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Abstract
We show that for a randomly sampled unsatisfiable O(log n)-CNF over n variables the randomized
two-party communication cost of finding a clause falsified by the given variable assignment is linear
in n.
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1 Introduction

This paper studies the communication complexity of Falsified Clause Search Problem.

▶ Definition 1 ([31]). Let X,Y be two disjoint sets of boolean variables and φ be a CNF
formula over the variables X ⊔ Y . We define Falsified Clause Search Problem or Searchφ
associated with formula φ in the following way:
input: a pair (x, y) ∈ {0, 1}X × {0, 1}Y ;
output: a clause C ∈ φ that is violated by the input (x, y).

Communication lower bounds for search problems have applications in many areas of
complexity theory. We consider two areas that are the most relevant and explain the
applicability of communication lower bounds.

Proof complexity. This area of complexity theory studies how hard it is to prove that a
given formula φ is unsatisfiable; in other words, what is the length of the shortest proof
in a certain proof system. Lower bounds for the proof systems often correspond to lower
bounds on a run-time of SAT-solvers, and there are intricate connections to other areas of
complexity theory, such as, for example, circuit complexity.

There is a general framework for obtaining lower bounds on the length of the shortest
proofs via communication. Suppose that, for an unsatisfiable CNF formula φ, we divide the
variables into two disjoint groups X and Y in an arbitrary way. For a fixed proof system
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64:2 Searching for Falsified Clause in Random (log n)-CNFs

C we can try to transform efficient proof of φ into an efficient communication protocol for
Searchφ. A lower bound on the communication complexity of Searchφ then implies a lower
bound on the length of a proof of φ in C.

This framework seems to originate from [31]. Following this reduction, lower bounds
for many different proof systems were obtained, for example: tree-like Cutting Planes
[26, 25, 10, 6], tree-like Threshold proof system [5], tree-like Res(⊕) [28], etc. [25, 21].
Depending on the communication model, even dag-like proofs can be analyzed via this
framework [30, 35, 24, 12, 13, 40].

The lower bounds that can be achieved via this technique depend on the power of the
communication model: the more powerful model we consider, the bigger class of proof
systems we get the lower bound for. The choice of the formula φ is important here as
well, in a sense that we need to be able to show the lower bound on the communication
complexity of Searchφ. Typically, φ is artificially built for this purpose. In this paper, we
show a communication lower bound for the natural class of formulas (without usage of ad
hoc constructions) that is a candidate for being hard for all propositional proof systems.

Circuit complexity. Natural embedding of Searchφ into a monotone Karchmer–Wigderson
relation [29, 36] gives us the opportunity to use it for proving lower bounds for the monotone
models of computation. From communication lower bounds, strong results are known for
monotone formulas [37], monotone circuits [13, 32], monotone span programs [37, 34], etc.
Communication is also the main instrument for showing separation between those models
[34, 17], and trade-off results [9, 19]. These type of results are based on ad hoc constructions
of the formulas φ. Namely, φ is designed in order to able to show communication lower
bound.

1.1 Random CNF
To be more precise we start with the definition of random CNF formulas.

▶ Definition 2. Let F(m,n,∆) denote the distribution of random ∆-CNF on n variables
obtained by sampling m clauses (out of the

(
n
∆
)
2∆ possible clauses) uniformly at random with

repetitions.

The famous result of Chvátal–Szemerédi says that if we pick a formula from this dis-
tribution with the proper parameters, the resulting formula will be unsatisfiable with high
probability.

▶ Theorem 3 (Chvátal–Szemerédi, [7]). For any ∆ ≥ 3 whp φ ∼ F(m,n,∆) is unsatisfiable
if m ≥ ln 2 · 2∆n.

These types of distributions appear not only in most of the areas in computer science,
but in general mathematics and physics as well [33]. An interesting application is due to
Feige [11], who conjectured the following statement: no polynomial time algorithm may
prove whp the unsatisfiability of a random O(1)-CNF formula with arbitrary large constant
clause density. Assuming Feige’s conjecture, it is known that some problems are hard to
approximate: vertex covering, PAC learning DNFs [8], etc.

As a candidate to be hard to refute in all proof systems, random CNFs are actively
studied and lower bounds are known for many different proof systems [23, 4, 3, 1, 38]. Recent
developments in this direction utilize the connection between proof complexity of φ and
communication complexity of Searchφ. In particular, lower bounds for the Cutting Planes
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proofs of random O(logn)-CNF [24, 12, 40] follow this strategy. However, these results only
consider lower bounds on deterministic dag-like communication complexity of Searchφ based
on random O(logn)-CNF.

In this paper, we analyse the randomized tree-like communication of this problem that
is incomparable with deterministic dag-like communication. This is a natural problem in
a natural model, which also provides a way to explore how techniques used for structured
formulas might extend to more typical instances like random CNFs. The main result is the
following.

▶ Theorem 4. Let c > 0 be a large enough constant, n > 0,∆ ≥ c logn,m = O(n2∆). If
φ ∼ F(m,n,∆) and X,Y ⊆ [n] is a partition of variables that is taken uniformly at random,
then whp over choice of φ and partition X,Y the randomized communication complexity of
Searchφ is Ω(n).

1.2 Prior Results and Technique
For several types of formulas φ, the randomized communication complexity of Searchφ is
well-studied. The approach for proving such bounds is the reduction of Unique Disjointness
function to Searchφ. The main success in this direction is the reduction based on critical
block sensitivity [25, 21], we also include some earlier results, though there is some difference
in the technique [5]. More precisely, for this technique one should assume that φ = ψ ◦ g (we
take some formula ψ and, in place of each variable, we substitute a carefully chosen gadget
g with fresh variables). Assuming that Searchψ has critical block sensitivity m (that is a
generalization of the block sensitivity measure), it is possible to reduce instances of unique
disjointness of size poly(m) to Searchφ.

The general framework for working with such formulas of ψ◦g is called lifting, and the idea
is to “lift” the hardness of ψ with respect to another complexity measure to communication
complexity via gadget. Lifting can be based on the other complexity measures as well.
For example, it can also be implemented for randomized decision tree complexity instead
of critical block sensitivity [16]; however, this method requires the lower bound on the
randomized decision tree complexity, which might be non-trivial, especially in case of Searchφ
problem. Such lower bound is known for Tseitin formulas [15], together with [16] it yields
the lower bound for randomized communication complexity of Search for Tseitin formulas
lifted by Inner Product.

The notable exception here is the lower bound on Search problem for Binary Pigeonhole
Principle (BPHP) [27]. These formulas are not lifted, however the proof is also the reduction
of Unique Disjointness to the Search problem. This reduction based on the inner symmetry
of BPHP.

A different kind of proof of a Searchφ lower bound was given by Yang and Zhang [42]
(based on [41, 42]), who prove a lower bound for a weak version of BPHP. In contrast to the
previous works this one is not a reduction from Unique Disjointness. Instead, they directly
apply the structure versus randomness framework from the lifting literature [18, 16] to the
potential protocol that computes Searchφ.

Our proof of Theorem 4 combines the approach of [18, 16, 42] with the analysis of
expander graphs via closure argument that was developed for proof complexity purposes in
[3, 2]. However, we use the iterative construction of the closure from [39]. In part, this is
also inspired by [20].

APPROX/RANDOM 2025



64:4 Searching for Falsified Clause in Random (log n)-CNFs

More precisely, the proof of our result is based on the following steps.
1. Following [24, 12, 40] we divide variables between Alice and Bob uniformly at random.
2. Following the line of work on lifting of randomized decision trees [18, 16, 42, 14] we

show that every communication protocol can be converted into a more structured one, a
so-called subcube-like protocol. In such a communication protocol, each rectangle is a
product of two sets with some bits fixed and the remaining pseudorandom.

3. Due to the nature of our random CNFs, the invariant that all clauses contain pseudor-
andom variables is not strong enough on its own. Search problem still might become
trivial early on in communication protocol; for example, if the contradiction could be
narrowed down to a small set of clauses. To avoid this problem, we use the closure trick
[3, 2, 39, 20], that allows us to maintain expansion property on the pseudorandom part
of the graph.

4. Following [14], we show that the number of fixed bits in each rectangle is at most O(d/ε)
if we allow error ε, where d is the communication complexity of the original protocol.
In addition, we show the better error bound dependency on the protocol depth d than

in [14]. We give a more refined analysis of the conversion to the subcube-like protocols. More
precisely, we show that the number of fixed bits in each rectangle is O(d) even when we allow
for the exp(−d) error.

2 Notation and Tools

We denote the standard binary entropy function by H(p) := p log(1/p)+(1−p) log(1/(1− p)).

▶ Definition 5. A bipartite graph G = (L,R,E) is called an (r,∆, α∆)-expander, if all
vertices in L have degree at most ∆ and for any set S ⊆ L such that |S| ≤ r it holds that
|N(S)| ≥ α∆|S|, where NG(S) denotes the set of neighbours of S in G (we omit the subscript
if the graph is clear from the context).

With a CNF formula φ over n variables and with m clauses we associate a graph
Gφ := ([m], [n], E) in a natural way: (i, j) ∈ E iff the i-th clause contains the j-th variable.
The following Lemma gives us some useful properties of underlying graphs of random CNFs.
It follows from a standard computation, which was featured, for example, in [40, Lemma A.2].

▶ Lemma 6. Let n > 0, η > 0 be an arbitrary constant, ∆ = c logn, for a large enough
constant c depends on η, m = O(n2∆). Let G := ([m], [n], E) be a bipartite graph, such that
each i ∈ [m] choses ∆ neighbours uniformly at random over

(
n
∆
)

possibilities. Then G is an
(r,∆, (1− η)∆)-expander for r = Ω (n/∆).

Instead of working directly with randomised communication, we use the equivalent
characterisation through distributional communication complexity. That is, we prove a lower
bound against deterministic protocols that achieve error ε with respect to a certain distribution
on inputs (here we use uniform distribution), and a lower bound against randomised protocols
that achieve error ε follows. Below, “communication protocol” refers to a deterministic
communication protocol.

3 Refuting Bipartite CNFs

In this section we mainly prove a special “bipartite” case of Theorem 4. We show in Section 3.1
that it actually implies the general case.



A. Riazanov, A. Sofronova, D. Sokolov, and W. Yuan 64:5

▶ Theorem 7. Let α > 0 be an absolute constant. Let G1 := ([m], [n], E1), G2 := ([m], [n], E2)
be two (r,∆, α∆)-expanders, and X,Y := {0, 1}n. For each i ∈ [m], let Ci be a disjunction
of variables in {xj | j ∈ NG1(i)} ∪ {yj | j ∈ NG2(i)} with arbitrary signs. Then for every
communication protocol Π: {0, 1}n × {0, 1}n → [m] of depth d at most O(∆r):

Pr
(x,y)∼X×Y

i∼Π(x,y)

[Ci(x,y) = 0] ≤ d · 2−Ω(∆) + exp(−d).

This section is organized as follows. In Section 3.1, we derive Theorem 4 from The-
orem 7. In Section 3.2, we formally define subcube-like protocols and provide necessary tools.
In Section 3.3, we give a more refined analysis of the conversion from general protocols to
subcube-like ones in [14]. In Section 3.4, we show the hardness of Searchφ against subcube-
like protocols when the underlying graphs are good expanders. Finally, in Section 3.5, we
put everything together and derive Theorem 7.

3.1 Deriving Theorem 4 from Theorem 7
The main part of the argument that reduces the general case to the bipartite is a clean-up
lemma essentially saying that incurring a small error we can treat the general case as bipartite.
Similar arguments have been made in [24, 12, 40].

Let φ =
∧
i∈[n] Ci be a ∆-CNF with the set of variables [n]. Let A ⊔ B = [n] be a

partition of the variables. Let GA := ([m], A,EA) and GB := ([m], B,EB) be the graphs
with edges connecting a clause with all variables from one of the sets mentioned in it. Let
ErrorA ⊆ [m] and ErrorB ⊆ [m] be the sets of clauses with degree exceeding (1− δ)∆ in
GA and GB respectively. It means that clauses from [m] ∖ (ErrorA ∪ ErrorB) have at
least δ∆ variables from A and B. We then say that (A,B) is δ-good partition for φ if
1. Pr

x∼{0,1}A
[∀i ∈ ErrorA we have Ci(x, ·) ≡ 1] ≥ 1− 2−Ω(∆).

2. Pr
y∼{0,1}B

[∀i ∈ ErrorB we have Ci(·,y) ≡ 1] ≥ 1− 2−Ω(∆).

3. GA − ErrorA − ErrorB and GB − ErrorA − ErrorB are (r,∆, δ∆/2)-expanders,
where r = Ω(n/∆).

In this definition we assume that δ is an absolute constant and hidden constants depend
on it.

▶ Lemma 8. Let φ ∼ F(m,n,∆) with ∆ = c logn and m = α2∆n, where c, α > 0 are
constants, and c ≥ 40. Let X,Y be a uniformly random partition of [n]. Then whp (X,Y )
is a δ-good partition for φ for any δ ≤ 1/10.

We defer the proof of this lemma to Section A.

Proof of Theorem 4. Applying Lemma 8, we get that the variable partition X ⊔Y = [n] is
1/10-good wrt φ. Let G1 := GX −ErrorX −ErrorY , G2 := GY −ErrorX −ErrorY .
Note that the left parts of these graphs have equal size. We can add dummy variables to the
right parts of these graphs to make them equal as well for the simplicity of notation.

By Lemma 8, the probability over (x,y) ∼ {0, 1}X×{0, 1}Y for the ErrorX or ErrorY

to not be immediately satisfied is 2−Ω(∆). This means that if we consider a protocol for the
problem Searchφ for the variable partition X ⊔ Y with the probability of success ε, we can
reinterpret it as a protocol for G1 and G2 with the probability of success at least ε− 2−Ω(∆).

We apply Theorem 7 with α := 1
20 . Since r∆ can be as large as Ω(n) by Lemma 6, we can

pick the constants depending on α such that the probability from Theorem 7 is less than 1
100 .

Then the probability of success for the problem from Theorem 4 is less than 1
100 + 2−Ω(∆),

and the theorem follows. ◀

APPROX/RANDOM 2025



64:6 Searching for Falsified Clause in Random (log n)-CNFs

3.2 Density Restoring Machinery
Every communication protocol Π can be seen as a tree (not necessarily binary). Let N (Π)
denote the set of all nodes in Π. Each node v ∈ N (Π) is associated with a rectangle, denoted
Rv = Xv × Yv.

▶ Definition 9 (Min-entropy). For a random variable x, let H∞(x) = minx log 1
Pr[x=x] .

▶ Definition 10 (Spread variables). Let x ∈ {0, 1}n be a random boolean vector. We say x is
γ-spread if for every I ⊆ [n] we have H∞(xI) ≥ γ|I|.

▶ Definition 11 (Structured variables). Let x ∈ {0, 1}n be a random boolean vector and
I ⊆ [n]. We say x is (I, γ)-structured if there exists some aI ∈ {0, 1}I such that

Pr[xI = aI ] = 1;
x[m]∖I is γ-spread.

▶ Definition 12 (Subcube-like rectangle). A rectangle R = X × Y ⊆ {0, 1}n × {0, 1}n is
γ-subcube-like with respect to (I, J) where I, J ⊆ [n] if x ∼ X is (I, γ)-structured and y ∼ Y
is (J, γ)-structured. In which case, we use fix(X) := I and fix(Y ) := J to denote the fixed
part of X and Y respectively.

▶ Definition 13 (Subcube-like protocols [14]). A communication protocol Π: {0, 1}n ×
{0, 1}n → S is γ-subcube-like if for every node v ∈ N (Π) in the protocol tree, Rv is γ-
subcube-like.

▶ Definition 14 (Codimension). The codimension of a subcube-like rectangle R = X × Y is
defined as the total number of fixed positions in X and Y , denoted codim(R) := |fix(X)|+
|fix(Y )|. The codimension of a subcube-like protocol Π is the maximum codimension of subcube-
like rectangles associated with any nodes in the protocol tree of Π, denoted codim(Π) :=
maxv∈N (Π) codim(Rv).

▶ Lemma 15 (Density Restoring Partition [22]). Let x ∈ {0, 1}n be a random boolean vector
with support X ⊆ {0, 1}n and 0 < γ < 1 be a fixed parameter. There exists a partition

X = X1 ⊔X2 ⊔X3 · · · ⊔Xr

such that for each j ∈ [r], x | x ∈ Xj is (Ij , γ)-structured with respect to some Ij ⊆ [n].
Moreover, if we denote p≥j := Pr

[
x ∈ Xj ⊔ · · · ⊔Xℓ

]
, then it holds that:

H∞(x[m]∖Ij | x ∈ Xj) ≥ H∞(x)− γ|Ij | − log
(
1/p≥j).

3.3 Subcube-like protocols from general protocols
Göös et al. [14] show how to convert an arbitrary communication protocol into a subcube-like
one. Specifically, they prove the following.

▶ Lemma 16 ([14]). Let Π be a communication protocol of depth d and ε > 0. There exists
a subcube-like protocol Π̃ of codimension codim(Π̃) = O(d/ε) such that

Pr
x,y

[Π(x,y) ̸= Π̃(x,y)] ≤ ε.

Their bound is tight in the constant-error regime. However, it degenerates when ε = O(d/n).
In this subsection, we give a more refined analysis of the reduction in [14], which makes

the bound applicable in the inverse polynomial error regime (when d = Ω(logn)). We remark
that such an analysis has been implicitly provided in [22].
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▶ Lemma 17. Let Π be a communication protocol of depth d. There exists a γ-subcube-like
protocol Π̃ of codimension codim(Π̃) = 7

1−γ · d such that

Pr
x,y

[Π(x,y) ̸= Π̃(x,y)] ≤ exp(−d).

We include a simplified version of the algorithm for such conversion from [14] for com-
pleteness. This algorithm simulates a subcube-like protocol Π′ on an input (x, y), given a
general protocol Π.

Algorithm 2 (simplified) conversion from [14].

v ← root of Π, X × Y = {0, 1}n × {0, 1}n, I ← ∅.
while v is not a leaf do

v0, v1 ← children of v
Suppose Alice sends a bit at v (otherwise swap X and Y , I and J)
Let X = X0 ⊔X1 be the partition according to the bit Alice sends
Let Xb =

⊔
iX

b,i be the density-restoring partition (with parameter γ and sets Ii,
respectively), where x ∈ Xb.

X ← Xb,i, I ← I ∪ Ii where x ∈ Xi

Alice sends (b, C(i)) to Bob (here C(i) is any encoding of i)
v ← vb

end while
Output the label Π(v)

Proof. Let Π′ be as given by Algorithm 2 in [14]. More precisely, let the protocol tree of Π′

consist all the possible configurations at the end of each iteration plus the initial one as the
root (so the tree is not necessarily binary). Observe that Π′ has depth d, though may have
much larger communication complexity.

For any x, y ∈ {0, 1}n, we have Π(x, y) = Π′(x, y). It suffices to show
Prx,y[codim(R(x,y)) > 7

1−γ · d] ≤ exp(−d), where R(x, y) is the unique rectangle asso-
ciated with the leaves of Π that contains (x, y). The desired Π̃ can then be obtained by
shaving all the nodes in the protocol tree of Π′ associated with a rectangle of codimension
greater than 7

1−γ · d.
For each node v ∈ N (Π′), define the entropy deficiency of v as

D∞(v) := D∞(Xv) + D∞(Yv),

where

D∞(Xv) := n− |fix(Xv)| −H∞(x[n]∖fix(Xv)), x ∼ Xv

and D∞(Yv) is defined analogously.
Now consider running Π′ on x, y, and let v0, . . . , vd ∈ N (Π′) denote all the nodes on

the execution path. Fix any k ∈ [d] and let us simply use u and v to denote vk−1 and
vk. Suppose without loss of generality that it is Alice who sends a bit to Bob in the k-th
iteration. Recall that in each iteration Alice first partitions Xu = X0

u ⊔ X1
u according to

the bit she sends. Then she performs the density-restoring partition with parameter γ on
Xb
u = Xb,1

u ⊔ . . . ⊔Xb,r
u where x ∈ Xb

u. Finally, she determines the unique Xb,i
u that contains

x. Then for the next configuration, Xv = Xb,i
u . Let us define

APPROX/RANDOM 2025



64:8 Searching for Falsified Clause in Random (log n)-CNFs

qbu := Pr
[
x ∈ Xb

u | x ∈ Xu

]
,

pb,≥ju := Pr

x ∈
⋃
k≥j

Xb,k
u

∣∣∣∣x ∈ Xb
u

 ∀j ∈ [r],

hk(x, y) := log
(
1/qbu

)
+ log

(
1/pb,≥iu

)
,

nk(x, y) := |fix(Xv) ∖ fix(Xu)|.

We have the following simple fact.

▶ Fact 18. D∞(v) ≤ D∞(u)− (1− γ)nk(x, y) + hk(x, y).

Proof.

D∞(v)−D∞(u) = −|fix(Xv)|+ |fix(Xu)|+ H∞(Xv)−H∞(Xu)
= −nk(x, y) + (H∞(Xv)−H∞(Xb

u)) + (H∞(Xb
u)−H∞(Xv))

(from Lemma 15) ≤ −nk + log
(
1/qbu

)
+
(
γ · nk(x, y) + log

(
1/pb,≥iu

))
= −(1− γ)nk(x, y) + hk(x, y). ◀

Together with the nonnegativity of D∞, we can bound the codimension of R(x, y) by
h(x, y) :=

∑d
k=1 hk(x, y) up to a multiplicative factor.

▷ Claim 19. For every x, y ∈ {0, 1}n, codim(R(x, y)) ≤ 1
1−γ · h(x, y).

Proof. Consider the path in the tree leading to the leaf R(x, y), this path being of length d.
Summing up the inequalities from Fact 18 along that path, we get:

D∞(vd)−D∞(v0) ≤ −(1− γ)
d∑
j=1

nj(x, y) +
d∑
j=1

hj(x, y)

Since D∞(vd) is non-negative and D∞(v0) = 0, it follows that:

codim(R(x, y)) =
d∑
j=1

nj(x, y) ≤ 1
1− γ

d∑
j=1

hj(x, y) = 1
1− γ · h(x, y). ◁

We also observe that hk(x,y) has an exponential tail for each k ∈ [d], even conditioned on
any node v of depth k − 1 being reached.

▷ Claim 20. For every node v ∈ N (Π′) of depth 0 ≤ k < d and threshold γ ≥ 0,

Pr
x,y

[hk+1(x,y) ≥ 1 + γ | vk = v] ≤ 2−γ .

Proof. Let b, i be as defined in the (k + 1)-th iteration of Algorithm 2 given x,y. We have

Pr
x,y

[hk+1(x,y) ≥ 1 + γ | vk = v]

=
∑

b∈{0,1}

Pr[b = b | vk = v] · Pr
[
log
(
1/qbv

)
+ log

(
1/pb,≥i

v

)
≥ 1 + γ | b = b,vk = v

]
=

∑
b∈{0,1}

qbv · Pr
[
qbv · pb,≥i ≤ 2−γ−1

∣∣∣∣b = b,vk = v

]
≤

∑
b∈{0,1}

qbv ·min
{

1, 2−γ−1 · qbv
}

≤2−γ ,

where in the second last inequality, we use the property that Pr
[
pb,≥i
v ≤ t | b = b,vk = v

]
≤ t

for all t ∈ [0, 1]. ◁
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Finally, we need the following adaptive version of Bernstein’s inequality, whose proof can
be found in Section C.

▶ Lemma 21. Let a1, . . . ,an ∈ R be a random sequence of reals and ζ > 0 be some fixed para-
meter. If for any 1 ≤ k ≤ n and a1, . . . , ak−1 ∈ R such that Pr[a1 = a1, . . . ,ak−1 = ak−1] >
0,

Pr[ak ≥ x | a1 = a1, . . . ,ak−1 = ak−1] ≤ exp(−ζx),

then

Pr
[

n∑
i=1

ai ≥
4
ζ
n

]
≤ exp(−n).

We are now ready to bound the codimension of R(x,y). Let (ak := hk(x,y)− 1)k∈[d] ∈ Rd
be a random sequence of reals. By Claim 20, a satisfies the condition in Lemma 21 with
ζ = ln 2. Therefore,

Pr[h(x,y) ≥ 7d] = Pr
[

d∑
i=1

ai ≥ 6d
]
≤ exp(−d).

Together with Claim 19, we conclude that

Pr
[
codim(R(x,y)) ≥ 7

1− γ · d
]
≤ Pr[h(x,y) ≥ 7d] ≤ exp(−d). ◀

3.4 Lower bound against subcube-like protocols
The following lemma is implicit in [20], we include its proof in Section B for completeness.

▶ Lemma 22. Let 0 < β < α < 1 and let Π: {0, 1}n×{0, 1}n → S be a subcube-like protocol
of codimension codim(Π) =: d ≤ (α− β)2r∆/4, and G1 = ([m], [n], E1), G2 = ([m], [n], E2)
be two (r,∆, α∆)-expanders. Then there exist families {ClX(v)}v∈N (Π), {ClY (v)}v∈N (Π) of
subsets of [m] such that the following conditions hold:
1. For every non-root v ∈ N (Π), let u denote v’s parent. Then ClX(u) ⊆ ClX(v) and

ClY (u) ⊆ ClY (v).
2. For every v ∈ N (Π), G1−ClX(v)−N(ClX(v))−fix(Xv) and G2−ClY (v)−N(ClY (v))−

fix(Yv) are both (r,∆, β∆)-expanders.
3. For every v ∈ N (Π), |ClX(v)|, |ClY (v)| ≤ 1

α−βd/∆.

▶ Lemma 23. As in Theorem 7 let G1 := ([m], [n], E1), G2 := ([m], [n], E2) be two (r,∆, α∆)-
expanders, and X,Y := {0, 1}n. For each i ∈ [m], let Ci be a disjunction of variables in
{xj | j ∈ NG1(i)} ∪ {yj | j ∈ NG2(i)} with arbitrary signs. Let Π: {0, 1}n × {0, 1}n → [m] be
a γ-subcube-like communication protocol of codim(Π) := d. If d ≤ α2r∆/4, then

Pr
x,y

[Ci(x,y) = 0 | i = Π(x,y)] ≤ O(2−γα∆/2 · d).

Proof. We rephrase the success probability of Π as follows: Sample a random leaf ℓ of Π
with probability |Rℓ|/22n. Then

Pr
x,y

[Ci(x,y) = 0 | i = Π(x,y)] = Eℓ

[
Pr

(x,y)∼Rℓ

[CΠ(ℓ)(x,y) = 0]
]
. (1)

Let {ClX(v)}v∈N (Π), {ClY (v)}v∈N (Π) be given by Lemma 22 with respect to Π, G1, G2
and β = α/2. For each node v ∈ N (Π), define Jv := ClX(v) ∪ ClY (v). We first observe that
for each leaf ℓ, Π has low success probability on Rℓ if Π(ℓ) /∈ Jℓ.
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▷ Claim 24. Let ℓ be any leaf in the protocol tree of Π. Suppose that i ̸∈ Jℓ. Then

Pr
(x,y)∼Rℓ

[Ci(x,y) = 0] ≤ 2−γα∆/2.

Proof. By the definition of Jℓ, we have i ̸∈ ClX(ℓ). Let A ⊆ [n] ∖ (fix(X) ∪ N(ClX(ℓ)))
be the set of neighbors of i in G1 − ClX(ℓ) − N(ClX(ℓ)) − fix(Xℓ), by the expansion we
get |A| ≥ α∆/2. Since Xℓ × Yℓ is γ-subcube-like we have that x[n]∖fix(Xℓ) is γ-spread. In
particular, H∞(xA) ≥ γ|A| ≥ γα∆/2. Let τ ∈ {0, 1}A be the unique assignment that
violates all literals of Ci in A. The min-entropy bound above then implies Pr[Ci(x,y) = 0] ≤
Pr[xA = τ ] ≤ 2−γα∆/2. ◁

On the other hand, unfortunately, it is possible that

pi(ℓ) := Pr
(x,y)∼Rℓ

[Ci(x,y) = 0]

is close to 1 for some i ∈ Jℓ. Nevertheless, we can show that this can happen only for a small
fraction of leaves.

▷ Claim 25. Let ℓ be a random leaf sampled as stated above. Then

Eℓ

[∑
i∈Jℓ

pi(ℓ)
]
≤ 2−γα∆/2 · d.

Proof. First, denoting by ℓx,y the leaf containing (x,y), we can write

Eℓ

[∑
i∈Jℓ

pi(ℓ)
]

=
∑
i∈[m]

Eℓ[1i∈Jℓ
· pi(ℓ)]

=
∑
i∈[m]

Pr
x,y

[i ∈ Jℓx,y ∧ Ci(x,y) = 0]

=
∑
i∈[m]

Pr
x,y

[Ci(x,y) = 0 | i ∈ Jℓx,y ] · Pr
x,y

[i ∈ Jℓx,y ]

≤ max
i∈[m]

Pr
x,y

[Ci(x,y) = 0 | i ∈ Jℓx,y ] ·
∑
i∈[m]

Pr
x,y

[i ∈ Jℓx,y ]

= max
i∈[m]

Pr
x,y

[Ci(x,y) = 0 | i ∈ Jℓx,y ] · Eℓ[|Jℓ|].

Observe that |Jℓ| ≤ d for every leaf ℓ, it suffices to show

Pr
x,y

[Ci(x,y) = 0 | i ∈ Jℓx,y ] ≤ 2−γα∆/2.

for every i ∈ [m]. Now let us fix an arbitrary i ∈ [m]. The event “i ∈ Jℓx,y ” can be
reinterpreted as follows: with

Vi := {v ∈ N (Π) | i ∈ Jv and the parent of v does not satisfy that}

we have that i ∈ Jℓx,y if and only if (x,y) ∈
⊔
v∈Vi

Rv (the rectangles form a partition since
the nodes in Vi are maximally close to the root). Then

Pr
x,y

[Ci(x,y) = 0 | i ∈ Jℓx,y ] ≤
∑
v∈Vi

Pr
x,y

[(x,y) ∈ Rv | i ∈ Jℓx,y ]·Pr
x,y

[Ci(x,y) = 0 | (x,y) ∈ Rv].

Since the right-hand side is a convex combination of Pr[Ci(x,y) = 0 | (x,y) ∈ Rv] for v ∈ Vi,
it suffices to bound the maximum of these probabilities.



A. Riazanov, A. Sofronova, D. Sokolov, and W. Yuan 64:11

The crucial observation to conclude the proof is that i ̸∈ ClX(v) if Bob spoke in the
parent node of v and i ̸∈ ClY (v) if Alice spoke in that node. In any case, an argument similar
to that in Claim 24 applies and we have Pr[Ci(x,y) = 0 | (x,y) ∈ Rv] ≤ 2−γα∆/2, which
concludes the proof. ◁

Now we are ready to show the desired bound. Combining the above two claims, we have

(1) = Pr[Π(ℓ) /∈ Jℓ] · Eℓ[ Pr
(x,y)∼Rℓ

[CΠ(ℓ)(x,y) = 0] | Π(ℓ) /∈ Jℓ]

+ Pr[Π(ℓ) ∈ Jℓ] · Eℓ[ Pr
(x,y)∼Rℓ

[CΠ(ℓ)(x,y) = 0] | Π(ℓ) ∈ Jℓ]

≤ 2−γα∆/2 + Eℓ[
∑
i∈Jℓ

pi(ℓ)]

= O(d/2γα∆/2). ◀

3.5 Proof of Theorem 7
We first restate the theorem for convenience.

▶ Theorem 7. Let α > 0 be an absolute constant. Let G1 := ([m], [n], E1), G2 := ([m], [n], E2)
be two (r,∆, α∆)-expanders, and X,Y := {0, 1}n. For each i ∈ [m], let Ci be a disjunction
of variables in {xj | j ∈ NG1(i)} ∪ {yj | j ∈ NG2(i)} with arbitrary signs. Then for every
communication protocol Π: {0, 1}n × {0, 1}n → [m] of depth d at most O(∆r):

Pr
(x,y)∼X×Y

i∼Π(x,y)

[Ci(x,y) = 0] ≤ d · 2−Ω(∆) + exp(−d).

Proof. Let Π̃ be a subcube-like protocol given by Lemma 17 with respect to Π and γ = α.
Then codim(Π′) ≤ 7d

1−α . Moreover,

Pr
x,y

[Π(x,y) ̸= Π̃(x,y)] ≤ exp(−d).

We can then apply Lemma 23 and conclude that

Pr
x,y

[Ci(x,y) = 0 | i = Π(x,y)] ≤

Pr
x,y

[Ci(x,y) = 0 | i = Π̃(x,y)] + exp(−d) = d · 2−Ω(∆) + exp(−d). ◀
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A Proof of Lemma 8

We start by proving Item 1 (Item 2 is analogous). Let NX(i) for i ∈ [m] be the set of
neighbors of i in X and NY (i) – in Y . Then ErrorX = {i ∈ [m] | |NX(i)| > (1− δ)∆}.
We then write

E[|ErrorX |] =
∑
i∈[m]

Pr
[
|NX(i)| > (1− δ)∆

]
=
∑
i∈[m]

∑
S⊆N(i) : |S|≥(1−δ)∆

Pr[X ∪N(i) = S]

= m
∑
j≤δ∆

(
m

m− j

)
2−∆

≤ m2−(1−H(δ))∆

= αn · 2H(δ)∆

= αn1+cH(δ)

On the other hand for every i ∈ ErrorX we have

Pr
x∼{0,1}X

[Ci(x, ·) ̸≡ 1] = 2−|NX (i)| ≤ 2−(1−δ)∆ = n−c(1−δ).

Then by a union bound we get

Pr
x∼{0,1}X

[∃i ∈ ErrorX : Ci(x, ·) ̸≡ 1] ≤ |ErrorX | · n−c(1−δ).
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Then by Markov’s inequality applied to |ErrorX | with probability 1− ε over X we have

Pr
x∼{0,1}X

[∃i ∈ ErrorX : Ci(x, ·) ̸≡ 1] ≤ 1/ε · E[|ErrorX |] · n−c(1−δ)

= α/ε · n1+cH(δ)−c(1−δ)

= α/ε · n1−c(1−δ−H(δ))

Now it remains to prove Item 3. First, let G := ([m], [n], EX ⊔ EY ) be the union of GX

and GY . By Lemma 6 whp over φ the graph G is an (r,∆, (1− η)∆)-expander for any η and
r = Ωη

(
n
∆
)
. Now it is sufficient to show GX − ErrorY is an (r,∆, (δ − 2η)∆)-expander

whp, GY −ErrorX is distributed identically to GX −ErrorY and removing additional
nodes from the left-hand side does not reduce expansion.

We in fact show that conditioned on the fact that G is an (r,∆, (1 − η)∆)-expander,
GX − ErrorY is (r,∆, (δ − 2η)∆)-expander with probability 1. Consider an arbitrary
subset U ⊆ [m] of size at most r. For every such subset we need to have |N(U) ∖ Y ∖
N(ErrorY )| ≥ (δ − 2η)∆|U ∖ ErrorY |. Here and below N(S) = NG(S). Consider the
set ∂U := {v ∈ N(U) | v is connected with a single node in U}. Then |∂U | ≥ (1− 2η)|U |∆:
indeed the number of edges incident to U can be estimated in two ways:

∆|U | = |E ∩ (U × [n])| ≥ |∂U |+ 2(|N(U)| − |∂U |) ≥ 2(1− η)∆|U | − |∂U |.

Then we can partition the set N(U) into sets Ni for i ∈ U where Ni ⊆ N(i) and
|Ni| ≥ (1− 2η)∆: find a node i ∈ U such that |∂U ∩N(i)| ≥ (1− 2η)∆, let Ni := ∂U ∩N(i)
and continue the process for U ∖ {i}, the reason the resulting sets form a partition is that
Ni ∩N(U ∖ {i}) = ∅ by the definition of ∂U .

For every Y ⊆ [n] if |N(i)∖Y | ≥ δ∆, then |Ni∖Y | ≥ |N(i)∖Y |−|N(i)∖Ni| ≥ (δ−2η)∆.
It follows that after removing ErrorY (vertices for which |N(i) ∖ Y | < δ∆), every vertex
i in the set U ∖ ErrorY in GX has at least (δ − 2η)∆ neighbours in Ni ∖ Y . As Ni is a
partition, it follows that |N(U) ∖ ErrorY ∖N(ErrorY )| ≥ (δ − 2η)∆|U ∖ ErrorY |.

Finally, choosing η = δ/4 completes the proof. By Lemma 6 this particular choice only
affects the hidden constant in r = Ω(n/∆).

B Proof of Lemma 22

Since ClX and ClY are independent of each other, we just focus on constructing ClX . It
suffices to prove the following lemma:

▶ Lemma 26. Let G = ([m], [n], E) be an (r,∆, α∆)-expander. Let T be a tree with nodes
labeled with subsets of [n], where Sv ⊆ [n] denotes the label of v such that

For the root of T , the node r we have Sr = ∅.
If u is a parent of v, then Su ⊆ Sv.
For every u we have |Su| ≤ d ≤ (α− β)2r∆/4.

Then there for every node u to T there exists a set Tu ⊆ [m] such that
(a) The graph Gu := G− Tu − Su −N(Tu) is an (r,∆, β∆)-expander.
(b) If u is a parent of v, then Tu ⊆ Tv.
(c) |Tu| ≤ 1

α−βd/∆.

To finish the proof of Lemma 22 given Lemma 26 we just let T be the tree of the protocol
and Su be fix(Xu), then take ClX(u) := Tu.

We now proceed to prove Lemma 26. Wlog we may assume that if u is a parent of v we
have |Sv ∖ Su| ≤ 1 (just by replacing a single edge in T by a chain of edges).
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We construct the sets Tu inductively starting from the root r where Tr = ∅. Suppose u is
a parent of node v and we have constructed Tu. If Su = Sv, we just let Tv := Tu, so assume
that Sv ∖ Su = {i}. Let G′

u := Gu − i. Let us find the largest set Bv ⊆ [m] ∖ Tu such that
|Bv| ≤ r and |NG′

u
(Bv)| ≤ β∆|Bv| and let Tv := Tu ∪Bv. Then Gv = G′

u − Tu −NG′
u
(Tu).

It is clear that T satisfies Item (b).

Proof of Item (c). We show by induction on the depth ℓ of a node u that |Tu| ≤ 1
α−β ℓ/∆.

The base case is satisfied since for the root r the set Tr is empty. Now let u be a node at
depth ℓ and v be its child at depth ℓ+ 1. We have that |Tu| ≤ 1

α−β ℓ/∆, we need to prove
that |Tv| = |Tu ⊔Bv| ≤ 1

α−β (ℓ+ 1)/∆.
On the one hand NG′

u
(Bv) = NG(Bv)∖ (NG(Tu)∪Sv). On the other hand, |NG′

u
(Bv)| ≤

β∆|Bv|. By the expansion of G we have |NG(Bv)| ≥ α∆|Bv|. Hence |NG(Tu) ∪ Sv| ≥
(α − β)∆|Bv|. By the assumption on the tree |Sv| = ℓ + 1, and by induction hypothesis
|Tu| ≤ 1

α−β ℓ/∆, so |NG(Tu))| ≤ 1
α−β ℓ.

Combining the two inequalities, we get 1
α−β ℓ+ (ℓ+ 1) ≥ (α− β)∆|Bv|.

From that, we get |Bv| ≤ 2 · 1
(α−β)2∆ · (ℓ+ 1) ≤ r/2, where the last inequality follows from

the assumptions on ℓ. Then we get that |Tv| ≤ |Tu|+ |Bv| ≤ r. Now we can use expansion
of G to bound |NG(Tv)| ≥ α∆|Tv|. On the other hand, let r = w0, w1, . . . , wℓ = u,wℓ+1 = v

be the path in T from the root to v. We then have

NG(Tv) ⊆
ℓ⋃
i=0

NG′
wi

(Bwi+1) ∪ Sv.

By the choice of sets B we get |NG(Tv)| ≤ β∆|Tv|+ |Sv|. Combining the two bounds we get
|Tv| ≤ 1

α−β |Sv|/∆, which concludes the proof.

Proof of Item (a). Pick the node v at depth ℓ+1 such that Gv is not an (r,∆, β∆)-expander,
and v is the closest to the root among such nodes. In particular, for its parent u the graph Gu
is (r,∆, β∆)-expander. Then there exists a set T of size at most r such that NGv (T ) < β∆|T |.
By expansion of G we get |NG(T )| ≥ α∆|T |. Then, since NGv

(T ) = NG(T ) ∖ (NG(Tv)∪ Sv)
we have

1
2(α− β)∆r ≥ 2

α− β
ℓ ≥ 1

α− β
ℓ+ (ℓ+ 1) ≥ |NG(Tv) ∪ Sv| ≥ (α− β)∆|T |.

The left-hand side follows from Item (c) and the right-hand side follows from the analysis
above. Then |T | ≤ r/2. Since by the proof of Item (c) we have that |Bv| ≤ r/2, we get
|T ∪Bv| ≤ r, yet |NG′

u
(T ∪Bv)| < β∆|Bv|+ β∆|T | ≤ β∆|Bv ⊔ T |, contradicting the choice

of Bv.

C Proof of Lemma 21

▶ Lemma 21. Let a1, . . . ,an ∈ R be a random sequence of reals and ζ > 0 be some fixed para-
meter. If for any 1 ≤ k ≤ n and a1, . . . , ak−1 ∈ R such that Pr[a1 = a1, . . . ,ak−1 = ak−1] >
0,

Pr[ak ≥ x | a1 = a1, . . . ,ak−1 = ak−1] ≤ exp(−ζx),

then

Pr
[

n∑
i=1

ai ≥
4
ζ
n

]
≤ exp(−n).
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Proof. Let λ ∈ (0, ζ) be some parameter that will be determined later. First, observe that
for any 1 ≤ k ≤ n and a1, . . . , ak−1 ∈ R such that Pr[a1 = a1, . . . ,ak−1 = ak−1] > 0,

E[exp(λak) | a1 = a1, . . . ,ak−1 = ak−1] ≤ ζ
∞∫

0

exp(λx) · exp(−ζx) · dx = ζ/(ζ − λ). (2)

Next, we prove by induction on k from n to 1 that

E

[
exp

(
λ

n∑
i=k

ai

)∣∣∣∣∣a1 = a1, . . . ,ak−1 = ak−1

]
≤
(

ζ

ζ − λ

)n−k+1
. (3)

The base case k = n is exactly (2). Now assume that (3) holds for all k ≥ m+ 1. Then

E

[
exp
(
λ

n∑
i=m

ai

)∣∣∣∣∣a1 = a1, . . . ,am−1 = am−1

]
≤
∑
am

Pr[am = am | a1 = a1, . . . ,am−1 = am−1] · exp(λam)·

· E

[
exp
(
λ

n∑
i=m+1

ai

)∣∣∣∣∣a1 = a1, . . . ,am = am

]

≤
(

λ

ζ − λ

)n−m

· E[exp(λam) | a1 = a1, . . . ,am−1 = am−1]

=
(

λ

ζ − λ

)n−m+1
.

Finally, by setting λ = ζ/2, we conclude that

Pr
[

n∑
i=1

ai ≥
4
ζ
n

]
= Pr

[
exp

(
λ

n∑
i=1

ai

)
≥ exp

(
4λ
ζ
n

)]

≤ E

[
exp
(
λ

n∑
i=1

ai

)]
· exp(−2n)

≤
(

ζ

ζ − λ

)n
· exp(−2n)

≤ exp(−n). ◀
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