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Abstract
Despite the wide range of problems for which quantum computers offer a computational advantage
over their classical counterparts, there are also many problems for which the best known quantum
algorithm provides a speedup that is only quadratic, or even subquadratic. Such a situation could
also be desirable if we don’t want quantum computers to solve certain problems fast - say problems
relevant to post-quantum cryptography. When searching for algorithms and when analyzing the
security of cryptographic schemes, we would like to have evidence that these problems are difficult
to solve on quantum computers; but how do we assess the exact complexity of these problems?

For most problems, there are no known ways to directly prove time lower bounds, however it
can still be possible to relate the hardness of disparate problems to show conditional lower bounds.
This approach has been popular in the classical community, and is being actively developed for the
quantum case [1, 15, 14, 7].

In this paper, by the use of the QSETH framework [15] we are able to understand the quantum
complexity of a few natural variants of CNFSAT, such as parity-CNFSAT or counting-CNFSAT, and
also are able to comment on the non-trivial complexity of approximate versions of counting-CNFSAT.
Without considering such variants, the best quantum lower bounds will always be quadratically
lower than the equivalent classical bounds, because of Grover’s algorithm; however, we are able to
show that quantum algorithms will likely not attain even a quadratic speedup for many problems.
These results have implications for the complexity of (variations of) lattice problems, the strong
simulation and hitting set problems, and more. In the process, we explore the QSETH framework in
greater detail and present a useful guide on how to effectively use the QSETH framework.
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1 Introduction

A popular classical hardness conjecture known as the Strong Exponential Time-Hypothesis
(SETH) says that determining whether an input CNF formula is satisfiable or not cannot be
done in O(2n(1−δ)) time for any constant δ > 0 [27, 28]. Several fine-grained lower bounds
based on SETH have been shown since then; see [36, 37] for a summary of many such results.
Some of the SETH-hard problems are building blocks for fine-grained cryptography [8, 30].
Besides finding a satisfying assignment, natural variants of the CNFSAT problem include
computing the count or the parity of the count of satisfying assignments to a CNF formula –
#SETH and ⊕SETH conjecture complexity of these problems, respectively. These conjectures
are weaker (i.e., more believable) than SETH, and can still be used to show fine-grained
hardness of various problems [20].

When considering quantum computation, the SETH conjecture is no longer true, as using
Grover’s algorithm for unstructured search [24] one can solve the CNFSAT problem in
2 n

2 · poly(n) time. Aaronson, Chia, Lin, Wang, and Zhang assume this Grover-like quadratic
speedup is nearly optimal for CNFSAT and (independent of [15]) initiate the study of
quantum fine-grained complexity [1]. However, conjectures such as #SETH or ⊕SETH
are likely to still hold in the quantum setting because a Grover-like quantum speedup is
not witnessed when the task is to compute the total number of satisfying assignments or
the parity of this number. This situation can in some cases be exploited to give better
quantum lower bounds than one would get from the conjectured quantum lower bound for
the vanilla CNFSAT problem. This makes it at least as relevant (if not more) to study
variants of CNFSAT and their implications in the quantum setting, as has been done
classically. In fact, motivated by this exact observation, Buhrman, Patro, and Speelman [15]
introduced a framework of Quantum Strong Exponential-Time Hypotheses (QSETH) as
quantum analogues to SETH, with a striking feature that allows one to “technically” unify
conjectures such as quantum analogues of ⊕SETH, #SETH, maj-SETH, etc. under one
umbrella conjecture.

The QSETH framework

In their framework, Buhrman et al. consider the problem in which one is given a formula
or a circuit representation of a Boolean function f : {0, 1}n → {0, 1} and is asked whether
a property P :=

(
Pn

)
n∈N where Pn : D ⊆ {0, 1}2n → {0, 1} on the truth table1 of this

formula evaluates to 1. They conjectured that when the circuit representation is obfuscated
enough then for most properties P (that are compression-oblivious properties as we will see
in Definition 1), the time taken to compute Pn on the truth table of poly(n)-sized circuits is
lower bounded by Q(Pn), i.e. the 1/3-bounded error quantum query complexity of Pn, on
all bit strings of length 2n.

1 Truth table of a formula ϕ on n variables, denoted by tt(ϕ), is a 2n bit string derived in the following
way tt(ϕ) = ⃝a∈{0,1}nϕ(a); the symbol ◦ denotes concatenation.
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It is not hard to see that such a conjecture cannot be true for all properties. In principle,
one can construct properties for which the above statement would not hold. For instance,
consider a property P that is trivial on truth tables of small formulas (i.e., poly(n) size)
but complicated on formulas of longer length. These kinds of properties are likely to have
very high quantum query complexity, but in reality, it will be trivial to compute such a
Pn of P on formulas of poly(n) size. In order to prevent such scenarios the authors in [15]
introduce the notion of compression-oblivious properties which they believe encompasses
most of the naturally occurring properties. See Sections 2.2 and 2.3 of [15] for a detailed
discussion on this topic and also see [18] for some new observations about the notion of
compression-oblivious properties. To give a bit of intuition, first consider the set of truth
tables corresponding to the set of poly(n) size formulas on n variables and consider the set
of all the 2n bit strings. Compression-oblivious properties are those properties for which
one cannot save in computational time to compute them on a string from the former set in
comparison to computing the same property on strings from the latter set. More formally,2

▶ Definition 1 (AC0
2,p- and AC0

2-Compression-Oblivious Properties [15, 18]). Let p ∈ N. We
say a property P is AC0

2,p-compression-oblivious3, denoted by P ∈ CO(AC0
2,p), if for every

constant δ > 0, for every quantum algorithm A that computes P in the black-box setting,
∀n′ ∈ N,∃n ≥ n′ and ∃ a set L = {L1, L2, . . .} ⊆ AC0

2,p of “hard languages”, such that ∀
circuit families {C1

n′′}n′′∈N corresponding to L1, ∀ circuit families {C2
n′′}n′′∈N corresponding

to L2, . . ., A uses at least Q(Pn)1−δ quantum time on at least one of the inputs in {Ci
n}i∈[|L|].

In particular, we say a property P is AC0
2-compression-oblivious (denoted by P ∈ CO(AC0

2))
if ∃p ∈ N such that P ∈ CO(AC0

2,p).

With that, we can conjecture the following using the QSETH framework by [15].

▶ Conjecture 2 (AC0
2-QSETH, consequences of [15]). Let P be an AC0

2-compression-oblivious
property. The AC0

2-QSETH conjecture states that ∃p ∈ N, such that for every constant δ > 0,
for every quantum algorithm A that computes P in the white-box setting, ∀n′ ∈ N,∃n ≥ n′,
∃ a set L = {L1, L2, . . .} ⊆ AC0

2,p, ∀ circuit families {C1
n′′}n′′∈N corresponding to L1, ∀

circuit families {C2
n′′}n′′∈N corresponding to L2, . . ., the algorithm A uses at least Q(Pn)1−δ

quantum time on at least one of the inputs in {Ci
n}i∈[|L|].

Informally, the notion of AC0
2-compression-obliviousness captures properties whose query

complexity is a lower bound for the time complexity to compute the property even for truth
tables of small CNF/DNF formulas. And, the AC0

2-QSETH conjecture states that having
access to this succinct representation of the truth table, i.e., the description of the formula
itself, must not help towards improving the computation time in computing these properties.
The terms black-box and white-box setting are used to highlight this difference - in the former
setting (i.e., the black-box setting as stated in Definition 1) even though the input is a
CNF/DNF formula, the algorithm is only allowed to evaluate the formula on required inputs
and has no access to the description of the inputted CNF/DNF formula, and, in the latter
setting (i.e., the white-box setting as stated in Conjecture 2) the algorithm is allowed to use
the description as well.

2 The definition of compression-oblivious properties as stated in this paper is a more formal version of its
original definition in [15]. Also, see [18] for a discussion on this topic.

3 We say a language L ∈ AC0
2,p iff there exists a family of Boolean circuits {Cn}n∈N corresponding to L

such that ∀n, Cn has depth at most 2 and circuit size |Cn| ≤ np.

APPROX/RANDOM 2025
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In comparison to the original QSETH paper (by Buhrman et al. [15]) where the framework
was introduced and applied to a more complex class of formulas,4 this paper instead serves
as a guide to using QSETH for the lowest level of formulas, i.e., poly-sized CNF and DNF
formulas, in a more elaborate fashion.

Table 1 Overview of conditional lower bounds for variants of CNFSAT and k-SAT. The variable
ĥ in the above table is an arbitrary natural number satisfying γĥ ≥ 1. Our results hold for the
multiplicative factor γ ∈

[
1

2n , 0.4999
)

and the additive error ∆ ∈ [1, 2n).

Problem Variants Quantum lower bound Reference

CNFSAT

Vanilla 2 n
2 −o(n) Corollary 6

Parity 2n−o(n) Corollary 14
Majority 2n−o(n) Corollary 16
Strict Majority 2n−o(n) Corollary 16
Count 2n−o(n) Theorem 13
Countq 2n−o(n) Corollary 15

∆-Additive error
(√

2n

∆ +
√

ĥ(2n−ĥ)
∆

)1−o(1)
Theorem 21

γ-Multiplicative factor
(

1
γ

√
2n−ĥ

ĥ

)1−o(1)

Corollary 26

k-SAT
k = Θ(log(n))

Vanilla 2 n
2 −o(n) Section 5, [1]

Parity 2n−o(n) Corollary 28
Count 2n−o(n) Corollary 28
Countq 2n−o(n) Corollary 28

γ-Multiplicative factor
(

1
γ

√
2n−ĥ

ĥ

)1−o(1)

Corollary 29

Summary and technical overview

In this paper, we use the QSETH framework (or precisely, AC0
2-QSETH) to “generate”

natural variations of QSETH such as ⊕QSETH, #QSETH, maj-QSETH, etc., which could
(arguably) already be acceptable standalone conjectures in the quantum setting, and study
some of their interesting implications. Additionally, we also use the QSETH framework to
prove quantum lower bounds for approximately counting the number of satisfying assignments
to CNF formulas, a problem whose complexity has been of interest in the classical setting
[22]; we study its quantum implications. See Section 3 for details. Proof of this result follows
from a more detailed exploration of the QSETH framework than what was required in the
original paper. Thus, as another contribution of this paper, we present a useful guide on how
to effectively use the QSETH framework. Here we carefully summarize our contributions
and technical overview below:

We zoom into Buhrman et al.’s QSETH framework at the lowest-level formula class,
i.e., the class of polynomial-size CNFs and DNFs, and use it to study the quantum
complexity of variations of CNFSAT problems. The QSETH framework is quite general
which also makes it not entirely trivial to use it thus, we present a useful guide on how to

4 The authors in [15] extensively used QSETH framework for branching programs or equivalently NC
circuits to show non-trivial lower bounds for edit distance and longest common subsequence problems.
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Table 2 Overview of lower bounds based on AC0
2-QSETH - all the relevant details such as the

definitions, reductions, etc., can be found in the full version of this paper [17]. The variable ĥ in the
above table is an arbitrary natural number satisfying γĥ ≥ 1. Our results hold for the multiplicative
factor γ ∈

[
1

2n , 0.4999
)

and the additive error ∆′ ∈ [ 1
2n , 1).

Problem Variants Quantum lower bound Reference

Strong Simulation

Exact (with n bits precision) 2n−o(n) [17, Theorem 4.2]
Exact (with 2 bits precision) 2n−o(n) [17, Corollary 4.3]

∆-Additive error
(√

1
∆′ +

√
ĥ(2n−ĥ)
2n∆′

)1−o(1)
[17, Corollary 4.5]

γ-Multiplicative factor
(

1
γ

√
2n−ĥ

ĥ

)1−o(1)

[17, Theorem 4.7]

CVPp for p /∈ 2Z 2 n
2 −o(n) [17, Section 5]

Lattice Counting
(for non-even norm)

Vanilla 2n−o(n) [17, Corollary 5.6]

γ-Multiplicative factor
(

1
γ

√
2n−ĥ

ĥ

)1−o(1)

[17, Corollary 5.7]

q-count 2n−o(n) [17, Corollary 5.6]

Orthogonal Vectors

Vanilla n1−o(1) [1, 15]
Parity n2−o(1) [17, Corollary 6.8]
Count n2−o(1) [17, Corollary 6.8]

γ-Multiplicative factor
(

1
γ

√
n2−ĥ

ĥ

)1−o(1)

[17, Corollary 6.8]

Hitting Set

Vanilla 2 n
2 −o(n) [17, Corollary 6.4]

Parity 2n−o(n) [17, Corollary 6.4]
Count 2n−o(n) [17, Corollary 6.4]

γ-Multiplicative factor
(

1
γ

√
2n−ĥ

ĥ

)1−o(1)

[17, Corollary 6.4]

⊕Set Cover 2n−o(n) [17, Corollary 6.11]

effectively use the AC0
2-QSETH conjecture, for e.g., what lemmas need to be proved and

what assumptions are needed to be made in order to understand the quantum complexity
of CNFSAT and its variants; see Figure 1.
We can categorise the several variants of CNFSAT in two ways. First classification can
be done by the width of the CNF formulas, i.e., k-CNFs versus CNFs of unbounded
clause length. Second classification is made with the choice of the property of the truth
table one desires to compute. See the summary of complexity all CNFSAT variants and
their respective quantum time lower bounds in Table 1 and see below for the overview of
the techniques used.

To prove the quantum time lower bounds for the property variants of CNFSAT
problem we invoke AC0

2-QSETH (Conjecture 2). But, AC0
2-QSETH conjectures the

hardness of properties on a set of CNF and DNF formulas. For properties like count,
parity, majority, etc., it easily follows from De Morgan’s laws that these properties
are equally hard on both CNF and DNF formulas. However, such arguments no
longer hold when the properties are approximate variants of count for which we give
nontrivial proofs; see Sections 3.1.2 and 3.1.3.
Additionally, we also use AC0

2-QSETH to understand quantum complexity of k-SAT
and its property variants. Firstly we study the classical reduction from CNFSAT to
k-SAT given by [16] and observe that the 2 n

2 quantum lower bound for k-SAT, for
k = Θ(logn), follows from the quantum lower bound of CNFSAT. Moreover, we make
an important observation that this reduction by [16] is count-preserving and can be
used to conclude lower bounds for other counting variants of k-SAT. See Table 1.

APPROX/RANDOM 2025
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Having (somewhat) understood the complexities of these variants of CNFSAT, we then
prove conditional quantum time lower bounds for lattice problem, strong simulation,
orthogonal vectors, set cover, hitting set, and their respective variants; see Table 2.

The quantum 2 n
2 time lower bound we present for CVPp (for p /∈ 2Z) follows from

a reduction from k-SAT to CVPp by [11, 2] and from the hardness result of k-SAT
we present. Though such a result would also trivially follow by using Aaronson et
al.’s version of QSETH, we stress that our hardness result of k-SAT is based on
basic-QSETH which is a more believable conjecture.5

Additionally, we also discuss the quantum complexity of the lattice counting problem
(for non-even norm). We present a reduction, using a similar idea of [11], from #k-SAT
to the lattice counting problem and we show a 2n time quantum lower bound for the
latter when k = Θ(logn). As mentioned earlier, we get a 2n time quantum lower
bound for #k-SAT, when k = Θ(logn), using AC0

2-QSETH.
As another application to the bounds we get from the property variants of CNFSAT
we look at the strong simulation problem. It was already established by [19, 35] that
strong simulation of quantum circuit is a #P-hard problem but in this work we give
exact lower bounds for the same. Additionally, using the lower bounds of approximate
counts of CNFSAT we are able to shed light on how hard it is to quantumly solve the
strong simulation problem with additive and multiplicative error approximation.
Last but not least, we are also able to use the lower bounds for the property variants of
CNFSAT to give interesting lower bounds for orthogonal vectors, hitting set problem
and their respective variants. See Section 6 for more details.

Our motivation to study the worst-case complexities of counting versions of these problems
stems from the fact that worst-case complexity of counting versions of problems have
been used in past to understand average-case complexity of other related problems. And,
computational problems that have high average-case complexities usually find their place
in cryptographic primitives. For example, Goldreich and Rothblum in [23] present a
worst-case to average-case reduction for counting t-cliques in graph and use the average-
case hardness result towards constructing an interactive proof system. Another such
example is that of the OV problem - Ball et al. in [9] use the worst-case hardness of
the counting variant of OV to first prove average-case hardness of evaluating low-degree
polynomials which they use towards a Proofs of Work (PoW) protocol. Furthermore,
Buhrman et al. in [15] observed that this PoW protocol in combination with QSETH
ensures that the quantum provers also require the same time as the classical provers.6

Related work

Our paper is a follow-up work to the original QSETH paper by [15]; also the list of problems
for which we show lower bounds does not overlap with the problems studied in [15]. A basic
version of QSETH was also introduced by Aaronson et al. [1] where they primarily used it
to study the quantum complexity of closest pair and bichromatic pair problems; they also
discuss the complexity of the (vanilla version of) orthogonal vector problem. Prior to this
work, a quantum hitting-set conjecture was proposed and its implications were discussed in

5 If basic-QSETH from Buhrman et al.’s framework is false then Aaronson et al.’s QSETH is also false,
but the implication in the other direction is not obvious.

6 Note that counting the number of OV pairs on average has a fast algorithm [21] so a worst-case
to average-case reduction for counting OV is not possible under standard fine-grained complexity
assumptions.
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Schoneveld’s bachelor thesis [33], but their definition of hitting set is different from ours. In
our work, we observe that the parsimonious reduction from CNFSAT to hitting set given by
[20] is easily quantizable, using which we get a QSETH-based lower bound. Recently, Huang
et al. [26] showed a significant barrier to establishing fine-grained quantum reductions from
k-SAT to lattice problems in the Euclidean norm. In contrast, our work focuses on lattice
problems in the ℓp norm, where p is not an even integer.

2 Preliminaries

2.1 Quantum query complexity of Boolean properties
We start with defining Boolean properties, and then we will define the bounded-error quantum
complexity of computing those properties.

▶ Definition 3 (Property). A Boolean property (or just property) is a sequence P :=
(
Pn

)
n∈N

where each Pn is a set of Boolean functions defined on 2n variables.

The (bounded-error) quantum query complexity is defined only in a non-uniform setting,
therefore, it is defined for Pn for every n ∈ N instead of directly defining for P. A quantum
query algorithm A for Pn : {0, 1}2n → {0, 1}, on an input x ∈ {0, 1}2n begins in a fixed initial
state |ψ0⟩, applies a sequence of unitaries U0, Ox, U1, Ox, . . . , UT , and performs a measurement
whose outcome is denoted by z. Here, the initial state |ψ0⟩ and the unitaries U0, U1, . . . , UT

are independent of the input x. The unitary Ox represents the “query” operation, and maps
|i⟩|b⟩ to |i⟩|b+xi mod 2⟩ for all i ∈ [2n]− 1. We say that A is a 1/3-bounded-error algorithm
computing Pn if for all x in the domain of Pn, the success probability of outputting z = Pn(x)
is at least 2/3. Let cost(A) denote the number of queries A makes to Ox throughout the
algorithm. The 1/3-bounded-error quantum query complexity of Pn, denoted by Q(Pn), is
defined as Q(Pn) = min{cost(A) : A computes Pn with error probability ≤ 1/3}.

2.2 CNFSAT and k-SAT
A Boolean formula over variables x1, . . . , xn is in CNF form if it is an AND of OR’s of
variables or their negations. More generally, a CNF formula has the form∧

i

(∨
j

vij

)
where vij is either xk or ¬xk. The terms vij are called literals of the formula and the
disjunctions

∨
j

vij are called its clauses. A k-CNF is a CNF formula in which all clauses

contain at most k literals (or the clause width is at most k). Note that when k > n, then
clauses must contain duplicate or trivial literals (for example, xk∨¬xk and xk∨xk), therefore
we can assume without loss of generality that k is at most n. A DNF is defined in the exact
same way as CNF, except that it is an OR of AND’s of variables or their negations, that is,
a DNF formula has the form

∨
i

(∧
j

vij

)
. We also define computational problems k-SAT and

CNFSAT.

▶ Definition 4 (CNFSAT). Given as input a CNF formula ϕ defined on n variables, the goal
is to determine if ∃x ∈ {0, 1}n such that ϕ(x) = 1.

▶ Definition 5 (k-SAT). Given as input a k-CNF formula ϕ defined on n variables, the goal
is to determine if ∃x ∈ {0, 1}n such that ϕ(x) = 1.

APPROX/RANDOM 2025
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Start

Goal: for a given property P show the quantum time complexity of P-CNFSAT

Invoke AC0
2-QSETH (Conjecture 2)

Easy to show P ∈
CO(AC0

2)? See
Theorem 9 in [15].

Conjecture compression obliviousness of P

Prove it

Is P ∈ CO(AC0
2)

(provably or in
conjecture)?

Cannot use AC0
2-QSETH for P

Compute the bounded-error quantum query complexity of P, i.e. Q(P)

Quantum time lower bound for computing P on CNF and DNF is Ω(Q(P)1−δ) for all δ > 0

Are CNFs at least
harder in com-

parison to DNFs
for computing P

Cannot comment on hardness of P-CNFSAT

Complexity of P-CNFSAT is Ω(Q(P)1−δ) for all δ > 0, under AC0
2-QSETH

End

Yes

No

No

Yes

No

Yes

Figure 1 Step-by-step guide on how to use the QSETH framework in a plug-and-play manner to
show hardness results for P-CNFSAT. Here P can be any (partial or total) Boolean property of
truth tables.
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3 Lower bounds for variants of CNFSAT using AC0
2-QSETH

We will now define several variants of CNFSAT problem and using AC0
2-QSETH understand

the quantum complexities of all of them. The consequences of these hardness results, some
of which follow immediately and the rest with some work, will be discussed in Sections 4–6.
We begin with some common variants of CNFSAT problem (such as k-SAT) which are also
very well studied classically [20]; we do this in Section 3.1.1. And, proceed with some less
popular variants (Sections 3.1.2, 3.1.3, and 3.2) but with interesting consequences (presented
in Sections 4–6).

3.1 Quantum complexity of CNFSAT and other related problems
We first restate the quantum hardness of CNFSAT before delving into showing hardness
results for its other variants. Interestingly, for the property OR : {0, 1}2n → {0, 1}, where
for x ∈ {0, 1}2n we define OR(x) = 1 if |x| ≥ 1 and OR(x) = 0 whenever |x| = 0, we
can explicitly prove that OR ∈ CO(AC0

2) [15, 18]. Also, note that computing OR on truth
tables of DNF formulas of poly(n) length can be computed in poly(n) time. Hence, using
AC0

2-QSETH we can recover the following Basic-QSETH conjecture.

▶ Corollary 6 (Basic-QSETH [15]). For each constant δ > 0, there exists c > 0 such
that there is no bounded-error quantum algorithm that solves CNFSAT (even restricted to
formulas with m ≤ cn2 clauses) in O

(
2

n(1−δ)
2

)
time, unless AC0

2-QSETH (Conjecture 2) is
false.

Note that Aaronson et al. [1] directly conjecture the above statement, while in our
case the above conjecture is implied by AC0

2-QSETH (Conjecture 2), and we will show
how AC0

2-QSETH can imply other conjectured time lower bound for variants of CNFSAT
problems in this subsection.

3.1.1 Quantum complexity of #CNFSAT, ⊕CNFSAT, #qCNFSAT and
maj-CNFSAT

To give conditional quantum lower bounds for variants of CNFSAT, we should understand
their corresponding quantum query lower bound (on the 2n-bit truth table). Here we
introduce the properties that correspond to those popular variants of CNFSAT (which will
be defined later.)

▶ Definition 7. Let |x| = |{i : xi = 1}| denote the Hamming weight of N -bit binary string x.
We here list some properties defined on binary strings.
1. count: Let count : {0, 1}N → [N ] ∪ {0} be the non-Boolean function defined by

count(x) = |x|.
2. parity: Let parity : {0, 1}N → {0, 1} be the Boolean function defined by parity(x) =
|x| mod 2.

3. countq: Let q be an integer and let countq : {0, 1}N → [q] − 1 be the non-Boolean
function defined by countq(x) = |x| mod q.

4. majority: Let majority : {0, 1}N → {0, 1} be the Boolean function defined by

majority(x) =
{

1 if |x| ≥ N
2 ,

0 otherwise.

And, there is also the following function almost similar to majority.
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5. st-majority: Let st-majority : {0, 1}N → {0, 1} be the Boolean function with

st-majority(x) =
{

1 if |x| > N
2 ,

0 otherwise.

Here, we define variants of CNFSAT corresponding to the above-mentioned properties.

▶ Definition 8 (variants of CNFSAT). Let |ϕ| = {y ∈ {0, 1}n : ϕ(y) = 1} denote the Hamming
weight of the truth table of ϕ. The following lists five variants of CNFSAT:
1. #CNFSAT: Given a CNF formula ϕ on n input variables, output |ϕ|.
2. ⊕CNFSAT: Given a CNF formula ϕ on n input variables, output |ϕ| mod 2.
3. #qCNFSAT: Given a CNF formula ϕ on n input variables and an integer q ∈ [2n] \ {1},

output |ϕ| mod q.
4. maj-CNFSAT: Given a CNF formula ϕ on n input variables, output 1 if |ϕ| ≥ 2n/2

(else output 0).
5. st-maj-CNFSAT: Given a CNF formula ϕ on n input variables, output 1 if |ϕ| > 2n/2

(else output 0).

Now again, we use the quantum query lower bound for P whenever we want to discuss the
time complexity of P-CNFSAT as in the QSETH framework by [15]. Therefore, immediately
after the definitions for variants of CNFSAT (with respect to property P), we will introduce
the corresponding bounded-error quantum query lower bound for computing P, and then
conjecture the time lower bound for P-CNFSAT (P variant CNFSAT) using this query lower
bound. After that, we can use lower bounds for those variants of CNFSAT to understand
the quantum complexity of (variants of) k-SAT. We include the quantum query lower bounds
for those properties for completeness.

▶ Lemma 9 ([10]). The bounded-error quantum query complexity for count, parity,
majority and st-majority on inputs of N -bit Boolean strings is Ω(N).

Proof. [10] showed that the bounded-error quantum query complexity of a (total) Boolean
function f : {0, 1}N → {0, 1}, denoted by Q(f) is lower bounded by 1/2 of the degree of a
minimum-degree polynomial p that approximates f on all X ∈ {0, 1}N , i.e., |p(X)− f(X)| ≤
1/3; let us denote this approximate degree by d̃eg(f). Another important result by Paturi [32]
showed that if f is a non-constant, symmetric7 and total Boolean function on {0, 1}N then
d̃eg(f) = Θ(

√
N(N − Γ(f))) where Γ(f) = min{|2k−N+1| : fk ̸= fk+1 and 0 ≤ k ≤ N−1}

and fk = f(X) for |X| = k.
Using the above two results we can show the following:

1. Γ(parity) = 0 for odd N and Γ(parity) = 1 whenever N is even. Hence Q(parity) =
Ω(N).8

2. Similar to the above item Γ(majority) = Γ(st-majority) = 0 for odd N and
Γ(majority) = Γ(st-majority) = 1 otherwise. Hence, Q(majority) = Ω(N) and
Q(st-majority) = Ω(N).

3. Any of the above three properties can be computed from count. Hence, Q(count) =
Ω(N). ◀

7 A symmetric Boolean function f : {0, 1}N → {0, 1} implies f(X) = f(Y ) for all X,Y whenever
|X| = |Y |.

8 One can actually immediately give Q(parity) ≥ N/2 by an elementary degree lower bound without
using Paturi’s result.
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▶ Lemma 10. Let q ∈ [3, N
2 ] be an integer and countq : {0, 1}N → [q]− 1 be the function

defined by countq(x) = count(x) mod q. Then Q(countq) = Ω(
√
N(N − 2q + 1)).

Proof. Let dec-countq be a decision version of the countq defined for all x ∈ {0, 1}N as

dec-countq(x) =
{

1, if countq(x) = q − 1,
0, otherwise.

(1)

When the function is non-constant and symmetric then one can use Paturi’s the-
orem to characterize the approximate degree of that function [32]. It is easy to see that
dec-countq is a non-constant symmetric function. Combining both these results we get
that Q(dec-countq) = Ω(

√
N(N − Γ(dec-countq))).

We now compute the value of Γ(dec-countq). For any symmetric Boolean function
f : {0, 1}N → {0, 1} the quantity Γ(f) is defined as Γ(f) = mink{|2k − N + 1|} such
that fk ̸= fk+1 and fk = f(x) for |x| = k with 1 ≤ k ≤ N − 1. It is easy to see that
dec-countq(x) = 1 only for x with Hamming weight |x| = rq − 1 where r is an integer and
dec-countq(x) = 0 elsewhere. Let r′ be the integer such that r′q − 1 ≤ N

2 ≤ (r′ + 1)q − 1
then the k minimizing Γ(dec-countq) is either r′q − 1 or (r′ + 1)q − 1. This implies that
Γ(dec-countq) ≤ 2q − 1, which in turn implies that N − Γ(dec-countq) ≥ N − 2q + 1.
Therefore, Q(dec-countq) = Ω(

√
N(N − 2q + 1)).

As one can compute dec-countq using an algorithm that computes countq, we therefore
have Q(countq) = Ω(

√
N(N − 2q + 1)). ◀

As we don’t yet know how to prove compression-obliviousness of properties with high
query complexities (Theorem 9 in [15]) we instead conjecture that count, parity, majority
and st-majority are compression oblivious for poly-sized CNF and DNF formulas. We
think it is reasonable to make this conjecture since it will falsify certain commonly-used
cryptography assumptions if those properties are not compression oblivious. See [18] for a
discussion on this topic.

▶ Conjecture 11. The following properties
1. parity : {0, 1}2n → {0, 1},
2. countq : {0, 1}2n → [q − 1] ∪ {0} where 2 < q ≤ 2n−1,
3. majority : {0, 1}2n → {0, 1}, and
4. st-majority : {0, 1}2n → {0, 1}
stated in Definition 7 are in CO(AC0

2).

▶ Corollary 12. Let AC0
2 denote the class of poly(n) sized CNF and DNF formulas on n

input variables. If any one item of Conjecture 11 is true then the property count : {0, 1}2n →
[2n] ∪ {0} is in CO(AC0

2).

We can now invoke AC0
2-QSETH (as mentioned in Conjecture 2) to prove the quantum

hardness for #CNFSAT, ⊕CNFSAT, maj-CNFSAT and st-maj-CNFSAT.

▶ Theorem 13 (#QSETH). For each constant δ > 0, there exists c > 0 such that there is
no bounded-error quantum algorithm that solves #CNFSAT (even restricted to formulas
with m ≤ cn2 clauses) in O(2n(1−δ)) time, unless AC0

2-QSETH (Conjecture 2) is false or
count /∈ CO(AC0

2) (i.e., each item of Conjecture 11 is false).

Proof. By way of contradiction, let us assume that there exists a bounded-error quantum
algorithm A that solves #CNFSAT on n variables (and on m clauses with some m ≤ cn2)
in O(2n(1−δ)) time for some δ > 0. Then given a circuit C ∈ AC0

2 we do one of the following:
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if C is a poly-sized CNF formula then we use the algorithm A to compute the number of
satisfying assignments to C in O(2n(1−δ)) time. Or,
if C is a poly-sized DNF formula then we first construct the negation of C, let us denote
by ¬C, in poly(n) time; using De Morgan’s law we can see that the resulting formula ¬C
will be a poly(n) CNF formula. Using A we can now compute the number of satisfying
assignments t to ¬C in O(2n(1−δ)) time. The number of satisfying assignments to C

would be then 2n − t.
The existence of an algorithm such as A would imply that AC0

2-QSETH is false. Hence,
proved. ◀

Using similar arguments as in the proof of Theorem 13 we can conclude the following
statements.

▶ Corollary 14 (⊕QSETH). For each constant δ > 0, there exists c > 0 such that there is
no bounded-error quantum algorithm that solves ⊕CNFSAT (even restricted to formulas
with m ≤ cn2 clauses) in O(2n(1−δ)) time, unless AC0

2-QSETH (Conjecture 2) is false or
parity /∈ CO(AC0

2) (i.e., Item 1 of Conjecture 11 is false).

▶ Corollary 15 (#qQSETH). Let q ∈ [3, N
2 ] be an integer. For each constant δ > 0, there

exists c > 0 such that there is no bounded-error quantum algorithm that solves #qCNFSAT
(even restricted to formulas with m ≤ cn2 clauses) in O

(
2n(1−δ)) time, unless AC0

2-QSETH
(Conjecture 2) is false or countq /∈ CO(AC0

2) (i.e., Item 2 of Conjecture 11 is false).

▶ Corollary 16 (Majority-QSETH). For each constant δ > 0, there exists c > 0 such that
there is no bounded-error quantum algorithm that solves
1. maj-CNFSAT (even restricted to formulas with m ≤ cn2 clauses) in O(2n(1−δ)) time,

unless AC0
2-QSETH is false or majority /∈ CO(AC0

2) (i.e., Item 3 of Conjecture 11 is
false);

2. st-maj-CNFSAT (even restricted to formulas with m ≤ cn2 clauses) in O(2n(1−δ)) time,
unless AC0

2-QSETH is false or st-majority /∈ CO(AC0
2) (i.e., Item 4 of Conjecture 11

is false).

Akmal and Williams showed that one can actually compute the Majority on the truth table
of k-CNF formulas for constant k in polynomial time, while computing the strict-Majority on
the truth table of such formulas is NP-hard [6]. Therefore, here we define both majority and
strict-majority and their variants of CNFSAT problems for clarity (and state the hardness of
both problems in one conjecture). Note that for CNFSAT, each clause is allowed to contain n
literals (which means k is no longer a constant), and in this case, it is not clear if one can solve
maj-CNFSAT in polynomial time or not. Therefore, none of AC0

2-QSETH, Items 3 and 4
of Conjecture 11 is immediately false yet. (See also the discussion at the bottom of page 5 in
the arXiv version of [6] for reductions between maj-CNFSAT and st-maj-CNFSAT.)

3.1.2 Quantum complexity of ∆-add-#CNFSAT
Instead of the exact number of satisfying assignments to a formula, one might be interested
in an additive-error approximation. Towards that, we define the problem ∆-add-#CNFSAT
as follows.

▶ Definition 17 (∆-add-#CNFSAT). Given a CNF formula ϕ on n variables. The goal of
the problem is to output an integer d such that |d− |ϕ|| < ∆ where ∆ ∈ [1, 2n].
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This problem (Definition 17) can be viewed as computing the following property on the
truth table of the given formula.

▶ Definition 18 (∆-add-count). Given a Boolean string x ∈ {0, 1}N , ∆-add-count asks
to output an integer w such that |w − |x|| < ∆ where ∆ ∈ [1, N).

Note that ∆-add-count is a relation instead of a function now because its value is not
necessarily uniquely defined. The bounded-error quantum query complexity for computing
∆-add-count was studied in [31]. They showed the following result.

▶ Theorem 19 (Theorem 1.11 in [31]). Let ∆ ∈ [1, N). Every bounded-error quantum

algorithm that computes ∆-add-count uses Ω
(√

N
∆ +

√
t(N−t)

∆

)
quantum queries on inputs

with t ones.

For values of ∆ = o(
√
t) we are unable to prove the compression-obliviousness of this

property. Hence, we make the following conjecture.

▶ Conjecture 20. ∆-add-count ∈ CO(AC0
2).

One can now establish the time lower bound for computing the ∆-add-count on
poly(n)-sized CNF and DNF formulas. However, this doesn’t automatically imply the
same lower bound for the case when there are only CNF formulas to consider. Fortunately,
∆-add-count is defined in such a way that computing this property is equally hard for
both CNF and DNF formulas. More precisely, the following statement holds.

▶ Theorem 21 (∆-add-#QSETH). Let ∆ ∈ [1, 2n). For each constant δ > 0, there exists
c > 0 such that there is no bounded-error quantum algorithm that solves ∆-add-#CNFSAT

(even restricted to formulas with m ≤ cn2 clauses) in O
((√

N
∆ +

√
ĥ(N−ĥ)

∆

)1−δ
)

time

where ĥ is the number of satisfying assignments, unless AC0
2-QSETH (Conjecture 2) is false

or ∆-add-count /∈ CO(AC0
2) (i.e., Conjecture 20 is false).

Proof. By way of contradiction let’s assume that there is an algorithm A such
that given a CNF formula it can compute the ∆-add-count on its truth table in

O

((√
N
∆ +

√
t(N−t)

∆

)1−β
)

time for some constant β > 0.

Then, given a poly(n) sized DNF formula on n variables, let us denote that by ϕ, we can
run Algorithm A on ¬ϕ and use its output which is a ∆ additive error approximation of the
number of satisfying assignments to ¬ϕ to compute a ∆ additive error approximation of the
number of satisfying assignments to ϕ.

Let us denote the number of satisfying assignments of ¬ϕ by d′ and the output of
Algorithm A by d. This means we have |d − d′| < ∆. We claim that 2n − d will be a ∆
additive error approximation of 2n − d′, which is the number of satisfying assignments of ϕ;
|(2n − d)− (2n − d′)| = |d′ − d| < ∆.

Therefore, a O
((√

N
∆ +

√
t(N−t)

∆

)1−β
)

time algorithm for computing ∆-add-count

on truth table of CNF formulas also implies a O
((√

N
∆ +

√
t(N−t)

∆

)1−β
)

time algorithm

for computing ∆-add-count on truth table of DNF formulas; this violates the combination
of AC0

2-QSETH and Conjecture 20. Hence, proved. ◀
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3.1.3 Quantum complexity of γ-#CNFSAT and other related problems
One other approximation of the count of satisfying assignments is the multiplicative-factor
approximation, defined as follows.

▶ Definition 22 (γ-#CNFSAT). Let γ ∈ (0, 1). The γ-#CNFSAT problem is defined as
follows. Given a CNF formula formula ϕ on n Boolean variables, The goal of the problem is
to output an integer d such that (1− γ)|ϕ| < d < (1 + γ)|ϕ|. 9

The expression (1− γ)|ϕ| < d < (1 + γ)|ϕ| can be categorized into the following two cases.
Case 1 is when γ|ϕ| ≤ 1: in this regime, the algorithm solving γ-#CNFSAT is expected
to return the value |ϕ|, which is the exact count of the number of solutions to the
CNFSAT problem. From Theorem 13 we postulate that for each constant δ > 0, there is
no O(2n(1−δ)) time algorithm that can compute the exact number of solutions to input
CNF formula; this is a tight lower bound.
Case 2 is when γ|ϕ| > 1: in this regime, the algorithm solving γ-#CNFSAT is expected
to return a value d which is a γ-approximate relative count of the number of solutions to
the CNFSAT problem.

In order to understand the hardness of γ-#CNFSAT in the second case, we will first try
to understand how hard it is to compute the following property. Let fℓ,ℓ′ : D → {0, 1} with
D ⊂ {0, 1}N be a partial function defined as follows

fℓ,ℓ′(x) =
{

1, if |x| = ℓ,

0, if |x| = ℓ′.

Nayak and Wu in [31] analyzed the approximate degree of fℓ,ℓ′ . By using the polynomial
method [10] again we have a lower bound on the quantum query complexity of fℓ,ℓ′ as
mentioned in the following statement.

▶ Lemma 23 ([31, Corollary 1.2]). Let ℓ, ℓ′ ∈ N be such that ℓ ̸= ℓ′, fℓ,ℓ′ : D → {0, 1} where
D ⊂ {0, 1}N , and

fℓ,ℓ′(x) =
{

1, if |x| = ℓ,

0, if |x| = ℓ′.

Let ∆ℓ = |ℓ− ℓ′| and p ∈ {ℓ, ℓ′} be such that |N2 − p| is maximized. Then every bounded-error

quantum algorithm that computes fℓ,ℓ′ uses Ω
(√

N
∆ℓ

+
√

p(N−p)
∆ℓ

)
queries.

Using AC0
2-QSETH we will now show that for a choice of ℓ, ℓ′ computing fℓ,ℓ′ on

truth tables of CNF formulas of poly(n) size requires Ω
(√

2n

∆ℓ
+
√

p(2n−p)
∆ℓ

)
time where

∆ℓ = |ℓ− ℓ′| and p ∈ {ℓ, ℓ′} that maximises |2n−1 − p|. The only caveat (as also witnessed
several times earlier) is that we cannot prove the compression obliviousness of fℓ,ℓ′ hence we
state and use the following conjecture.

9 The same results hold if the approximation is defined with the equalities, i.e., (1 −γ)|ϕ| ≤ d ≤ (1 +γ)|ϕ|.
An additional observation under this changed definition of γ-#CNFSAT is as follows. Given a CNF
formula as input, the algorithm for γ-#CNFSAT outputs 0 only when there is no satisfying assignment
to that formula. Hence, one can decide satisfiability of a given CNF formula using the algorithm for
γ-#CNFSAT. Therefore, the same lower bound holds for this changed definition of γ-#CNFSAT.
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▶ Conjecture 24. For any pair of integers ℓ, ℓ′ ∈ [2n] ∪ {0} satisfying that ℓ ̸= ℓ′, fℓ,ℓ′ ∈
CO(AC0

2).10

And we can show the following.

▶ Lemma 25. Let ℓ, ℓ′ ∈ [2n] ∪ {0} be such that ℓ ≠ ℓ′. If both AC0
2-QSETH(Conjecture 2)

and Conjecture 24 hold, then at least one of the following is true:
For each constant δ > 0, there exists c > 0 such that there is no bounded-error quantum
algorithm that computes fℓ,ℓ′ on the truth table of CNF formulas defined on n variables in

O

((√
2n

∆ℓ
+
√

p(2n−p)
∆ℓ

)1−δ
)

time (even restricted to formulas with m ≤ cn2 clauses);

For each constant δ > 0, there exists c > 0 such that there is no bounded-error quantum
algorithm that computes fN−ℓ,N−ℓ′ on the truth table of CNF formulas defined on n

variables in O
((√

2n

∆ℓ
+
√

p(2n−p)
∆ℓ

)1−δ
)

time (even restricted to formulas with m ≤ cn2

clauses);
here ∆ℓ = |ℓ − ℓ′| and p ∈ {ℓ, ℓ′} such that |2n−1 − p| is maximized. In particular, when
ℓ+ ℓ′ = 2n, the above immediately implies the following:

For each constant δ > 0, there exists c > 0 such that there is no bounded-error quantum
algorithm that computes fℓ,ℓ′ on the truth table of CNF formulas defined on n variables

in O
((√

2n

∆ℓ
+

√
ℓℓ′

∆ℓ

)1−δ
)

time (even restricted to formulas with m ≤ cn2 clauses).

Proof. Let N be an integer that we will fix later and let f ′
ℓ,ℓ′ : {0, 1}N → {0, 1} be defined

as follows

f ′
ℓ,ℓ′ =

{
1, if |x| = N − ℓ,
0, if |x| = N − ℓ′.

It is not hard to see f ′
ℓ,ℓ′ is the same as function fN−ℓ,N−ℓ′ . Fortunately, both the functions

fN−ℓ,N−ℓ′ and fℓ,ℓ′ have the same value of ∆ℓ and h where h = p(N − p). Therefore the

bounded error quantum query complexity of f ′
ℓ,ℓ′ is Ω

(√
N
∆ℓ

+
√

p(N−p)
∆ℓ

)
where ∆ℓ = |ℓ−ℓ′|

and p ∈ {ℓ, ℓ′} such that |N2 − p| is maximised; same as the bounded error quantum query
complexity of fℓ,ℓ′ as mentioned in Lemma 23.

Moreover, as f ′
ℓ,ℓ′ is the same function fN−ℓ,N−ℓ′ it is therefore clear from Conjecture 24

that f ′
ℓ,ℓ′ ∈ CO(AC0

2) which means there is no bounded error quantum algorithm that can
compute f ′

ℓ,ℓ′ or fℓ,ℓ′ on truth tables of poly(n) size CNF or DNF formulas defined on n input

variables in O
((√

2n

∆ℓ
+
√

p(2n−p)
∆ℓ

)1−δ
)

time for any constant δ > 0 unless AC0
2-QSETH

is false. We will now show that conditional on AC0
2-QSETH this result holds even when we

restrict ourselves to only poly(n) sized CNF formulas.
Having introduced f ′

ℓ,ℓ′ we will now prove Lemma 25 using the following propositions.
Proposition A There is no bounded error quantum algorithm that can compute fℓ,ℓ′

on truth table of CNF formulas defined on n variables in O
((√

2n

∆ℓ
+
√

p(2n−p)
∆ℓ

)1−δ
)

time for any δ > 0.

10 Note that, there are some values of ℓ, ℓ′ for which fℓ,ℓ′ will be provably compression oblivious, for e.g.,
ℓ = 1 and ℓ′ = 0 would capture the OR property which is compression oblivious; see Section 3.1.

APPROX/RANDOM 2025



6:16 QSETH Strikes Again: Finer Quantum Lower Bounds for Lattice Problem and More

Proposition B There is no bounded error quantum algorithm that can compute fℓ,ℓ′

on truth table of DNF formulas defined on n variables in O
((√

2n

∆ℓ
+
√

p(2n−p)
∆ℓ

)1−δ
)

time for any δ > 0.
Proposition C There is no bounded error quantum algorithm that can compute f ′

ℓ,ℓ′

on truth table of CNF formulas defined on n variables in O
((√

2n

∆ℓ
+
√

p(2n−p)
∆ℓ

)1−δ
)

time for any δ > 0.
Proposition D There is no bounded error quantum algorithm that can compute f ′

ℓ,ℓ′

on truth table of DNF formulas defined on n variables in O
((√

2n

∆ℓ
+
√

p(2n−p)
∆ℓ

)1−δ
)

time for any δ > 0.
Conditional on Conjecture 24 and AC0

2-QSETH the following statements hold.
Claim 1 At least one of the propositions A or B is true.
Claim 2 At least one of the propositions C or D is true.
Claim 3 At least one of the propositions A or C is true; by way of contradiction let
us assume that both propositions A and C are false, this means there exist algorithms
A,A′ that for an δ > 0 and δ′ > 0 compute fℓ,ℓ′ and f ′

ℓ,ℓ′ on the truth table of poly(n)

size CNF formulas defined on n input variables in O
((√

2n

∆ℓ
+
√

p(2n−p)
∆ℓ

)1−δ
)

time

and in O
((√

2n

∆ℓ
+
√

p(2n−p)
∆ℓ

)1−δ′)
time, respectively. Moreover, if propositions A and

C are false then from Claims 1 and 2 we can deduce that both B and D must be true
which means there is no quantum algorithm that can compute fℓ,ℓ′ or f ′

ℓ,ℓ′ on the truth

table of poly(n) size DNF formulas on n input variables in O
((√

2n

∆ℓ
+
√

p(2n−p)
∆ℓ

)1−δ
)

time for any δ > 0. However, given a DNF formula ϕ as an input to compute fℓ,ℓ′ on
its truth table one can instead compute f ′

ℓ,ℓ′ on the negation of ϕ, let us denote by ¬ϕ,

using algorithm A′ on ¬ϕ in O
((√

2n

∆ℓ
+
√

p(2n−p)
∆ℓ

)1−δ′)
time which is a contradiction.

This means at least one of the two propositions A or C must be true which is exactly the
statement of Lemma 25. ◀

Inspired by the arguments used in the proof of Theorem 1.13 in [31], we will now show
that Lemma 25 implies the following result. Our result holds for γ ∈

[ 1
2n , 0.4999

)
; this range

of γ suffices for our reductions presented in the later sections.

▶ Corollary 26 (γ-#QSETH). Let γ ∈
[ 1

2n , 0.4999
)
. For each constant δ > 0, there exists

c > 0 such that there is no bounded-error quantum algorithm that solves γ-#CNFSAT (even
restricted to formulas with m ≤ cn2 clauses) in time

1. O
((

1
γ

√
2n−ĥ

ĥ

)1−δ
)

if γĥ > 1, where ĥ is the number of satisfying assignments;

2. O(2n(1−δ)) otherwise,
unless AC0

2-QSETH(Conjecture 2) is false or ℓ ̸= ℓ′, fℓ,ℓ′ /∈ CO(AC0
2) (i.e., Conjecture 24

is false).
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We show the first part of Corollary 26 in the following way and use the result from
Theorem 13 for the second part. Given a value of γ ∈

[ 1
2n , 0.4999

)
we will fix values of

ℓ ∈ [2n]∪ {0} and ℓ′ ∈ [2n]∪ {0} such that we are able to compute fℓ,ℓ′ on the truth table of
an input CNF formulas on n variables using the algorithm that solves γ-#CNFSAT. Hence,
we can show a lower bound on γ-#CNFSAT using the lower bound result from Lemma 25.

Proof. Let N = 2n. Let ℓ = N
2 + ⌈γt⌉ =

⌈
N
2 + γt

⌉
and ℓ′ = N

2 − ⌈γt⌉ =
⌊

N
2 − γt

⌋
; here

t ∈ [N ] is a value that we will fix later but in any case, we have 1 ≤ ⌈γt⌉ < N
2 . With that, we

are ensured that γℓ > 1
2 . We also make sure to choose values ℓ, ℓ′ in such a way that γℓ′ = Ω(1).

Clearly, ℓ+ℓ′ = N and ∆ℓ = |ℓ−ℓ′| = 2⌈γt⌉. Therefore by invoking the result from Lemma 25
we can say that for these values of ℓ, ℓ′ there is no bounded-error quantum algorithm that

can solve fℓ,ℓ′ on the truth table of CNF formulas in O
((√

N
⌈γt⌉ +

√
ℓ(N−ℓ)
⌈γt⌉

)1−δ
)

time,

for each δ > 0; let us denote this claim by (*).
Let A be an algorithm that computes γ-#CNFSAT, i.e., Algorithm A returns a value

h such that (1 − γ)ĥ < h < (1 + γ)ĥ. Given ℓ = N
2 + ⌈γt⌉ and ℓ′ = N

2 − ⌈γt⌉, there are
values of t ∈ [N ] such that we will be able to distinguish whether the number of satisfying
assignments to a formula is ℓ or ℓ′ using Algorithm A. As ℓ > ℓ′ in our setup, we want t
such that ℓ′(1 + γ) < ℓ(1− γ); it is then necessary that γN < 2⌈γt⌉; let us denote this as
Condition 1.

Now we set the values of ℓ and ℓ′. Given a value of γ ∈
[ 1

N ,
1
2
)
, we set ℓ =

⌈
N

2(1−γ)

⌉
and ℓ′ = N − ℓ. This implies N

2(1−γ) ≤ ℓ < N
2(1−γ) + 1, N(1−2γ)

2(1−γ) − 1 < ℓ′ ≤ N(1−2γ)
2(1−γ) , and

γN
(1−γ) ≤ |ℓ− ℓ

′| < γN
(1−γ) + 2. Therefore we obtain 2γℓ− 2γ ≤ |ℓ− ℓ′| < 2γℓ+ 2.11 We know

from claim (*) that every quantum algorithm that (for these values of ℓ, ℓ′) computes fℓ,ℓ′ on

CNF formulas requires Ω(L1−δ) time for each δ > 0, where L = 1
γ

√
N−ℓ
ℓ+1 = Ω

(
1
γ

√
N−ℓ

ℓ

)
.

Moreover, ℓ′ is (ℓ − 1)(1 − 2γ) − 1 < ℓ′ ≤ ℓ(1 − 2γ). Therefore, we can see that L =

Ω
(

1
γ

√
N−ℓ

ℓ

)
= Ω

(
1−2γ

γ

√
N−ℓ′

ℓ′

)
= Ω

(
1
γ

√
N−ℓ′

ℓ′

)
.

It is also easy to see that if ℓ = ⌈ N
2(1−γ)⌉ were to be expressed as N

2 + ⌈γt⌉ (i.e. denote ℓ
to be N

2 + ⌈γt⌉), then for that value of t we have ⌈γt⌉ = ⌈ N
2(1−γ)⌉−

N
2 ≥

Nγ
2(1−γ) >

Nγ
2 , which

satisfies Condition 1. Hence here we can use Algorithm A to distinguish whether the number
of satisfying assignments to a formula is ℓ or ℓ′. Hence given a CNF formula as input, we
will be able to use Algorithm A to distinguish whether the number of satisfying assignments
is ℓ or ℓ′. Let T = 1

γ

√
N−ℓ

ℓ + 1
γ

√
N−ℓ′

ℓ′ = O( 1
γ

√
N−ℓ′

ℓ′ ). If for some constant δ > 0, A can
solve γ-#CNFSAT on an input CNF formula that has ĥ number of satisfying assignments
in O(( 1

γ

√
N−ĥ

ĥ
)1−δ) time, then we are essentially computing fℓ,ℓ′ in O(T 1−δ) time, which is

a contradiction to claim (*). Hence the first part of the statement of Corollary 26 proved.
Proof of the second part of this theorem follows from Theorem 13 as the regime γĥ ≤ 1

translates to exactly counting the number of satisfying assignments. ◀

11 To view the calculations in a less cumbersome way one can use the fact that asymptotically ℓ = N
2(1−γ) ,

ℓ′ = N(1−2γ)
2(1−γ) and |ℓ− ℓ′| = γN

(1−γ) = 2γℓ.
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3.2 Quantum complexity of #k-SAT and other related problems
In the previous subsection, we discussed the quantum complexity of variants of CNFSAT
problems. However, it is not clear how to immediately derive a similar quantum complexity
result for variants of k-SAT problems with constant k by using the quantum (conditional)
hardness results for variants of CNFSAT problems. Of course we could make a further
conjecture about variants of k-SAT problems like we did in the previous subsection, but it
would introduce too many conjectures. Moreover, some variants of k-SAT (for constant k)
are even shown to be solvable in polynomial time [6].

To give the (quantum) complexity of some optimization problems (for example, lattice
problems [11]), on the other hand, we might want to have some (quantum) conditional lower
bounds for (variants of) k-SAT problems with not too large k. This is because we might
make 2k · poly(n) calls to a solver of those problems to solve k-SAT. This is undesirable for
giving the (quantum) complexity of those optimization problems when k approaches n, while
it is tolerable for a relatively small k (like k = poly logn). Hence in this subsection, we would
like to say something interesting about quantum hardness for #k-SAT and ⊕k-SAT when
k = Θ(logn), only using the hardness assumptions on counting-CNFSAT (that is, #QSETH).
Here, variants of k-SAT are defined exactly the same way as Definition 8, Definition 17, and
Definition 22, except that the input is now a k-CNF formula.

We use the classical algorithm by Schuler [34].12 This algorithm can be viewed as a
Turing reduction from SAT with bounded clause density to SAT with bounded clause width,
which was analyzed in [16]. The time complexity of this algorithm is upper bounded by(

m+n/k
n/k

)
· poly(m,n), where m is number of clauses.

Algorithm 1 ReduceWidthk(ψ).

Input: CNF formula ψ
1: if ψ has no clause of width > k then
2: output ψ
3: else
4: let C ′ = {l1, . . . , lk′} be a clause of ψ of width k′ > k

5: C = {l1, . . . , lk}
6: ψ0 ← ψ − {C ′} ∪ {C}
7: ψ1 ← ψ ∧ ¬l1 ∧ ¬l2 ∧ · · · ∧ ¬lk
8: ψ1 ← Remove variables corresponding to l1, . . . , lk from ψ1 by setting l1 = 0, . . . , lk =

0
9: ReduceWidthk(ψ0)

10: ReduceWidthk(ψ1)

Algorithm 1 takes as input a CNF formula of width greater than k, and then outputs
a list of k-CNF formulas ψi where the solutions of the input formula is the union of the
solutions of the output formulas, i.e., sol(ψ) = ∪isol(ψi), where sol(ϕ) denotes the set of
satisfying assignments to a formula ϕ. In fact, it is not hard to see that the count of the
number of satisfying assignments also is preserved, i.e., |sol(ψ)| =

∑
i |sol(ψi)|.

▶ Lemma 27 (Implicit from Section 3.2 in [16]). Algorithm 1 takes as input a CNF formula
ψ on n input variables, with m clauses, that is of width strictly greater than k and outputs
a number of k-CNF formulas ψi each defined on at most n input variables and at most m
clauses such that |sol(ψ)| =

∑
i |sol(ψi)|.

12 This algorithm can also be used to solve CNFSAT on n variables, m clauses in
O(poly(n)2n(1−1/(1+log m))) expected time.
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In the full version of this paper [17] we present the proof for completeness. Using
Lemma 27 and Lemma 5 in [16] we will now show the hardness of k-SAT and its counting
variants when k = Θ(logn) without introducing new conjectures.

▶ Corollary 28. For each constant δ > 0, there exists a constant c such that there is no
bounded-error quantum algorithm that solves
1. c logn-SAT in O(2(1−δ)n/2) time unless Basic-QSETH (see Corollary 6) is false;
2. #c logn-SAT in O(2(1−δ)n) time unless #QSETH (see Theorem 13) is false;
3. ⊕c logn-SAT in O(2(1−δ)n) time unless ⊕QSETH (see Corollary 14) is false;
4. ⊕qc logn-SAT in O(2(1−δ)n) time unless #qQSETH (see Corollary 15) is false.

Proof. We first prove the first item. Suppose that for each constant c, there is an algorithm
A that solves #c logn-SAT in 2ns for some constant s := 1− δ < 1. Let k = c logn for the
rest of the proof. Consider the ReduceWidthk algorithm (Algorithm 1) with input CNF
formula ψ. Let p be some path of length t in the tree T of recursive calls to ReduceWidthk(ψ).
Let ψp be the output formula of width at most k at the leaf of p. Let l, r be the number of
left, right branches respectively on path p. Every left branch in the path reduces the width
of exactly 1 clause to k, therefore l ≤ m. On the other hand, with additional poly(n,m)
time, every right branch of path p reduces the number of variables by k, therefore r ≤ n/k.
As a result, the number of paths in tree T with r right branches is at most

(
m+r

r

)
and each

outputs a formula with n− rk variables.
Using the same arguments as in [16, Lemma 5], one can see that A together with the

ReduceWidthk subroutine can be used to solve #CNFSAT (ignoring poly(n) factors) in time
at most

n/k∑
r=0

(
m+ r

r

)
2s(n−rk) +

(
m+ n/k

n/k

)
· poly(m,n)

≤
n/k∑
r=0

(
m+ n

k

r

)
2s(n−rk)

=2sn

n/k∑
r=0

(
m+ n

k

r

)
1

2srk

≤2sn(1 + 1
2sk

)m+ n
k

≤2sne
1

2sk (m+ n
k ) since (1 + x) ≤ ex

≤2sn+ 4m

2sk ,

where the last equality holds because we can assume that m ≥ n
k without loss of generality

(by appending dummy clauses). Therefore, for each c′, there exist a constant c for k = c logn
and δ′ such that if m ≤ c′n2, then s+ 4m

n2sk < 1− δ′. As a result, a 2ns-time algorithm for
#c logn-SAT implies a 2n(1−δ′)-time algorithm for #CNFSAT (restricted to formulas with
m ≤ c′n2), which would refute #-QSETH (Theorem 13). This proves the first item of the
corollary. The same arguments hold for k-SAT, ⊕k-SAT, and ⊕qk-SAT as well. ◀

Note that, we cannot extend the same arguments for the majority or st-majority or
additive-error approximation of count because those properties are not count-preserving.
However, these arguments do extend to the multiplicative-factor approximation of the count.
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▶ Corollary 29. Let γ ∈
[ 1

2n , 0.4999
)
. For each constant δ > 0, there exists constant c such

that, there is no bounded-error quantum algorithm that solves γ-#c logn-SAT in time

1. O
((

1
γ

√
2n−ĥ

ĥ

)1−δ
)

if γĥ > 1, where ĥ is the number of satisfying assignments;

2. O(2n(1−δ)) otherwise,
unless γ-#QSETH (see Corollary 26, implied by Lemma 25) is false.

4 Quantum strong simulation of quantum circuits

Combining results from [25] with our results from Section 3 we are able to comment on the
exact complexity of the strong simulation problem which is defined as follows.13

▶ Definition 30 (The strong simulation problem). Let p ∈ N. Given a quantum circuit C on
n qubits and x ∈ {0, 1}n, the goal of strong simulation with p-bit precision is to output the
value of |⟨x|C|0n⟩| := 0.C1C2 . . . up to p-bit precision. That is, output C0.C1 . . . Cp−1.14

For a quantum circuit C, computing |⟨x|C|0n⟩| exactly, to a precision of n bits, is #P-
hard [19, 35]. This means even a quantum computer will likely require exponential time
to strongly simulate another quantum circuit. In the full version of this paper [17], we
prove a more precise quantum time bound for strongly simulating quantum circuits, both
exactly and approximately; in the approximate case, we present complexity results for both
multiplicative factor and additive error approximation. Our results extend the results by
[25] in two directions: firstly, we give explicit (conditional) bounds proving that it is hard
to strongly simulate quantum circuits using quantum computers as well. Secondly, we also
address the open question posed by [25] on the (conditional) hardness of strong simulation
up to accuracy O(2−n/2), however, our results are based on a hardness assumption different
from SETH or Basic QSETH.

Our results are based on two main components. Firstly, on the observation that the
reduction from CNFSAT to the strong simulation problem given (in Theorem 3) by [25]
encodes the count of the number of satisfying assignments; this fact allows us to use the
same reduction to reduce other variants of CNFSAT, such as #CNFSAT or ⊕CNFSAT,
to the strong simulation problem, moreover, the same reduction also allows us to reduce γ-
#CNFSAT and ∆-add-#CNFSAT to analogous variants of the strong simulation problem,
respectively. As the second main component, we use the quantum hardness of these variants
of CNFSAT problem discussed in Section 3.

In the full version of this paper on arXiv, we first state the result of the exact quantum
time complexity of the strong simulation problem and then use that result to later show how
hard it is for a quantum computer to strongly simulate a quantum circuit with an additive
error or a multiplicative factor approximation as stated in Table 2 - see [17] for details.

5 Quantum lower bound for lattice counting and q-count problems

In the full version of this paper on arXiv, we connect k-SAT to variants of lattice problems
and then use the QSETH lower bound we have in Section 3.2 to give quantum fine-grained
complexity for those lattice problems.

13 Note that this is different from the weak simulation problem; a weak simulation samples from probability
distribution p(x) := |⟨0n|C|x⟩|2.

14 Though in some papers the strong simulation problem requires that we output ⟨x|C|0n⟩ instead of
|⟨x|C|0n⟩|, we use this definition because it is more comparable to the definition of the weak simulation
problem. Also, the lower bound we present holds for both of these definitions.
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Fine-grained complexity of lattice problems is quite widely studied in the classical
case [11, 2, 3, 5, 12, 13]. Lots of variants of lattice problems have been considered before,
and the most well-studied one is the closest vector problem (with respect to ℓp norm).

CVPp is known to have a 2n SETH lower bound for any p ̸∈ 2Z [11, 2], and for even p,
there seems a barrier for showing a fine-grained reduction from k-SAT to CVP [4]. Kannan
gave a nO(n)-time algorithm for solving CVPp for arbitrary p ≥ 1 [29], while the best-known
algorithm for solving CVPp with noneven p is still ncn for some constant c. To get a
conditional quantum lower bound for CVPp for noneven p, given there is already a classical
reduction from k-SAT to CVPp using 2k · poly(n) time (for noneven p) [11, 2], either one
can directly use the QSETH framework by Aaronson et al. [1] to get a 2(0.5−ε)n lower bound,
or we can use Corollary 28 to get the same lower bound in our QSETH framework.15

A natural question is invoked here: Can we have a 2(0.5+ε)n quantum SETH lower bound
for any (variants of) lattice problems? The answer is yes by using the framework and the
problems introduced in Section 3.2 and by considering the counting variant of lattice problems
stated in Table 2. In the full version, we begin by introducing the (approximate) lattice
counting problem and some other related problems - see [17] for all the relevant details.

6 Hardness of Counting/Parity of OV, Hitting Set, and Set-Cover

In the full version of this paper on arXiv we discuss the consequences of Corollary 26 and
Corollary 28 for some well-motivated optimization problems: Orthogonal Vectors, Hitting
Set and Set Cover as stated in Table 2 – see [17] for details.

7 Discussion and open questions

We believe that this paper opens up the possibility of concluding quantum time lower bounds
for many other problems, both for other variants of CNFSAT and also for problems that
are not immediately related to CNFSAT. While this is a natural broad future direction
to explore, we also mention the following few directions for future work which are more
contextual to this paper.

One of the motivations to use AC0
2-QSETH in this paper is so that we can “tie” certain

conjectures, that would have otherwise been standalone conjectures, to one main conjec-
ture. But in the process, we conjecture compression obliviousness of several properties. It
would be nice if we could also have an “umbrella” conjecture that allows one to establish
compression obliviousness of several properties. For e.g., it would be nice if we could
show that compression obliviousness of a natural property like count or parity implies
compression obliviousness of say ∆-add-count.
It will be interesting to see if one can use the QSETH framework (or the AC0

2-QSETH
conjecture) to give a single exponential lower bound for #CVP in Euclidean norm.
Using Boolean function Fourier analysis, we were able to show that the existence
of (quantum-secure) PRFs imply that majority and parity are compression oblivious,
whenever the input is given by a formula or circuit. This proof technique could plausibly
be extended to larger sets of functions that have a similar structure, e.g., a natural candid-
ate would be to show an equivalent statement for symmetric functions with non-negligible
mass on high-degree Fourier coefficients.

15 Basic QSETH assumption is weaker than the QSETH assumption in Aaronson et al [1], so our lower
bound under basic QSETH assumption (Conjecture 2 and Corollary 6) will also imply a lower bound
under their quantum SETH framework.
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Additionally, extending this result to majority / parity for AC0
2-QSETH, i.e. CNF or

DNF input, would be another step towards grounding the (necessary) assumption that
such properties are compression oblivious.
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