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Abstract
We study list-recoverability of random linear codes over small fields, both from errors and from
erasures. We consider codes of rate ε-close to capacity, and aim to bound the dependence of the
output list size L on ε, the input list size ℓ, and the alphabet size q. Prior to our work, the best
upper bound was L = qO(ℓ/ε) (Zyablov and Pinsker, Prob. Per. Inf. 1981).

Previous work has identified cases in which linear codes provably perform worse than non-linear
codes with respect to list-recovery. While there exist non-linear codes that achieve L = O(ℓ/ε), we
know that L ≥ ℓΩ(1/ε) is necessary for list recovery from erasures over fields of small characteristic,
and for list recovery from errors over large alphabets.

We show that in other relevant regimes there is no significant price to pay for linearity, in the
sense that we get the correct dependence on the gap-to-capacity ε and go beyond the Zyablov–Pinsker
bound for the first time. Specifically, when q is constant and ε approaches zero,

For list-recovery from erasures over prime fields, we show that L ≤ C1/ε. By prior work, such a
result cannot be obtained for low-characteristic fields.

For list-recovery from errors over arbitrary fields, we prove that L ≤ C2/ε.
Above, C1 and C2 depend on the decoding radius, input list size, and field size. We provide concrete
bounds on the constants above, and the upper bounds on L improve upon the Zyablov–Pinsker
bound whenever q ≤ 2(1/ε)c

for some small universal constant c > 0.
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57:2 List-Recovery of Random Linear Codes over Small Fields

1 Introduction

Error-correcting codes enable reliable communication over noisy channels by encoding
messages m ∈ Σk as codewords c ∈ Σn. A code C ⊆ Σn of rate R = k/n and minimum
(relative) Hamming distance δ allows for reliable communication over an adversarial noisy
channel that corrupts up to a δ/2-fraction of codeword symbols. To tolerate more corruptions,
one can relax unique decoding to list decoding, where the decoder outputs all codewords
within a given Hamming radius.

This notion is further generalized by list recovery (from errors), which models scenarios
where the receiver gets a small list of possible values for each symbol. Formally, a code C is
said to be (ρ, ℓ, L)-list-recoverable if for every sequence of sets T1, . . . , Tn ⊆ Σ with |Ti| ≤ ℓ,
we have

|C ∩ Bρ(T1 × · · · × Tn)| ≤ L,

where Bρ(T1 × · · · × Tn) denotes the Hamming ball consisting of all words in Σn that agree
with T1, . . . , Tn in at least (1−ρ)n coordinates. When ℓ = 1, list-recovery from errors reduces
to standard list-decoding (from errors).

A related variant is list recovery from erasures, where some coordinates are entirely
unknown, modeled by setting Ti = Σ. A code is said to be (α, ℓ, L)-list-recoverable from
erasures if

|C ∩ (T1 × · · · × Tn)| ≤ L

whenever |Ti| ≤ ℓ for at least (1 − α)n positions. Here too, the case ℓ = 1 corresponds to
list-decoding from erasures.

List recoverable codes are used as a building block for list-decodable and uniquely
decodable codes [13, 14, 15, 16, 26, 9, 21]. They have also gained a significant independent
interest, in part due to their applications in pseudorandomness [38, 19, 4, 24], algorithms (in
particular, for heavy hitters, compressed sensing, and combinatorial group testing [23, 34,
28, 7, 5]), and cryptography [20, 22].

For both list-recovery from errors and from erasures, there exists a well-defined capacity
threshold that characterizes the maximal achievable rate for which bounded list-size decoding
is possible. Specifically, given parameters ρ, ℓ, and alphabet size q, there is a critical rate
R∗ = R∗(ρ, ℓ, q) such that:

For every ε > 0 and any large enough block length, there exist codes of rate R∗ − ε that
are (ρ, ℓ, L)-list-recoverable (from errors or erasures) with

L = Oℓ,ε(1). (1)

For every ε > 0 and any large enough block length n, no code of rate R∗ + ε is (ρ, ℓ, L)-
list-recoverable for L = qo(n).

The exact threshold depends on the recovery model:
For (ρ, ℓ, L)-list-recoverability from errors, the threshold rate is

R∗
errors = 1 − hq,ℓ(ρ),

where

hq,ℓ(ρ) = ρ logq

(
q − ℓ

ρ

)
+ (1 − ρ) logq

(
ℓ

1 − ρ

)
,

valid for 0 ≤ ρ ≤ 1 − ℓ
q [35, Theorem 2.4.12].
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For (α, ℓ, L)-list-recoverability from erasures, the corresponding threshold is

R∗
erasures = (1 − α) · (1 − logq ℓ).

The dependence of the list size L on the parameters ℓ and ε (see Equation (1)) is often
critical, and has been the focus of extensive research (e.g., [36, 37, 32, 10, 17, 8, 39, 2, 31]).

Using the probabilistic method, it is easy to show that plain random codes achieve
L = O(ℓ/ε), and this dependence is often viewed as the optimal benchmark. Codes achieving
this tradeoff are said to match the Elias bound for list-recovery, in reference to the analogous
threshold in list-decoding [6] (see also [33]).

To set expectations for list-recovery of linear codes, we recall the classic argument of
Zyablov and Pinsker [40], adapted to the setting of list-recovery by Guruswami [11]. Since
any set of L + 1 vectors has a linearly independent subset of size logq(L + 1), and since the
events that linearly independent vectors lie in a linear code are stochastically independent,
the argument for plain random codes gives L = qO(ℓ/ε). This naturally raises the question:
what is the actual price of linearity in list-recovery? While various forms of degradation
are possible, we seek to understand how the requirement of linearity affects the list-size
achievable near capacity.

Prior work

Most previous results concerning the output list size have focused on the large alphabet regime,
where q is at least exponential in 1/ε. In this setting, Li and Shagrithaya [31] recently proved
that random linear codes are almost surely list-recoverable with list size L ≤ (ℓ/ε)O(ℓ/ε).
By a reduction between code ensembles [30], the same upper bound also holds with high
probability for Reed–Solomon codes over random evaluation sets. On the other hand, [31]
proved that all (ρ, ℓ, L)-list-recoverable (from errors) linear codes over a large alphabet must
satisfy L ≥ ℓΩ(R/ε), implying an exponential gap in the list-size between linear codes and
plain random codes. A similar negative result was previously proven by Chen and Zhang [2]
for Reed-Solomon codes and folded Reed–Solomon codes. Recently, Komech and Mosheiff
[25] constructed a new ensemble of non-linear codes that achieve L ≤ O(ℓ/ε) in list-recovery
from errors. These are the only codes other than plain random codes known to achieve the
list-recovery Elias bound.

Older works of Rudra and Wootters [36, 37], incomparable to [31], show (in our terms)
that random linear codes achieve list-size L ≤ ℓ

1
ε ·log2(ℓ/ε) for list-recovery (from errors) in

the large alphabet regime, but only under the guarantee that ρ = 1 − Ω(ε).
Other works concern the list-recoverability of folded Reed–Solomon codes, multiplicity

codes, tensor codes, and variants of them (e.g., [27, 21, 39]). In particular, Tamo [39] shows
that folded Reed–Solomon codes and multiplicity codes achieve list size L ≤ (ℓ/ε)O( 1+log ℓ

ε )

(in the errors case) in the large alphabet regime.
In contrast, very little is known about list-recovery in the small alphabet regime, where

q is sub-exponential in 1/ε. To the best of our knowledge, the only positive result in this
setting is the aforementioned L = qO(ℓ/ε) for random linear codes [40]. On the other hand,
we know that when q is a power of a small prime, random linear codes in this regime are
very unlikely to be (α, ℓ, L)-list-recoverable from erasures with ℓo(1/ε) [17] (we state this as
Theorem 1 below).

Provable separation between linear and nonlinear codes were also established in the
setting of list decoding from erasures. For the special case of F2, and aiming for an erasure
decoding radius of α = 1 − ε, Guruswami [11] showed that the output list size must satisfy

APPROX/RANDOM 2025
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L = Ω(1/ε), as long as the rate is sufficiently non-vanishing. In contrast, plain random codes
achieve L = O(log(1/ε)), and we even have explicit constructions that nearly match plain
random codes in some parameter regimes [1].

1.1 Our Contribution
We establish new upper bounds on the output list size for list-recovery of random linear codes
near capacity in the small alphabet regime. To the best of our knowledge, these are the only
known bounds for general list-recovery in this setting beyond the classical Zyablov–Pinsker
argument. Notably, our results achieve list sizes with only linear dependence on 1/ε, in
contrast to the exponential dependence in previous bounds.

List-recovery from erasures over prime fields

For our first result, we consider (α, ℓ, L)-list-recovery from erasures. Recall that the capacity
in this case is

R∗
erasures(α, ℓ, q) = (1 − α)(1 − logq ℓ).

As mentioned before, [17] showed that there is a price to pay for linearity over fields of small
characteristic. More precisely, they proved the following.

▶ Theorem 1 (informal; see [17, Theorem III.1]). If ℓ divides char(Fq), then with high
probability over the choice of the linear code, the output list size L cannot be taken smaller
than ℓΩ(1/ε).

We show that this limitation disappears when considering a prime field size q. In this
case, we can make the output list size Oα,ℓ,q(1/ε).

▶ Theorem 2 (list recovery from erasures over prime fields; see Theorem 25). Given 1 ≤ ℓ ≤ q

with q prime and α ∈ [0, 1), there exists C(α, ℓ, q) > 0 such that the following holds. Let
C ≤ Fn

q be a random linear code of rate R∗
erasures(α, ℓ, q) − ε for some ε > 0. Then, C is with

high probability
(

α, ℓ, C(α,ℓ,q)
ε

)
-list-recoverable from erasures.

While our focus is on the setting where α and q are constants, we determine effective
bounds on C(α, ℓ, q) even when α is a function of n, and q is slightly super-constant.1

List-recovery from errors

Next, we consider the case of list-recovery from errors, where we recall the capacity is

R∗
errors(ρ, ℓ, q) = 1 − hq,ℓ(ρ).

Here, contrary to what happens in the regime of large q-s, we do not observe any price to
pay for linearity, at least in terms of the dependence on the gap-to-capacity ε.

▶ Theorem 3 (list recovery from errors; see Theorem 31). Given 1 ≤ ℓ ≤ q with q a prime
power and ρ ∈ (0, 1 − ℓ/q), there exists C(ρ, ℓ, q) > 0 such that the following holds. Let
C ≤ Fn

q be a random linear code of rate R∗
errors(ρ, ℓ, q) − ε for some ε > 0. Then, C is with

high probability
(

ρ, ℓ, C(ρ,ℓ,q)
ε

)
-list-recoverable from errors.

1 For a concrete example, when ℓ ≤ (1 − γ)q for some constant γ, and α is bounded away from 1, we can
take C(α, ℓ, q) ≤ qO(ℓ·log q) as long as n ≥ C(α, ℓ, q). We refer the reader to Theorem 25 for the precise
bound.
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Again, we determine effective bounds on the numerator C(ρ, ℓ, q), which can be found in
Theorem 31.2 For context, we recall that in the “large q regime” (say, q ≫ ℓ1/ε), such a result
is provably impossible. Specifically, when q is large, the list-recovery capacity is (essentially)
the Singleton bound, namely, R∗

errors ≈ 1 − ρ. It is known that at rate 1 − ρ − ε, any linear
code list-recoverable from errors must have L ≥ ℓΩ(R/ε) [31]. That is, the dependence of L

on the gap-to-capacity must be exponential. But in our case, at least if ρ, ℓ and q are held
constant, the dependence of L on ε is just O(1/ε).

We conclude this section with some remarks.
▶ Remark 4 (on the field insensitivity). Both of our results show that there is no significant price
to pay for linearity in list-recovery for certain parameter regimes. Our result in Theorem 3 on
list-recovery from errors is insensitive to the field size. On the other hand, as discussed above,
our result in Theorem 2 on list-recovery from erasures is (necessarily!) field sensitive. We
provide some informal discussion on why this happens. First, note that we work with rates
close to capacity, and the capacity in the erasures setting is larger for comparable α and ρ.
Second, looking ahead (see Section 1.2 for more details), list-recovery from erasures depends
on the “additive structure” of T1 × · · · × Tn, for arbitrary size-ℓ subsets T1, . . . , Tn ⊆ Fq.
If the Ti’s are subspaces of Fq, then it is quite likely these form a bad configuration for
list-recovery from erasures. In contrast, list-recovery from errors depends on the additive
structure of the “puffed-up” combinatorial rectangles

Bρ(T1 × T2 × · · · × Tn) = {x ∈ Fn
q : xi /∈ Ti for at most ρn choices of i ∈ [n]}.

Even if the Ti’s are subspaces of Fq, the “puffing up” operation kills any additive structure
that could lead to a bad list-recovery configuration.
▶ Remark 5 (on the dependence of L on the various parameters). Recall that a code which
is ε-close to capacity is said to achieve the Elias bound if L = O(ℓ/ε). Note that in both
Theorem 2 and Theorem 3, the dependence of L on ε is as we would hope. However, the
dependence on the other parameters (particularly ℓ and q) is exponentially worse than the
O(ℓ) dependence. We leave it as a natural open problem to improve on this dependency.
▶ Remark 6 (comparison to [40]). As mentioned earlier, we are not aware of any prior arguments
establishing non-trivial bounds on the list-size L for codes ε-close to capacity which do not
require q to be large, other than what follows from the Zyablov–Pinsker argument [40]
(given formally in [11]). Recall that this method guarantees list size L = qO(ℓ/ε). In
comparison, we obtain (roughly) L = 1

ε · qO(ℓ log q) in the case of erasures (over prime fields),
and L = 1

ε · qℓ·polylog(q) in the case of errors (over all fields, assuming ρ is not too close
to 0 or 1 − ℓ/q). Thus, compared to [40], we obtain a smaller bound on L once, roughly,
ε < 1

polylog(q) . In particular, when ℓ and q are constants we achieve asymptotic improvement
in L.

1.2 Technical Overview
At a conceptual level, our work reconsiders the approach of Guruswami, Håstad, and
Kopparty [12], which allowed for an understanding of the list-decodability from errors of
random linear codes over constant-sized alphabets, and adapts it to the case of list-recovery
(either from erasures or errors). Recall that list-decoding from errors is the special case of
list-recovery from errors with ℓ = 1.

2 Specifically, when ρ is bounded away from both 0 and 1 − ℓ/q, we can take C(ρ, ℓ, q) ≤ qℓ·polylog(q). See
Theorem 31 for the precise bound.

APPROX/RANDOM 2025
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Using terminology that we define in this work, the first step in the argument of [12] is to
argue that Hamming balls are nontrivially mixing. Specifically, fix any center z ∈ Fn

q and
consider sampling twice uniformly and independently from the Hamming ball of radius ρ

centered at z; denote the two samples by X and X ′. The authors argue that for some δ > 0 and
any α, β ∈ Fq \{0}, it follows that for any other center y ∈ Fn

q , Pr[αX +βX ′ ∈ Bρ(y)] ≤ q−δn

for some δ = δ(ρ, q) > 0.3 Alternatively, we could say that for any y ∈ Fn
q , we have

Pr[αX + βX ′ ∈ y + Bρ(z)] ≤ q−δn. From here, using some additional tools like 2-increasing
chains – whose existence they establish via a Ramsey-theoretic argument – they are able to
show that random linear codes with ε gap-to-capacity are with high probability (ρ, C(ρ,q)

ε )-
list-decodable from errors. In particular, their techniques promise the correct dependence on
ε (although the dependence on the parameters q and ρ is quite poor).

We recommend viewing this “δ-mixing” property in the following light. Any argument
establishing that random linear codes have good list-decodability must somehow argue that
random subspaces and Hamming balls don’t tend to “correlate” too much. In particular,
it should not be the case that Hamming balls have noticeable “linear structure”, and in
particular they should be “far” from being closed under addition.

In our work, we consider whether or not sets that are relevant for list-recovery, i.e.,
the sorts of sets that list-recoverable codes cannot intersect with too much, also have
nontrivial mixing. Firstly, we crystallize in a definition what it means for any arbitrary set
T ⊆ Fn

q to be δ-mixing, where δ > 0: for any α, β ∈ Fq \ {0} and y ∈ Fn
q , if X, X ′ ∼ T

– which denotes that X and X ′ are sampled independently and uniformly from T – then
Pr[αX + βX ′ ∈ y + T ] ≤ q−δn.

Now, for (α, ℓ, L)-list-recovery from erasures the relevant sets are combinatorial rectangles
T1 × T2 × · · · × Tn where for at least (1 − α)n values of i ∈ [n] we have |Ti| ≤ ℓ. For
(ρ, ℓ, L)-list-recovery from errors the sets are “puffed-up” combinatorial rectangles. Namely,
for T1, T2, . . . , Tn ⊆ Fq each with |Ti| ≤ ℓ, we consider list-recovery balls

Bρ(T1 × T2 × · · · × Tn) = {x ∈ Fn
q : xi /∈ Ti for at most ρn choices of i ∈ [n]}.

Following the argument of [12], once we establish that these sets are nontrivially mixing, we
can obtain bounds on the list-size with the correct dependence on ε. Our task then boils
down to understanding the mixingness of the sets relevant for list-recovery. We consider first
the erasures case, and subsequently discuss the errors case.

List-recovery from erasures

Firstly, observe that for a combinatorial rectangle T1 × · · · × Tn, if each of the sets Ti is
nontrivially mixing as a subset of Fq (take the n = 1 case of the above definition), then
T1 × · · · × Tn is also nontrivially mixing (as a subset of Fn

q ). Hence, it suffices for us to
consider whether or not subsets of Fq mix. It is here that the dependence on the field size
shows up.

Recall from the earlier discussion that [17] established that random linear codes over Fℓt

(where ℓ is a prime power) are with high probability not (α, ℓ, L)-list-recoverable from erasures
unless L ≥ ℓΩ(1/ε). Indeed, it is easy to find a subset T ⊆ Fℓt which is not δ-mixing for any
δ > 0: take T = Fℓ (or, more generally, any multiplicative coset γ · Fℓ for γ ∈ Fℓt \ {0}).

3 In fact for [12] it sufficed to only consider the z = 0 case, in which case one can always assume α = β = 1.
But their argument naturally generalizes to this case, and this is the notion of mixing that we require
for our list-recovery results.
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Since Fℓ is closed under addition, in particular we have that if X and X ′ are sampled
independently and uniformly from T then Pr[X + X ′ ∈ T ] = 1, so T is not δ-mixing for any
δ > 0.

What went wrong in this example? The fact that Fℓt contains Fℓ as a subfield means
that Fℓt contains non-trivial Fℓ-linear subspaces. Such subspaces naturally create “bad”
input lists, and the argument of [17] establishes that indeed a random linear code is likely to
contain many vectors from a combinatorial rectangle T1 × · · · × Tn where at least a (1 − α)
fraction of the Ti’s are 1-dimensional Fℓ-subspaces of Fℓt .

If we insist that q be a prime, then Fq does not have any non-trivial subspaces. However,
in this case Fq still contains some subsets with “additive structure;” for example, taking ℓ to
be odd here for simplicity, centered intervals4 like I = {− ℓ−1

2 , − ℓ−1
2 +1 . . . , ℓ−1

2 −1, ℓ−1
2 } ⊆ Fq

have the property that if one samples X, X ′ ∼ I independently, then Pr[X +X ′ ∈ I] ≈ 3
4 + 1

4ℓ2

assuming ℓ ≤ 2q/3. But note that this is still non-trivially bounded away from 1! Remarkably,
an argument of Lev [29] shows that this is the worst case over prime fields. More precisely,
over all sets T of size ℓ, to maximize Pr[αX + βX ′ ∈ γ + T ] where α, β, γ ∈ Fq with α, β ̸= 0,
one should choose T = I (the centered interval of length ℓ), α = β = 1 and γ = 0. In our
technical section we give an effective bound on Pr[X + X ′ ∈ I] for all ℓ < q, which allows us
to argue that combinatorial rectangles T1 × · · · × Tn in which at least a 1 − α fraction of the
Ti’s have size at most ℓ are nontrivially mixing, as desired.

List-recovery from errors

We now wish to establish that list-recovery balls are nontrivially mixing. Notably, unlike in
the case of erasures, the argument here is insensitive to the base field. Let T = T1 × · · · × Tn,
where each |Ti| ≤ ℓ. Let X, X ′ ∼ Bρ(T ); in this overview, we will sketch how one bounds
Pr[X + X ′ ∈ Bρ(T )] (the argument easily generalizes to allow for multipliers α, β ∈ Fq \ {0}
and a shift y ∈ Fn

q ).
Unlike in the case of combinatorial rectangles, it is not the case that X = (X1, . . . , Xn)

and X ′ = (X ′
1, . . . , X ′

n) have independent coordinates. For example, conditioned on X1
lying in T1, then X2 is less likely to lie in T2. However, these correlations are relatively
minor, and we can essentially “pretend” that both X and X ′ are sampled as follows: for
each i ∈ [n], with probability 1 − ρ set the i-th coordinate to a uniformly random element
of Ti, and otherwise set it to a uniformly random element of Fq \ Ti, and these choices are
made independently for each i ∈ [n].5 We remark that a similar trick is implicit in [12], and
made explicit in the context of rank-metric codes by Guruswami and Resch [18].

This new distribution is much more amenable to analysis. In particular, letting Ei be
the indicator for the event Xi + X ′

i ∈ Ti, then X + X ′ ∈ Bρ(T ) iff
∑

i Ei ≥ (1 − ρ)n. Thus,
if we can argue Pr[Ei = 1] < 1 − ρ then a classic Chernoff-Hoeffding bound establishes
Pr [
∑

i Ei ≥ (1 − ρ)n] is exponentially small, implying the desired δ-mixing.
Bounding Pr[Ei = 1] is the most novel part of the analysis, and is done in Lemma 26.

Recall that Xi, X ′
i ∼ Ti, and let also Yi, Y ′

i ∼ Fq \ Ti. We have

Pr[Ei = 1] = (1 − ρ)2 Pr[Xi + X ′
i ∈ Ti] + 2ρ(1 − ρ) Pr[Xi + Y ′

i ∈ Ti] + ρ2 Pr[Yi + Y ′
i ∈ Ti]

=
∑

zi∈Ti

(1 − ρ)2 Pr[Xi + X ′
i = zi] + 2ρ(1 − ρ) Pr[Xi + Y ′

i = zi] + ρ2 Pr[Yi + Y ′
i = zi].

(2)

4 Or, more generally, arithmetic progressions.
5 In fact for technical reasons we have to consider Xi lying in Ti with probability ω for ω ≤ ρ, and

similarly X ′
i lies in Ti with probability ω′ ≤ ρ. But by a concentration argument one can easily establish

that ω and ω′ are with high probability very close to ρ.

APPROX/RANDOM 2025
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As is standard, Pr[Xi+X ′
i = zi] is proportional to 1Ti ∗1Ti(zi), the convolution of the indicator

functions for Ti, and similarly Pr[Xi + Y ′
i = zi] and Pr[Yi + Y ′

i = zi] are proportional to
1Ti

∗1Fq\Ti
(zi) and 1Fq\Ti

∗1Fq\Ti
(zi), respectively. Using the simple identity 1Fq\Ti

= 1−1Ti
,

we can rewrite Equation (2) as

c · 1Ti
∗ 1Ti

(zi) + other terms,

where c is a constant which we show to be positive assuming ρ ∈ (0, 1 − ℓ/q) (and indeed, if
ρ > 1 − ℓ/q then it could be negative). Upon giving a trivial upper bound 1Ti

∗ 1Ti
(zi) (which

corresponds to the case that Ti does not mix at all, as we must do since we are making no
assumptions on the field) and simplifying, we obtain the bound

Pr[Ei = 1] ≤ (1 − ρ)2 + ρ2 · ℓ

q − ℓ
.

To our satisfaction, we have that (1 − ρ)2 + ρ2 · ℓ
q−ℓ < 1 − ρ iff ρ ∈ (0, 1 − ℓ/q), which is

precisely the range of decoding radius at which we can hope for positive rate list-recovery
from errors in the first place! Thus, we have that Pr [

∑
i Ei ≥ (1 − ρ)n] is exponentially

small, establishing that list-recovery balls nontrivially mix.

1.3 Open Problems
Lastly, we leave here some directions for future research:

In our results the dependency on ε is correct, but the dependency on ℓ and q is rather
poor. Can we improve this dependency? Or, can we perhaps prove new lower bounds on
L in terms of ℓ and q that apply when these parameters are not too big?
[17] showed that over Fq with q = ℓt (and hence small characteristic), a random linear
code is with high probability not (α, ℓ, L)-list-recoverable from erasures unless L ≥ ℓΩ(1/ε).
Can we show that this lower bound actually applies to every q-ary linear code?
Many arguments for codes being list-recoverable from errors in fact establish the stronger
property of average-radius-list-recovery, where now one instead shows that for any input
lists T1, . . . , Tn ⊆ Fq of size ℓ, given L + 1 codewords c(1), . . . , c(L+1) one has

1
L + 1

L+1∑
j=1

n∑
i=1

1{c
(j)
i

/∈Ti} > ρn.

This in particular implies that there cannot be L + 1 codewords lying in a list-recovery
ball of radius ρ. We believe our method should be able to establish this (slightly) stronger
guarantee for random linear codes.

2 Preliminaries

2.1 Notation
We will often denote random variables and sets by uppercase Roman letters. The distinction
will be clear from context. We write [n] = {1, . . . , n} for any positive integer n. For a vector
v ∈ Fn

q with Fq the finite field of order q, we write Supp(v) = {i : vi ≠ 0}. We define
the weight of v to be wt(v) = | Supp(v)|, and the Hamming distance between v and u is
d(u, v) = |{i ∈ [n] : ui ̸= vi}| = | Supp(u − v)|. For a collection of vectors v1, . . . , vd ∈ Fq, we
denote by Span(v1, . . . , vd) the subspace of Fd

q spanned by v1, . . . , vd.
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We denote the binary entropy function by h2(·), and recall that h2(x) = x log2
1
x + (1 −

x) log2
1

1−x . For a positive integer q we shorthand expq(x) = qx. Additionally, by default log
is the base-2 logarithm. We write 1A for the indicator function of a set A, and write 1{E}
for the indicator random variable that equals 1 if and only if the event E holds.

2.2 The Random Code Model
For an alphabet size q, a plain random code C of block length n and rate R ∈ [0, 1] is
obtained by including each x ∈ [q]n in C with probability q−(1−R)n, and these choices are
made independently for each x. (Note then that such a code has size qRn in expectation,
and by a Chernoff bound it follows that it has rate R ± o(1) with high probability.)

When q is a prime power, a random linear code C of block length n and rate R ∈ [0, 1] is
obtained by sampling a uniformly random matrix H ∈ F(1−R)n×n

q , and defining

C = {x ∈ Fn
q : Hx = 0}.

Note that H is full-rank with probability 1 − O(q−Rn), and therefore C has rate R with high
probability.

Given any subset S ⊆ [q]n, if C is a plain random code of rate R then Pr[S ⊆ C] =
q−(1−R)n|S|. When dealing with random linear codes, the probability that a set appears in
the code is determined by the span of the set.

▶ Proposition 7. Let C ≤ Fn
q be a random linear code of block length n and rate R ∈ [0, 1],

and let x1, . . . , xb ∈ Fn
q . Then,

Pr[∀i ∈ [b], xi ∈ C] = q−(1−R)n dim(Span(x1,...,xb)).

2.3 List-Recovery Notions
This section collects the basic notions of list-recovery we study.

List-recovery from erasures

We begin with the relevant definition.

▶ Definition 8 (list recovery from erasures). Let C ⊆ [q]n be a q-ary code of block-length n.
For an erasure radius α ∈ [0, 1) and input list size 1 ≤ ℓ ≤ q, we say that C is (α, ℓ, L)-list-
recoverable from erasures if for every T1, . . . , Tn ⊆ [q] such that |Ti| ≤ ℓ for at least (1 − α)n
of the i-s and Ti = [q] for the remaining, it holds that

|C ∩ (T1 × · · · × Tn)| ≤ L.

That is, in any combinatorial rectangle of which at least (1 − α)n of its side-lengths are at
most ℓ (and the remainder can be as large as q), there are at most L codewords.

We will also consider list-recovery from errors. The concept of a list-recovery ball – which
generalizes that of a Hamming ball – will be useful.

▶ Definition 9 (list-recovery ball). Let q ∈ N and let T1, . . . , Tn ⊆ [q]. The list-recovery ball
of radius ρ centered at T1 × · · · × Tn is

Bρ(T1 × · · · × Tn) = {x ∈ [q]n : d(x, T1 × · · · × Tn) ≤ ρn}.

Above, we have extended the Hamming metric by setting

d(x, T1 × · · · × Tn) = |{i ∈ [n] : xi /∈ Ti}|.

APPROX/RANDOM 2025
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We now state the relevant capacity theorem for list-recovery from erasures. The proofs
of the two implications are standard: the possibility result follows from analyzing the
performance of a plain random code, while the impossibility result follows from a counting
argument.

▶ Theorem 10 (list-recovery from erasures capacity). Let 1 ≤ ℓ ≤ q and let α ∈ [0, 1). Fix
ε > 0. For n ∈ N large enough, the following hold:

There exists a code C ⊆ [q]n of rate 1 − (1 − α) logq ℓ − α − ε which is (α, ℓ, ⌈ℓ/ε⌉)-list-
recoverable from erasures.
For any code C ⊆ [q]n of rate 1 − (1 − α) logq ℓ − α + ε, there exist T1, . . . , Tn ⊆ [q] with
|Ti| ≤ ℓ for at least (1 − α)n values of i ∈ [n] such that |C ∩ (T1 × · · · × Tn)| ≥ qεn−o(n).

We therefore say that the capacity for (α, ℓ, L)-list-recovery from erasures is 1 − α − (1 −
α) logq ℓ. We will study what happens for codes of rate 1 − (1 − α) logq ℓ − α − ε for some
ε > 0, and determine the value of their output list-size L. We will be focused on the case
where q is held constant, and the gap-to-capacity ε tends to 0.

List-recovery from errors

We now define what it means for a code to be list-recoverable from errors.

▶ Definition 11 (list recovery from errors). Let C ⊆ [q]n be a q-ary code of block-length
n. For a decoding radius ρ ∈ (0, 1 − ℓ/q) and input list size 1 ≤ ℓ ≤ q, we say that C is
(ρ, ℓ, L)-list-recoverable from errors if for every T1, . . . , Tn ⊆ [q] such that |Ti| ≤ ℓ for all
i ∈ [n], it holds that

|C ∩ Bρ(T1 × · · · × Tn)| ≤ L.

That is, every list-recovery ball of radius ρ with side-lengths ≤ ℓ contains at most L codewords.

We will need an estimate on the size of list-recovery balls. It makes use of the (q, ℓ)-entropy
function, defined as follows:

hq,ℓ(x) = x logq

q − ℓ

x
+ (1 − x) logq

q − ℓ

1 − x
. (3)

An operational interpretation of this quantity is as the base-q entropy of a random variable
which, with probability 1 − x, samples a uniformly random element from a set of size ℓ, and
with probability x samples a uniformly random element from the complement. Additionally,
so long as 0 < x < 1 − ℓ/q it holds that 0 < hq,ℓ(x) < 1. Note that if ℓ = 1 one recovers the
q-entropy function, which we denote as hq (i.e., if ℓ is omitted from the subscript, then it is
by default 1).

We now state the relevant estimate.

▶ Proposition 12 ([35, Proposition 2.4.11]). Let 1 ≤ ℓ ≤ q be integers and ρ ∈ (0, 1 − ℓ/q).
Let T1, . . . , Tn ⊆ [q] with |Ti| = ℓ for all i ∈ [n]. Then,

qnhq,ℓ(ρ)
√

2n
≤ |Bρ(T1 × · · · × Tn)| ≤ qnhq,ℓ(ρ).

This estimate drives the following capacity theorem.
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▶ Theorem 13 (list-recovery from errors capacity). Let 1 ≤ ℓ ≤ q and let ρ ∈ (0, 1 − ℓ/q). Fix
ε > 0. For n ∈ N large enough, the following hold:

There exists a code C ⊆ [q]n of rate 1 − hq,ℓ(ρ) − ε which is (ρ, ℓ, ⌈ℓ/ε⌉)-list-recoverable
from errors.
For any code C ⊆ [q]n of rate 1 − hq,ℓ(ρ) + ε, there exists T1, . . . , Tn ⊆ [q] with |Ti| ≤ ℓ

for all i ∈ [n] such that |C ∩ Bρ(T1 × · · · × Tn)| ≥ qεn−o(n).

Thus, we will concern ourselves with codes of rate 1 − hq,ℓ(ρ) − ε, and determine the
output list size L for (ρ, ℓ, L)-list-recovery from errors. And, as in the list-recovery from
erasures case, we will hold ρ, ℓ, q constants and consider the asymptotic behaviour of L as
the gap-to-capacity ε → 0.

We will also need the following lower bound on the difference hq,ℓ(ρ) − hq,ℓ(ρ − η). See
the full version of the paper [3] for the proof.

▷ Claim 14. For any integers q > 0 and 1 ≤ ℓ ≤ q, any ρ ∈ (0, 1 − ℓ/q], and any η ∈ [0, ρ],
we have

hq,ℓ(ρ) − hq,ℓ(ρ − η) ≥ η logq

(
(q − ℓ)(1 − ρ)

ℓ · ρ

)
≥ 0.

2.4 Increasing Chains
The following definition of an increasing chain was first introduced by Guruswami, Håstad,
and Kopparty [12].

▶ Definition 15 (c-increasing chain). A sequence of vectors v1, . . . , vd ∈ Fℓ
q is said to be a

c-increasing chain of length d if for all j ∈ [d] we have∣∣∣∣∣Supp(vj) \

(
j−1⋃
i=1

Supp(vi)
)∣∣∣∣∣ ≥ c.

We require the following lemma on the existence of appropriately long increasing chains
in an appropriate shift of an arbitrary subset S ⊆ Fℓ

q.

▶ Lemma 16 ([12, Lemma 6.3]). For every prime power q, and all positive integers c, ℓ and
L ≤ qℓ, the following holds. For every S ⊆ Fℓ

q with |S| = L, there is w ∈ Fℓ
q such that S + w

has a c-increasing chain of length at least 1
c logq

L
2 − (1 − 1

c ) logq((q − 1)ℓ).

2.5 Mixing Sets
In our analysis we need to understand the probability that the sum of two independent
uniformly random samples X and X ′ from a set T ⊆ Fq lands in a shifted set T + γ, for an
arbitrary shift γ ∈ Fq (and in fact a more general question of that form). We begin with the
necessary definitions.

▶ Definition 17 (mixing over Fq). For a prime power q, and δ ≥ 0, we say that T ⊆ Fq is
δ-mixing, if for any α, β, γ ∈ Fq, where α and β are nonzero, it holds that

Pr
X,X′

[αX + βX ′ ∈ T + γ] ≤ q−δ,

where X, X ′ ∼T are independent and uniformly distributed over T , and T +γ ={t + γ : t ∈ T}.

APPROX/RANDOM 2025
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▶ Definition 18 (mixing over Fn
q ). For n ∈ N, a prime power q, and δ ≥ 0, we say that

T ⊆ Fn
q is δ-mixing, if for any nonzero α, β ∈ Fq, and any z ∈ Fn

q , it holds that

Pr
X,X′

[αX + βX ′ ∈ T + z] ≤ q−δn,

where X, X ′ ∼ T are independent and uniformly distributed over T .

▶ Remark 19. Note that a set mixes nontrivially when δ > 0, and moreover, we will want
δ > 0 to not depend on n. However, in the case of list recovery from erasures, where for
some i-s, Si = Fq, the case of δ = 0 will be useful towards bounding the expected mixing of
S1, . . . , Sn.

The following connection then follows easily.
▶ Remark 20. Suppose that T1, . . . , Tn ⊆ Fq, and each Ti is δi-mixing. Then, T = T1×· · ·×Tn

is δ-mixing, for δ = Ei∼[n][δi].

3 List-Recovery from Erasures over Prime Fields

In this section we establish the list-recoverability of random linear codes over prime fields. To
achieve this, we must first understand the mixing properties of worst-case subsets of prime
fields. Most of the proofs are deferred to the full version [3].

3.1 Worst-Case Mixing of Subsets of Prime Fields
Towards understanding mixing of subsets of prime fields, we leverage a general result of
Lev [29] which characterizes worst-case T -s, when q is prime. Before we introduce it, we set
up some relevant notation.

For a set T ⊆ Fq we let T̃ denote a “centered interval” of length |T |. More precisely, T̃

is the δ-centered interval associated with T if T̃ = [−α, α + δ] ⊆ Fq with α ∈ [0, q−1
2 ] and

δ ∈ {−1, 0, 1} satisfying |T̃ | = 2α + 1 + δ = |T |. Note that when |T | is odd there is a unique
centered interval T̃ (because δ = 0 necessarily), but when |T | is even there are two centered
intervals, corresponding to δ = ±1.

▶ Lemma 21 ([29, Theorem 1], adapted). Let q ≥ 3 be prime and A1, . . . , Ak ⊆ Fq be
arbitrary sets with Ã1, . . . , Ãk the associated δi-centered intervals. Then, if |δ1 + · · · + δk| ≤ 1,
for any set B ⊆ Fq and some associated δ-centered interval B̃, we have

Pr
Xi∼Ai

[X1 + · · · + Xk ∈ B] ≤ Pr
X̃i∼Ãi

[X̃1 + · · · + X̃k ∈ B̃].

We can use Lemma 21 to prove the following.

▶ Lemma 22. Fix a prime q ≥ 3. Let T1, T2, T3 ⊆ Fq be arbitrary sets of size ℓ > 0. Then,

Pr
X1∼T1,X2∼T2

[X1 + X2 ∈ T3] ≤

{
3
4 + 1

4ℓ2 + max(0,3ℓ−2q−1)·(3ℓ−2q+1)
4ℓ2 , if ℓ is odd,

3
4 + max(0,3ℓ−2q)2

4ℓ2 , if ℓ is even,

and this is tight for all ℓ. In particular:
1. When ℓ ≤ 2q/3 we have

Pr
X1∼T1,X2∼T2

[X1 + X2 ∈ T3] ≤

{
3
4 + 1

4ℓ2 , if ℓ is odd,
3
4 , if ℓ is even.
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2. When 2q/3 < ℓ ≤ q − 1 we have

Pr
X1∼T1,X2∼T2

[X1 + X2 ∈ T3] ≤ q2 − 3ℓ(q − ℓ)
ℓ2 .

We can then record the following corollary.

▶ Corollary 23. For a prime q ≥ 3, any set T ⊆ Fq of size ℓ ≤ q − 1,
If 2 ≤ ℓ ≤ 2q/3, T is δ-mixing for δ ≥ logq(16/13).
Otherwise, T is δ-mixing for δ ≥ logq

(
ℓ2

q2−3ℓ(q−ℓ)

)
.

3.2 List-Recovery from Erasures over Prime Fields via Mixing
In this section we adapt the technique in [12], together with the worst-case mixing result
from Corollary 23, to establish list recovery from erasures over prime fields.

▶ Lemma 24. Let T ⊆ Fn
q be δ-mixing. For b ∈ N and any a > 0 satisfying n ≥ q

8a
δ , the

following holds. Let X(1), . . . , X(b) be sampled independently and uniformly at random from
T . Then, we have that

Pr
[∣∣∣Span

(
X(1), . . . , X(b)

)
∩ T

∣∣∣ > C · b
]

≤ q−an,

where C = C(q, δ, a) = q
8a
δ . In particular, when T = T1 × · · · × Tn, and each Ti is δi-mixing,

we get the same result as above for δ = Ei[δi].

Proof. Let E denote the bad event that we want to bound, namely | Span(X(1), . . . , X(b)) ∩
T | > A for A = b · q

8a
δ . Note that E implies that there exists some set S ⊆ Fb

q, |S| = A + 1,
such that Xv ≜

∑
i∈[b] viX

(i) ∈ T for all v ∈ S.6 Hence, it suffices to bound the probability
that such a set S exists.

Fix some S ⊆ Fb
q of size A + 1. Applying Lemma 16 with c = 2 (and note that we can

assume that A + 1 ≤ qb), we know there exists w ∈ Fb
q such that S + w has a 2-increasing

chain of length d = 1
2 logq

A+1
2 − 1

2 logq((q − 1)b). That is, we have v(1), . . . , v(d) ∈ S such
that for all j ∈ [d],∣∣∣∣∣Supp(v(j) + w) \

(
j−1⋃
i=1

Supp(v(i) + w)
)∣∣∣∣∣ ≥ 2.

Now, we can bound

Pr[∀v ∈ S, Xv ∈ T ] ≤ Pr[∀j ∈ [d], Xv(j) ∈ T ]
= Pr[∀j ∈ [d], Xv(j) + Xw ∈ T + Xw]
= Pr[∀j ∈ [d], Xv(j)+w ∈ T + Xw]. (4)

Next, we bound Equation (4) by∑
y∈Fn

q

Pr[∀j ∈ [d], Xv(j)+w ∈ T + y]. (5)

6 Notice that if the Xi-s are not linearly independent, this can only decrease the probability that the
intersection is large, so we can concentrate on the case that distinct v-s give rise to distinct Xv-s.
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Towards bounding each term in the sum, observe that the increasing chain property tells
us that for each j ∈ [d], we can write Xv(j)+w = Y

(j)
past + Y

(j)
new, where Y

(j)
past contains Xk-s that

participated in
{

Xv(i)+w

}
i<j

, whereas Y
(j)

new contains two new Xk-s. Now,

Pr[Xv(j)+w ∈ T +y | ∀i ∈ [j −1], Xv(i)+w ∈ T +y] = E
z∼Y

(j)
past

[
1(z) · Pr[Y (j)

new ∈ T + yz]
]

, (6)

where 1(z) is an indicator for whether past Xk-s landed in T + y, and yz is a fixed string
that depends on the fixing of Y

(j)
past. Assume for simplicity that Y

(j)
new = αX(1) + βX(2), where

α, β ∈ Fq are nonzero. Then, using the fact that T is δ-mixing, each summand of Equation (5)
can now be bounded by∏

j∈[d]

Pr[Xv(j)+w ∈ T + y | ∀i ∈ [j − 1], Xv(i)+w ∈ T + y] ≤ q−nδd,

and summing over all y-s gives us

Pr[v ∈ S, Xv ∈ T ] ≤ qn · q−nδd = q−(δd−1)n.

Union-bounding over all S-s, we get

Pr[E] ≤
(

qb

A + 1

)
q−(δd−1)n ≤ qb(A+1)−(δd−1)n. (7)

First, note that we set parameters so that d ≥ 2a+1
δ . Indeed, we can set d =⌊

1
2 logq

(
A+1

2b(q−1)

)⌋
, and then need A to be at most, say, 4q · q

4a
δ ≤ q

8a
δ . Under this choice

of A, it also holds that b(A + 1) ≤ δd−1
2 n, since n is large enough. Overall, Equation (7)

gives Pr[E] ≤ q− δd−1
2 n ≤ q−an, as desired. The “In particular” part simply follows from

Remark 20. ◀

We are now ready to give our list recovery result.

▶ Theorem 25 (list recovery with erasures). For any n ∈ N, a prime q, an integer ℓ ≤ q − 1,
and α, ε ∈ (0, 1), the following holds. With probability at least 1 − q−n, a random linear code
C ⊆ Fn

q of rate

R = 1 − α − (1 − α) logq ℓ − ε

is (α, ℓ, L)-list-recoverable from erasures, with

L = Cq,ℓ,α · 1
ε

,

provided that n ≥ L. In particular, there exists a universal constant C such that:
When ℓ ≤ 2

3 q, we can take Cq,ℓ,α ≤ qC log q·((1−α)ℓ+1) ≜ C
(0)
q,ℓ,α, and,

When ℓ = (1 − γ)q for some γ ∈ (0, 1/3), we can take Cq,ℓ,α ≤
(

C
(0)
q,ℓ,α

) (1−γ)2
1−3γ(1−γ) .

4 List-Recovery from Errors over Arbitrary Fields

We now turn to the case of list-recovery from errors. Unlike in the case of list-recovery from
erasures, we will make no assumptions on the underlying field. We firstly show that list-
recovery balls are non-trivially mixing. We subsequently sketch how, again using Lemma 22,
we can conclude the desired list-recovery result. The proofs are deferred to the full version [3].
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4.1 Mixture of List-Recovery Balls
▶ Lemma 26. Suppose q is a prime power, 1 ≤ ℓ ≤ q is an integer and ω1, ω2 ∈ (0, 1 − ℓ/q).
Let A, B, T ⊆ Fq be of size ℓ, let X1 ∼ Unif(A), X2 ∼ Unif(B), Y1 ∼ Unif(Fq \ A) and
Y2 ∼ Unif(Fq \ B) all independent. Then,

(1 − ω1)(1 − ω2) Pr[X1 + X2 ∈ T ] + ω1(1 − ω2) Pr[X1 + Y2 ∈ T ] (8)
+ ω2(1 − ω1) Pr[Y1 + X2 ∈ T ] + ω1ω2 Pr[Y1 + Y2 ∈ T ]

≤ (1 − ω1)(1 − ω2) + ω1ω2 · ℓ

q − ℓ
. (9)

In the sequel, we will need upper and lower bounds on the RHS of Lemma 26 to 1 − ρ.
The following lemma establishes the required bounds.

▶ Lemma 27. Suppose q is a prime power, 1 ≤ ℓ ≤ q is an integer and ρ ∈ (0, 1 − ℓ/q).
Suppose 0 ≤ η ≤ ρ and ρ − η ≤ ω1, ω2 ≤ ρ. Then, the following inequalities hold:

1 − ρ > (1 − ρ)2 + ρ2 · ℓ

q − ℓ
, (10)

(1 − ρ + η)2 + (ρ − η)2 · ℓ

q − ℓ
> (1 − ω1)(1 − ω2) + ω1ω2 · ℓ

q − ℓ
. (11)

We can now state a lemma bounding the probability that a nontrivial linear combination
of two uniform samples from a list-recovery ball lands in a shift of the list-recovery ball.
Then, in Corollary 30, we show how to set parameters to turn this into a statement about
the δ-mixing of a list-recovery ball.

▶ Lemma 28. Let n ∈ N, q a prime power, 1 ≤ ℓ ≤ q an integer, and let ρ ∈ (0, 1 − ℓ/q).
Let T1, . . . , Tn ⊆ Fq be subsets, each of size ℓ. Fix η > 0 small enough so that

1 − ρ > (1 − ρ + η)2 + (ρ − η)2 · ℓ

q − ℓ
.

Let α, β ∈ Fq \ {0} and y ∈ Fn
q , and let X, X ′ ∼ Bρ(T1 × · · · × Tn). Then,

Pr[αX + βX ′ ∈ y + Bρ(T1 × · · · × Tn)] ≤ 2
√

2n · expq (n(hq,ℓ(ρ − η) − hq,ℓ(ρ)))

+ 2n · expq

(
−nDq

(
1 − ρ∥(1 − ρ + η)2 + (ρ − η)2 ℓ

q − ℓ

))
. (12)

▶ Remark 29. Since Lemma 27 implies

1 − ρ > (1 − ρ)2 + ρ2 · ℓ

q − ℓ
⇐⇒ 0 < ρ < 1 − ℓ

q
,

it follows that one can indeed choose η small enough to ensure

1 − ρ > (1 − ρ − η)2 + (ρ + η)2 · ℓ

q − ℓ
.

In Corollary 30 we show how to choose η > 0 to bound the two terms in Equation (12) by
q−δn for a concrete δ > 0 (which depends on ρ, ℓ, q).

▶ Corollary 30. Let n ∈ N, q a prime power, 1 ≤ ℓ < q an integer, and let ρ ∈ (0, 1 − ℓ/q).
Let T1, . . . , Tn ⊆ Fq, each of size ℓ. The list-recovery ball Bρ(T1 × . . . × Tn) is δ-mixing, for

δ = logq

(
(q − ℓ)(1 − ρ)

ρℓ

)
· ρ4(1 − ℓ/q − ρ)2

16 log q

assuming n ≥
(

log q
ρ(1−ℓ/q−ρ)

)c

for some universal constant c.
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4.2 List Recovery from Errors
Having established that the list-recovery ball is δ-mixing, we will repeat roughly the same
argument we had for list recovery with erasures, that uses Lemma 24.

▶ Theorem 31 (list recovery with errors). For every n ∈ N, a prime power q, an integer
ℓ < q, ρ ∈ (0, 1 − ℓ/q), and ε ∈ (0, 1), the following holds. With probability at least 1 − q−n,
a random linear code C ⊆ Fn

q of rate

R = 1 − hq,ℓ(ρ) − ε

is (ρ, ℓ, L)-list-recoverable from errors, with

L = Cρ,ℓ,q · 1
ε

,

provided that n is large enough. More concretely, there exists a universal constant C such
that

Cρ,ℓ,q ≤ q
ℓ·
(

log q
ρ(1−ℓ/q−ρ)

)C

provided that n ≥
(

log q
ρ(1−ℓ/q−ρ)

)C

.
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