
Sink-Free Orientations: A Local Sampler with
Applications
Konrad Anand #

University of Edinburgh, UK

Graham Freifeld #

University of Edinburgh, UK

Heng Guo #

University of Edinburgh, UK

Chunyang Wang #

Nanjing University, China

Jiaheng Wang #

University of Regensburg, Germany

Abstract
For sink-free orientations in graphs of minimum degree at least 3, we show that there is a deterministic
approximate counting algorithm that runs in time O((n33/ε32) log(n/ε)), a near-linear time sampling
algorithm, and a randomised approximate counting algorithm that runs in time O((n/ε)2 log(n/ε)),
where n denotes the number of vertices of the input graph and 0 < ε < 1 is the desired accuracy. All
three algorithms are based on a local implementation of the sink popping method (Cohn, Pemantle,
and Propp, 2002) under the partial rejection sampling framework (Guo, Jerrum, and Liu, 2019).

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains

Keywords and phrases Sink-free orientations, local sampling, deterministic counting

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2025.60

Category RANDOM

Related Version arXiv version: https://arxiv.org/abs/2502.05877

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 947778).
Jiaheng Wang also acknowledges support from the ERC (grant agreement No. 101077083, CountHom).

Acknowledgements We thank Guus Regts for helpful comments on an earlier version of this paper.

1 Introduction

The significance of counting has been recognised in the theory of computing since the
pioneering work of Valiant [44, 43]. In the late 80s, a number of landmark approximate
counting algorithms [30, 18, 31] were discovered. A common ingredient of these algorithms is
the computational equivalence between approximate counting and sampling for self-reducible
problems [32]. The reduction from counting to sampling decomposes the task into a sequence
of marginal probability estimations, each of which is tractable for sampling techniques such
as Markov chains. However, while only the marginal probability of one variable is in question,
simulating Markov chains requires keeping track of the whole state of the instance, and thus
is obviously wasteful. It is more desirable to draw samples while accessing only some local
structure of the target variable. We call such algorithms local samplers.

The first such local sampler was found by Anand and Jerrum [2], who showed how to
efficiently generate perfect local samples for spin systems even when the underlying graph is
infinite. Using local information is essential here as it is not possible to perfectly simulate

© Konrad Anand, Graham Freifeld, Heng Guo, Chunyang Wang, and Jiaheng Wang;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2025).
Editors: Alina Ene and Eshan Chattopadhyay; Article No. 60; pp. 60:1–60:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:konrad.anand@me.com
https://orcid.org/0000-0001-5778-9397
mailto:grahamfreifeld@gmail.com
https://orcid.org/0009-0007-2471-5413
mailto:hguo@inf.ed.ac.uk
https://orcid.org/0000-0001-8199-5596
mailto:wcysai@smail.nju.edu.cn
https://orcid.org/0000-0002-9565-5952
mailto:pw384@hotmail.com
https://orcid.org/0000-0002-5191-545X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2025.60
https://arxiv.org/abs/2502.05877
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

60:2 Sink-Free Orientations: A Local Sampler with Applications

the whole state. Subsequently, Feng, Guo, Wang, Wang, and Yin [20] found an alternative
local sampler, namely the so-called coupling towards the past method, which yields local
implementations of rapid mixing Markov chains. It is also observed that sufficiently efficient
local samplers lead to immediate derandomisation via brute-force enumeration. Moreover,
local samplers are crucial to obtain sub-quadratic time approximate counting algorithms for
spin systems [1]. Thus, local samplers are highly desirable algorithms as they can lead to fast
sampling, fast approximate counting, and deterministic approximate counting algorithms.

Guo, Jerrum, and Liu [25] introduced partial rejection sampling (PRS) as yet another
efficient sampling technique. This method generalises the so-called cycle-popping algorithm
for sampling spanning trees [46] and the sink-popping algorithm for sampling sink-free
orientations [16]. It also has close connections with the Lovász local lemma [19]. For
extremal instances (in the sense of [33]), PRS is just the celebrated Moser-Tardos algorithm
for the constructive local lemma [39]. The most notable application of PRS is the first
fully polynomial-time randomised approximation scheme (FPRAS) for all-terminal network
reliability [23]. On the other hand, it is still open if all-terminal reliability and counting
sink-free orientations admit deterministic fully polynomial-time approximation schemes
(FPTASes). Thus, in view of the aforementioned derandomisation technique [20], a local
implementation of PRS is a promising way to resolve these open problems.

In this paper, we make some positive progress for sink-free orientations (SFOs). Given
an undirected graph G = (V, E), a sink-free orientation of G is an orientation of its edges
such that each vertex has at least one outgoing edge. SFOs were first studied by Bubley
and Dyer [10] as a restricted case of Sat.1 They showed that exact counting of SFOs is
#P-complete, and thus is unlikely to have a polynomial-time algorithm. For approximate
counting and sampling, in [11], they showed that a natural Markov chain has an O(m3)
mixing time, where m is the number of edges. Later, Cohn, Pemantle, and Propp [16]
introduced an exact sampler, namely the aforementioned sink-popping algorithm that runs
in O(nm) time in expectation, where n is the number of vertices. Using the partial rejection
sampling framework, Guo and He [22] improved the running time of sink-popping to O(n2),
and constructed instances where this running time is tight. It is open whether a faster
sampling algorithm or an FPTAS exists.

Our main result is a local sampler based on partial rejection sampling for SFOs. Using this
local sampler, for graphs of minimum degree 3, we obtain a deterministic approximate counting
algorithm that runs in time O((n33/ε32) log(n/ε)), a near-linear time sampling algorithm,
and a randomised approximate counting algorithm that runs in time O((n/ε)2 log(n/ε)),
where ε is the given accuracy. All three algorithms appear difficult to obtain using previous
techniques. We will describe the results in more detail in the next section.

1.1 Our contribution and technique overview
Our local sampler works for a slight generalisation of SFOs, which are intermediate problems
required by the standard counting to sampling reduction [32]. In these problems, a subset S

of vertices is specified, which are required to be sink-free, and the task is to estimate the
probability of a vertex v not in S not being a sink. We denote by µS the uniform distribution
of orientations where no vertex in S is a sink.

1 We remark that a variant of SFOs is also introduced in the context of distributed computing under the
name of sinkless orientations, where they are used to give a lower bound for the distributed Lovász local
lemma [8]. The main difference is that for sinkless orientations, usually only vertices of sufficiently high
degrees are required to be non-sinks.

K. Anand, G. Freifeld, H. Guo, C. Wang, and J. Wang 60:3

Before describing our technique, let us first review the sink-popping algorithm, (which is
a special case of partial rejection sampling and the same as the Moser-Tardos algorithm [39]
as the instance is extremal). We orient each edge uniformly at random. As long as there is
a sink in S, we select one such vertex, arbitrarily, and rerandomise all edges incident to it,
until there is no sink belonging to S.

Our key observation is that it is unnecessary to simulate all edges to decide if v /∈ S is a
sink. In particular, if, at any point of the execution of the algorithm, v is a sink, then no
adjacent edges will ever be resampled and v stays a sink till the algorithm finishes. On the
other hand, if at any point v, using only the already oriented edges, belongs to a cycle, a path
leading to a cycle, or a nonempty path leading to some vertex not in S, then the orientations
of all edges involved will not be resampled, and v stays a non-sink until the algorithm
terminates. Thus, this observation gives us an early termination criterion for determining
whether v is a sink or not. Moreover, since in the sink-popping algorithm, the order of sinks
popped can be arbitrary, we can reveal the random orientation of edges strategically, and
pop sinks if necessary. To be more precise, we first reveal the edges adjacent to v one by one.
Once there is an outgoing edge (v, u), we then move to u and repeat this process. If any sink
is revealed, we erase the orientations of all its adjacent edges and backtrack. Eventually, one
of the two early termination rules above will kick in, and this gives us a local sample.

Ideally, we want our local sampler to run in O(log n) time, where n is the number of
vertices. Unfortunately, the one described above does not necessarily terminate this fast. To
see this, consider a sequence of degree 2 vertices, where at each step there is equal probability
to move forward or backtrack. Resolving such a path of length ℓ would require Θ(ℓ2) time.
On the other hand, when the minimum degree of the input graph is at least 3, the length of
the path followed by the sampler forms a submartingale. The vertex v can be a sink only if
this path has length 0. Thus, once the length of the path is at least C log n for some constant
C, the probability of v being a sink is very small. This allows us to truncate the local sampler
with only a small error. Recall that µS is the uniform distribution of orientations under
which no vertex in S is a sink. Our main theorem is as follows.

▶ Theorem 1 (local sampler). There exists an algorithm that, given a graph G = (V, E) with
minimum degree at least 3, S ⊆ V , and v ̸∈ S, samples a Boolean random variable x in time
O(log 1

ε) such that |Pr [x = 1]− µS(v is not a sink)| ≤ ε.
Moreover, there exists an algorithm that, in the same setting, given any edge e ∈ E,

samples a random orientation of e that is ε-close in total variation distance from the marginal
distribution of e under µS.

We note that for the algorithm in Theorem 1, we assume that the input graph can be accessed
by an adjacent neighbour oracle. That is, given a vertex v and a number k, it returns the
k-th neighbour of v. Also, all our algorithms work for not necessarily simple graphs.

The FPTAS for #SFO follows from the derandomisation method of [20] to the truncated
local sampler. By ε-approximation, we mean an estimate Z̃ such that 1 − ε ≤ Z̃

Z ≤ 1 + ε,
where Z is the target quantity.

▶ Corollary 2 (deterministic approximate counting). For graphs with minimum degree at least
3, there exists a deterministic algorithm that, given 0 < ε < 1, outputs an ε-approximation
to the number of sink-free orientations with running time O((n33/ε32) log(n/ε)), where n is
the number of vertices.

Although high, the constant exponent in the running time of Corollary 2 is actually the
most interesting feature of our algorithm. This exponent is derived from the hidden constant
in Theorem 1. In contrast, the running time of most known FPTASes [45, 4, 6, 28, 5, 40,

APPROX/RANDOM 2025

60:4 Sink-Free Orientations: A Local Sampler with Applications

37, 20, 12] has an exponent that depends on some parameter (such as the maximum degree)
of the input graph. There are exceptions, for example, [34, 27], but the exponents of their
running times still depend on the parameters of the problem (not of the instance).

Another corollary of Theorem 1 is the following fast approximate sampler.

▶ Corollary 3 (fast sampling). For graphs with minimum degree at least 3, there exists a
sampling algorithm that, given 0 < ε < 1, outputs a random orientation σ such that σ is
ε-close to a uniform random sink-free orientation in total variation distance, with running
time O

(
m log

(
m
ε

))
, where m is the number of edges.

We note that when the minimum degree is at least 4, the same running time can be
achieved by the Moser-Tardos algorithm [38], as the symmetric local lemma condition holds
in that case. However, when the minimum degree is 3, the symmetric local lemma condition
no longer holds and our analysis relies on Shearer’s condition [42]. Under Shearer’s condition,
we are not aware of a similar running time bound of the MT algorithm.

Our sampler runs in Õ(m) time2 instead of the O(n2) time that sink-popping requires,
at the cost of generating an approximate sample instead of a perfect sample. This improves
over sink-popping when m = o(n2/ log n) and leads to a faster FPRAS using the counting-
to-sampling reduction [32]. In fact, the running time of the FPRAS can be improved further
by directly invoking the truncated local sampler in the reduction.

▶ Corollary 4 (fast approximate counting). For graphs with minimum degree at least 3,
there exists a (randomised) algorithm that, given 0 < ε < 1, outputs a quantity that is an
ε-approximation with probability at least 3/4 to the number of sink-free orientations. The
running time is O((n/ε)2 log(n/ε)), where n is the number of vertices.

The success probability 3/4 in Corollary 4 is standard in the definition of FPRAS, and
can be easily amplified by taking the median of repeated trials and applying the Chernoff
bound.

Note that directly combining Corollary 3 with the counting-to-sampling reduction results
in an Õ(nm/ε2) running time. Corollary 4 is faster when m = ω(n). Previously, the
best running time for approximate counting is Õ(n3/ε2), via combining the O(n2) time
sink-popping algorithm [22] with simulated annealing (see, for example, [22, Lemma 12]).
Corollary 4 improves over this by roughly a factor of n. In very dense graphs (when
m = Ω(n2)), Corollary 4 achieves near-linear time, which appears to be rare for approximate
counting.

1.2 Related work
Our local sampler in Theorem 1 also falls under the framework of local access of huge random
objects, a question first proposed by Goldreich, Goldwasser, and Nussboim [21]. This is
a sampling version of local computation algorithms (LCAs) [41]. As such, the LCA lower
bound for sinkless orientations by Brandt, Grunau, and Rozhon [9] implies that the running
time of Theorem 1 is nearly optimal. Moreover, an early termination implementation of the
general Moser-Tardos algorithm was developed by Davies-Peck [17] for LCAs and distributed
algorithms. However, the algorithm in [17] requires a “polynomially-weakened” symmetric
local lemma condition, whereas in the setting of Theorem 1 only Shearer’s condition for
the local lemma holds. In addition, the algorithm in [17] appears to be too slow for our
derandomisation purposes.

2 The Õ notation hides logarithmic factors.

K. Anand, G. Freifeld, H. Guo, C. Wang, and J. Wang 60:5

There are a plethora of fast sampling and deterministic approximate counting techniques
by now. However, it appears difficult to achieve our results without the new local sampler. For
example, the coupling of Bubley and Dyer [11] does not seem to improve with the minimum
degree requirement. On a similar note, the recent deterministic counting technique of [12]
requires a distance-decreasing Markov chain coupling, whereas the Bubley-Dyer coupling
is distance non-increasing. In any case, even if the technique of [12] applied, it would not
imply a running time with a constant exponent. Other fast sampling and FPTAS techniques,
such as spectral independence [3, 15, 14], correlation decay [45, 35], and zero-freeness of
polynomials [5, 40, 26], all seem difficult to apply. The main obstacle is that these techniques
typically make use of properties that hold under arbitrary conditionings. However, for SFO,
even if we start with a graph of minimum degree 3, conditioning the edges can result in a
graph that is effectively a cycle, in which case no nice property holds. Our techniques, in
contrast, require no hereditary properties and thus can benefit from the minimum degree
requirement.

One much less obvious alternative approach to FPTAS is via the connection of the local
lemma. In particular, because SFOs form extremal instances, their number can be computed
via the independence polynomial evaluated at negative weights on the dependency graph.
(We also see this fact in Section 4.1.) Normally this approach would not be efficient, because
the dependency graph is usually exponentially large (for example for all-terminal reliability),
but in the case of SFOs, the dependency graph is just the input graph itself. There are more
than one FPTASes [40, 28] for the independence polynomial at negative weights. However,
neither appears able to recover Corollary 2. With the minimum degree ≥ 3 assumption, the
probability vector for SFOs is within the so-called Shearer’s region, where both algorithms
apply.3 The downside is that the running time of both algorithms has the form (n/ε)O(log d),4
where d is the maximum degree of the graph. Thus, in the setting of Corollary 2, these
algorithms run in quasi-polynomial time instead. A more detailed discussion is given in
Section 4.2.

Very recently, after our paper was posted on arXiv, Bencs and Regts [7] showed that
in fact, the connection above can lead to an FPTAS for SFOs via Barvinok’s interpolation
method. The main novel idea is that one need to instantiate the independence polynomial in
a different way. As in Corollary 2, their algorithm also requires minimum degree ≥ 3, but
their running time is faster, being O(n(m/ε)6.47), where n is the number of vertices and m

is the number of edges of the graph.

1.3 Organisation

The rest of the paper is organised as follows. In Section 2, we introduce our local sampler. It
is then analysed in Section 3. The main theorems are shown in Section 4. We conclude with
a few open problems in Section 5.

3 In [40], only a uniform bound is stated, but one can introduce a scaling variable t and make a new
polynomial in t, so that their algorithm works in the Shearer’s region.

4 To be more precise, the hidden constants in the exponents decrease in the multiplicative “slack” of
how close the evaluated point is to the boundary of Shearer’s region. For SFOs, when constant degree
vertices are present, the slack is a constant, and so are the hidden constants in the exponents.

APPROX/RANDOM 2025

60:6 Sink-Free Orientations: A Local Sampler with Applications

2 A local sampler for sink-free orientations

Fix G = (V, E) as an undirected graph. An orientation σ of G is an assignment of a direction
to each edge, turning the initial graph into a directed graph. For any S ⊆ V , let ΩS be the
set of S-sink-free orientations of G, i.e., the set of orientations such that each vertex v ∈ S is
not a sink. Thus, ΩV is the set of all (normal) sink-free orientations of G. When |ΩS | ≠ 0,
we use µS to denote the uniform distribution over ΩS . For two adjacent vertices u, v ∈ V , we
use {u, v} to denote the undirected edge and (u, v) to denote the directed edge, from u to v.

We apply the following standard counting-to-sampling reduction [32]. Let V =
{v1, v2, . . . , vn} be arbitrarily ordered and, for each 0 ≤ i ≤ n, define Vi = {v1, v2, . . . , vi}.
Then, |ΩV | can be decomposed into a telescopic product of marginal probabilities:

|ΩV | = |ΩV0 | ·
n∏

i=1

|ΩVi
|∣∣ΩVi−1

∣∣ = 2|E| ·
n∏

i=1
µVi−1(vi is not a sink). (1)

Thus, our goal becomes to estimate µS(v is not a sink) for any S ⊆ V and v ̸∈ S.
We view S-sink-free orientations under the variable framework of the Lovász local lemma.

Here, each edge corresponds to a variable that indicates its direction, and each vertex in S

represents a bad event of being a sink. An instance is called extremal if any two bad events
are independent (namely, they share no common variable) or disjoint. It is easy to see that all
instances to the S-sink-free orientation problem are extremal: if a vertex is a sink then none
of its neighbors can be a sink. For extremal instances like this, the celebrated Moser-Tardos
algorithm [39] is guaranteed to output an assignment avoiding all bad events uniformly at
random [25]. This is summarised in Algorithm 1. Note that when S = V , Algorithm 1 is the
sink-popping algorithm by Cohn, Pemantle, and Propp [16].

Algorithm 1 Partial rejection sampling for generating an S-sink-free orientation.

Input : an undirected graph G = (V, E) and a subset of vertices S ⊆ V

Output : an orientation σ of G

1 orient each edge e ∈ E uniformly at random and independently to obtain an
orientation σ;

2 while ∃v ∈ S s.t. v is a sink in σ do
3 choose such a v arbitrarily;
4 resample the orientation of all edges incident to v in σ uniformly at random;
5 return σ;

The following lemma is a direct corollary from [25, Theorem 8] and SFOs being extremal.

▶ Lemma 5. If |ΩS | ≠ 0, Algorithm 1 terminates almost surely and returns an orientation
distributed exactly as µS.

We remark that the only possible case for ΩS = ∅ is when S forms a tree and is not
connected to any vertex not in S.

Algorithm 1 requires one to generate a global sample when estimating µS(v is not a sink)
for some v /∈ S, which is wasteful. The following observation is crucial to turning it into a
local sampler.

K. Anand, G. Freifeld, H. Guo, C. Wang, and J. Wang 60:7

v

(a)

v

(b1)

u

v

(b2)

Figure 1 Illustration of Lemma 6. Shaded vertices are in the set S. Once these patterns are
formed, thick red edges would never be resampled in Algorithm 1.

▶ Lemma 6 (criteria for early termination). Suppose |ΩS | ≠ 0. For any v /∈ S, v is a sink
upon the termination of Algorithm 1 if and only if
(a) v becomes a sink at some iteration.
Conversely, v is not a sink upon the termination of Algorithm 1 if and only if one of the
following holds:
(b1) a directed cycle C containing v, or a directed path P containing v which ends in a

directed cycle C is formed in some iteration, or
(b2) a nonempty directed path P from v to some u /∈ S is formed in some iteration.

Proof. First, consider (a). If v becomes a sink at any point, then for every w ∈ S which is a
neighbour of v, the edge (w, v) is oriented towards v. Since v /∈ S, the edge (w, v) will not be
resampled via v, and could only be resampled by w becoming a sink. Since w cannot become
a sink without resampling (w, v), v will remain a sink. The other implication is obvious.

Now for (b1) and (b2), we first consider the forward implications. For a cycle C, every
vertex u ∈ C has an edge pointing outwards towards some w ∈ C which also has an edge
pointing outwards. None of these edges can be resampled without another edge e ∈ C being
resampled first, so no vertex in the cycle will ever become a sink again.

Consider a path P that ends outside of S or in a cycle. Inductively, we see that no edge
on this path will be resampled without the edge after it being resampled. The edge connected
to the cycle or Sc will not be resampled, since that vertex may never be a sink, so no vertex
in P can become a sink.

For the reverse implication, suppose v is eventually not a sink. In that case, there must
be some edge (v, w) pointing towards a neighbour w. If w is a sink, then w /∈ S and we are
in case (b2). Otherwise, w is not a sink, and there is an adjacent edge pointing away from
w, and we repeat this process. As the set of vertices is finite, if vertices considered in this
process are all in S, then there must be repeated vertices eventually, in which case we are in
(b1). ◀

An illustration of Lemma 6 is given in Figure 1. Based on Lemma 6, we design a
local sampling algorithm for determining whether some vertex v /∈ S is a sink or not,
given in Algorithm 2. We assume that the undirected graph G = (V, E) is stored as an
adjacency list where the neighbors of each vertex are arbitrarily ordered. Algorithm 2
takes as input some S ⊆ V and v /∈ S, returns an indicator variable x ∈ {0, 1} such that
Pr [x = 1] = µS(v is not a sink). We treat the path P as a subgraph, and V (P) denotes the
vertex set of P . When we remove the last vertex from P , we remove it and the adjacent
edge as well. Informally, Algorithm 2 starts from the vertex v, and reveals adjacent edges
one by one. If there is any edge pointing outward, say (v, u), we move to u and reveal edges
adjacent to u. If a sink w ∈ S is formed, then we mark all adjacent edges of w as unvisited

APPROX/RANDOM 2025

60:8 Sink-Free Orientations: A Local Sampler with Applications

and backtrack. This induces a directed path starting from v. We repeat this process until
any of the early termination criteria of Lemma 6 is satisfied, in which case we halt and output
accordingly.

Algorithm 2 Sample(G, S, v).

Input : an undirected graph G = (V, E), a subset of vertices S ⊆ V , and a vertex
v /∈ S;

Output : a random value x ∈ {0, 1};
1 Let P be a (directed) path initialised as P = (v);
2 Initialise a mapping M : E → {visited, unvisited} so that ∀e ∈ E, M(e) = unvisited;
3 while |V (P)| ≥ 1 do
4 Let u be the last vertex of P ;
5 if |V (P)| ≥ 2 and u /∈ S then return 1;
6 if all edges incident to u are marked visited then
7 mark all edges incident to u as unvisited;
8 remove u from P ;
9 else

10 let e = {u, w} be the first unvisited edge incident to u;
11 mark e as visited;
12 with probability 1/2 do
13 if w ∈ V (P), or there is a visited edge (w, w′) for some w′ ∈ V (P) then

return 1;
14 append w to the end of P ;

15 return 0;

3 Analysis of the local sampler

In this section, we analyse the correctness and efficiency of Algorithm 2.

▶ Lemma 7 (correctness of Algorithm 2). Let G = (V, E) be a graph. For any S ⊆ V such
that |ΩS | ≠ 0 and any v /∈ S, Sample(G, S, v) terminates almost surely and upon termination,
returns an x ∈ {0, 1} such that

Pr [x = 1] = µS(v is not a sink).

Proof. We claim that there exists a coupling between the execution of Algorithm 1 (with
input G, S and output σ), and Sample(G, S, v) (with output x), such that

v is not a sink under σ ⇐⇒ x = 1. (2)

The claim implies the lemma because of Lemma 5.
To prove the claim, we first construct our coupling. We use the resampling table idea

of Moser and Tardos [39]. For each edge, we associate it with an infinite sequence of
independent random variables, each of which is a uniform orientation. This forms the
“resampling table”. Our coupling uses the same resampling table for both Algorithm 1
and Algorithm 2. As showed in [39], the execution of Algorithm 1 can be viewed as first
constructing this (imaginary) table, and whenever the orientation of an edge is randomised,
we just reveal and use the next random variable in the sequence. For Algorithm 2, we reveal

K. Anand, G. Freifeld, H. Guo, C. Wang, and J. Wang 60:9

the orientation of an edge when its status changes from unvisited to visited in Line 11. We
execute Line 14 if the random orientation from the resampling table is (u, w), and otherwise
do nothing. Namely, in the latter case, the revealed orientation is (w, u), and we just move
forward the “frontier” of that edge by one step in the resampling table. We claim that (2)
holds with this coupling.

Essentially, the claim holds since for extremal instances, given a resampling table, the
order of the bad events resampled in Algorithm 1 does not affect the output. This fact is
shown in [24, Section 4]. (See also [16, Lemma 2.2] for the case of S = V .) We can “complete”
Algorithm 2 after it finishes. Namely, once Algorithm 2 terminates, we randomise all edges
that are not yet oriented, and resample edges adjacent to sinks until there are none, using
the same resampling table. Note that at the end of Algorithm 2, some edges may be marked
unvisited but are still oriented. Suppose that the output of the completed algorithm is σ′,
an orientation of all edges. This completed algorithm is just another implementation of
Algorithm 1 with a specific order of resampling bad events. Thus the fact mentioned earlier
implies that σ′ = σ.

On the other hand, the termination conditions of Algorithm 2 correspond to the cases of
Lemma 6. One can show, via a simple induction over the while loop, that at the beginning
of the loop, the path P is always a directed path starting from v, and all other visited edges
point towards the path P . This implies that Line 13 corresponds to case (b1) in Lemma 6,
Line 5 corresponds to case (b2), and exiting the while loop in Line 3 corresponds to case (a).
When Algorithm 2 terminates, we have decided whether or not v is a sink. By Lemma 6,
this decision stays the same under σ′. As σ′ = σ, (2) holds. ◀

We then analyse the efficiency of Algorithm 2. The main bottleneck is when there are
degree 2 vertices. It would take Ω(ℓ2) time to resolve an induced path of length ℓ. We then
focus on the case where the minimum vertex degree is at least 3. Note that in this case we
have ΩS ̸= ∅ for any S ⊆ V . For two distributions P and Q over the state space Ω, their
total variation distance is defined by dTV(P, Q) :=

∑
x∈Ω |P (x)−Q(x)|/2. For two random

variables x ∼ P and y ∼ Q, we also write dTV(x, y) to denote dTV(P, Q).
We will need the notion of martingales in the next lemma, so let us briefly recap the

relevant notions. A sequence of random variables {Xi}i≥0 is a submartingale if ∀n ≥ 0,
E [|Xn|] <∞ and E [Xn+1 | X0, ..., Xn] ≥ Xn. Submartingales enjoy some nice concentration
properties. What we will need is the Azuma-Hoeffding inequality, which states that if {Xi}i≥0
is a submartingale and |Xi+1 −Xi| ≤ c for all i ≥ 0, then for any n ≥ 0 and ε > 0,

Pr [Xn −X0 ≤ −ε] < exp
(
−ε2

2nc2

)
. (3)

Then we have the following lemma.

▶ Lemma 8 (efficient truncation of Algorithm 2). Let G = (V, E) be a graph with minimum
degree at least 3. Let S ⊆ V , v /∈ S and 0 < ε < 1. Let x be the output of Sample(G, S, v),
and x′ constructed as

if Sample(G, S, v) terminates within 32 ln(33/ε) executions of Line 12, let x′ = x;
otherwise, let x′ = 1.

Then, it holds that

dTV(x, x′) ≤ ε.

Proof. We track the length of the path P during the execution of Algorithm 2. When an
edge is chosen in Line 4 and sampled in Line 12 of Algorithm 2, the following happens:

APPROX/RANDOM 2025

60:10 Sink-Free Orientations: A Local Sampler with Applications

with probability 1/2, w is appended to P and the length of P increases by one;
with probability 1/2, {u, w} is marked as visited, and the length of P decreases by one in
the next iteration if and only if {u, w} was the last unvisited edge incident to u.

Let Xi be the random variable denoting the length of P after the i-th execution of Line 12 in
Algorithm 2. Then the observation above implies that {Xi}i≥0 forms a submartingale. We
construct another sequence of random variables {Yi}i≥0 modified from {Xi}i≥0 as follows:

Y0 = X0 = 1.
At the i-th execution of Line 12 in Algorithm 2:

if {u, w} is the only unvisited edge incident to u, set Yi+1 = Xi+1 −Xi + Yi,
otherwise, set Yi+1 = Xi+1 −Xi + Yi − 1/2.

It can be verified that the sequence {Yi}i≥0 is a martingale.

▷ Claim 9. For any i ≥ 0, Xi − Yi ≥ i/4.

Proof. Note that Xi− Yi = Xi−1− Yi−1 + ci where ci = 0 if {u, w} is the only unvisited edge
incident to u at the i-th execution of Line 12 in Algorithm 2, and ci = 1/2 otherwise. Then
we can write Xi − Yi as

Xi − Yi = X0 − Y0 +
i∑

j=1
cj .

For any i such that ci = 0, let i′ be the last index such that ci′ = 0, or i′ = 0 if no such i′

exists. Since the minimum degree of G is at least 3, when we append any vertex u to P ,
there are at least two unvisited edges incident to u. It implies that there must be some j

such that i′ < j < i and cj = 1/2. Thus Xi − Yi =
∑i

k=1 ck ≥ i/4. ◁

Next we show that if Algorithm 2 doesn’t terminate after 32 ln(33/ε) steps, with high
probability the length of the path will not return to 0. As {Yi}i≥0 is a martingale and
|Yi+1 − Yi| ≤ 1 for all i ≥ 0, the Azuma–Hoeffding inequality, namely (3), implies that, for
any T > 0 and C > 0,

Pr [YT − Y0 ≤ −C] ≤ exp
(
−C2

2T

)
. (4)

Thus,

Pr [XT = 0] ≤ Pr [YT ≤ −T/4] ≤ Pr [YT − Y0 ≤ −T/4] ≤ exp (−T/32) ,

where the first inequality is by Claim 9, and the last inequality is by plugging C = T/4 into
(4). Then, we have

∞∑
T =⌈32 ln 33

ε ⌉

Pr [XT = 0] ≤
∞∑

T =⌈32 ln 33
ε ⌉

exp (−T/32) ≤
∞∑

T =32 ln 33
ε

exp (−T/32)

= ε

33(1− e−1/32)
< ε.

(5)

To finish the proof, we couple x and x′ by the same execution of Algorithm 2. Thus, if it
terminates within 32 ln(33/ε) executions of Line 12, then x = x′ with probability 1. If not,
(5) implies that x = 0 with probability at most ε. As we always output x = 1 in this case,
x′ ̸= x with probability at most ε, which finishes the proof. ◀

K. Anand, G. Freifeld, H. Guo, C. Wang, and J. Wang 60:11

Algorithm 3 SampleEdge(G, S, e).

Input : an undirected graph G = (V, E), a subset of vertices S ⊆ V , and an edge
e = {x, y} ∈ E;

Output : a random orientation σe ∈ {(x, y), (y, x)} of e;
1 Initialise a mapping M : E → {visited, unvisited} so that ∀e ∈ E, M(e) = unvisited;
2 Let P be a (directed) path initialised as P = (x, y) or P = (y, x) with equal

probability, and mark e visited;
3 while True do
4 Let u be the last vertex of P ;
5 if |V (P)| ≥ 2 and u /∈ S then return the first edge in P ;
6 if all edges incident to u are marked visited then
7 mark all edges incident to u as unvisited;
8 if |V (P)| = 2 then
9 rerandomise P as P = (x, y) or P = (y, x) with equal probability;

10 else
11 remove u from P ;

12 else
13 let e = {u, w} be the first unvisited edge incident to u;
14 mark e as visited;
15 with probability 1/2 do
16 if w ∈ V (P), or there is a visited edge (w, w′) for some w′ ∈ V (P) then
17 return the first edge in P ;
18 append w to the end of P ;

Note that Lemma 8 does not require ΩS ̸= ∅. This is because it is implied by the minimum
degree requirement. This implication is an easy consequence of the symmetric Shearer’s
bound. It is also directly implied by Lemma 10 which we show next.

Lemma 8 implies the first part of Theorem 1. For the second part, we will need a modified
version of Algorithm 2 to sample from the marginal distributions of the orientation of edges.
This is given in Algorithm 3. It takes as input a subset of vertices S ⊆ V and an edge e ∈ E,
then outputs a random orientation σe following the marginal distribution induced from µS

on e. The differences between Algorithm 2 and Algorithm 3 are:

In Algorithm 2, the number of vertices in P is initialised as |V (P)| = 1, while in
Algorithm 3, it is initialised as |V (P)| = 2.

Algorithm 2 can terminate when |V (P)| = 1 while Algorithm 3 can not terminate due to
(a) of Lemma 6 unless x or y are not in S.

The correctness of Algorithm 3 is due to a coupling argument similar to Lemma 7. We
couple Algorithm 1 and Algorithm 3 by using the same resampling table. By the same
argument as in Lemma 7, given the same resampling table, the orientation of e is the same
in the outputs of both Algorithm 1 and Algorithm 3. Thus, σe follows the desired marginal
distribution by Lemma 5. As for efficiency, we notice that the same martingale argument as
in Lemma 8 applies to the length of P as well. Early truncation of the edge sampler only
incurs a small error. This finishes the proof of Theorem 1.

APPROX/RANDOM 2025

60:12 Sink-Free Orientations: A Local Sampler with Applications

4 Applications of the local sampler

We derive the main applications of our local sampler in this section. Lemma 8 implies an
additive error on the truncated estimator. As we are after relative errors in approximate
counting, we need a lower bound of the marginal ratio.

▶ Lemma 10. Let G = (V, E) be a graph with a minimum degree at least 3. For any S ⊆ V

and v /∈ S, it holds that |ΩS | ≠ 0 and

µS(v is not a sink) >
1
2 .

The proof of Lemma 10 can be viewed as an application of the symmetric Shearer’s
Lemma [42] on SFO, and is deferred to Section 4.1. Note that the minimum degree requirement
is essential for such a marginal lower bound to hold, as the marginal ratio in Lemma 10 can
be of order O(1/n) when G is a cycle and S = V \ {v}.

We then show the two approximate counting algorithms first, namely Corollary 2 and
Corollary 4.

Proof of Corollary 2. By (1), we just need to ε/(2n)-approximate µVi−1(vi is not a sink)
for each i to ε-approximate |ΩV |, the number of sink-free orientations to G. The only
random choice Algorithm 2 makes is Line 12. In view of Lemma 8, we enumerate the first
32 ln(132n/ε) random choices of Algorithm 2, and just output 1 if the algorithm does not
terminate by then. Let the estimator be the average of all enumeration. Note that Lemma 10
implies that ΩVi

̸= ∅ for any i. Then, Lemmas 7 and 8 imply that the estimator is an ε/(4n)
additive approximation. By Lemma 10, it is also an ε/(2n) relative approximation, which is
what we need.

For the running time, there are n marginals, it takes exp(32 ln(132n/ε)) enumerations
for each marginal probability, and each enumeration takes at most O(ln(132n/ε)) time.
Therefore, the overall running time is bounded by O(n(n/ε)32 log(n/ε)). ◀

Proof of Corollary 4. We use (1) again. Denote νi = µVi−1(vi is not a sink) and ν =
∏n

i=1 νi.
Let X̃i := 1

n

∑n
t=1 x′

i,t be the average of n independent samples from Algorithm 2 truncated
after 32 ln(33× 12n/ε) executions of Line 12. Let X̃ :=

∏n
i=1 X̃i be an estimator for ν.

For any i and t, let ν̃i be the expectation of x′
i,t (note that it does not depend on t). By

Lemmas 7 and 8, |ν̃i − νi| ≤ ε
12n . By Lemma 10, 1− ε

6n ≤
ν̃i

νi
≤ 1 + ε

6n . Let ν̃ =
∏n

i=1 ν̃i so
that E

[
X̃

]
= ν̃. Then, as 0 < ε < 1,

1− ε

3 ≤
ν̃

ν
≤ 1 + ε

3 . (6)

We bound Var
[
X̃i

]
and Var

[
X̃

]
next. First,

Var
[
X̃i

]
= Var

[
1
n

n∑
t=1

x′
i,t

]
= 1

n2

n∑
t=1

Var
[
x′

i,t

]
≤ 1

n
,

as each x′
i,t is an indicator variable. Then,

Var
[
X̃

]
(

E
[
X̃

])2 =
E

[
X̃2

]
(

E
[
X̃

])2 − 1 =

∏n
i=1 E

[
X̃2

i

]
∏n

i=1

(
E

[
X̃i

])2 − 1 =
n∏

i=1

1 +
Var

[
X̃i

]
(

E
[
X̃i

])2

− 1

K. Anand, G. Freifeld, H. Guo, C. Wang, and J. Wang 60:13

≤
(

1 + 4
n

)n

− 1 < e4 − 1 < 54. (by Lemma 10)

To further reduce the variance, let X̂ be the average of N independent samples of X̃, where

N := ⌈36× 54/ε2⌉. Then, Var[X̂] ≤
Var

[
X̃

]
N . By Chebyshev’s bound, we have

Pr
[∣∣∣X̂ − ν̃

∣∣∣ ≥ ε

3 · ν̃
]
≤ 9Var[X̂]

ε2ν̃2 ≤ 9× 54ε2ν̃2

36× 54 · 1
ε2ν̃2 ≤

1
4 .

Thus with probability at least 3
4 , we have that (1− ε

3)ν̃ ≤ X̂ ≤ (1 + ε
3)ν̃. By (6), when this

holds, (1− ε)ν ≤ X̂ ≤ (1 + ε)ν. It is then easy to have an ε-approximation of |ΩV |.
For the running time, each sample x′

i,t takes O(log(n/ε)) time. We draw n samples for
each of the n vertices, and we repeat this process N = O(ε−2) times. Thus, the total running
time is bounded by O((n/ε)2 log(n/ε)). ◀

For Corollary 3, we need the second part of Theorem 1 and Algorithm 3. In addition,
some extra care for the self-reduction in the overall sampling algorithm is required.

Proof of Corollary 3. We sequentially sample the orientation of edges in G (approximately)
from its conditional marginal distribution. Suppose we choose an edge e = {u, v}, and the
sampled orientation is (u, v). Then, we can remove e from the graph, and let S ← S \ {u}.
The conditional distribution is effectively the same as µS in the remaining graph.

One subtlety here is that doing so may create vertices of degree ≤ 2. To cope with this,
we keep sampling edges adjacent to one vertex in S as much as possible before moving on to
the next. Suppose the current focus is on v. We use SampleEdge to sample the orientation
of edges adjacent to v one at a time until either v is removed from S or the degree of v

becomes 1. In the latter case, the leftover edge must be oriented away from v, which also
results in removing v from S. Note that, when either condition holds, the last edge sampled
is oriented as (v, u) for some neighbour u of v. We then move our focus to u if u ∈ S, and
move to an arbitrary vertex in S otherwise. The key property of choosing edges this way
is that, whenever SampleEdge(G, S, e) is invoked, there can only be at most one vertex of
degree 2 in S, and if it exists, it must be an endpoint of e. If all vertices are removed from S,
we finish by simply outputing a uniformly at random orientation of the remaining edges.

To maintain efficiency, we truncate SampleEdge(G, S, e) in each step of the sampling
process. More specifically, for some constant C, we output the first edge of P once the
number of executions of Line 15 in Algorithm 3 exceeds C ln(m/ε). We claim that there is
a constant C such that the truncation only incurs an ε/m error in total variation distance
between the output and the marginal distribution. This is because the same martingale
argument as in Lemma 8 still applies. Note that if P visits any vertex not in S, the algorithm
immediately terminates. Thus degrees of vertices not in S do not affect the argument.
Moreover, the only degree 2 vertex in S, say x, is adjacent to the first edge e = {x, y} of P .
If e is initialised as (x, y), then when P returns to x, the algorithm immediately terminates.
Otherwise e is initialised as (y, x), in which case there is no drift in the first step of P . Thus,
as long as we adjust the constant to compensate the potential lack of drift in the first step,
the martingale argument in Lemma 8 still works and the claim holds. As the truncation
error is ε/m, we may couple the untruncated algorithm with the truncated version, and a
union bound implies that the overall error is at most ε.

As we process each edge in at most O(log(m/ε)) time, the overall running time is then
O(m log(m/ε)). This finishes the proof of the fast sampling algorithm. ◀

APPROX/RANDOM 2025

60:14 Sink-Free Orientations: A Local Sampler with Applications

4.1 Proof of the marginal lower bound
Now we prove the lower bound of marginal ratios for SFOs, namely, Lemma 10. Let us first
recall the variable framework of the local lemma. Consider the probability space P of a
uniformly random orientation of G (namely orienting each edge independently and uniformly
at random), and each u ∈ S corresponding to a bad event Eu of u being a sink. We then have

pu := Pr
P

[Eu] = 2−d(u), ∀u ∈ V,

where d(u) denotes the degree of u. We also need some definitions, essentially from [29] and
small variations from those in [42].

▶ Definition 11. We define the following notations.
Let Ind(G) denote all independent sets of G, i.e.,

Ind(G) := {I ⊆ V | I contains no edge of G}.

For J ⊆ V , let

qJ :=
∑

I∈Ind(G)
I⊆J

(−1)|I|
∏
u∈I

pu, (7)

and

PJ := Pr
P

[∧
u∈J

¬Eu

]
,

which is the probability under P that all vertices in J are sink-free.
We then proceed to the proof.

Proof of Lemma 10. For u ∈ V , let Γ(u) denote the set of neighbours of u in G. We claim
that for any J ⊆ V and u ∈ J :
1. PJ = qJ > 0;

2. qJ

qJ\{u}
>

{
1
2 Γ(u) ⊆ J ;
2
3 otherwise.

Lemma 10 immediately follows from the claim as PS = |ΩS |
2|E| > 0 and

µS(v is not a sink) = Pr
P

[
¬Ev |

∧
u∈S

¬Eu

]
=

PS∪{v}

PS
=

qS∪{v}

qS
>

1
2 ,

where the last equality is by Item 1 and the inequality is by Item 2.
We then prove the claim by induction on the size of J . The base case is when J = ∅, and

all items directly hold as P∅ = q∅ = 1. For the induction step, we first prove Item 1. For
J ⊆ V and u ∈ J , denote Γ+(u) = Γ(u) ∪ {u}. We have

Pr
P

Eu ∧

 ∧
j∈J\{u}

¬Ej

 = Pr
P

[Eu] Pr
P

 ∧
j∈J\{u}

¬Ej

 | Eu


= pu Pr

P

 ∧
j∈J\Γ+(u)

¬Ej

 | Eu


= pu Pr

P

 ∧
j∈J\Γ+(u)

¬Ej

 = pu · PJ\Γ+(u),

K. Anand, G. Freifeld, H. Guo, C. Wang, and J. Wang 60:15

where in the second equality we used the fact that S-SFO instances are extremal. Thus,

PJ = PJ\{u} −Pr
P

Eu ∧

 ∧
j∈J\{u}

¬Ej

 = PJ\{u} − pu · PJ\Γ+(u). (8)

Also, by separating independent sets according to whether they contain u or not, we have

qJ =
∑

I∈Ind(G)
I⊆J

(−1)|I|
∏
i∈I

pi

=
∑

I∈Ind(G)
I⊆J\{u}

(−1)|I|
∏
i∈I

pi − pu ·
∑

I∈Ind(G)
I⊆J\Γ+(u)

(−1)|I|
∏
i∈I

pi

=qJ\{u} − pu · qJ\Γ+(u). (9)

Combining (8), (9), and the induction hypothesis, we have that PJ = qJ . For the positivity, let
J∩Γ+(u) be listed as {u, u1, . . . , uk} for some k ≤ d(u). For 0 ≤ i ≤ k, let Ui = {u, u1, . . . , ui}
(with U0 = {u}). Then we have

qJ\{u}

qJ\Γ+(u)
=

k∏
i=1

qJ\Ui−1

q(J\Ui−1)\{ui}
> 2−k ≥ 2−d(u) = pu,

where the first inequality is by Item 2 of the induction hypothesis. Thus, qJ > 0 by (9) and
Item 1 holds.

It remains to show Item 2. Recall that J ∩ Γ+(u) is listed as {u, u1, . . . , uk}. For any
0 ≤ i ≤ k − 1, Γ+(ui+1) ̸⊆ J \ Ui because u ∈ Γ+(ui+1) and u /∈ (J \ Ui). Then by the
induction hypothesis on the second case of Item 2,

q(J\Ui)\{ui+1}

qJ\Ui

<
3
2 . (10)

By (9), we have

qJ

qJ\{u}
= 1− pu ·

qJ\Γ+(u)

qJ\{u}
= 1− 2−d(u) ·

k−1∏
i=0

q(J\Ui)\{ui+1}

qJ\Ui

(10)
> 1− 2−d(u) ·

(
3
2

)k

. (11)

If Γ(u) ⊆ J , k ≤ d(u) and as d(u) ≥ 3,

1− 2−d(u) ·
(

3
2

)k

≥ 1−
(

3
4

)d(u)
≥ 37

64 >
1
2 .

If Γ(u) ̸⊆ J , k ≤ d(u)− 1 and, again, as d(u) ≥ 3,

1− 2−d(u) ·
(

3
2

)k

≥ 1− 2
3 ·

(
3
4

)d(u)
≥ 23

32 >
2
3 .

Together with (11), this finishes the proof of Item 2 and the lemma. ◀

In the proof above, Item 1 holds mainly because the instance is extremal. For general
non-extremal cases, we would have PJ

PJ\{u}
≥ qJ

qJ\{u}
for J ⊆ V and u ∈ J instead.

APPROX/RANDOM 2025

60:16 Sink-Free Orientations: A Local Sampler with Applications

4.2 Independence polynomial at negative weights
An interesting consequence of Item 1 in the proof of Lemma 10 is that the number of SFOs
can be computed using the independence polynomial evaluated at negative activities. More
specifically, similar to (7), let

qG(x) =
∑

I∈Ind(G)

∏
u∈I

xu,

where x is a vector of weights for each vertex. Then, qG(−p) = qV where qV is defined in
(7), and thus |ΩV | = 2|E|qG(−p), where p is the vector (pu)u∈V of failure probabilities at
the vertices. Namely pu = 2−d(u) where d(u) is the degree of u.

There are more than one FPTASes [40, 28] that can efficiently approximate the inde-
pendence polynomial at negative weights. These algorithms work in the so-called Shearer’s
region [42]. To explain Shearer’s region, let us abuse the notation slightly and extend the
definition in (7) to a function qJ(x) =

∑
I∈Ind(G),I⊆J

∏
u∈I

xu to take an input weight vector x.

Then, a vector p is in Shearer’s region if and only if qS(−p) > 0 for all S ⊆ V . Lemma 10
implies that the probability vector for SFOs is in Shearer’s region. Moreover, we say a vector
p has slack α if (1 + α)p is in Shearer’s region. For a vector x with slack α, the algorithm
by Patel and Regts [40] ε-approximates qG(x) in time (n/ε)O(log d/α), and the algorithm
by Harvey, Srivastava, and Vondrák [28] runs in time (n/(αε))O(log d/

√
α), where d is the

maximum degree of the graph. They do not recover Corollary 2 as the slack is a constant
when constant degree vertices exist. If, in the meantime, some other vertices have unbounded
degrees, these algorithms run in quasi-polynomial time instead.

To see the last point, we construct a graph that contains vertices of unbounded degrees
but with constant slack for SFOs. Consider the wheel graph G, which consists of a cycle Cn

of length n, and a central vertex v that connects to all vertices of Cn. Thus, pv = 2−n and
pu = 1/8 for any u in Cn. For the cycle, as there are two SFOs, we see that qCn

(−1/4) =
2−n+1 (where we use Item 1 in the proof of Lemma 10). Thus, by (9),

qG(−2p) = qCn(−1/4)− 2pv = 2−n+1 − 2 · 2−n = 0.

Therefore, the slack here is at most 1, despite the existence of a high degree vertex.
In summary, the existing FPTASes on the independence polynomial with negative weights

do not handle the mixture of high and low degree vertices well enough for the case of SFOs.
However, it might provide an alternative approach to derive FPTASes to count solutions to
extremal instances of the local lemma, which is worthy of further study.

5 Concluding remarks

Originally, Bubley and Dyer [10] introduced sink-free orientations as a special case of read-
twice Sat. Here, “read-twice” means that each variable in a CNF formula appears exactly
twice, and it corresponds to an edge of the graph. Vertices of the graph correspond to
clauses of the formula. The assignment of the edge is an orientation. This represents that
the variable appears with opposite signs in the formula. In fact, Bubley and Dyer showed
an FPRAS for all read-twice #Sat. It is natural to ask if they admit FPTAS as well. This
question was first raised by Lin, Liu, and Lu [35], who also gave an FPTAS for monotone
read-twice #Sat (which is equivalent to counting edge-covers in graphs). The monotone
requirement means that the two appearances of any variable have the same sign. From this
perspective, our FPTAS is complementary to that of [35]. However, as our techniques are
drastically different from [35], to give an FPTAS for all read-twice #Sat, one may need to
find a way to combine these two techniques to handle mixed appearances of variables.

K. Anand, G. Freifeld, H. Guo, C. Wang, and J. Wang 60:17

Another immediate question is to generalise our local sampler under the partial rejection
sampling framework. The first step would be to be able to handle degree 2 vertices for SFOs,
which breaks our current submartingale argument. To go a bit further, a local sampler for
all extremal instances would yield an FPTAS for all-terminal reliability, whose existence is a
major open problem. Also, for all-terminal reliability, one may also attempt to localise the
near-linear time sampler in [13].

Lastly, in addition to the discussion of Section 4.2, let us discuss another polynomial
associated with SFOs and its zero-freeness. Fix a SFO σ. Let p(x) =

∑m
i=0 Cix

i, where m is
the number of edges, and Ci indicates how many SFOs exist that agree with σ in exactly i

edges. It is easy to evaluate p(0) = 1, and p(1) is the total number of SFOs. However, for a
cycle, this polynomial becomes 1 + xm, which can have a zero arbitrarily close to 1. This zero
defeats, at least, the standard application of Barvinok’s method [5, 40]. Although one could
exclude cycles by requiring the minimum degree to be at least 3 (like we did in this paper),
current techniques of proving zero-freeness seem to hinge on handling all subgraphs. For
example, to use Ruelle’s contraction like in [26], one has to start from small fragments of the
graph and gradually rebuild it. The obstacle then is to avoid starting from or encountering
cycles in the rebuilding process. Other methods, such as the recursion-based one in [36],
require hereditary properties (similar to the so-called strong spatial mixing) that break in
cycles as well. It would be interesting to see if any of our arguments can help in proving
zero-freeness of the polynomial above.

References
1 Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang. Approximate

counting for spin systems in sub-quadratic time. TheoretiCS, 4:3:1–3:27, 2025. doi:10.46298/
theoretics.25.3.

2 Konrad Anand and Mark Jerrum. Perfect sampling in infinite spin systems via strong spatial
mixing. SIAM J. Comput., 51(4):1280–1295, 2022. doi:10.1137/21M1437433.

3 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional
expanders and applications to the hardcore model. In FOCS, pages 1319–1330. IEEE, 2020.
doi:10.1109/FOCS46700.2020.00125.

4 Antar Bandyopadhyay and David Gamarnik. Counting without sampling: new algorithms for
enumeration problems using statistical physics. In SODA, pages 890–899. ACM Press, 2006.
URL: http://dl.acm.org/citation.cfm?id=1109557.1109655.

5 Alexander I. Barvinok. Combinatorics and Complexity of Partition Functions, volume 30 of
Algorithms and combinatorics. Springer, 2016. doi:10.1007/978-3-319-51829-9.

6 Mohsen Bayati, David Gamarnik, Dimitriy A. Katz, Chandra Nair, and Prasad Tetali. Simple
deterministic approximation algorithms for counting matchings. In STOC, pages 122–127.
ACM, 2007. doi:10.1145/1250790.1250809.

7 Ferenc Bencs and Guus Regts. Barvinok’s interpolation method meets Weitz’s correlation
decay approach. arXiv, abs/2507.03135, 2025. arXiv:2507.03135.

8 Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. A lower bound for the distributed Lovász local
lemma. In STOC, pages 479–488. ACM, 2016. doi:10.1145/2897518.2897570.

9 Sebastian Brandt, Christoph Grunau, and Václav Rozhon. The randomized local computation
complexity of the Lovász local lemma. In PODC, pages 307–317. ACM, 2021. doi:10.1145/
3465084.3467931.

10 Russ Bubley and Martin E. Dyer. Graph orientations with no sink and an approximation for
a hard case of #SAT. In SODA, pages 248–257. ACM/SIAM, 1997. URL: http://dl.acm.
org/citation.cfm?id=314161.314263.

APPROX/RANDOM 2025

https://doi.org/10.46298/theoretics.25.3
https://doi.org/10.46298/theoretics.25.3
https://doi.org/10.1137/21M1437433
https://doi.org/10.1109/FOCS46700.2020.00125
http://dl.acm.org/citation.cfm?id=1109557.1109655
https://doi.org/10.1007/978-3-319-51829-9
https://doi.org/10.1145/1250790.1250809
https://arxiv.org/abs/2507.03135
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3465084.3467931
https://doi.org/10.1145/3465084.3467931
http://dl.acm.org/citation.cfm?id=314161.314263
http://dl.acm.org/citation.cfm?id=314161.314263

60:18 Sink-Free Orientations: A Local Sampler with Applications

11 Russ Bubley and Martin E. Dyer. Path coupling: A technique for proving rapid mixing in
markov chains. In FOCS, pages 223–231. IEEE Computer Society, 1997. doi:10.1109/SFCS.
1997.646111.

12 Xiaoyu Chen, Weiming Feng, Heng Guo, Xinyuan Zhang, and Zongrui Zou. Deterministic
counting from coupling independence. arXiv, abs/2410.23225, 2024. doi:10.48550/arXiv.
2410.23225.

13 Xiaoyu Chen, Heng Guo, Xinyuan Zhang, and Zongrui Zou. Near-linear time samplers
for matroid independent sets with applications. In APPROX/RANDOM, volume 317 of
LIPIcs, pages 32:1–32:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:
10.4230/LIPICS.APPROX/RANDOM.2024.32.

14 Zongchen Chen and Yuzhou Gu. Fast sampling of b-matchings and b-edge covers. In SODA,
pages 4972–4987. SIAM, 2024. doi:10.1137/1.9781611977912.178.

15 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of glauber dynamics: Entropy
factorization via high-dimensional expansion. In STOC, pages 1537–1550. ACM, 2021. doi:
10.1145/3406325.3451035.

16 Henry Cohn, Robin Pemantle, and James Gary Propp. Generating a random sink-free
orientation in quadratic time. Electron. J. Comb., 9(1), 2002. doi:10.37236/1627.

17 Peter Davies-Peck. On the locality of the Lovász local lemma. In STOC. ACM, 2025. to
appear. doi:10.1145/3717823.3718103.

18 Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time algorithm for
approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991. doi:10.1145/102782.
102783.

19 Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős
on his 60th birthday), Vols. I, II, III, volume Vol. 10 of Colloq. Math. Soc. János Bolyai, pages
609–627. North-Holland, Amsterdam-London, 1975.

20 Weiming Feng, Heng Guo, Chunyang Wang, Jiaheng Wang, and Yitong Yin. Towards
derandomising Markov chain Monte Carlo. In FOCS, pages 1963–1990. IEEE, 2023. doi:
10.1109/FOCS57990.2023.00120.

21 Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementation of huge
random objects. SIAM J. Comput., 39(7):2761–2822, 2010. doi:10.1137/080722771.

22 Heng Guo and Kun He. Tight bounds for popping algorithms. Random Struct. Algorithms,
57(2):371–392, 2020. doi:10.1002/RSA.20928.

23 Heng Guo and Mark Jerrum. A polynomial-time approximation algorithm for all-terminal
network reliability. SIAM J. Comput., 48(3):964–978, 2019. doi:10.1137/18M1201846.

24 Heng Guo and Mark Jerrum. Approximately counting bases of bicircular matroids. Comb.
Probab. Comput., 30(1):124–135, 2021. doi:10.1017/S0963548320000292.

25 Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovász local
lemma. J. ACM, 66(3):Art. 18, 31, 2019. doi:10.1145/3310131.

26 Heng Guo, Chao Liao, Pinyan Lu, and Chihao Zhang. Zeros of holant problems: Locations
and algorithms. ACM Trans. Algorithms, 17(1):4:1–4:25, 2021. doi:10.1145/3418056.

27 Heng Guo and Pinyan Lu. Uniqueness, spatial mixing, and approximation for ferromagnetic
2-spin systems. ACM Trans. Comput. Theory, 10(4):17:1–17:25, 2018. doi:10.1145/3265025.

28 Nicholas J. A. Harvey, Piyush Srivastava, and Jan Vondrák. Computing the independence
polynomial: from the tree threshold down to the roots. In SODA, pages 1557–1576. SIAM,
2018. doi:10.1137/1.9781611975031.102.

29 Nicholas J. A. Harvey and Jan Vondrák. Short proofs for generalizations of the Lovász local
lemma: Shearer’s condition and cluster expansion. arXiv, abs/1711.06797, 2017. arXiv:
1711.06797.

30 Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. Comput.,
18(6):1149–1178, 1989. doi:10.1137/0218077.

https://doi.org/10.1109/SFCS.1997.646111
https://doi.org/10.1109/SFCS.1997.646111
https://doi.org/10.48550/arXiv.2410.23225
https://doi.org/10.48550/arXiv.2410.23225
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2024.32
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2024.32
https://doi.org/10.1137/1.9781611977912.178
https://doi.org/10.1145/3406325.3451035
https://doi.org/10.1145/3406325.3451035
https://doi.org/10.37236/1627
https://doi.org/10.1145/3717823.3718103
https://doi.org/10.1145/102782.102783
https://doi.org/10.1145/102782.102783
https://doi.org/10.1109/FOCS57990.2023.00120
https://doi.org/10.1109/FOCS57990.2023.00120
https://doi.org/10.1137/080722771
https://doi.org/10.1002/RSA.20928
https://doi.org/10.1137/18M1201846
https://doi.org/10.1017/S0963548320000292
https://doi.org/10.1145/3310131
https://doi.org/10.1145/3418056
https://doi.org/10.1145/3265025
https://doi.org/10.1137/1.9781611975031.102
https://arxiv.org/abs/1711.06797
https://arxiv.org/abs/1711.06797
https://doi.org/10.1137/0218077

K. Anand, G. Freifeld, H. Guo, C. Wang, and J. Wang 60:19

31 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM J. Comput., 22(5):1087–1116, 1993. doi:10.1137/0222066.

32 Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci., 43(2-3):169–188, 1986. doi:
10.1016/0304-3975(86)90174-X.

33 Kashyap Babu Rao Kolipaka and Mario Szegedy. Moser and Tardos meet Lovász. In STOC,
pages 235–244. ACM, 2011. doi:10.1145/1993636.1993669.

34 Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin systems. In
SODA, pages 67–84. SIAM, 2013. doi:10.1137/1.9781611973105.5.

35 Chengyu Lin, Jingcheng Liu, and Pinyan Lu. A simple FPTAS for counting edge covers. In
SODA, pages 341–348. SIAM, 2014. doi:10.1137/1.9781611973402.25.

36 Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. A deterministic algorithm for counting
colorings with 2-Delta colors. In FOCS, pages 1380–1404. IEEE Computer Society, 2019.
doi:10.1109/FOCS.2019.00085.

37 Ankur Moitra. Approximate counting, the Lovász local lemma, and inference in graphical
models. J. ACM, 66(2):10:1–10:25, 2019. doi:10.1145/3268930.

38 Robin A. Moser. A constructive proof of the Lovász local lemma. In STOC, pages 343–350.
ACM, 2009. doi:10.1145/1536414.1536462.

39 Robin A. Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.
J. ACM, 57(2):11, 2010. doi:10.1145/1667053.1667060.

40 Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algorithms
for partition functions and graph polynomials. SIAM J. Comput., 46(6):1893–1919, 2017.
doi:10.1137/16M1101003.

41 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
In ICS, pages 223–238. Tsinghua University Press, 2011. URL: http://conference.iiis.
tsinghua.edu.cn/ICS2011/content/papers/36.html.

42 James B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985. doi:
10.1007/BF02579368.

43 Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201,
1979. doi:10.1016/0304-3975(79)90044-6.

44 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979. doi:10.1137/0208032.

45 Dror Weitz. Counting independent sets up to the tree threshold. In STOC, pages 140–149.
ACM, 2006. doi:10.1145/1132516.1132538.

46 David Bruce Wilson. Generating random spanning trees more quickly than the cover time. In
STOC, pages 296–303. ACM, 1996. doi:10.1145/237814.237880.

APPROX/RANDOM 2025

https://doi.org/10.1137/0222066
https://doi.org/10.1016/0304-3975(86)90174-X
https://doi.org/10.1016/0304-3975(86)90174-X
https://doi.org/10.1145/1993636.1993669
https://doi.org/10.1137/1.9781611973105.5
https://doi.org/10.1137/1.9781611973402.25
https://doi.org/10.1109/FOCS.2019.00085
https://doi.org/10.1145/3268930
https://doi.org/10.1145/1536414.1536462
https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1137/16M1101003
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/36.html
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/36.html
https://doi.org/10.1007/BF02579368
https://doi.org/10.1007/BF02579368
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1137/0208032
https://doi.org/10.1145/1132516.1132538
https://doi.org/10.1145/237814.237880

	1 Introduction
	1.1 Our contribution and technique overview
	1.2 Related work
	1.3 Organisation

	2 A local sampler for sink-free orientations
	3 Analysis of the local sampler
	4 Applications of the local sampler
	4.1 Proof of the marginal lower bound
	4.2 Independence polynomial at negative weights

	5 Concluding remarks

