pi are sufficiently close to 1/2, therefore
z1 . . . zn is relatively close to x1 . . . xn, and anyone with the secret key can decode z1 . . . zn,
thereby confirming that the output has been watermarked. Furthermore, the LLM output
z = z1 . . . zn is also robust to corruptions by an adversary trying to evade detection since z̃

will still be decoded by someone with a secret key assuming that ∆(z, z̃) is small (which it
will be if the adversary does not make significant changes to z). Therefore, watermarked and
edited text corresponds to corrupted PRC codewords.

For a discussion of how to watermark LLM text using PRCs as well as a other application
of PRCs (robust steganography), we refer the reader to [9].

1.3 Our results
For the purpose of watermarking, our PRCs usually need to be robust to p-bounded channels
(see Definition 14). Informally, these are channels where an adversary can arbitrarily flip any
pn bits of a codeword.

We begin with a warmup in which we present a construction under the minimal cryp-
tographic assumption of one-way functions (Theorem 20). We view this warmup as a way
to build intuition about PRCs and what assumptions we use to construct them. We also

APPROX/RANDOM 2025

54:4 New Constructions of Pseudorandom Codes

view it as an interesting result telling us what parameters we should try to achieve in our
constructions. The simple warmup PRC scheme shows that it is easy to build PRCs which
are robust to any sub-constant noise rate over the binary alphabet or robust to any constant
noise rate over increasing alphabet sizes. We therefore restrict our attention in the following
sections to constructing PRCs which are robust to a constant noise rate, which surprisingly
turns out to require much stronger assumptions and involved constructions.

1.3.1 Planted hyperloop construction
The planted hyperloop assumption, introduced in [6], asserts that a random 5-hypergraph is
distinguishable from a random 5-hypergraph with a special Θ(log n) size 3-hypergraph planted
in it with advantage at most o(1). [6] show that if both the planted hyperloop assumption
and the security of Goldreich’s PRG [17] instantiated with the predicate P5(x1, . . . , x5) =
x1 ⊕ x2 ⊕ x3 ⊕ x4x5 hold, then public key cryptography exists. We show that that similar
assumptions imply a type of public-key PRC.

▶ Theorem 1 (informal version of Theorem 21). Under the assumption used to construct
public key cryptography in [6] and o(1)-pseudorandomness of Goldreich’s PRG instantiated
with the P5(x1, . . . , x5) = x1 ⊕ x2 ⊕ x3 ⊕ x4x5 predicate, there exist public-key PRCs robust
to p-bounded channels for constant p < 1/2 and with o(1) pseudorandomness against PPT
adversaries.

Informally, by γ pseudorandomness here, we mean that any PPT algorithm can distinguish
a polynomial number of samples from random with at most γ advantage.

This result mostly follows from observing that the [6] construction exhibits some robustness
to errors. We do require some care since [6] are able to apply standard techniques to amplify
security and correctness in their public key cryptography scheme, whereas such amplification
techniques would break the robust decoding property needed in PRCs.

There are at least two ways to interpret Theorem 21. The more obvious is simply
the construction of public-key PRCs from studied cryptographic assumptions. However,
one can also view it as suggesting that either the planted hyperloop assumption or the
security of Goldreich’s PRG with the P5 predicate is a surprisingly strong assumption. In
particular, since the only other known construction of public-key PRCs relies on fairly strong
assumptions (see Section 1.3.2), this puts the assumptions of Theorem 21 into a select group
of assumptions implying public-key PRCs.

1.3.2 Revisiting [9] and planted XOR assumption
In Section 5, we revisit the assumptions under which [9] construct PRCs. Their construction
is secure if either of the following hold
1. The planted XOR assumption and polynomial security of LPN with constant noise rate
2. 2O(

√
n) security of LPN

We revisit the first of these assumptions. While polynomial security of LPN with constant
noise rate is a very well established cryptography assumption, the planted XOR assumption
(introduced in [2]) is relatively new. It is therefore the most critical vulnerability in the
[9] construction. Informally, the planted XOR assumption says that a random matrix
G ∈ {0, 1}m×n modified so that O(log n) rows xor to 0m is computationally indistinguishable
from a truly random matrix. We therefore generalize and relax the assumption to what we call
the weak planted XOR assumption (see Assumption 34). Informally, the weak planted XOR
assumption (with noise rate ε) says that a random matrix G ∈ {0, 1}m×n modified so that
O(log n) rows xor to a vector v sampled from Ber(m, ε) is computationally indistinguishable
from a truly random matrix.

S. Ghentiyala and V. Guruswami 54:5

We observe that both LPN and the weak planted XOR assumption have a noise rate
parameter, η and ε respectively. We show that there is a wide range of points along the ε, η

parameter trade-off curve for which pseudorandom codes robust to a constant noise rate
exist.

▶ Theorem 32. For efficiently computable m = poly(n), t = O(log n), η = o(1), ε =
O(log(m)/(ηm)) which are functions of n and constant p ∈ [0, 1/2), if XORm,t,ε holds
and LPN[η] holds, then there exists a (1−negl(n), 1−negl(n), negl(n))-public-key PRC which
is robust to all p-bounded channels and pseudorandom against all PPT adversaries.

One can choose to read this result as saying more about the planted XOR assumption
than the construction of PRCs. We will see that adding noise to the planted xor assumption
seems to weaken it (for which we have some minor evidence Section 5.2) and interacts nicely
with the LPN assumption. This seems to imply that the weak planted xor assumption may
be the next natural variant of the planted xor assumption to study.

1.3.3 Unconditional PRCs for space-bounded adversaries

A natural and fundamental question in this area is whether we can prove the unconditional
existence of PRCs (not based on cryptographic conjectures). To this end, we initiate the
study of PRCs which are pseudorandom against polynomial time, space-bounded adversaries.
Here we rely on the results showing that the problem of learning sparse parities (possibly
with noise) is hard for space-bounded adversaries [25, 21, 14].

▶ Theorem 2 (informal). There exists a zero-bit PRC with codeword length O(n) that is
robust to error rate p for any constant p < 1/2 and is unconditionally pseudorandom
against adversaries which have O(n3/2−ε) space and poly(n) time.

We emphasize that these results are for the one-way space model in which the adversary
has O(n3/2−ε) and tries to distinguish between a stream of random bits and a stream of
codewords (and must write down any bits from the stream it wishes to recall later).

For context, in the space-bound cryptography setting, the best secret-key cryptography
scheme where the communicating parties must store the entire length O(n) ciphertext is only
secure against O(n2) space adversaries. So while the gap between the power of the adversary
and that of the players is admittedly small in our PRC (which is essentially a secret-key
scheme with a robust decoding algorithm), the gap is still somewhat close to the best known
for security against space bounded adversaries (where there is no requirement of robustness).
To our knowledge, we are the first to study robust decoding schemes in the cryptographic
space-bounded setting.

Unfortunately, our scheme is unlikely to be practical for watermarking generative AI as
most generative models use more than O(n3/2) auxiliary space (where n is the size of the
output of the generative model). One can therefore view this result as a first step towards
practical unconditional PRCs. As the field of space-bounded cryptography progresses, one
may hope we will eventually be able to construct PRCs which are pseudorandom against
O(n5) space and poly(n) time adversaries, which may indeed be practical for watermarking
generative AI. Conversely, we believe that our scheme may already be useful for other use
cases, such as robust steganography for particular types of steganographic channels (see [9]
for details on robust steganography).

APPROX/RANDOM 2025

54:6 New Constructions of Pseudorandom Codes

1.4 Further directions
1. The construction of public-key pseudorandom codes from unstructured assumptions is

possibly the biggest question left open by this work. All known constructions rely on
structured assumptions like hardness of the learning parity with noise problem or the
planted hyperloop assumption. Even the construction of public-key PRCs from such a
strong assumption as indistinguishability obfuscation would be new and interesting.

2. The weak planted XOR assumption introduced in Section 5 merits more cryptoanalytic
study. Can we find more evidence that such an assumption is indeed weaker than the
standard planted XOR assumption?

3. It may also be interesting to study from a theoretical perspective whether there exist a
general set of generative model properties such that watermarking models with those
properties using some explicit error correcting codes (from some class of constructions)
rather than a PRC does not significantly degrade quality of model outputs.

1.5 Related work
The idea of pseudorandom error-correcting codes was introduced in [9] with the intent of
watermarking generative AI. They constructed a binary zero-bit encryption scheme robust to
the bounded adversarial substitution channel and used that to construct a binary, constant
rate PRC robust to both the bounded substitution channel and the random deletion channel.
Followup work by Golowich and Moitra [18] showed a construction of pseudorandom codes
where the alphabet size grows polynomially in the output length of the code from a zero-bit
PRC. They showed how to use such large alphabet pseudorandom codes to watermark LLM
texts so that they are robust to bounded edit-distance channels (channels allowing insertions,
substitutions, and deletions). Interestingly, their construction assumes the existence of a
O(log n)-local weak pseudorandom function family. This is quite similar to Section 4 which
(among other things), assumes the security of Goldreich’s PRG, which is O(1)-local.

PRCs are perhaps most closely related to backdoored pseudorandom generators. Back-
doored PRGs (first introduced in [26]) are pseudorandom generators where anyone with a
secret key can distinguish PRG outputs from random. Zero-bit PRCs can just as well be
thought of as backdoored PRGs where the mechanism to distinguish PRG outputs from
random is robust to errors in its input.

The planted hyperloop construction of public-key cryptography [6] is itself based on [4]
and [17]. These all belong to lines of work labeled expander-based cryptography which utilize
or change the structure of expander graphs to build cryptographic primitives [24].

Section 6 is based on [25, 21, 14], which show that the problem of learning sparse parities
with noise is hard for space-bounded algorithms. These results are intimately connected
to the area of space-bounded cryptography. In space-bounded cryptography (introduced
in [23]), it is assumed all adversaries are space-bounded (have at most, say, o(n2) space,
where n is the message length). Unlike traditional cryptography, researchers have been able
to prove unconditional results in the bounded storage setting [7, 12, 13].

2 Preliminaries

2.1 Notation
We will use the notation

([n]
k

)
to denote the set of all size k subsets of [n]. We also often use

the notation x[a,b] to denote bits a through b (inclusive) of the string x. We write Ber(n, η) to
denote the distribution x1x2 . . . xn where each bit xi ∈ {0, 1} is sampled independently from

S. Ghentiyala and V. Guruswami 54:7

Ber(η). We write BSC(p) to denote the binary symmetric channel with crossover probability
p. This is the channel where each bit is flipped with probability p and remains the same
with probability 1− p. For x, y ∈ {0, 1}n, ∆(x, y) = |{i : xi ̸= yi}| is the Hamming distance
between x and y. We also use St,n = {x ∈ {0, 1}n : |x| = t} to denote the Hamming sphere
of dimension n and radius t.

We will write x1, . . . , xn ← D to denote sampling x1, . . . , xn each independently from
a distribution D and also occasionally overload this notation by writing x1, . . . , xn ← S to
denote sampling x1, . . . , xn each independently and uniformly from the set S.

If a ∈ {0, 1}n and b ∈ {0, 1}m, then ab ∈ {0, 1}n+m denotes the concatenation of a and b.
For a matrix G ∈ {0, 1}n×m, Gi ∈ {0, 1}m is row i of G.

2.2 Probability and combinatorics
▶ Definition 3. We say a string a ∈ {0, 1}n is δ-biased if |{i : ai = 0} − {i : ai = 1}| ≤ δn.

▶ Lemma 4. Let p1, . . . , pn ∈ [0, 1/2], if Xi ∼ Bern(pi), then

Pr
X1,...,Xn

[X1 ⊕ · · · ⊕Xn = 0] = 1
2

(
1 +

n∏
i=1

(1− 2pi)
)

.

▶ Lemma 5 (Chernoff Bound [8]). Let X1, . . . , Xn be independent random variables, each
distributed as Ber(p). Let µ = np, and X = X1 + · · ·+ Xn. If δ ≥ 0, then

Pr
X1,...,Xn

[X ≥ (1 + δ)µ] ≤ e−δ2µ/(2+δ) .

If 0 < δ < 1, then

Pr
X1,...,Xn

[X ≤ (1− δ)µ] ≤ e−δ2µ/3 .

We will use the same insights as [9] to reduce the case of p-bounded adversarial channels
to the case of the hypergeometric channel. For this we need the following lemma regarding
the hypergeometric distribution. Let Hyp(N, K, n) denote the distribution of the number of
good elements chosen when choosing n elements without replacement from a population of
size N which contains K good elements.

▶ Lemma 6 ([19]). Let X ∼ Hyp(N, K, n) and p = K/N . Then for any 0 < t < K/N ,

Pr[X ≥ (p + ε)n] ≤ e−2ε2n .

▶ Lemma 7. If 0 ≤ t ≤ m ≤ n, X ∼ Hyp(n, m, t), then

1
2 + 1

2 min
m−t

n ≤pi≤ m
n−t

t∏
i=1

(1− 2pi) ≤ Pr[X is even] ≤ 1
2 + 1

2 max
m−t

n ≤pi≤ m
n−t

t∏
i=1

(1− 2pi) .

▶ Corollary 8. If 0 ≤ t ≤ m ≤ n, X ∼ Hyp(n, m, t) and p is a value maximizing |1 − 2p|
subject to (m− t)/n ≤ p ≤ m/(n− t), then

Pr[X is even] ≤ 1
2 + 1

2 |1− 2p|t, and Pr[X is odd] ≤ 1
2 + 1

2 |1− 2p|t .

APPROX/RANDOM 2025

54:8 New Constructions of Pseudorandom Codes

▶ Lemma 9. Let X1, . . . , XQ be uniformly distributed over [N].

Pr
X1,...,XQ

[∃i ̸= j, Xi = Xj] ≤ Q2

N
.

▶ Definition 10. The statistical distance (also known as the total variation distance) of two
distribution X and Y on a finite domain D is defined as

∆(X, Y) = 1
2
∑
z∈D

|Pr[X = z]− Pr[Y = z]|

We say two distributions X and Y are statistically indistinguishable if ∆(X, Y) = negl(n).

▶ Fact 11. Let A be a set and B ⊆ A. If X is uniformly distributed over A, and Y is
uniformly distributed over B, then ∆(X, Y) = 1− |B|/|A|.

2.3 Indistinguishability and LPN
For a class of functions ε, we say two distribution ensembles {Dn}n∈N, {En}n∈N are ε-
indistinguishable if for any probabilistic polynomial time, non-uniform adversary A, there
exists a function ε′ ∈ ε such that∣∣∣∣ Pr

x←Dn

[A(x) = 1]− Pr
x←En

[A(x) = 1]
∣∣∣∣ ≤ ε′(n)

We say that {Dn}n∈N and {En}n∈N are computationally indistinguishable if they are negl(n)-
indistinguishable.

The learning parity with noise (LPN) assumption is going to be critical in Section 5. For
a linear code specified by a generator matrix G, an LPN sample is generated by sampling a
random codeword Gs, and then adding some Bernoulli distributed noise e to it. The LPN
assumption says that an LPN sample is indistinguishable from random. Intuitively, the
assumption says that noisy codewords from a random linear code are indistinguishable from
random.

▶ Assumption 12. For η : N→ R which is a function of n, the LPN[η] assumption states
that for all m = poly(n) and all probabilistic poly(n) time algorithm A,∣∣∣∣∣ Pr

G← Fn×m
2 ,

s← Fm
2 ,

e← Ber(n, η)

[A(G, Gs + e) = 1]− Pr
G← Fn×m

2 ,

u← Fn
2

[A(G, u) = 1]

∣∣∣∣∣ = negl(n)

While Assumption 12 is stated for a single LPN sample, for a randomly sampled G, a
polynomial number of LPN samples would still be computationally indistinguishable from
random. This follows from a standard hybrid argument.

In our construction, we will actually rely on the following assumption where the secret s

is sampled from the same distribution as the noise. Lemma 2 of [5] shows Assumption 13
implied by Assumption 12.

▶ Assumption 13. For η : N→ R which is a function of n, the LPN[η] assumption states
that for all m = poly(n) and all probabilistic poly(n) time algorithm A,∣∣∣∣∣ Pr

G← Fn×m
2 ,

s← Ber(m, η),
e← Ber(n, η)

[A(G, Gs + e) = 1]− Pr
G← Fn×m

2 ,

u← Fn
2

[A(G, u) = 1]

∣∣∣∣∣ = negl(n)

S. Ghentiyala and V. Guruswami 54:9

2.4 Pseudorandom Codes
▶ Definition 14 ([9]). We say that a length-preserving binary channel E : {0, 1}∗ → {0, 1}∗
is p-bounded if for all n ∈ N, Pr

x←{0,1}n
[|E(x)⊕ x| > pn] ≤ negl(n).

We now define secret and public key pseudorandom codes.

▶ Definition 15 (Secret-key PRC [9]). Let Σ be a fixed alphabet. An (α, β, γ)-secret-key
pseudorandom error-correcting code (abbreviated as secret-key PRC) with robustness to a
channel E : Σ∗ → Σ∗ and pseudorandomness against a class of adversaries C is a triple of
polynomial time randomized algorithms (KeyGen, Encode, Decode) satisfying

(Syntax) There exists functions ℓ, n, k : N → N such that for all λ ∈ N, KeyGen(1λ) ∈
{0, 1}ℓ(λ), Encode : {1λ}×{0, 1}ℓ(λ)×Σk(λ) → Σn(λ), and Decode : {1λ}×{0, 1}ℓ(λ)×Σ∗ →
Σk(λ) ∪ {⊥}.
(Error correction, or robustness) For any λ ∈ N and any message m ∈ Σk(λ),

Pr
sk←KeyGen(1λ)

[Decode(1λ, sk, E(x)) = m : x← Encode(1λ, sk, m)] ≥ α

(Soundness) For any fixed c ∈ Σ∗,

Pr
sk←KeyGen(1λ)

[Decode(1λ, sk, c) = ⊥] ≥ β

(Pseudorandomness) For any adversary A ∈ C,∣∣∣∣ Pr
sk←KeyGen(1λ)

[AEncode(1λ,sk,·)(1λ) = 1]− Pr
U

[AU (1λ) = 1]
∣∣∣∣ ≤ γ

where AU means that the adversary has access to an oracle that, on any (even previously
queried) input, outputs a freshly drawn uniform value from Σn(λ).

▶ Definition 16 (Public-key PRC [9]). Let Σ be a fixed alphabet. An (α, β, γ)-public-key
pseudorandom error-correcting code (abbreviated as public-key PRC) with robustness to a
channel E : Σ∗ → Σ∗ and pseudorandomness against a class of adversaries C is a triple of
polynomial time randomized algorithms (KeyGen, Encode, Decode) satisfying

(Syntax) There exists functions ℓDec, ℓEnc, n, k : N → N such that for all λ ∈ N,
KeyGen(1λ) ∈ {0, 1}ℓDec(λ) × {0, 1}ℓEnc(λ), Encode : {1λ} × {0, 1}ℓEnc(λ) × Σk(λ) → Σn(λ),
and Decode : {1λ} × {0, 1}ℓDec(λ) × Σ∗ → Σk(λ) ∪ {⊥}.
(Error correction, or robustness) For any λ ∈ N and any message m ∈ Σk(λ),

Pr
(sk,pk)←KeyGen(1λ)

[Decode(1λ, sk, E(x)) = m : x← Encode(1λ, pk, m)] ≥ α

(Soundness) For any fixed c ∈ Σ∗,

Pr
(sk,pk)←KeyGen(1λ)

[Decode(1λ, sk, c) = ⊥] ≥ β

(Pseudorandomness) For any adversary A ∈ C,∣∣∣∣ Pr
(sk,pk)←KeyGen(1λ)

[AEncode(1λ,pk,·)(1λ, pk) = 1]− Pr
U

[AU (1λ, pk) = 1]
∣∣∣∣ ≤ γ

where AU means that the adversary has access to an oracle that, on any (even previously
queried) input, outputs a freshly drawn uniform value from Σn(λ).

APPROX/RANDOM 2025

54:10 New Constructions of Pseudorandom Codes

▶ Definition 17. For Definition 16 and Definition 15, we define k(λ)/n(λ) as the rate of a
PRC.

▶ Definition 18. We say a PRC scheme is a zero-bit PRC scheme if the only message m
that is ever encrypted is 1.

The image of the decoding function of a zero-bit scheme should only be {1,⊥} since we
know that 0 is never encoded by the PRC. Informally, a zero-bit PRC requires only that
we distinguish corrupted PRC outputs from strings which are not PRC outputs. We will
focus on zero-bit PRCs since when C is all PPT algorithms, [9] shows that the existence of
a zero-bit secret-key or public-key PRC implies the existence of a secret-key or public-key
PRC respectively which has essentially the same robustness as the original but a worse rate.
See [9] for a formal statement.

Say we have a zero-bit encryption scheme where corrupted codewords are identified
as such with probability α(λ), random words are identified as codewords with probability
α(λ)− 1/ poly(n), and any polynomial number of codewords are γ-indistinguishable from
random. This is not quite a PRC since we do not have the soundness property. However, our
next lemma shows that we can use such a scheme to construct a (1− negl(λ), 1− negl(λ), γ)
zero-bit PRC.

▶ Lemma 19. Suppose that there exist PPT algorithms (KeyGen, Encode, Decode) such that
1. There exists functions ℓDec, ℓEnc, n, k : N → N such that for all λ ∈ N, KeyGen(1λ) ∈
{0, 1}ℓDec(λ) × {0, 1}ℓEnc(λ), Encode : {1λ} × {0, 1}ℓEnc(λ) × {1} → Σn(λ), and Decode :
{1λ} × {0, 1}ℓDec(λ) × Σ∗ → {1,⊥}.

2. n(λ) = poly(λ).
3. For every d ≤ p · n(λ), d-hypergeometric channel E, and a 1− negl(λ) fraction of keys

(sk, pk)← KeyGen(1λ),

Pr
E

[Decode(1λ, sk, E(x)) = 1 : x← Encode(1λ, pk, 1)] ≥ α(λ)

where the randomness is over the randomness of the encoding algorithm and the errors of
E.

4. There exists a δ(n) = 1/ poly(n) where α(λ)−δ(λ) ≥ 1/ poly(λ) such that for a 1−negl(λ)
fraction of keys (pk, sk)← KeyGen(1λ),

Pr
x←{0,1}n

[Decode(1λ, sk, x) = 1] ≤ δ(λ) .

5. For any q = poly(λ), X1, . . . , Xq ← Enc(1λ, pk, 1) is γ-indistinguishable from
Y1, . . . , Yq ← {0, 1}n(λ).

Then for every constant ε > 0, there exists of a zero-bit (1 − negl(λ), 1 − negl(λ), γ(λ))-
public-key PRC robust to any (p− ε)-bounded channel and pseudorandom against any PPT
adversary.

Proof. See full version. ◀

3 A warmup

Here we give informal an description of a zero-bit PRC schemes with is only robust to
o(n) errors and pseudorandom against any PPT adversary. Our reasons for presenting this
warmup are twofold. First, we believe it provides intuition into what types of assumptions
are good for constructing PRCs. Second, we find it interesting that building PRCs which are

S. Ghentiyala and V. Guruswami 54:11

robust to any sub-constant error rate is surprisingly easy (Theorem 20) but building PRCs
which are robust to a constant error rate seems to require much more involved constructions.
Very similar PRF based constructions have already been described in [9, 10, 20, 1]. Though
we note that those seem to achieve robustness to any o(1/ log n) error rate, whereas the
following scheme is robust to any o(1) error rate.

We will examine a simple construction of PRCs, which, for any τ(n) = ω(1), is robust
against BSC(1/τ(n)). We choose BSC(1/τ(n)) instead of (1/τ(n))-bounded channels only
for ease of presentation and one can achieve robustness to p-bounded channels by applying
techniques similar to those used in Lemma 19.

▶ Theorem 20. Let p(n) be any o(1) function. If one-way functions exist, then there
exists a (1− negl(n), 1− negl(n), negl(n))-private-key PRC scheme robust to BSC(p(n)) and
pseudorandom against all PPT adversaries.

Proof. See full version. ◀

We see that the minimal cryptographic assumption of one-way functions lets us achieve
robustness to any o(1) error rate. We also observe that the presented PRC can be turned
into a PRC over a larger alphabet |Σ| = τ(n) which is robust to a constant error rate by
simply identifying each block of log2(τ(n)) bits with a symbol in Σ. This has the benefit
that the probability that some block of

√
τ(n) log(n) bits (in particular, one corresponding

to xi) remains unchanged when the codeword is subjected to a constant error rate channel
goes up to 1− negl(n). This resolves the bottleneck in our robustness proof above and allows
us to achieve robustness to a constant error rate. Therefore, it is trivial to construct PRCs
with superconstant alphabet size. This sets a baseline and tells us that for a scheme to be
considered non-trivial, it must be robust to a constant error rate and have constant alphabet
size.

The critical weakness of the PRF construction is that for a codeword to be decoded
correctly, all ω(log n) bits of some xi must remain intact. One approach to fix this (used to
construct secret-key PRCs in [18]) is to use a local weak PRF family so that if ∆(x, x′) being
small implies that ∆(f(x), f ′(x)) is small. A different approach is to aim for a scheme in
which the decoding algorithm looks at a small number of bits of the codeword. In particular,
if the decoding algorithm only looks at O(log n) of the the codeword, we may be able to
achieve robustness to a constant error rate. This is the intuition that guides all of our
upcoming schemes. This is also the approach guiding the scheme proposed in [9].

4 Planted hyperloop construction

In this section, we use will use the planted hyperloop assumption and the security of
Goldreich’s PRG instantiated with the P5 predicate to construct a public-key PRC scheme.

▶ Theorem 21. Let δ, m, ℓ, t be the parameters specified in Assumption 24 and p be a
constant in [0, 1/2). Under Assumption 24 and Assumption 25, there exists a (1−negl(n), 1−
negl(n), o(1))-public-key PRC robust to any p-bounded channel and pseudorandom against
all PPT adversaries.

4.1 The assumptions
We begin by reviewing the assumptions used by [6] to construct public-key cryptography.
All hypergraphs are assumed to have ordered hyperedges (a hyperedge is an ordered tuple of
vertices rather than a set of vertices).

APPROX/RANDOM 2025

54:12 New Constructions of Pseudorandom Codes

Figure 1 A public key and PRG output with a single planted hyperloop L0. The secret key is
marked in red (from [6]).

▶ Definition 22. A hyperloop is a 3-hypergraph where each vertex has degree two and we
define the size of a hyperloop as the number of hyperedges it contains.

The construction of [6] plants t = 2Θ(ℓ) hyperloops S1, . . . , St of size ℓ = O(log n) into a
random hypergraph to create a 5-hypergraph H. The secret key is the set of t hyperloops
and the public key is H. We now formally present this construction.

▶ Construction 23 ([6]). Let L0 be a fixed hyperloop of size ℓ = O(log n). H is sampled as
follows. Let:
1. L be the union of t = 2Θ(ℓ) vertex-disjoint copies of L0,
2. Q be a random 3-hypergraph with n vertices and hyperedge probability O(n−3/2−δ),
3. P = Q ∪ L where L is planted on a random subset of the vertices of Q,
4. If P has more than n3/2−δ hyperedges, output H = ⊥. Otherwise, P ′ is obtained by

adding random 3-hyperedges to P until it has m = n3/2−δ hyperedges.
5. H is obtained by randomly adding 2 vertices to each hyperedge in P ′ (where those 2

vertices will be the last two in the ordered hyperedge)
The public key is the 5-hypergraph H and the secret key is S1, . . . , St where Si ⊆ {1, . . . , m}
are they hyperedges corresponding to the ith planted copy of L0.

For consistency, we define F⊥(x) = 0(n−3/2−δ). We refer to any hypergraph generated
using Construction 23 as a planted hyperloop graph. This leads us to our first assumption.

▶ Assumption 24. For a sufficiently small constant δ, ℓ = 0.36 log n, and t = n0.75−δ, P

and Q are o(1)-indistinguishable in nO(1) time.

Assumption 24 is the planted hyperloop assumption of [6] with the exception that it assumes
o(1)-indistinguishability rather than (1− Ω(1))-indistinguishability.

Hypergraphs with certain parameters (including planted hyperloop hypergraphs) can be
used as PRGs. To show how, we review Goldreich’s PRG. Fix the predicate P5(x1, . . . , x5) =
x1 ⊕ x2 ⊕ x3 ⊕ x4x5. For an n vertex, m hyperedge, 5-hypergraph H, we define the PRG
FH : {0, 1}n → {0, 1}m as follows. On an input x, the bits of x are projected onto the
vertices of H, and bit i of FH(x) is given by applying P5 to the labeling of the vertices of
hyperedge i.

Figure 1 gives a way to visualize Goldreich’s PRG. We interpret our hypergraph H as a
bipartite graph B where the input vertices of B represent vertices of H, the output vertices
of B represent the hyperedges of H, and edge (a, b) ∈ B if and only if vertex a is contained in
hyperedge b in H. See Figure 1 for the bipartite graph visualization with an example of the
computation of FH . Our second assumption is the security of Goldreich’s PRG instantiated
with the P5 predicate.

S. Ghentiyala and V. Guruswami 54:13

▶ Assumption 25. For every δ, m = n1.5−δ, and s = poly(n), random Q belonging to
set of 5-hypergraphs on n verticies with m hyperedges, and random x1, . . . , xs ∈ {0, 1}n,
y1, . . . , ys ∈ {0, 1}m, (Q, FQ(x1), . . . , FQ(xs)) and (Q, y1, . . . , ys) are o(1)-indistinguishable
in nO(1) time.

We now justify Assumption 25. Notice that it is too much to hope for negl(n)-indistinguishabi-
lity in Assumption 25. To see why, notice that there is a Ω(1/n5) chance that the first two
hyperedges in Q contain the exact same vertices in the same order, which would cause the
first bit of the output of FQ to always equal the second bit of the output. Such a function
FQ is clearly not a PRG.

Assumption 25 is in line with standard assumption about Goldreich’s PRG [22, 11].

4.2 The construction
▶ Construction 26 (Hyperloop Construction, Hyperloop[δ, m, ℓ, t]). Let δ, m, ℓ, t be efficiently
computable functions of the security parameter n.

KeyGen(1n): Sample H and S as in Construction 23 conditioned on the last two vertices
of each hyperedge in S1 being pairwise disjoint. output (sk = S, pk = H).
Encode(1n, H, 1): Sample u← {0, 1}n and output FH(u).
Decode(1n, S1, x): Compute w =

⊕
j∈S1

xj. If w = 0, output 1, otherwise output ⊥.

4.3 Robustness
We first review a basic fact about decoding in planted hyperloop graphs when the output is
not subjected to errors and then show that this decoding mechanism is robust to errors.

▶ Lemma 27 (Claim 1 in [6]). If H, S come from Construction 23 where the hyperedges of
S1 are disjoint, if we sample x uniformly at random from {0, 1}m and let y = FH(x), then
w =

⊕
j∈S1

yj has bias 2−ℓ towards being 0.

Proof. See full version. ◀

We now use this to prove that the output of Goldreich’s PRG instantiated with planted
hyperloop graphs is indeed a robust to errors.

▶ Lemma 28. Let δ, m, ℓ, t be the parameters specified in Assumption 24 and p be any
constant in [0, 1/2). There exists some polynomial p(n) such that for Construction 26, for
all d ≤ pm, for all keys (sk, pk)← KeyGen(1n),

Pr
E

[Decode(1n, sk, E(x)) = 1 : x← Encode(1n, pk, 1)] ≥ 1
2 + 1

p(n) .

Here E is the d-hypergeometric channel and the randomness is over the randomness of the
encoding algorithm and the errors of E.

Proof. See full version. ◀

4.4 A form of soundness
▶ Lemma 29. Let δ, m, ℓ, t be the parameters specified in Assumption 24. For Construction 26,
for any key pair (pk, sk)← KeyGen(1n),

Pr
x←{0,1}n

[Decode(1n, sk, x) = 1] = 1/2 .

Proof. See full version. ◀

APPROX/RANDOM 2025

54:14 New Constructions of Pseudorandom Codes

4.5 Pseudorandomness
▶ Lemma 30. Let δ, m, ℓ, t be the parameters specified in Assumption 24. Under As-
sumption 24, H is o(1)-indistinguishable from a random 5-hypergraph with n vertices and
m = n1.5−δ edges.

Proof. See full version. ◀

▶ Lemma 31. Let δ, m, ℓ, t be the parameters specified in Assumption 24. Under Assump-
tion 24 and Assumption 25, the outputs of Construction 26 are o(1)-indistinguishable from
random by any PPT adversary.

Proof. See full version. ◀

4.6 Putting it all together
Proof of Theorem 21. See full version. ◀

The o(1) pseudorandomness in Theorem 21 is not ideal, but for the purpose of watermark-
ing rather than security, seems tolerable. There is only a o(1) probability that watermarking
will ever have any noticeable effect (to someone who does not have the secret key).

5 The weak planted XOR construction

Christ and Gunn [9] gave a scheme which is secure if both the planted XOR assumption and
polynomial hardness of LPN with constant noise rate hold. 1 While polynomial hardness of
LPN with constant noise rate is a well believed assumption, the planted XOR assumption is
a non-standard and relatively unstudied assumption. Therefore, the conjunction of these two
assumptions is quite a strong assumption. Therefore, it seems plausible that a scheme based
on a strengthened LPN assumption and a weakened planted XOR assumption (denoted
XORm,t,ε) is more secure than the one presented in [9], and this is what we show in this
section.

▶ Theorem 32. For efficiently computable m = poly(n), t = O(log n), η = o(1), ε =
O(log(m)/(ηm)) which are functions of n and constant p ∈ [0, 1/2), if XORm,t,ε holds
and LPN[η] holds, then there exists a (1−negl(n), 1−negl(n), negl(n))-public-key PRC which
is robust to all p-bounded channels and pseudorandom against all PPT adversaries.

5.1 The assumption
Let us define D0(m, n) as the uniform distribution over {0, 1}n×m and we will now define
the distribution D1(n, m, t, ε) which corresponds to the distribution of matrices where we
strategically implant a low weight vector in the row space.

▶ Construction 33 (Generalization of [2]). We define the distribution D1(n, m, t, ε)
1. Sample G← {0, 1}n×m,
2. Choose a random tuple (a1, . . . , at) ⊆ [n]t such that i ̸= j implies ai ̸= aj,
3. Let u = Ga1 ⊕ · · · ⊕Gat−1 , v ← Ber(m, ε), and update Gat

to u + v

4. Output (G, s) where s ∈ {0, 1}n is the t sparse indicator vector for (a1, . . . , at).

1 For a particular setting of parameters, it is also secure if LPN with constant noise rate is 2O(
√

n) hard.

S. Ghentiyala and V. Guruswami 54:15

We are now ready to introduce the (weak) planted XOR assumption.

▶ Assumption 34. For m, t : N→ N and ε : N→ [0, 1/2] which are efficiently computable
functions of n, the XORm,t,ε assumption states that for every probabilistic polynomial-time
adversary A,∣∣∣∣ Pr

G←D0(n,m)
[A(G) = 1]− Pr

(G,s)←D1(n,m,t,ε)
[A(G) = 1]

∣∣∣∣ = negl(n)

What is refereed to as the planted XOR assumption in [9] is simply XORm,O(log n),0. As
one of their major contributions, the authors of [9] give a PRC scheme which is secure if
(i) Assumption 34 with ε = 0, and m = n1−Ω(1), t = Θ(log n) is true, and (ii) constant
noise rate LPN is hard. In this section, we show that such a scheme can be based on a
more expansive set of assumptions. Informally, we will show that if for any m = poly(n),
XORm,Θ(log n),O(log(m)/(mη)) holds and LPN[η] holds, then pseudorandom codes exist. For
concreteness, one may wish to read this section with the parameter regime η = 1/

√
n in mind

since LPN[1/
√

n] is a well believed assumption and the weakest LPN assumption known to
imply public-key cryptography [3].

5.2 Evidence XORm,t,ε is a weaker assumption than XORm,t,0

Before proceeding with our PRC construction, we give two pieces of evidence that XORm,t,ε

is indeed a weaker assumption than XORm,t,0. The first is a reduction which shows that
XORm,t,0 implies XORm,t,ε.

▶ Theorem 35. For any m, t : N→ N and ε : N→ [0, 1/2] which are efficiently computable
functions of n, if the XORm,t,0 assumption holds and Ber(n, ε) is efficiently sampable, then
the XORm,t,ε assumption holds.

Proof. See full version. ◀

Our second piece of evidence that XORm,t,ε is a weaker assumption than XORm,t,0 is that
XORm,t,ε seems more robust to known attacks than XORm,t,0. The first version of [9] assumed
XORΘ(n),t,0. However, a subsequent version of [2] gave an attack showing XORΘ(n),O(log n),0
is not true. The attack (Thm 4.26 of [2]) consists of sampling random m/2×m submatricies
of the input matrix G and then using Gaussian elimination to determine the submatrix
contains a sparse subset of rows which xor to zero. The newest version of [9] circumvents this
problem by setting m = n1−Ω(1). We note that while XORΘ(n),O(log n),0 is susceptible to this
type of attack, XORΘ(n),O(log n),ε is not for reasonable ε (say ε = 1/

√
m). When attempting

this attack against XORΘ(n),O(log n),0, we can use Gaussian elimination since we were looking
for a zero vector in a m/2 dimensional subspace. When attempting this attack against
XORΘ(n),O(log n),ε, we must find a low weight vector in a m/2 dimensional subspace. This
problem is the average case version of the problem finding a planted low weight codeword v

in a linear code, a problem which is generally believed to be intractable.

5.3 The construction
▶ Construction 36 (Weak sparse xor construction, weakXOR[m, t, ε, η]). Let m, t, ε, η be
efficiently computable functions of the security parameter n

KeyGen(1n): Sample (G, s) from D1(n, m, t, ε). Output (sk = s, pk = G).
Encode(1n, G): Sample u← Ber(m, η), e← Ber(n, η). Output Gu + e.
Decode(1n, s, x): If sT x = 0, output 1. Otherwise, output ⊥.

APPROX/RANDOM 2025

54:16 New Constructions of Pseudorandom Codes

5.4 Robustness
▶ Lemma 37. Let m = poly(n), η = o(1), t = O(log n), ε = O(log(m)/(ηm)), and p be any
constant in [0, 1/2). There exists a polynomial p(n) such that for Construction 36, for any
d ≤ pn, for a 1− negl(n) fraction of keys (pk, sk)← KeyGen(1n),

Pr
E

[Decode(1n, sk, E(x)) = 1 : x← Encode(1n, pk, 1)] ≥ 1
2 + 1

p(n)

where E is the d-hypergeometric channel. the randomness is over the randomness of the
encoding algorithm and the errors of E.

Proof. See full version. ◀

5.5 A form of soundness
▶ Lemma 38. For any m, t, ε, η, k = poly(n), for Construction 36, for all key pairs
(pk, sk)← KeyGen(1n), we have

Pr
x←{0,1}n

[Decode(1n, sk, x) = ⊥] = 1
2

Proof. See full version. ◀

5.6 Pseudorandomness
▶ Lemma 39. For any efficiently computable m = poly(n), t, ε, η, if XORm,t,ε holds, and
LPN[η] holds, then weakXOR[m, t, ε, η] is pseudorandom.

Proof. See full version. ◀

▶ Remark 40. Technically, we require something weaker than LPN[η] to hold for our proof of
pseudorandomness. We need only that LPN is secure when the distribution of the secret
comes from Ber(m, η) and the error comes from a distribution Ber(n, p) for any constant
p < 1/2. However, since the LPN assumption is typically stated solely in terms of the error
rate and LPN[η] is sufficient for this construction, we choose to state our results as being
based on the (possibly stronger than necessary) LPN[η] assumption.

5.7 Putting it all together
Proof of Theorem 32. See full version. ◀

6 PRCs for space-bounded adversaries

We now present a zero-bit PRC scheme based on the time-space hardness of the learning parity
with noise problem which is robust BSC(p) for any constant p < 1/2. The pseudorandomness
of this construction is unconditional and not based on cryptographic assumptions.

▶ Theorem 41. Let 0 ≤ δ ≤ 1/100 be a constant and p be a constant in [0, 1/2). There
exists a constant c > 0 such that SSR[c log(n), ε, k, k′, δ] is a zero-bit secret-key PRC which

has output length O(n)
is robust to BSC(p)
has key size O(n)
pseudorandom against probabilistic polynomial time, O(n1.5−2δ/ log0.01(n)) space ad-
versaries.

S. Ghentiyala and V. Guruswami 54:17

The celebrated work of [25] showed that the learning parity without noise problem requires
either a superpolynomial number of samples or Ω(n2) memory. Follow-up work [21] and [14]
expanded this work to the cases where the secret is sparse and the case where the samples
are noisy. We will begin by reviewing the relevant definitions and results.

▶ Definition 42. The learning sparse parities problem with density ℓ and error rate ε is
defined as follows: The secret vector s is sampled uniformly at random from Sℓ,n. An
algorithm A is given samples (a, a · s + e) where a← {0, 1}n, e← Ber(1/2− ε). We say A
succeeds if it successfully outputs s.

▶ Lemma 43. Let q = poly(n) and ε = o(1). The distribution a1, a1 ·s + e1, . . . , aq, aq ·s + eq

where s ← SΘ(log n),n and ai ← {0, 1}n, ei ← Ber(1/2 − ε) for all i ∈ [1, q] is next-bit
unpredictable for PPT algorithms with O(n log0.99(n)/ε) space.

6.1 Construction
▶ Construction 44 (small space resilient construction, SSR[ℓ, ε, k, δ]). Let ℓ, ε, k′ be efficiently
computable functions of the security parameter n and δ be a constant.

KeyGen(1n): Sample s1, . . . , sk′ ← Sℓ,n and output sk = (s1, . . . , sk′).
Encode(1n, (s1, . . . , sk′), 1): Sample a← {0, 1}n, e1, . . . , ek′ ← Ber(1/2− ε), output

a||a · s1 + e1|| . . . ||a · sk′ + ek′ .

Decode(1n, (s1, . . . , sk′), x): Reinterpret x ∈ {0, 1}n+k′ as ã||b̃1|| . . . ||b̃k′ where ã ∈ {0, 1}n

and b̃i ∈ {0, 1} for all i ∈ [1, k′]. If ã is not 1/(2n0.4) balanced, output ⊥. Otherwise, let
wi be one if and only if ã · si = b̃i. If

∑k′

i=0 wi ≥ k′/2 + nδ
√

k′ output 1 and otherwise
output ⊥.

6.2 Robustness
Say that the decoder receives a string x = ã||b̃1|| . . . ||b̃k′ . Intuitively, for every i such that
ã · si = b̃i, the decoder gains more confidence that x is a codeword. However, on first
inspection, it seems plausible one could flip a just a few of the first n bits of a codeword (turn
a into ã) to ensure there would exist very few i ∈ [k′] such that ã · si = b̃i. The existence of
such an attack could potentially imply that the code of Construction 44 is not particularly
robust to errors. We will show that such an attack does not affect robustness due to the
sparsity of the si.

▶ Definition 45 ([15]). A family Y1, . . . , Yk′ of random variables is read-d if there exists a
sequence X1, . . . , Xn of independent variables, and a sequence S1, . . . , Sk′ of subsets of [n]
such that
1. Each Yi is a function of (Xj : j ∈ Si), and
2. No element of [n] appears in more than d of the Si’s.

▶ Lemma 46 ([15]). Let Y1, . . . , Yk′ be a family of read-d indicator random variables with
Pr[Yi = 1] = pi and let p be the average of p1, . . . , pk′ . Then for any ε > 0, the probabilities

Pr[Y1 + · · ·+ Yk′ ≥ (p + ε)k′] and Pr[Y1 + · · ·+ Yk′ ≤ (p− ε)k′]

are both at most e−2ε2k′/d

▶ Lemma 47. Let ℓ ≤ O(log n), d = ω(log n), and k′ ≤ n. Consider S = {S1, . . . , Sk′}
where each Si is drawn uniformly at random from

([n]
ℓ

)
. Some element t ∈ [n] occurs in d

elements of S with probability negl(n).

APPROX/RANDOM 2025

54:18 New Constructions of Pseudorandom Codes

Proof. See full version. ◀

▶ Lemma 48. Let ε be some function of n, p be a constant in [0, 1/2), δ > 0, and k′ =
(2n2δ/ε)2. There exists a constant c > 0 such that for ℓ = c log(n), SSR[ℓ, ε, k′, δ] is robust
to BSC(p) with probability 1− negl(n).

Proof. See full version. ◀

6.3 Soundness
On first inspection, it may seem strange that we output ⊥ when trying to decode strings
where ã is not balanced. This is to ensure soundness. To see why this exit condition is
necessary, consider what happens when the codeword is the string of all zeros. Construction 44
would certainly decode this codeword to 0 regardless of what sk is. The requirement that ã

eliminates the possibility of such edge cases. We will now show the soundness of our zero
bit encryption scheme by showing that any fixed x ∈ {0, 1}n+k′ decodes to ⊥ with high
probability.

▶ Lemma 49. Let a ∈ {0, 1}n be a 1/n0.4-biased string, b ∈ {0, 1}, c be an arbitrary constant
and s be drawn uniformly at random from Sc log(n),n.

Pr
s

[a · s = b] ≤ 1/2 + negl(n)

Proof. See full version. ◀

▶ Lemma 50. Let 0 ≤ δ ≤ 1/100 be constant, ϵ be any function of n, k′ ≥ nδ be poly(n),
and ℓ = O(log n). For any fixed x ∈ {0, 1}n+k′ , in the SRR[ℓ, ε, k′, δ] scheme,

Pr
sk

[Decode(sk, x) = ⊥] ≥ 1− negl(n) .

Proof. See full version. ◀

6.4 Pseudorandomness
We will show pseudorandomness of Construction 44 by first showing that any polynomial
number of codewords is next-bit unpredictable for a polynomial time, space-bounded adversary.
Lemma 43 shows that sparse parity learning examples a||a · s + e are next bit unpredictable.
In this case, a is random and one pseudorandom bit is output per freshly sampled a. However,
in Construction 44, the samples are of the form a||a · s1 + e1|| . . . ||a · sk′ + ek′ . In this case,
a is random and multiple pseudorandom bits are output per freshly sampled a. Fortunately,
next-bit unpredictability of samples of the form a||a · s + e implies next-bit unpredictability
of samples of the form a||a · s1 + e1|| . . . ||a . . . sk′ + ek′ .

▶ Lemma 51. Let 0 ≤ δ ≤ 1/100 be a constant, ε = 1/ poly(n), log(ε) ∈ Z, q = poly(n), k′ =
poly(n), and ℓ = Θ(log n). Let Enc be the encoding function of SSR[ℓ, ε, k′, δ]. Consider
the distribution induced by sk ← KeyGen(1n) and X1, . . . , Xq ← Enc(1n, sk, 1) where Xi ∈
{0, 1}n+k′ for all i ∈ [1, q]. No PPT, O(n log0.99(n)/ε) space adversary acts as a next bit
predictor for X1, . . . , Xq.

Proof. See full version. ◀

▶ Lemma 52. Let 0 ≤ δ ≤ 1/100 be a constant, ε = 1/ poly(n), log(ε) ∈ Z, q =
poly(n), k′ = poly(n), and ℓ = Θ(log n). The scheme SSR[ℓ, ε, k′, δ] is pseudorandom against
O(n log0.99(n)/ε) space, poly(n) time adversaries.

Proof. See full version. ◀

S. Ghentiyala and V. Guruswami 54:19

6.5 Putting it all together
▶ Theorem 53. Let 0 ≤ δ ≤ 1/100 be a constant, ε = 1/ poly(n), k′ = (2n2δ/ε)2, and p be
a constant in [0, 1/2). There exists a constant c > 0 such that SSR[c log(n), ε, k, k′, δ] is a
zero-bit secret-key PRC which

has output length n + k′

is robust to BSC(p)
has key size O(k′ · log2(n))
pseudorandom against probabilistic polynomial time, O(n log0.99(n)/ε) space adversaries.

Proof. See full version. ◀

Theorem 41 shows that Construction 44 can have quite small key sizes at the expense
of being pseudorandom against adversaries with smaller space. Theorem 41 now follows by
instantiating the parameter regime we believe to be the most useful.

Proof of Theorem 41. See full version. ◀

Therefore, we have shown zero bit PRCs with O(n) length which are unconditionally
pseudorandom against poly(n) time, O(n1.5−δ) space (for any constant δ > 0) adversaries.
It is natural to ask if this leads to multi-bit PRCs. The construction of multi-bit PRCs with
rate 1/n (construction 3 of [9]) also works in the space-bounded setting but has codeword
length O(kn) when encoding k bits. This would let us build k-bit PRCs with codeword length
O(kn) which are pseudorandom against PPT, O(n1.5−δ) space adverseries. However, that
construction has the undesirable property that it narrows the gap between the space of the
adversary and the space of the encoding algorithm, thereby making the scheme less secure.
It would be interesting to build constant rate PRCs which are unconditionally pseudorandom
against PPT, space-bounded adversaries.

7 Perspectives

Here we review some of the design decisions we have made in our constructions.
In Section 6, we prove robustness to the binary symmetric channel rather than p-bounded

channels (we assume p is a constant in [0, 1/2)). One may ask whether it is possible to
prove robustness to all p-bounded channels rather than just the binary symmetric channel.
To show robustness to p-bounded channels, one could choose to apply a similar type of
reduction as given in Lemma 19 by including in the secret key a shift z and a permutation π.
This reduces showing robustness against p-bounded channels to showing robustness against
d-hypergeometric channels for all d ≤ pn, which is very similar to the binary symmetric
channel. Since the robustness probability only goes up as p goes down in Construction 44,
there exists a function u(n) = negl(n) such that for all d ∈ [1, pn], Construction 44 is robust
to BSC(d/n) with probability 1 − u(n). This implies Construction 44 is robust to any
d-hypergeometric channel for d ≤ pn with probability O(n)u(n) = negl(n). However, such a
reduction incurs an additive O(n log n) factor in the key size since π is O(n log n) bits. In
the space-bounded setting, having small keys is particularly important, so we have chosen to
focus on the standard setting of the binary symmetric channel, which allows for remarkably
small key sizes. However, it should not be hard to formalize the argument for p-bounded
channels. Of course, one could use a pseudorandom function to generate π and avoid the
additive O(n log n) factor in the key size. We chose not to do this to keep our construction
unconditional. Combining the results of Section 6 with other cryptographical objects (such
as PRFs) remains an interesting open question.

APPROX/RANDOM 2025

54:20 New Constructions of Pseudorandom Codes

This work focuses on the theoretical aspects of PRCs but one can also ask if Section 4 and
Section 5 are practical for watermarking LLM text. Unfortunately, this seems unlikely. The
problem is that if we set the security parameter n = 128 (a reasonable security parameter),
the application of the Lemma 19, which allows us to construct a PRC from a scheme where
there is only a small advantage in distinguishing codewords from random words, requires
us to concatenate many codewords together, which may result in a code with a length of
poly(n) for some very large polynomial. This is too long to be practical. Fundamentally,
Lemma 19 allows us to amplify robustness by concatenating t codewords of length n to form
a string x of length tn. Every n bit block of y = E(x) that is decoded to 1 rather than ⊥
gives us more certainty that y is a corrupted codeword.

There are, however, other ways to amplify our confidence. For example, each codeword
of length n can contain multiple checks. In Construction 36, (for simplicity, consider the
ϵ = 0 regime) we sample G uniformly at random subject to sT G = 0m and then check if
y is a corrupted codeword by checking if sT y = 0. This gives us low confidence that y is
a corrupted codeword, so we apply Lemma 19. However, imagine we had s1, . . . , sτ and
sampled G uniformly at random subject to the constraints that sT

i G = 0m for all i ∈ [1, τ].
Then to check if y is a corrupted codeword, we check how many i ∈ [1, τ] there were such
that sT

i y = 0, and the more there were, the more confidence that we could have that y is a
corrupted codeword. This is the approach advocated by [9].

Similarly, in Section 4, we implant poly(n) hyperloops but one use one for decoding (by
checking if

⊕
j∈S1

yj = 0) and then amplify our success probability using Lemma 19. From a
theoretical perspective, the polynomial size blowup in the length of the code incurred by
Lemma 19 does not matter. However, from a practical perspective, the correct approach
would check how many i ∈ [1, t] there are such that

⊕
j∈Si

yj = 0. In both cases, adding
more structure in the encoding/decoding stages means that the decoder knows with greater
certainty if a word is a codeword, without incurring a large blowup in codeword length.

References
1 Scott Aaronson. My AI safety lecture for UT effective altruism, 2022. URL: https://

scottaaronson.blog/?p=6823. 11
2 Shweta Agrawal, Sagnik Saha, Nikolaj Ignatieff Schwartzbach, Akhil Vanukuri, and

Prashant Nalini Vasudevan. k-SUM in the sparse regime. Cryptology ePrint Archive, Paper
2023/488, 2023. URL: https://eprint.iacr.org/2023/488. 4, 14, 15

3 Michael Alekhnovich. More on average case vs approximation complexity. In FOCS, pages
298–307, 2003. doi:10.1109/SFCS.2003.1238204. 15

4 Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from different
assumptions. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing,
STOC ’10, pages 171–180, New York, NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1806689.1806715. 6

5 Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In Shai Halevi, editor,
Advances in Cryptology - CRYPTO 2009, pages 595–618, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg. doi:10.1007/978-3-642-03356-8_35. 8

6 Andrej Bogdanov, Pravesh Kothari, and Alon Rosen. Public-key encryption, local pseudoran-
dom generators, and the low-degree method. Cryptology ePrint Archive, Paper 2023/1049,
2023. URL: https://eprint.iacr.org/2023/1049. 1, 4, 6, 11, 12, 13

7 Christian Cachin and Ueli Maurer. Unconditional security against memory-bounded adversaries.
In Burton S. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, pages 292–306, Berlin,
Heidelberg, 1997. Springer Berlin Heidelberg. doi:10.1007/BFB0052243. 6

https://scottaaronson.blog/?p=6823
https://scottaaronson.blog/?p=6823
https://eprint.iacr.org/2023/488
https://doi.org/10.1109/SFCS.2003.1238204
https://doi.org/10.1145/1806689.1806715
https://doi.org/10.1007/978-3-642-03356-8_35
https://eprint.iacr.org/2023/1049
https://doi.org/10.1007/BFB0052243

S. Ghentiyala and V. Guruswami 54:21

8 Herman Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based
on the sum of Observations. The Annals of Mathematical Statistics, 23(4):493–507, 1952.
doi:10.1214/aoms/1177729330. 7

9 Miranda Christ and Sam Gunn. Pseudorandom error-correcting codes. In Leonid Reyzin and
Douglas Stebila, editors, Advances in Cryptology – CRYPTO 2024, pages 325–347, Cham,
2024. Springer Nature Switzerland. doi:10.1007/978-3-031-68391-6_10. 1, 2, 3, 4, 5, 6, 7,
9, 10, 11, 14, 15, 19, 20

10 Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In
The Thirty Seventh Annual Conference on Learning Theory, pages 1125–1139. PMLR, 2024.
URL: https://proceedings.mlr.press/v247/christ24a.html. 2, 11

11 Geoffroy Couteau, Aurélien Dupin, Pierrick Meaux, Mélissa Rossi, and Yann Rotella. On the
Concrete Security of Goldreich’s Pseudorandom Generator: 24th International Conference
on the Theory and Application of Cryptology and Information Security, Brisbane, QLD,
Australia, December 2–6, 2018, Proceedings, Part II, pages 96–124. Springer, 2018. doi:
10.1007/978-3-030-03329-3_4. 13

12 Yan Zong Ding. Oblivious transfer in the bounded storage model. In Joe Kilian, editor,
Advances in Cryptology — CRYPTO 2001, pages 155–170, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg. doi:10.1007/3-540-44647-8_9. 6

13 Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Speak much, remember little: Cryptography
in the bounded storage model, revisited. In Carmit Hazay and Martijn Stam, editors, Advances
in Cryptology – EUROCRYPT 2023, pages 86–116, Cham, 2023. Springer Nature Switzerland.
doi:10.1007/978-3-031-30545-0_4. 6

14 Sumegha Garg, Pravesh K. Kothari, Pengda Liu, and Ran Raz. Memory-sample lower bounds
for learning parity with noise, 2021. arXiv:2107.02320. 5, 6, 17

15 Dmitry Gavinsky, Shachar Lovett, Michael E. Saks, and Srikanth Srinivasan. A tail bound
for read-k families of functions. Random Structures & Algorithms, 47, 2012. URL: https:
//api.semanticscholar.org/CorpusID:14447567. 17

16 Surendra Ghentiyala and Venkatesan Guruswami. New constructions of pseudorandom codes,
2024. doi:10.48550/arXiv.2409.07580. 1

17 Oded Goldreich. Candidate One-Way Functions Based on Expander Graphs, pages 76–87.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-22670-0_10.
4, 6

18 Noah Golowich and Ankur Moitra. Edit distance robust watermarks for language models,
2024. doi:10.48550/arXiv.2406.02633. 2, 6, 11

19 Wassily Hoeffding. Probability Inequalities for sums of Bounded Random Variables, pages
409–426. Springer New York, New York, NY, 1994. doi:10.1007/978-1-4612-0865-5_26. 7

20 John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Gold-
stein. A watermark for large language models. In International Conference on Machine
Learning, pages 17061–17084. PMLR, 2023. URL: https://proceedings.mlr.press/v202/
kirchenbauer23a.html. 11

21 Gillat Kol, Ran Raz, and Avishay Tal. Time-space hardness of learning sparse parities. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, pages 1067–1080, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3055399.3055430. 5, 6, 17

22 Alex Lombardi and Vinod Vaikuntanathan. Minimizing the complexity of goldreich’s pseu-
dorandom generator. Cryptology ePrint Archive, Paper 2017/277, 2017. URL: https:
//eprint.iacr.org/2017/277. 13

23 Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher.
Journal of Cryptology, 5(1):53–66, 1992. doi:10.1007/BF00191321. 6

24 Igor C. Oliveira, Rahul Santhanam, and Roei Tell. Expander-based cryptography meets
natural proofs. computational complexity, 31(1):4, 2022. doi:10.1007/s00037-022-00220-x.
6

APPROX/RANDOM 2025

https://doi.org/10.1214/aoms/1177729330
https://doi.org/10.1007/978-3-031-68391-6_10
https://proceedings.mlr.press/v247/christ24a.html
https://doi.org/10.1007/978-3-030-03329-3_4
https://doi.org/10.1007/978-3-030-03329-3_4
https://doi.org/10.1007/3-540-44647-8_9
https://doi.org/10.1007/978-3-031-30545-0_4
https://arxiv.org/abs/2107.02320
https://api.semanticscholar.org/CorpusID:14447567
https://api.semanticscholar.org/CorpusID:14447567
https://doi.org/10.48550/arXiv.2409.07580
https://doi.org/10.1007/978-3-642-22670-0_10
https://doi.org/10.48550/arXiv.2406.02633
https://doi.org/10.1007/978-1-4612-0865-5_26
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://proceedings.mlr.press/v202/kirchenbauer23a.html
https://doi.org/10.1145/3055399.3055430
https://eprint.iacr.org/2017/277
https://eprint.iacr.org/2017/277
https://doi.org/10.1007/BF00191321
https://doi.org/10.1007/s00037-022-00220-x

54:22 New Constructions of Pseudorandom Codes

25 Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.
J. ACM, 66(1), December 2018. doi:10.1145/3186563. 5, 6, 17

26 Umesh V. Vazirani and Vijay V. Vazirani. Trapdoor pseudo-random number generators, with
applications to protocol design. In 24th Annual Symposium on Foundations of Computer
Science (sfcs 1983), pages 23–30, 1983. doi:10.1109/SFCS.1983.78. 6

https://doi.org/10.1145/3186563
https://doi.org/10.1109/SFCS.1983.78

	1 Introduction
	1.1 PRCs and Applications
	1.2 Watermarking large language models
	1.3 Our results
	1.3.1 Planted hyperloop construction
	1.3.2 Revisiting [9] and planted XOR assumption
	1.3.3 Unconditional PRCs for space-bounded adversaries

	1.4 Further directions
	1.5 Related work

	2 Preliminaries
	2.1 Notation
	2.2 Probability and combinatorics
	2.3 Indistinguishability and LPN
	2.4 Pseudorandom Codes

	3 A warmup
	4 Planted hyperloop construction
	4.1 The assumptions
	4.2 The construction
	4.3 Robustness
	4.4 A form of soundness
	4.5 Pseudorandomness
	4.6 Putting it all together

	5 The weak planted XOR construction
	5.1 The assumption
	5.2 Evidence XOR_{m, t, epsilon} is a weaker assumption than XOR_{m, t, 0}
	5.3 The construction
	5.4 Robustness
	5.5 A form of soundness
	5.6 Pseudorandomness
	5.7 Putting it all together

	6 PRCs for space-bounded adversaries
	6.1 Construction
	6.2 Robustness
	6.3 Soundness
	6.4 Pseudorandomness
	6.5 Putting it all together

	7 Perspectives

