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Abstract
Motivated by recent advances in locally testable codes and quantum LDPCs based on robust
testability of tensor product codes, we explore the local testability of tensor products of (an
abstraction of) algebraic geometry codes. Such codes are parameterized by, in addition to standard
parameters such as block length n and dimension k, their genus g. We show that the tensor product
of two algebraic geometry codes is robustly locally testable provided n = Ω((k + g)2). Apart from
Reed-Solomon codes, this seems to be the first explicit family of two-wise tensor codes of high dual
distance that is robustly locally testable by the natural test that measures the expected distance of
a random row/column from the underlying code.
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1 Introduction

In this work we consider the “robust local testability” of “tensor products” of “algebraic
geometry codes”. We review each of these notions below before describing our results.

All codes considered in this paper are linear codes over some finite field Fq. Given two
codes R ⊆ Fm

q and C ⊆ Fn
q , their tensor product R ⊗ C ⊆ Fnm

q consists of all n × m matrices
M whose rows are codewords of R and whose columns are codewords of C. It is a simple
but valuable exercise in linear algebra to note that the dimension of R ⊗ C is the product of
the dimensions of R and C. It is an arguably simpler exercise to see that the distance of the
code R ⊗ C is the product of the distance of R and C. (In this paper by distance we mean,
either absolute or normalized, Hamming distance. This particular statement holds for either
of these terms.) Our interest in tensor product codes comes from their potential testability
properties elaborated next.
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59:2 Testing Tensor Products of Algebraic Codes

Given an arbitrary matrix A ∈ Fn×m
q , the definition of a tensor product defines a natural

test to see if A ∈ R ⊗ C, namely verify every row is in R and every column is in C. The
“robust testability” property explores the robustness of this definition in measuring distances:
If the expected distance of a uniformly chosen row of A from R is small, and so is the
expected distance of a uniformly chosen column, then is A close to a codeword of R ⊗ C?
A tensor product of codes is said to be robustly testable if the answer is affirmative. (This
notion is formulated more precisely and quantitatively in Definition 2.)

The formal study of robustness of tensor product codes was initiated by Ben-Sasson and
Sudan [4]. We elaborate on their motivation shortly, but for now mention that most of the
general work in this setting, including that in [4] and the work of Viderman [28], considered
a variant of the tensor-product testing question raised above. Specifically they consider
m-wise tensor products of codes for m ≥ 3 and showed that these are robust with respect to
a slightly more complex “two-wise test” (where the test measures the expected distance of a
random two-dimensional projection from the underlying two-wise tensor) as long as the code
being tensored has sufficiently large distance.

Robustness of two-wise tensors has been shown for very few classes of codes in the
literature so far. Briefly the works have considered the tensor product when the codes R and
C are Reed-Solomon codes [24, 1, 23] or when dual distance of C is small [9]1, or when R and
C are random. The work of Valiant [26] also gives examples of asymptotically good codes
whose tensor product is not robustly testable – suggesting that robustness needs additional
properties (other than just rate and distance) in the ingredient codes.

In this work, we consider new classes of codes which are generalizations of Reed-Solomon
codes. The codes we study are abstractions of algebraic geometry codes - such codes come
as an entire sequence of codes characterized by two main features: (a) they approach the
Singleton bound in terms of their distance vs. dimension tradeoff with the additive gap
termed the “genus” (a parameter that is derived from the genus of some underlying algebraic
curves, but gets a purely coding theoretic interpretation in this abstraction); and (b) the
Hadamard product of two codewords of two codes of small dimension is a codeword of a code
in the sequence of only slightly larger dimension. (See Definition 1 for a precise formulation.)

The main result in this paper shows that the tensor product of two sequences of AG
codes is robustly testable provided their dimension and genus is sufficiently small compared
to the length of the code. (See Theorem 4 for a precise statement.) Before describing getting
into the specifics we give some context and motivation for the study of testing of tensor
product codes.

1.1 Robust Testability of Tensor Product: Background and Motivation
Robust testability of tensor codes was studied in the work of Ben-Sasson and Sudan [4], who
raised the question of whether R ⊗ C is robustly testable for all codes of sufficiently large
relative distance. Their question was inspired by the role of the “bivariate polynomial tester”
in the works on PCPs, originating in the works of Babai, Fortnow, Levin and Szegedy [2]
and explored systematically in the work of Rubinfeld and Sudan [24]. Seminal results in this
space include the work of Arora and Safra [1] who showed that Reed-Solomon codes of inverse
polynomial rate have constant robustness, and the work of Polishchuk and Spielman [23], who
extended the result of [1] to Reed-Solomon codes of any linear rate bounded away from 1/2.

1 Dual of a code C ⊆ Fn
q is defined as the set of vectors orthogonal to C, that is, C⊥ = {x ∈ Fn

q | ∀y ∈
C, ⟨x, y⟩ = 0}. By dual distance, we refer to the distance of the dual code.
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The question raised in [4] was however answered negatively by Valiant [26] (see also [5, 11],
who gave codes of relative distance arbitrarily close to 1 that were not robustly testable).
These works motivated the search for specific classes of codes, other than Reed-Solomon
codes, whose tensor product is robustly testable.

The robust testability of tensor product codes has played a central role in many results
over the years. The robust testability of Reed-Solomon codes is used ubiquitously in PCP
constructions. It also plays a role in the breakthrough result of Ji, Natarajan, Vidick,
Wright and Yuen [14] showing MIP∗=RE. Indeed this motivated the same authors [15]
to explore the quantum testability of tensor products of codes. It also led to the first
combinatorial constructions of LTCs of nearly linear rate in the work of Meir [20] and first
known constructions of strong LTCs with nearly linear rate in the work of Viderman [27].
The robustness of tensor product codes also plays a central role in the recent breakthroughs
of Dinur, Evra, Livne, Lubotzky and Mozes [7] and Panteleev and Kalachev [21] (see also
[19]) giving constant query LTCs of linear rate and distance, and quantum LDPCs. We
remark that the role of tensor product codes here is essential – these are the only sources
of “redundancy” among the local constraints in the constructions of [7, 21, 19] and such
redundancies are necessary to get LTCS as shown in [3]. Indeed the only two known sources
of redundancy among constraints in LDPCs come from symmetries (see [18]) or the tensor
product construction.

These many applications motivate the quest for general tools in the analysis of robustness
of tensor product codes. To date the only known works on robust testability of tensor codes
are (1) the aforementioned works on Reed-Solomon codes, (2) a work of Dinur, Sudan and
Wigderson [9] roughly showing that R ⊗ C is robustly testable if C is an LDPC code and
(3) recent works, notably by Panteleev and Kalachev [21] and Leverrier and Zémor [19],
showing that tensor products of random linear codes (and their duals) are robustly testable2,
with improved parameters in [16, 8]. (We remark that some of the interest in 2-dimensional
robust testability is due to an equivalence with a notion called “product expansion” of codes,
an equivalence that holds only for two-dimensional tensor products. Both the notion of
robustness and product expansion do extend to higher dimensional products but they are no
longer equivalent. See [17] and references therein.)

The lack of more general results motivates us to study the testability results for products
of Reed-Solomon codes. (We note the other explicit result [9] is already generic, while the
robustness in the setting of Reed-Solomon codes is not.) However, the current analyses of
robustness in this setting are very algebraic and to make this analysis more generic, one
needs an appropriate abstraction of the underlying algebra and we discuss this next.

1.2 Abstracting Algebraic Codes
Over the years coding theorists have proposed nice abstractions of algebraic codes - see
for instance [10, 22]. These works abstract a product property that captures the fact that
the product of two polynomials of degree d has degree at most 2d. This corresponds to
the fact that the coordinate-wise product of two codewords from a (roughly) d dimensional
space is contained in a (roughly) 2d dimensional space, which is a highly non-trivial effect.

2 In this work, we prove robust testability of tensor products of an abstraction of algebraic geometry
codes. As the dual distance of LDPC codes is a constant by definition, this gives us first explicit family
of codes of super-constant dual distance that is robustly locally testable after Reed-Solomon codes (to
the best of our knowledge). Explicit constructions for AG codes with super-constant dual distance are
known (see Section 2.7 in [13]).

APPROX/RANDOM 2025



59:4 Testing Tensor Products of Algebraic Codes

(In contrast for a generic linear code C ⊆ Fn of dimension d, the smallest linear space
that contains all the coordinate-wise products of pairs of codewords from C has dimension
min{d2, n}.) This non-trivial product property seen in Reed-Solomon codes when abstracted
properly captures most algebraic codes (including Reed-Muller and algebraic geometry codes)
nicely and suffices to explain most decoding algorithms for such codes. However other
algorithms, such as list-decoding algorithms, use more involved properties (see [12]) that
include the ability to capture multiplicities of zeroes and the ability to shift a polynomial
without increasing its degree (i.e., f(x) has the same degree as f(x + a)).

The current analyses of robust testability of tensor products of Reed-Solomon codes use
many aspects of polynomials in addition to the product property. For instance they rely
on unique factorization, on the role of resultants in computing greatest common divisors
(and the fact that resultants themselves are low-degree polynomials). They use the fact that
puncturing of Reed-Solomon codes are Reed-Solomon codes etc. Given all these aspects in
the proofs, it is interesting to see how far one can go with more minimal assumptions.

In this work, we use a simple quantitative version of the product property (see Definition 1)
which naturally captures algebraic geometry codes, (but not for instance Reed-Muller codes).
In particular we avoid use of unique factorization and GCDs, and also avoid explicit use
of the puncturing property. This allows us to recover a moderately strong version of the
analysis for Reed-Solomon codes: specifically we can analyze codes that have block length at
least quadratic in the dimension. Thus our work is not strong enough to imply the result of
Polishchuk and Spielman [23] who only require block length linear in the dimension; but is
stronger than the previous work of Arora and Safra [1] (and implies their result) who showed
that the tensor product of two Reed-Solomon codes of dimension d and length n is robustly
testable provided n = Ω(d3).

The next section presents our formal definitions and theorem statement.

2 Definitions and Main Result

We use Fq to denote the finite field on q elements. We use functional notation to describe
vectors, so the vector space Fn

q will be viewed and represented as functions Fn
q = {f : S → Fq}

for some set S with |S| = n. (Often we use S = [n].) Note that with this notation we
naturally have the notion of f + g and fg both of which are in Fn

q . For functions f : S → Fq

and g : T → Fq, we use f ⊗ g : S × T → Fq to denote the function (f ⊗ g)(x, y) = f(x)g(y).
If f ∈ Fm

q and g ∈ Fn
q , note that we have f ⊗ g ∈ Fn×m

q
∼= Fnm

q . Here, we assume that a
“row” is indexed by y and varies x ∈ [m] (vice versa for “column”). For f, g : S → Fq, we
use dist(f, g) to denote the absolute (non-normalized) Hamming distance between f and
g, i.e., dist(f, g) = |{x ∈ S|f(x) ̸= g(x)}| and we use δ(f, g) = 1

|S| · dist(f, g) to denote the
normalized Hamming distance.

We consider linear codes C ⊆ Fn
q . For such a code we use dim(C) to denote its dimension

as a vector space, dist(C) to denote its (non-normalized) minimum distance (between any
two code vectors). For a vector f ∈ Fn

q and code C ⊆ Fn
q we use δ(f, C) to denote the

distance of f to the nearest codeword in C, i.e., ming∈C{δ(f, g)}. For codes C1, C2 ⊆ Fn
q , we

use C1 ⋆ C2 to denote its Hadamard product, i.e., C1 ⋆ C2 = span({fg|f ∈ C1, g ∈ C2}). For
codes C1 ⊆ Fm

q and C2 ⊆ Fn
q , we let C1 ⊗ C2 denote their tensor product, i.e., C1 ⊗ C2 =

span({f ⊗ g|f ∈ C1, g ∈ C2}). For a matrix A ∈ Fnm
q , it is a simple exercise to see that

A ∈ C1 ⊗ C2 iff every row of A is in C1 and every column is in C2 (when C1 and C2 are
linear codes).
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▶ Definition 1 ((Abstract) Algebraic Geometry Code). Given integers 0 ≤ g ≤ n and a
prime power q, an (q, n, g)-algebraic geometry code sequence is a sequence of linear codes
C = {C(ℓ) ⊆ Fn

q | 0 ≤ ℓ ≤ n} with the following requirements:
(1) For every ℓ, dim(C(ℓ)) ≥ ℓ − g and dist(C(ℓ)) ≥ n − ℓ.
(2) For every ℓ, m, C(ℓ) ⋆ C(m) ⊆ C(ℓ + m).
We use AG(q, n, g) to denote the space of all (q, n, g)-algebraic geometry code sequences.

Condition (2) above is called the product property and it is what makes algebraic codes
special.

▶ Definition 2 (Robustness of Tensor Product). For codes C1 ⊆ Fm
q and C2 ⊆ Fn

q and
0 ≤ ρ ≤ 1 we say that (C1, C2) is ρ-robust if for every F ∈ Fn×m

q we have

ρ · δ(F, C1 ⊗ C2) ≤ 1
2 [δ(F, C1 ⊗ Fn

q ) + δ(F,Fm
q ⊗ C2)].

For a linear code C and set A ⊆ S, let C|A = {x|A | x ∈ C} ⊆ F|A|
q be the projection of

C to the coordinates of A. We will use the following proposition about tensor products in
our proof.

▶ Proposition 3. If C1, C2 ⊆ Fn
q are linear codes and A, B ⊆ [n], then

C1|A ⊗ C2|B = (C1 ⊗ C2)|A×B .

Proof. Let dim C1 = k1 and dim C2 = k2. Then there exist matrices M1 ∈ Fk1×n
q and

M2 ∈ Fk2×n
q such that

C1 = {xM1 | x ∈ Fk1
q } and C2 = {xM2 | x ∈ Fk2

q },

and their tensor product can then be expressed as

C1 ⊗ C2 = {MT
2 XM1 | X ∈ Fk2×k1

q }.

Note that C1|A is generated by the restriction of M1 to the columns of A (i.e. M1|[k1]×A).
Similarly for C2|B . Our goal is now to show that

{(MT
2 |B×[k2])X(M1|[k1]×A) | X ∈ Fk2×k1

q } = {(MT
2 XM1)|B×A | X ∈ Fk2×k1

q }.

It suffices to show that ∀X,

(MT
2 |B×[k2])X(M1|[k1]×A) = (MT

2 XM1)|B×A.

This follows because:

(MT
2 |B×[k2])X(M1|[k1]×A) = (MT

2 X)|B×[k1](M1|[k1]×A)
= (MT

2 X(M1|[k1]×A))|B×A

= (MT
2 (XM1)|[k2]×A))|B×A

= ((MT
2 XM1)|[n]×A)|B×A

= (MT
2 XM1)|B×A. ◀

▶ Theorem 4. There exist constants ρ > 0 and c0 < ∞ such that for every triple of non-
negative integers n, ℓ, g and prime power q satisfying ℓ > max{c0, g} and n > c0(ℓ + g)2 we
have the following: If C1, C2 ∈ AG(q, n, g), then (C1(ℓ), C2(ℓ)) is ρ-robust.

APPROX/RANDOM 2025



59:6 Testing Tensor Products of Algebraic Codes

Theorem 4 is proved at the end of Section 3. Our proof combines elements from the proofs
of [1] and [23]. A direct use of the proof from [1] would have resulted in a n = Ω((k + g)3)
requirement. On the other hand, the proof of [23] uses properties of unique factorization
domain, which are no longer true in this general setting. By combining different ingredients
we are able to get a bound that is intermediate while still being general.

The fact that n = Ω(g2) for the theorem to be useful does limit its applicability. Never-
theless the theorem is not vacuous even given the testability of Reed-Solomon codes and in
particular, there exist infinitely many AG codes3 with g = o(

√
n) and n ≈ q.

3 Proof of Main Theorem

Let C1, C2 be a pair of (q, n, g)-sequences of algebraic geometry codes. We first show that for
a tensor product of codes C1(ℓ) and C2(ℓ), if the rows of a matrix are near codewords of C1(ℓ)
and columns are near codewords of C2(ℓ), then it is also close to a codeword of the tensor
product code.

▶ Theorem 5. There exist positive constants ϵ0, c0 that make the following true.
For all 0 < ϵ < ϵ0, integers n, g, ℓ and q such that ℓ > max{c0, g}, and n > c0(ℓ + g)2,

and for all (q, n, g)-sequences of AG codes C1, C2: If R ∈ C1(ℓ) ⊗ Fn
q and C ∈ Fn

q ⊗ C2(ℓ) are
such that δ(R, C) = ϵ, then there exists Q ∈ C1(ℓ) ⊗ C2(ℓ) such that

δ(Q, R) + δ(Q, C) ≤ 2ϵ.

Proof. We will prove the theorem for ϵ0 = 1
100 and c0 = 15. Define the following constants:

γ = 2
√

ϵ

γ′ = 2γ = 4
√

ϵ

L = 2(ℓ + g)

d = ⌊
√

ϵL⌋ + g + 2

Note that these constants are chosen to satisfy the following inequalities:

γ < γ′(1 − γ′) (1)

(
1 − ϵ

γ2

)
L > d + ℓ (2)

n(1 − γ − γ′) − dL > L (3)

(2
√

ϵ + ϵ) · n

n − ℓ
< 3

√
ϵ (4)

n − ℓ − 3
√

ϵn

n
>

1
2 (5)

3 For example, for any prime p, there is an elliptic curve over Fp with p + 1 number of rational points
(Theorem 14.18 in [6]). One can apply the construction of AG codes from Chapter 2 in [25] to these
elliptic curves to get (p, p, 1)-sequences of AG codes.
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We can quickly check that all of these inequalities hold for our choice of ϵ0 and c0.
Inequality (1) holds because 1 < 2(1−4

√
ϵ). Inequality (2) holds because the left-hand side can

be written as 1.5(ℓ+g) and the right-hand side can be written as ⌊
√

ϵ·2(ℓ+g)⌋+g+2+ℓ, which
is at most (1+2

√
ϵ)(ℓ+g)+2. Inequality (3) holds because (1+d)L < (1+2

√
ϵ)(ℓ+g)·2(ℓ+g) <

6(ℓ+g)2 < 6n/c0 ≤ n(1−γ−γ′). Inequality (4) holds because n
n−ℓ < 3

2.1 and 2
√

ϵ+ϵ < 2.1
√

ϵ.
Inequality (5) holds because ℓ < 1

15 n < ( 1
2 − 3√

ϵ0)n =⇒ ℓ + 3
√

ϵn < n
2 . Throughout the

proof, we will note where we make use of each inequality.
Define an “error” to be a location (x, y) at which R(x, y) ̸= C(x, y). The “error fraction”

of a row is the number of errors in that row divided by its length (and similarly for columns).
Note that the length of a row isn’t always n; sometimes we will use notions like “the error
fraction of a row among the first L columns”.

The majority of the proof of Theorem 5 is spent on proving the following Lemma.

▶ Lemma 6. There exists a Q ∈ C1(ℓ) ⊗ C2(ℓ) such that

δ(Q, R) ≤ 2
√

ϵ.

Proof. First, remove any row or column that has an error fraction greater than ϵ/γ′. This
removes less than γ′ fraction of the rows and columns (as δ(R, C) = ϵ). Call the sets of these
deleted rows and columns R1, C1, respectively. After this, it is guaranteed that each row
and column has at most nϵ/γ′ errors, and its new length is at least n(1 − γ′), so it has an
error fraction at most ϵ/(γ′(1 − γ′)) < ϵ/γ by Inequality (1). The total error fraction of the
matrix is still at most ϵ because the removed columns and rows each had error fractions
above 2ϵ, so overall the removed entries had an error fraction above ϵ.

Next, choose a submatrix M ⊂ ([n] \ R1) × ([n] \ C1) of size L × L such that the error
fraction within M is at most ϵ (in fact, the number of errors in M is at most ⌊L2ϵ⌋). Such an
M must exist because choosing a random submatrix results in an error fraction at most ϵ in
expectation. WLOG, say that M lies in the top left of the matrix (so its rows and columns
are indexed by [L]).

▷ Claim 7. Recall that d = ⌊
√

ϵL⌋ + 2 + g. There exist vectors 0 ̸= E ∈ C1(d) ⊗ C2(d) and
N ∈ C1(d + ℓ) ⊗ C2(d + ℓ) such that

E(x, y)R(x, y) = E(x, y)C(x, y) = N(x, y), ∀(x, y) ∈ M.

Proof. Consider the projection of C1(d) ⊗ C2(d) onto the set of coordinates {(x, y) ∈
M | R(x, y) ̸= C(x, y)}. Since C1(d) ⊗ C2(d) has dimension at least (d − g)2 = (⌊

√
ϵL⌋ + 2)2 >

ϵL2, but {(x, y) ∈ M | R(x, y) ̸= C(x, y)} has size at most ϵL2, the projection has a non-trivial
kernel. Choose any nonzero E in this kernel.

We have ensured that E(x, y) = 0 whenever R and C disagree on submatrix M , so

E(x, y)R(x, y) = E(x, y)C(x, y) ∀(x, y) ∈ M.

Let’s look at the projection of ER on the submatrix M . Every row is an element of
C1(d + ℓ)|[L] and every column is an element of C2(d + ℓ)|[L] (by product property of AG
codes). Thus, ER|M is an element of C1(d + ℓ)|[L] ⊗ C2(d + ℓ)|[L]. By Proposition 3, any
element of C1(d + ℓ)|[L] ⊗ C2(d + ℓ)|[L] = (C1(d + ℓ) ⊗ C2(d + ℓ))|M can be extended to an
element of C1(d + ℓ) ⊗ C2(d + ℓ). Choose any such extension and call it N . So we have

E(x, y)R(x, y) = E(x, y)C(x, y) = N(x, y) ∀(x, y) ∈ M,

as desired. This proves Claim 7. ◁

APPROX/RANDOM 2025



59:8 Testing Tensor Products of Algebraic Codes

Next we extend the relation between E, R, C and N to almost the entire matrix.

▷ Claim 8. E(x, y)R(x, y) = E(x, y)C(x, y) = N(x, y) for all (x, y) but γ fraction of the
remaining rows and columns. More formally, there exist sets R2 ⊂ [n] \ R1 and C2 ⊂ [n] \ C1
such that the equality holds on all of ([n] \ (R1 ∪ R2)) × ([n] \ (C1 ∪ C2)), and that

|R2| ≤ γ(n − |R1|) and |C2| ≤ γ(n − |C1|).

Proof. Call a row y ∈ [n] \ R1 “bad” if

Pr
x∼[L]

[R(x, y) ̸= C(x, y)] >
ϵ

γ
· 1

γ
.

In other words, a bad row is one that has too many errors in the columns of M . Define a
bad column analogously. Let the sets of bad rows and columns be R2 and C2, respectively.
Call the remaining rows and columns “good” (i.e. the good rows are [n] \ (R1 ∪ R2)). The
fraction |R2|/(n − |R1|) must be at most γ because, among the first L columns, there is a
combined error fraction of at most ϵ/γ (recall that each such column has at most ϵ/γ error
fraction). The same holds for the columns.

Now we prove that E(x, y) · C(x, y) = N(x, y) on all good columns. Fix any good column
x̂. For any row y0 ∈ [L], since row vectors E(x, y0) · R(x, y0) and N(x, y0) belong to C1(d + ℓ)
and agree on L points (i.e. the columns in [L]), they must be identical because the distance
of the code C1(d + ℓ) is at least n − d − ℓ which is greater than n − L (by Inequality (2)).
So E(x̂, y0) · R(x̂, y0) = N(x̂, y0). Since x̂ is good, there are at least L

(
1 − ϵ/γ2)

values of
y0 ∈ [L] such that

E(x̂, y0) · C(x̂, y0) = E(x̂, y0) · R(x̂, y0) = N(x̂, y0).

Now, since

L

(
1 − ϵ

γ2

)
> d + ℓ,

by Inequality (2), this tells us that the column vectors E(x̂, y) · C(x̂, y) and N(x̂, y) (which
belong in C2(d + ℓ)) are identical. Thus, E(x, y) · C(x, y) = N(x, y) on all good columns.
The same argument can be applied on the rows to show that E(x, y) · R(x, y) = N(x, y) on
all good rows. On the intersection of all good columns and rows, we have

E(x, y) · R(x, y) = N(x, y) = E(x, y) · C(x, y).

This proves Claim 8. ◁

Now, we have the necessary claims to prove Lemma 6. Our first step is to find a submatrix
of size L × L upon which E(x, y) is never 0. To do this, consider the good submatrix
G = ([n] \ (R1 ∪ R2)) × ([n] \ (C1 ∪ C2)) upon which E(x, y) · R(x, y) = E(x, y) · C(x, y) from
Claim 8. Note that G has at least n(1 − γ′ − γ) rows and columns. Choose L columns
{x1, . . . , xL} ⊂ [n] \ (C1 ∪ C2) upon which E is not identically 0 (these must exist: simply
consider a row upon which E is not identically 0, then choose among the n(1−γ′ −γ)−d > L

columns in [n] \ (C1 ∪ C2) in which the row takes a nonzero value).
In each of these columns, E is 0 at most d times (this follows by the distance of the

code; the all-zero vector is always a codeword of a linear code). Thus, there must be
n(1−γ′ −γ)−dL rows in [n]\ (R1 ∪R2) upon which E is never 0 in the columns {x1, . . . , xL}.
But since n(1 − γ′ − γ) − dL > L by Inequality (3), we can find an L × L submatrix of G

upon which E is never 0. Call this submatrix M ′. Since E(x, y) · R(x, y) = E(x, y) · C(x, y)
on M ′ ⊂ G, we know that R(x, y) = C(x, y) on M ′.
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Permute the matrix so that the rows and columns of M ′ are indexed by [L]. Every row
of M ′ is an element of C1(ℓ)|[L] and every column of M ′ is an element of C2(ℓ)|[L]. Thus, by
Proposition 3, the submatrix M ′ is an element of C1(ℓ)|[L] ⊗ C1(ℓ)|[L] = (C1(ℓ) ⊗ C2(ℓ))|M ′

and can be extended to some Q ∈ C1(ℓ) ⊗ C2(ℓ) on the entire matrix, such that R(x, y) =
C(x, y) = Q(x, y) on M ′.

For this last step, we can bring back all of the rows and columns R1, C1, R2, C2 that were
previously ignored. Let R3 ⊂ [n] be the set of all rows that have an error fraction above ϵ/γ2

among the first L columns. Since each column in [L] ⊂ [n] \ C1 has an overall error fraction
at most ϵ/γ, we know that |R3| < γn.

We will show that R is identical to Q on all rows not in R3. Consider any row ŷ ∈ [n] \ R3.
For any column x0 ∈ [L], we know that the column vectors Q(x0, y) and C(x0, y) belong to
C2(ℓ) and are identical (using distance of the code), so Q(x0, ŷ) = C(x0, ŷ). Thus, for any x0
such that R(x0, ŷ) = C(x0, ŷ), we have Q(x0, ŷ) = R(x0, ŷ) as well. Since we’re assuming
that there is an error fraction of at most ϵ/γ2 among the first L columns of row ŷ, row
vectors Q(x, ŷ) and R(x, ŷ) (in C1(ℓ)) are equal in at least (1 − ϵ/γ2)L places. Thus, Q(x, ŷ)
is identical to R(x, ŷ) (using Inequality (2) and the fact that distance of code C1(ℓ) is at least
n − ℓ).

Finally, this means that Q(x, y) = R(x, y) on all points in ([n]\R3)×[n]. Since R3 contains
at most γ fraction of all rows, we know δ(Q, R) ≤ γ = 2

√
ϵ. This proves Lemma 6. ◀

Now we prove Theorem 5. If two C1(ℓ) row vectors are distinct, they must disagree on
at least n − ℓ points (which follows from the distance of the code). Thus, the fraction of
rows upon which R and Q disagree anywhere is at most n

n−ℓ2
√

ϵ < 3
√

ϵ by Inequality (4).
Similarly, the fraction of errors between C and Q is at most 2

√
ϵ + ϵ, so the fraction of

columns upon which C and Q disagree is at most n
n−ℓ (2

√
ϵ + ϵ) < 3

√
ϵ, again by Inequality

(4). Permute the matrix so that these rows and columns are contiguous in the bottom right.
Label the four regions of the matrix A11, A12, A21, A22:

A11 A12

A21 A22

where A11 ∪ A12 is the region where R(x, y) = Q(x, y) and A11 ∪ A21 is the region where
C(x, y) = Q(x, y). The submatrix A22 has size at most 3

√
ϵn in each dimension. Now, notice

that each row of A21 has at least n − ℓ − 3
√

ϵn disagreements between R and Q = C. Thus,

distA21(R, C)
|A21 ∪ A22|

≥ n − ℓ − 3
√

ϵn

n
>

1
2

by Inequality (5), where distM (R, C) is the number of disagreements between R and C on
submatrix M . Applying the same logic to the columns, we get

distA12(R, C)
|A12 ∪ A22|

>
1
2 .
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But now, since

dist
A12

(R, C) + dist
A21

(R, C) ≤ dist(R, C) = ϵn2,

we can combine these inequalities to get

|A12 ∪ A22| + |A21 ∪ A22| < 2ϵn2.

Finally, since dist(Q, R) ≤ |A12 ∪ A22| and dist(Q, C) ≤ |A21 ∪ A22|, we conclude that

δ(Q, R) + δ(Q, C) ≤ 2ϵ.

This finishes the proof of Theorem 5. ◀

Proof of Theorem 4. We prove the theorem for ρ = ϵ0/2. The constants c0 and ϵ0 are
defined in Theorem 5. For any F ∈ Fn×n

q , let R ∈ C1(ℓ) ⊗ Fn
q and C ∈ Fn

q ⊗ C2(ℓ) be the
closest vectors to F in their respective codes. Let ϵ = δ(R, C).

If ϵ ≥ ϵ0, then ρ = ϵ0/2 trivially works because

ϵ0

2 · δ(F, C1(ℓ) ⊗ C2(ℓ)) ≤ ϵ0

2 ≤ 1
2δ(R, C) ≤ 1

2 [δ(F, R) + δ(F, C)].

Otherwise, if ϵ < ϵ0, we apply Theorem 5 to find a Q ∈ C1(ℓ) ⊗ C2(ℓ) such that δ(Q, R) +
δ(Q, C) ≤ 2ϵ. Then we know

δ(F, Q) ≤ min(δ(F, R) + δ(R, Q), δ(F, C) + δ(C, Q))

≤ 1
2 (δ(F, R) + δ(F, C) + δ(R, Q) + δ(C, Q))

≤ 1
2 (δ(F, R) + δ(F, C) + 2ϵ)

≤ 3
2 (δ(F, R) + δ(F, C))

1
3δ(F, Q) ≤ 1

2 [δ(F, R) + δ(F, C)] .

Since ρ < 1/3, the theorem is proven. ◀
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